]> git.sesse.net Git - vlc/blob - modules/audio_filter/channel_mixer/headphone.c
* ALL: removed a bunch of unused add_category_hint().
[vlc] / modules / audio_filter / channel_mixer / headphone.c
1 /*****************************************************************************
2  * headphone.c : headphone virtual spatialization channel mixer module
3  *               -> gives the feeling of a real room with a simple headphone
4  *****************************************************************************
5  * Copyright (C) 2002 VideoLAN
6  * $Id: headphone.c,v 1.7 2004/01/25 18:53:06 gbazin Exp $
7  *
8  * Authors: Boris Dorès <babal@via.ecp.fr>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111, USA.
23  *****************************************************************************/
24
25 /*****************************************************************************
26  * Preamble
27  *****************************************************************************/
28 #include <stdlib.h>                                      /* malloc(), free() */
29 #include <string.h>
30 #include <math.h>                                        /* sqrt */
31
32 #include <vlc/vlc.h>
33 #include "audio_output.h"
34 #include "aout_internal.h"
35
36 /*****************************************************************************
37  * Local prototypes
38  *****************************************************************************/
39 static int  Create    ( vlc_object_t * );
40 static void Destroy   ( vlc_object_t * );
41
42 static void DoWork    ( aout_instance_t *, aout_filter_t *, aout_buffer_t *,
43                         aout_buffer_t * );
44
45 /*****************************************************************************
46  * Module descriptor
47  *****************************************************************************/
48 #define MODULE_DESCRIPTION N_ ( \
49      "This effect gives you the feeling that you are standing in a room " \
50      "with a complete 5.1 speaker set when using only a headphone, " \
51      "providing a more realistic sound experience. It should also be " \
52      "more comfortable and less tiring when listening to music for " \
53      "long periods of time.\nIt works with any source format from mono " \
54      "to 5.1.")
55
56 #define HEADPHONE_DIM_TEXT N_("Characteristic dimension")
57 #define HEADPHONE_DIM_LONGTEXT N_( \
58      "Headphone virtual spatialization effect parameter: "\
59      "distance between front left speaker and listener in meters.")
60
61 vlc_module_begin();
62     set_description( N_("headphone channel mixer with virtual spatialization effect") );
63
64     add_integer( "headphone-dim", 10, NULL, HEADPHONE_DIM_TEXT,
65                  HEADPHONE_DIM_LONGTEXT, VLC_FALSE );
66
67     set_capability( "audio filter", 0 );
68     set_callbacks( Create, Destroy );
69     add_shortcut( "headphone" );
70 vlc_module_end();
71
72
73 /*****************************************************************************
74  * Internal data structures
75  *****************************************************************************/
76 struct atomic_operation_t
77 {
78     int i_source_channel_offset;
79     int i_dest_channel_offset;
80     unsigned int i_delay;/* in sample unit */
81     double d_amplitude_factor;
82 };
83
84 struct aout_filter_sys_t
85 {
86     size_t i_overflow_buffer_size;/* in bytes */
87     byte_t * p_overflow_buffer;
88     unsigned int i_nb_atomic_operations;
89     struct atomic_operation_t * p_atomic_operations;
90 };
91
92 /*****************************************************************************
93  * Init: initialize internal data structures
94  * and computes the needed atomic operations
95  *****************************************************************************/
96 /* x and z represent the coordinates of the virtual speaker
97  *  relatively to the center of the listener's head, measured in meters :
98  *
99  *  left              right
100  *Z
101  *-
102  *a          head
103  *x
104  *i
105  *s
106  *  rear left    rear right
107  *
108  *          x-axis
109  *  */
110 static void ComputeChannelOperations ( struct aout_filter_sys_t * p_data
111         , unsigned int i_rate , unsigned int i_next_atomic_operation
112         , int i_source_channel_offset , double d_x , double d_z
113         , double d_channel_amplitude_factor )
114 {
115     double d_c = 340; /*sound celerity (unit: m/s)*/
116
117     /* Left ear */
118     p_data->p_atomic_operations[i_next_atomic_operation]
119         .i_source_channel_offset = i_source_channel_offset;
120     p_data->p_atomic_operations[i_next_atomic_operation]
121         .i_dest_channel_offset = 0;/* left */
122     p_data->p_atomic_operations[i_next_atomic_operation]
123         .i_delay = (int)( sqrt( (-0.1-d_x)*(-0.1-d_x) + (0-d_z)*(0-d_z) )
124                           / d_c * i_rate );
125     if ( d_x < 0 )
126     {
127         p_data->p_atomic_operations[i_next_atomic_operation]
128             .d_amplitude_factor = d_channel_amplitude_factor * 1.1 / 2;
129     }
130     else if ( d_x > 0 )
131     {
132         p_data->p_atomic_operations[i_next_atomic_operation]
133             .d_amplitude_factor = d_channel_amplitude_factor * 0.9 / 2;
134     }
135     else
136     {
137         p_data->p_atomic_operations[i_next_atomic_operation]
138             .d_amplitude_factor = d_channel_amplitude_factor / 2;
139     }
140
141     /* Right ear */
142     p_data->p_atomic_operations[i_next_atomic_operation + 1]
143         .i_source_channel_offset = i_source_channel_offset;
144     p_data->p_atomic_operations[i_next_atomic_operation + 1]
145         .i_dest_channel_offset = 1;/* right */
146     p_data->p_atomic_operations[i_next_atomic_operation + 1]
147         .i_delay = (int)( sqrt( (0.1-d_x)*(0.1-d_x) + (0-d_z)*(0-d_z) )
148                           / d_c * i_rate );
149     if ( d_x < 0 )
150     {
151         p_data->p_atomic_operations[i_next_atomic_operation + 1]
152             .d_amplitude_factor = d_channel_amplitude_factor * 0.9 / 2;
153     }
154     else if ( d_x > 0 )
155     {
156         p_data->p_atomic_operations[i_next_atomic_operation + 1]
157             .d_amplitude_factor = d_channel_amplitude_factor * 1.1 / 2;
158     }
159     else
160     {
161         p_data->p_atomic_operations[i_next_atomic_operation + 1]
162             .d_amplitude_factor = d_channel_amplitude_factor / 2;
163     }
164 }
165
166 static int Init ( aout_filter_t * p_filter , struct aout_filter_sys_t * p_data
167         , unsigned int i_nb_channels , uint32_t i_physical_channels
168         , unsigned int i_rate )
169 {
170     double d_x = config_GetInt ( p_filter , "headphone-dim" );
171     double d_z = d_x;
172     double d_z_rear = -d_x/3;
173     unsigned int i_next_atomic_operation;
174     int i_source_channel_offset;
175     unsigned int i;
176
177     if ( p_data == NULL )
178     {
179         msg_Dbg ( p_filter, "passing a null pointer as argument" );
180         return 0;
181     }
182
183     /* Number of elementary operations */
184     p_data->i_nb_atomic_operations = i_nb_channels * 2;
185     p_data->p_atomic_operations = malloc ( sizeof(struct atomic_operation_t)
186             * p_data->i_nb_atomic_operations );
187     if ( p_data->p_atomic_operations == NULL )
188     {
189         msg_Err( p_filter, "out of memory" );
190         return -1;
191     }
192
193     /* For each virtual speaker, computes elementary wave propagation time
194      * to each ear */
195     i_next_atomic_operation = 0;
196     i_source_channel_offset = 0;
197     if ( i_physical_channels & AOUT_CHAN_LEFT )
198     {
199         ComputeChannelOperations ( p_data , i_rate
200                 , i_next_atomic_operation , i_source_channel_offset
201                 , -d_x , d_z , 2.0 / i_nb_channels );
202         i_next_atomic_operation += 2;
203         i_source_channel_offset++;
204     }
205     if ( i_physical_channels & AOUT_CHAN_RIGHT )
206     {
207         ComputeChannelOperations ( p_data , i_rate
208                 , i_next_atomic_operation , i_source_channel_offset
209                 , d_x , d_z , 2.0 / i_nb_channels );
210         i_next_atomic_operation += 2;
211         i_source_channel_offset++;
212     }
213     if ( i_physical_channels & AOUT_CHAN_REARLEFT )
214     {
215         ComputeChannelOperations ( p_data , i_rate
216                 , i_next_atomic_operation , i_source_channel_offset
217                 , -d_x , d_z_rear , 1.5 / i_nb_channels );
218         i_next_atomic_operation += 2;
219         i_source_channel_offset++;
220     }
221     if ( i_physical_channels & AOUT_CHAN_REARRIGHT )
222     {
223         ComputeChannelOperations ( p_data , i_rate
224                 , i_next_atomic_operation , i_source_channel_offset
225                 , d_x , d_z_rear , 1.5 / i_nb_channels );
226         i_next_atomic_operation += 2;
227         i_source_channel_offset++;
228     }
229     if ( i_physical_channels & AOUT_CHAN_REARCENTER )
230     {
231         ComputeChannelOperations ( p_data , i_rate
232                 , i_next_atomic_operation , i_source_channel_offset
233                 , 0 , -d_z , 1.5 / i_nb_channels );
234         i_next_atomic_operation += 2;
235         i_source_channel_offset++;
236     }
237     if ( i_physical_channels & AOUT_CHAN_CENTER )
238     {
239         ComputeChannelOperations ( p_data , i_rate
240                 , i_next_atomic_operation , i_source_channel_offset
241                 , 0 , d_z , 1.5 / i_nb_channels );
242         i_next_atomic_operation += 2;
243         i_source_channel_offset++;
244     }
245     if ( i_physical_channels & AOUT_CHAN_LFE )
246     {
247         ComputeChannelOperations ( p_data , i_rate
248                 , i_next_atomic_operation , i_source_channel_offset
249                 , 0 , d_z_rear , 5.0 / i_nb_channels );
250         i_next_atomic_operation += 2;
251         i_source_channel_offset++;
252     }
253     if ( i_physical_channels & AOUT_CHAN_MIDDLELEFT )
254     {
255         ComputeChannelOperations ( p_data , i_rate
256                 , i_next_atomic_operation , i_source_channel_offset
257                 , -d_x , 0 , 1.5 / i_nb_channels );
258         i_next_atomic_operation += 2;
259         i_source_channel_offset++;
260     }
261     if ( i_physical_channels & AOUT_CHAN_MIDDLERIGHT )
262     {
263         ComputeChannelOperations ( p_data , i_rate
264                 , i_next_atomic_operation , i_source_channel_offset
265                 , d_x , 0 , 1.5 / i_nb_channels );
266         i_next_atomic_operation += 2;
267         i_source_channel_offset++;
268     }
269
270     /* Initialize the overflow buffer
271      * we need it because the process induce a delay in the samples */
272     p_data->i_overflow_buffer_size = 0;
273     for ( i = 0 ; i < p_data->i_nb_atomic_operations ; i++ )
274     {
275         if ( p_data->i_overflow_buffer_size
276                 < p_data->p_atomic_operations[i].i_delay * i_nb_channels
277                 * sizeof (float) )
278         {
279             p_data->i_overflow_buffer_size
280                 = p_data->p_atomic_operations[i].i_delay * i_nb_channels
281                 * sizeof (float);
282         }
283     }
284     p_data->p_overflow_buffer = malloc ( p_data->i_overflow_buffer_size );
285     if ( p_data->p_atomic_operations == NULL )
286     {
287         msg_Err( p_filter, "out of memory" );
288         return -1;
289     }
290     memset ( p_data->p_overflow_buffer , 0 , p_data->i_overflow_buffer_size );
291
292     /* end */
293     return 0;
294 }
295
296 /*****************************************************************************
297  * Create: allocate headphone downmixer
298  *****************************************************************************/
299 static int Create( vlc_object_t *p_this )
300 {
301     aout_filter_t * p_filter = (aout_filter_t *)p_this;
302
303     if ( p_filter->output.i_physical_channels != ( AOUT_CHAN_LEFT | AOUT_CHAN_RIGHT )
304           || p_filter->input.i_format != p_filter->output.i_format
305           || p_filter->input.i_rate != p_filter->output.i_rate
306           || (p_filter->input.i_format != VLC_FOURCC('f','l','3','2')
307                && p_filter->input.i_format != VLC_FOURCC('f','i','3','2')) )
308     {
309         return -1;
310     }
311
312     /* Allocate the memory needed to store the module's structure */
313     p_filter->p_sys = malloc( sizeof(struct aout_filter_sys_t) );
314     if ( p_filter->p_sys == NULL )
315     {
316         msg_Err( p_filter, "out of memory" );
317         return -1;
318     }
319     p_filter->p_sys->i_overflow_buffer_size = 0;
320     p_filter->p_sys->p_overflow_buffer = NULL;
321     p_filter->p_sys->i_nb_atomic_operations = 0;
322     p_filter->p_sys->p_atomic_operations = NULL;
323
324     if ( Init( p_filter , p_filter->p_sys
325                 , aout_FormatNbChannels ( &p_filter->input )
326                 , p_filter->input.i_physical_channels
327                 ,  p_filter->input.i_rate ) < 0 )
328     {
329         return -1;
330     }
331
332     p_filter->pf_do_work = DoWork;
333     p_filter->b_in_place = 0;
334
335     return 0;
336 }
337
338 /*****************************************************************************
339  * Destroy: deallocate resources associated with headphone downmixer
340  *****************************************************************************/
341 static void Destroy( vlc_object_t *p_this )
342 {
343     aout_filter_t * p_filter = (aout_filter_t *)p_this;
344
345     if ( p_filter->p_sys != NULL )
346     {
347         if ( p_filter->p_sys->p_overflow_buffer != NULL )
348         {
349             free ( p_filter->p_sys->p_overflow_buffer );
350         }
351         if ( p_filter->p_sys->p_atomic_operations != NULL )
352         {
353             free ( p_filter->p_sys->p_atomic_operations );
354         }
355         free ( p_filter->p_sys );
356         p_filter->p_sys = NULL;
357     }
358 }
359
360 /*****************************************************************************
361  * DoWork: convert a buffer
362  *****************************************************************************/
363 static void DoWork( aout_instance_t * p_aout, aout_filter_t * p_filter,
364                     aout_buffer_t * p_in_buf, aout_buffer_t * p_out_buf )
365 {
366     int i_input_nb = aout_FormatNbChannels( &p_filter->input );
367     int i_output_nb = aout_FormatNbChannels( &p_filter->output );
368
369     float * p_in = (float*) p_in_buf->p_buffer;
370     byte_t * p_out;
371     byte_t * p_overflow;
372     byte_t * p_slide;
373
374     size_t i_overflow_size;/* in bytes */
375     size_t i_out_size;/* in bytes */
376
377     unsigned int i, j;
378
379     int i_source_channel_offset;
380     int i_dest_channel_offset;
381     unsigned int i_delay;
382     double d_amplitude_factor;
383
384
385     /* out buffer characterisitcs */
386     p_out_buf->i_nb_samples = p_in_buf->i_nb_samples;
387     p_out_buf->i_nb_bytes = p_in_buf->i_nb_bytes * i_output_nb / i_input_nb;
388     p_out = p_out_buf->p_buffer;
389     i_out_size = p_out_buf->i_nb_bytes;
390
391     if ( p_filter->p_sys != NULL )
392     {
393         /* Slide the overflow buffer */
394         p_overflow = p_filter->p_sys->p_overflow_buffer;
395         i_overflow_size = p_filter->p_sys->i_overflow_buffer_size;
396
397         memset ( p_out , 0 , i_out_size );
398         if ( i_out_size > i_overflow_size )
399             memcpy ( p_out , p_overflow , i_overflow_size );
400         else
401             memcpy ( p_out , p_overflow , i_out_size );
402
403         p_slide = p_filter->p_sys->p_overflow_buffer;
404         while ( p_slide < p_overflow + i_overflow_size )
405         {
406             if ( p_slide + i_out_size < p_overflow + i_overflow_size )
407             {
408                 memset ( p_slide , 0 , i_out_size );
409                 if ( p_slide + 2 * i_out_size < p_overflow + i_overflow_size )
410                     memcpy ( p_slide , p_slide + i_out_size , i_out_size );
411                 else
412                     memcpy ( p_slide , p_slide + i_out_size
413                       , p_overflow + i_overflow_size - ( p_slide + i_out_size ) );
414             }
415             else
416             {
417                 memset ( p_slide , 0 , p_overflow + i_overflow_size - p_slide );
418             }
419             p_slide += i_out_size;
420         }
421
422         /* apply the atomic operations */
423         for ( i = 0 ; i < p_filter->p_sys->i_nb_atomic_operations ; i++ )
424         {
425             /* shorter variable names */
426             i_source_channel_offset
427                 = p_filter->p_sys->p_atomic_operations[i].i_source_channel_offset;
428             i_dest_channel_offset
429                 = p_filter->p_sys->p_atomic_operations[i].i_dest_channel_offset;
430             i_delay = p_filter->p_sys->p_atomic_operations[i].i_delay;
431             d_amplitude_factor
432                 = p_filter->p_sys->p_atomic_operations[i].d_amplitude_factor;
433
434             if ( p_out_buf->i_nb_samples > i_delay )
435             {
436                 /* current buffer coefficients */
437                 for ( j = 0 ; j < p_out_buf->i_nb_samples - i_delay ; j++ )
438                 {
439                     ((float*)p_out)[ (i_delay+j)*i_output_nb + i_dest_channel_offset ]
440                         += p_in[ j * i_input_nb + i_source_channel_offset ]
441                            * d_amplitude_factor;
442                 }
443
444                 /* overflow buffer coefficients */
445                 for ( j = 0 ; j < i_delay ; j++ )
446                 {
447                     ((float*)p_overflow)[ j*i_output_nb + i_dest_channel_offset ]
448                         += p_in[ (p_out_buf->i_nb_samples - i_delay + j)
449                            * i_input_nb + i_source_channel_offset ]
450                            * d_amplitude_factor;
451                 }
452             }
453             else
454             {
455                 /* overflow buffer coefficients only */
456                 for ( j = 0 ; j < p_out_buf->i_nb_samples ; j++ )
457                 {
458                     ((float*)p_overflow)[ (i_delay - p_out_buf->i_nb_samples + j)
459                         * i_output_nb + i_dest_channel_offset ]
460                         += p_in[ j * i_input_nb + i_source_channel_offset ]
461                            * d_amplitude_factor;
462                 }
463             }
464         }
465     }
466     else
467     {
468         memset ( p_out , 0 , i_out_size );
469     }
470 }