]> git.sesse.net Git - vlc/blob - modules/audio_filter/resampler/bandlimited.c
18fb3ed1649be2b80e2ee614c46cd77ce91456ca
[vlc] / modules / audio_filter / resampler / bandlimited.c
1 /*****************************************************************************
2  * bandlimited.c : band-limited interpolation resampler
3  *****************************************************************************
4  * Copyright (C) 2002, 2006 the VideoLAN team
5  * $Id$
6  *
7  * Authors: Gildas Bazin <gbazin@netcourrier.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301, USA.
22  *****************************************************************************/
23
24 /*****************************************************************************
25  * Preamble:
26  *
27  * This implementation of the band-limited interpolationis based on the
28  * following paper:
29  * http://ccrma-www.stanford.edu/~jos/resample/resample.html
30  *
31  * It uses a Kaiser-windowed sinc-function low-pass filter and the width of the
32  * filter is 13 samples.
33  *
34  *****************************************************************************/
35
36 #ifdef HAVE_CONFIG_H
37 # include "config.h"
38 #endif
39
40 #include <vlc_common.h>
41 #include <vlc_plugin.h>
42 #include <vlc_aout.h>
43 #include <vlc_filter.h>
44 #include <vlc_block.h>
45
46 #include <assert.h>
47
48 #include "bandlimited.h"
49
50 /*****************************************************************************
51  * Local prototypes
52  *****************************************************************************/
53
54 /* audio filter */
55 static int  OpenFilter ( vlc_object_t * );
56 static void CloseFilter( vlc_object_t * );
57 static block_t *Resample( filter_t *, block_t * );
58
59
60 static void FilterFloatUP( const float Imp[], const float ImpD[], uint16_t Nwing,
61                            float *f_in, float *f_out, uint32_t ui_remainder,
62                            uint32_t ui_output_rate, int16_t Inc,
63                            int i_nb_channels );
64
65 static void FilterFloatUD( const float Imp[], const float ImpD[], uint16_t Nwing,
66                            float *f_in, float *f_out, uint32_t ui_remainder,
67                            uint32_t ui_output_rate, uint32_t ui_input_rate,
68                            int16_t Inc, int i_nb_channels );
69
70 /*****************************************************************************
71  * Local structures
72  *****************************************************************************/
73 struct filter_sys_t
74 {
75     int32_t *p_buf;                        /* this filter introduces a delay */
76     size_t i_buf_size;
77
78     double d_old_factor;
79     int i_old_wing;
80
81     unsigned int i_remainder;                /* remainder of previous sample */
82     bool b_first;
83
84     date_t end_date;
85 };
86
87 /*****************************************************************************
88  * Module descriptor
89  *****************************************************************************/
90 vlc_module_begin ()
91     set_category( CAT_AUDIO )
92     set_subcategory( SUBCAT_AUDIO_MISC )
93     set_description( N_("Audio filter for band-limited interpolation resampling") )
94     set_capability( "audio filter", 20 )
95     set_callbacks( OpenFilter, CloseFilter )
96 vlc_module_end ()
97
98 /*****************************************************************************
99  * Resample: convert a buffer
100  *****************************************************************************/
101 static block_t *Resample( filter_t * p_filter, block_t * p_in_buf )
102 {
103     if( !p_in_buf || !p_in_buf->i_nb_samples )
104     {
105         if( p_in_buf )
106             block_Release( p_in_buf );
107         return NULL;
108     }
109
110     filter_sys_t *p_sys = p_filter->p_sys;
111     unsigned int i_out_rate = p_filter->fmt_out.audio.i_rate;
112     int i_nb_channels = aout_FormatNbChannels( &p_filter->fmt_in.audio );
113
114     /* Check if we really need to run the resampler */
115     if( i_out_rate == p_filter->fmt_in.audio.i_rate )
116     {
117         if( !(p_in_buf->i_flags & BLOCK_FLAG_DISCONTINUITY) &&
118             p_sys->i_old_wing )
119         {
120             /* output the whole thing with the samples from last time */
121             p_in_buf = block_Realloc( p_in_buf,
122                 p_sys->i_old_wing * p_filter->fmt_in.audio.i_bytes_per_frame,
123                 p_in_buf->i_buffer );
124             if( !p_in_buf )
125                 return NULL;
126             memcpy( p_in_buf->p_buffer, p_sys->p_buf +
127                     i_nb_channels * p_sys->i_old_wing,
128                     p_sys->i_old_wing *
129                     p_filter->fmt_in.audio.i_bytes_per_frame );
130
131             p_in_buf->i_nb_samples += p_sys->i_old_wing;
132
133             p_in_buf->i_pts = date_Get( &p_sys->end_date );
134             p_in_buf->i_length =
135                 date_Increment( &p_sys->end_date,
136                                 p_in_buf->i_nb_samples ) - p_in_buf->i_pts;
137         }
138         p_sys->i_old_wing = 0;
139         p_sys->b_first = true;
140         return p_in_buf;
141     }
142
143     unsigned i_bytes_per_frame = p_filter->fmt_out.audio.i_channels *
144                                  p_filter->fmt_out.audio.i_bitspersample / 8;
145     size_t i_out_size = i_bytes_per_frame * ( 1 + ( p_in_buf->i_nb_samples *
146               p_filter->fmt_out.audio.i_rate / p_filter->fmt_in.audio.i_rate) )
147             + p_filter->p_sys->i_buf_size;
148     block_t *p_out_buf = filter_NewAudioBuffer( p_filter, i_out_size );
149     if( !p_out_buf )
150         return NULL;
151     float *p_out = (float *)p_out_buf->p_buffer;
152
153     if( (p_in_buf->i_flags & BLOCK_FLAG_DISCONTINUITY) || p_sys->b_first )
154     {
155         /* Continuity in sound samples has been broken, we'd better reset
156          * everything. */
157         p_out_buf->i_flags |= BLOCK_FLAG_DISCONTINUITY;
158         p_sys->i_remainder = 0;
159         date_Init( &p_sys->end_date, i_out_rate, 1 );
160         date_Set( &p_sys->end_date, p_in_buf->i_pts );
161         p_sys->d_old_factor = 1;
162         p_sys->i_old_wing   = 0;
163         p_sys->b_first = false;
164     }
165
166     size_t i_in_nb = p_in_buf->i_nb_samples;
167     size_t i_in, i_out = 0;
168     double d_factor, d_scale_factor, d_old_scale_factor;
169     size_t i_filter_wing;
170
171 #if 0
172     msg_Err( p_filter, "old rate: %i, old factor: %f, old wing: %i, i_in: %i",
173              p_sys->i_old_rate, p_sys->d_old_factor,
174              p_sys->i_old_wing, i_in_nb );
175 #endif
176
177     /* Same format in and out... */
178     assert( p_filter->fmt_in.audio.i_bytes_per_frame == i_bytes_per_frame );
179
180     /* Prepare the source buffer */
181     if( p_sys->i_old_wing )
182     {   /* Copy all our samples in p_in_buf */
183         /* Normally, there should be enough room for the old wing in the
184          * buffer head room. Otherwise, we need to copy memory anyway. */
185         p_in_buf = block_Realloc( p_in_buf,
186                                   p_sys->i_old_wing * 2 * i_bytes_per_frame,
187                                   p_in_buf->i_buffer );
188         if( unlikely(p_in_buf == NULL) )
189             return NULL;
190         memcpy( p_in_buf->p_buffer, p_sys->p_buf,
191                 p_sys->i_old_wing * 2 * i_bytes_per_frame );
192     }
193     i_in_nb += (p_sys->i_old_wing * 2);
194     float *p_in = (float *)p_in_buf->p_buffer;
195     const float *p_in_orig = p_in;
196
197     /* Make sure the output buffer is reset */
198     memset( p_out, 0, p_out_buf->i_buffer );
199
200     /* Calculate the new length of the filter wing */
201     d_factor = (double)i_out_rate / p_filter->fmt_in.audio.i_rate;
202     i_filter_wing = ((SMALL_FILTER_NMULT+1)/2.0) * __MAX(1.0,1.0/d_factor) + 1;
203
204     /* Account for increased filter gain when using factors less than 1 */
205     d_old_scale_factor = SMALL_FILTER_SCALE *
206         p_sys->d_old_factor + 0.5;
207     d_scale_factor = SMALL_FILTER_SCALE * d_factor + 0.5;
208
209     /* Apply the old rate until we have enough samples for the new one */
210     i_in = p_sys->i_old_wing;
211     p_in += p_sys->i_old_wing * i_nb_channels;
212     for( ; i_in < i_filter_wing &&
213            (i_in + p_sys->i_old_wing) < i_in_nb; i_in++ )
214     {
215         if( p_sys->d_old_factor == 1 )
216         {
217             /* Just copy the samples */
218             memcpy( p_out, p_in, i_bytes_per_frame );
219             p_in += i_nb_channels;
220             p_out += i_nb_channels;
221             i_out++;
222             continue;
223         }
224
225         while( p_sys->i_remainder < p_filter->fmt_out.audio.i_rate )
226         {
227             if( p_out_buf->i_buffer/i_bytes_per_frame <= i_out )
228                 break;
229
230             if( p_sys->d_old_factor >= 1 )
231             {
232                 /* FilterFloatUP() is faster if we can use it */
233
234                 /* Perform left-wing inner product */
235                 FilterFloatUP( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
236                                SMALL_FILTER_NWING, p_in, p_out,
237                                p_sys->i_remainder,
238                                p_filter->fmt_out.audio.i_rate,
239                                -1, i_nb_channels );
240                 /* Perform right-wing inner product */
241                 FilterFloatUP( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
242                                SMALL_FILTER_NWING, p_in + i_nb_channels, p_out,
243                                p_filter->fmt_out.audio.i_rate -
244                                p_sys->i_remainder,
245                                p_filter->fmt_out.audio.i_rate,
246                                1, i_nb_channels );
247
248 #if 0
249                 /* Normalize for unity filter gain */
250                 for( i = 0; i < i_nb_channels; i++ )
251                 {
252                     *(p_out+i) *= d_old_scale_factor;
253                 }
254 #endif
255             }
256             else
257             {
258                 /* Perform left-wing inner product */
259                 FilterFloatUD( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
260                                SMALL_FILTER_NWING, p_in, p_out,
261                                p_sys->i_remainder,
262                                p_filter->fmt_out.audio.i_rate, p_filter->fmt_in.audio.i_rate,
263                                -1, i_nb_channels );
264                 /* Perform right-wing inner product */
265                 FilterFloatUD( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
266                                SMALL_FILTER_NWING, p_in + i_nb_channels, p_out,
267                                p_filter->fmt_out.audio.i_rate -
268                                p_sys->i_remainder,
269                                p_filter->fmt_out.audio.i_rate, p_filter->fmt_in.audio.i_rate,
270                                1, i_nb_channels );
271             }
272
273             p_out += i_nb_channels;
274             i_out++;
275
276             p_sys->i_remainder += p_filter->fmt_in.audio.i_rate;
277         }
278
279         p_in += i_nb_channels;
280         p_sys->i_remainder -= p_filter->fmt_out.audio.i_rate;
281     }
282
283     /* Apply the new rate for the rest of the samples */
284     if( i_in < i_in_nb - i_filter_wing )
285     {
286         p_sys->d_old_factor = d_factor;
287         p_sys->i_old_wing   = i_filter_wing;
288     }
289     for( ; i_in < i_in_nb - i_filter_wing; i_in++ )
290     {
291         while( p_sys->i_remainder < p_filter->fmt_out.audio.i_rate )
292         {
293             if( p_out_buf->i_buffer/i_bytes_per_frame <= i_out )
294                 break;
295
296             assert( i_out < p_out_buf->i_buffer/i_bytes_per_frame );
297             if( d_factor >= 1 )
298             {
299                 /* FilterFloatUP() is faster if we can use it */
300
301                 /* Perform left-wing inner product */
302                 FilterFloatUP( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
303                                SMALL_FILTER_NWING, p_in, p_out,
304                                p_sys->i_remainder,
305                                p_filter->fmt_out.audio.i_rate,
306                                -1, i_nb_channels );
307
308                 /* Perform right-wing inner product */
309                 FilterFloatUP( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
310                                SMALL_FILTER_NWING, p_in + i_nb_channels, p_out,
311                                p_filter->fmt_out.audio.i_rate -
312                                p_sys->i_remainder,
313                                p_filter->fmt_out.audio.i_rate,
314                                1, i_nb_channels );
315
316 #if 0
317                 /* Normalize for unity filter gain */
318                 for( int i = 0; i < i_nb_channels; i++ )
319                 {
320                     *(p_out+i) *= d_old_scale_factor;
321                 }
322 #endif
323             }
324             else
325             {
326                 /* Perform left-wing inner product */
327                 FilterFloatUD( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
328                                SMALL_FILTER_NWING, p_in, p_out,
329                                p_sys->i_remainder,
330                                p_filter->fmt_out.audio.i_rate, p_filter->fmt_in.audio.i_rate,
331                                -1, i_nb_channels );
332                 /* Perform right-wing inner product */
333                 FilterFloatUD( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
334                                SMALL_FILTER_NWING, p_in + i_nb_channels, p_out,
335                                p_filter->fmt_out.audio.i_rate -
336                                p_sys->i_remainder,
337                                p_filter->fmt_out.audio.i_rate, p_filter->fmt_in.audio.i_rate,
338                                1, i_nb_channels );
339             }
340
341             p_out += i_nb_channels;
342             i_out++;
343
344             p_sys->i_remainder += p_filter->fmt_in.audio.i_rate;
345         }
346
347         p_in += i_nb_channels;
348         p_sys->i_remainder -= p_filter->fmt_out.audio.i_rate;
349     }
350
351     /* Finalize aout buffer */
352     p_out_buf->i_nb_samples = i_out;
353     p_out_buf->i_pts = date_Get( &p_sys->end_date );
354     p_out_buf->i_length = date_Increment( &p_sys->end_date,
355                                   p_out_buf->i_nb_samples ) - p_out_buf->i_pts;
356
357     p_out_buf->i_buffer = p_out_buf->i_nb_samples *
358         i_nb_channels * sizeof(int32_t);
359
360     /* Buffer i_filter_wing * 2 samples for next time */
361     if( p_sys->i_old_wing )
362     {
363         size_t newsize = p_sys->i_old_wing * 2 * i_bytes_per_frame;
364         if( newsize > p_sys->i_buf_size )
365         {
366             free( p_sys->p_buf );
367             p_sys->p_buf = malloc( newsize );
368             if( p_sys->p_buf != NULL )
369                 p_sys->i_buf_size = newsize;
370             else
371             {
372                 p_sys->i_buf_size = p_sys->i_old_wing = 0; /* oops! */
373                 return p_out_buf;
374             }
375         }
376         memcpy( p_sys->p_buf,
377                 p_in_orig + (i_in_nb - 2 * p_sys->i_old_wing) *
378                 i_nb_channels, (2 * p_sys->i_old_wing) *
379                 p_filter->fmt_in.audio.i_bytes_per_frame );
380     }
381
382 #if 0
383     msg_Err( p_filter, "p_out size: %i, nb bytes out: %i", p_out_buf->i_buffer,
384              i_out * p_filter->fmt_in.audio.i_bytes_per_frame );
385 #endif
386
387     return p_out_buf;
388 }
389
390 /*****************************************************************************
391  * OpenFilter:
392  *****************************************************************************/
393 static int OpenFilter( vlc_object_t *p_this )
394 {
395     filter_t *p_filter = (filter_t *)p_this;
396     filter_sys_t *p_sys;
397     unsigned int i_out_rate  = p_filter->fmt_out.audio.i_rate;
398
399     if ( p_filter->fmt_in.audio.i_rate == p_filter->fmt_out.audio.i_rate
400       || p_filter->fmt_in.audio.i_format != p_filter->fmt_out.audio.i_format
401       || p_filter->fmt_in.audio.i_physical_channels
402               != p_filter->fmt_out.audio.i_physical_channels
403       || p_filter->fmt_in.audio.i_original_channels
404               != p_filter->fmt_out.audio.i_original_channels
405       || p_filter->fmt_in.audio.i_format != VLC_CODEC_FL32 )
406     {
407         return VLC_EGENERIC;
408     }
409
410 #if !defined( SYS_DARWIN )
411     if( !var_InheritInteger( p_this, "hq-resampling" ) )
412     {
413         return VLC_EGENERIC;
414     }
415 #endif
416
417     /* Allocate the memory needed to store the module's structure */
418     p_filter->p_sys = p_sys = malloc( sizeof(struct filter_sys_t) );
419     if( p_sys == NULL )
420         return VLC_ENOMEM;
421
422     p_sys->p_buf = NULL;
423     p_sys->i_buf_size = 0;
424
425     p_sys->i_old_wing = 0;
426     p_sys->b_first = true;
427     p_filter->pf_audio_filter = Resample;
428
429     msg_Dbg( p_this, "%4.4s/%iKHz/%i->%4.4s/%iKHz/%i",
430              (char *)&p_filter->fmt_in.i_codec,
431              p_filter->fmt_in.audio.i_rate,
432              p_filter->fmt_in.audio.i_channels,
433              (char *)&p_filter->fmt_out.i_codec,
434              p_filter->fmt_out.audio.i_rate,
435              p_filter->fmt_out.audio.i_channels);
436
437     p_filter->fmt_out = p_filter->fmt_in;
438     p_filter->fmt_out.audio.i_rate = i_out_rate;
439
440     return 0;
441 }
442
443 /*****************************************************************************
444  * CloseFilter : deallocate data structures
445  *****************************************************************************/
446 static void CloseFilter( vlc_object_t *p_this )
447 {
448     filter_t *p_filter = (filter_t *)p_this;
449     free( p_filter->p_sys->p_buf );
450     free( p_filter->p_sys );
451 }
452
453 void FilterFloatUP( const float Imp[], const float ImpD[], uint16_t Nwing, float *p_in,
454                     float *p_out, uint32_t ui_remainder,
455                     uint32_t ui_output_rate, int16_t Inc, int i_nb_channels )
456 {
457     const float *Hp, *Hdp, *End;
458     float t, temp;
459     uint32_t ui_linear_remainder;
460     int i;
461
462     Hp = &Imp[(ui_remainder<<Nhc)/ui_output_rate];
463     Hdp = &ImpD[(ui_remainder<<Nhc)/ui_output_rate];
464
465     End = &Imp[Nwing];
466
467     ui_linear_remainder = (ui_remainder<<Nhc) -
468                             (ui_remainder<<Nhc)/ui_output_rate*ui_output_rate;
469
470     if (Inc == 1)               /* If doing right wing...              */
471     {                           /* ...drop extra coeff, so when Ph is  */
472         End--;                  /*    0.5, we don't do too many mult's */
473         if (ui_remainder == 0)  /* If the phase is zero...           */
474         {                       /* ...then we've already skipped the */
475             Hp += Npc;          /*    first sample, so we must also  */
476             Hdp += Npc;         /*    skip ahead in Imp[] and ImpD[] */
477         }
478     }
479
480     while (Hp < End) {
481         t = *Hp;                /* Get filter coeff */
482                                 /* t is now interp'd filter coeff */
483         t += *Hdp * ui_linear_remainder / ui_output_rate / Npc;
484         for( i = 0; i < i_nb_channels; i++ )
485         {
486             temp = t;
487             temp *= *(p_in+i);  /* Mult coeff by input sample */
488             *(p_out+i) += temp; /* The filter output */
489         }
490         Hdp += Npc;             /* Filter coeff differences step */
491         Hp += Npc;              /* Filter coeff step */
492         p_in += (Inc * i_nb_channels); /* Input signal step */
493     }
494 }
495
496 void FilterFloatUD( const float Imp[], const float ImpD[], uint16_t Nwing, float *p_in,
497                     float *p_out, uint32_t ui_remainder,
498                     uint32_t ui_output_rate, uint32_t ui_input_rate,
499                     int16_t Inc, int i_nb_channels )
500 {
501     const float *Hp, *Hdp, *End;
502     float t, temp;
503     uint32_t ui_linear_remainder;
504     int i, ui_counter = 0;
505
506     Hp = Imp + (ui_remainder<<Nhc) / ui_input_rate;
507     Hdp = ImpD  + (ui_remainder<<Nhc) / ui_input_rate;
508
509     End = &Imp[Nwing];
510
511     if (Inc == 1)               /* If doing right wing...              */
512     {                           /* ...drop extra coeff, so when Ph is  */
513         End--;                  /*    0.5, we don't do too many mult's */
514         if (ui_remainder == 0)  /* If the phase is zero...           */
515         {                       /* ...then we've already skipped the */
516             Hp = Imp +          /* first sample, so we must also  */
517                   (ui_output_rate << Nhc) / ui_input_rate;
518             Hdp = ImpD +        /* skip ahead in Imp[] and ImpD[] */
519                   (ui_output_rate << Nhc) / ui_input_rate;
520             ui_counter++;
521         }
522     }
523
524     while (Hp < End) {
525         t = *Hp;                /* Get filter coeff */
526                                 /* t is now interp'd filter coeff */
527         ui_linear_remainder =
528           ((ui_output_rate * ui_counter + ui_remainder)<< Nhc) -
529           ((ui_output_rate * ui_counter + ui_remainder)<< Nhc) /
530           ui_input_rate * ui_input_rate;
531         t += *Hdp * ui_linear_remainder / ui_input_rate / Npc;
532         for( i = 0; i < i_nb_channels; i++ )
533         {
534             temp = t;
535             temp *= *(p_in+i);  /* Mult coeff by input sample */
536             *(p_out+i) += temp; /* The filter output */
537         }
538
539         ui_counter++;
540
541         /* Filter coeff step */
542         Hp = Imp + ((ui_output_rate * ui_counter + ui_remainder)<< Nhc)
543                     / ui_input_rate;
544         /* Filter coeff differences step */
545         Hdp = ImpD + ((ui_output_rate * ui_counter + ui_remainder)<< Nhc)
546                      / ui_input_rate;
547
548         p_in += (Inc * i_nb_channels); /* Input signal step */
549     }
550 }