]> git.sesse.net Git - vlc/blob - modules/audio_filter/resampler/bandlimited.c
libvlc: libvlc_media_get_es->libvlc_media_get_tracks_info.
[vlc] / modules / audio_filter / resampler / bandlimited.c
1 /*****************************************************************************
2  * bandlimited.c : band-limited interpolation resampler
3  *****************************************************************************
4  * Copyright (C) 2002, 2006 the VideoLAN team
5  * $Id$
6  *
7  * Authors: Gildas Bazin <gbazin@netcourrier.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301, USA.
22  *****************************************************************************/
23
24 /*****************************************************************************
25  * Preamble:
26  *
27  * This implementation of the band-limited interpolationis based on the
28  * following paper:
29  * http://ccrma-www.stanford.edu/~jos/resample/resample.html
30  *
31  * It uses a Kaiser-windowed sinc-function low-pass filter and the width of the
32  * filter is 13 samples.
33  *
34  *****************************************************************************/
35
36 #ifdef HAVE_CONFIG_H
37 # include "config.h"
38 #endif
39
40 #include <vlc_common.h>
41 #include <vlc_plugin.h>
42 #include <vlc_aout.h>
43 #include <vlc_filter.h>
44 #include <vlc_block.h>
45
46 #include <assert.h>
47
48 #include "bandlimited.h"
49
50 /*****************************************************************************
51  * Local prototypes
52  *****************************************************************************/
53
54 /* audio filter */
55 static int  OpenFilter ( vlc_object_t * );
56 static void CloseFilter( vlc_object_t * );
57 static block_t *Resample( filter_t *, block_t * );
58
59
60 static void FilterFloatUP( const float Imp[], const float ImpD[], uint16_t Nwing,
61                            float *f_in, float *f_out, uint32_t ui_remainder,
62                            uint32_t ui_output_rate, int16_t Inc,
63                            int i_nb_channels );
64
65 static void FilterFloatUD( const float Imp[], const float ImpD[], uint16_t Nwing,
66                            float *f_in, float *f_out, uint32_t ui_remainder,
67                            uint32_t ui_output_rate, uint32_t ui_input_rate,
68                            int16_t Inc, int i_nb_channels );
69
70 /*****************************************************************************
71  * Local structures
72  *****************************************************************************/
73 struct filter_sys_t
74 {
75     int32_t *p_buf;                        /* this filter introduces a delay */
76     size_t i_buf_size;
77
78     double d_old_factor;
79     int i_old_wing;
80
81     unsigned int i_remainder;                /* remainder of previous sample */
82     bool b_first;
83
84     date_t end_date;
85 };
86
87 /*****************************************************************************
88  * Module descriptor
89  *****************************************************************************/
90 vlc_module_begin ()
91     set_category( CAT_AUDIO )
92     set_subcategory( SUBCAT_AUDIO_MISC )
93     set_description( N_("Audio filter for band-limited interpolation resampling") )
94     set_capability( "audio filter", 20 )
95     set_callbacks( OpenFilter, CloseFilter )
96 vlc_module_end ()
97
98 /*****************************************************************************
99  * Resample: convert a buffer
100  *****************************************************************************/
101 static block_t *Resample( filter_t * p_filter, block_t * p_in_buf )
102 {
103     if( !p_in_buf || !p_in_buf->i_nb_samples )
104     {
105         if( p_in_buf )
106             block_Release( p_in_buf );
107         return NULL;
108     }
109
110     filter_sys_t *p_sys = p_filter->p_sys;
111     unsigned int i_out_rate = p_filter->fmt_out.audio.i_rate;
112     int i_nb_channels = aout_FormatNbChannels( &p_filter->fmt_in.audio );
113
114     /* Check if we really need to run the resampler */
115     if( i_out_rate == p_filter->fmt_in.audio.i_rate )
116     {
117         if( !(p_in_buf->i_flags & BLOCK_FLAG_DISCONTINUITY) &&
118             p_sys->i_old_wing )
119         {
120             /* output the whole thing with the samples from last time */
121             p_in_buf = block_Realloc( p_in_buf,
122                 p_sys->i_old_wing * p_filter->fmt_in.audio.i_bytes_per_frame,
123                 p_in_buf->i_buffer );
124             if( !p_in_buf )
125                 return NULL;
126             memcpy( p_in_buf->p_buffer, p_sys->p_buf +
127                     i_nb_channels * p_sys->i_old_wing,
128                     p_sys->i_old_wing *
129                     p_filter->fmt_in.audio.i_bytes_per_frame );
130
131             p_in_buf->i_nb_samples += p_sys->i_old_wing;
132
133             p_in_buf->i_pts = date_Get( &p_sys->end_date );
134             p_in_buf->i_length =
135                 date_Increment( &p_sys->end_date,
136                                 p_in_buf->i_nb_samples ) - p_in_buf->i_pts;
137         }
138         p_sys->i_old_wing = 0;
139         p_sys->b_first = true;
140         return p_in_buf;
141     }
142
143     unsigned i_bytes_per_frame = p_filter->fmt_out.audio.i_channels *
144                                  p_filter->fmt_out.audio.i_bitspersample / 8;
145     size_t i_out_size = i_bytes_per_frame * ( 1 + ( p_in_buf->i_nb_samples *
146               p_filter->fmt_out.audio.i_rate / p_filter->fmt_in.audio.i_rate) )
147             + p_filter->p_sys->i_buf_size;
148     block_t *p_out_buf = filter_NewAudioBuffer( p_filter, i_out_size );
149     if( !p_out_buf )
150     {
151         block_Release( p_in_buf );
152         return NULL;
153     }
154     float *p_out = (float *)p_out_buf->p_buffer;
155
156     if( (p_in_buf->i_flags & BLOCK_FLAG_DISCONTINUITY) || p_sys->b_first )
157     {
158         /* Continuity in sound samples has been broken, we'd better reset
159          * everything. */
160         p_out_buf->i_flags |= BLOCK_FLAG_DISCONTINUITY;
161         p_sys->i_remainder = 0;
162         date_Init( &p_sys->end_date, i_out_rate, 1 );
163         date_Set( &p_sys->end_date, p_in_buf->i_pts );
164         p_sys->d_old_factor = 1;
165         p_sys->i_old_wing   = 0;
166         p_sys->b_first = false;
167     }
168
169     size_t i_in_nb = p_in_buf->i_nb_samples;
170     size_t i_in, i_out = 0;
171     double d_factor, d_scale_factor, d_old_scale_factor;
172     size_t i_filter_wing;
173
174 #if 0
175     msg_Err( p_filter, "old rate: %i, old factor: %f, old wing: %i, i_in: %i",
176              p_sys->i_old_rate, p_sys->d_old_factor,
177              p_sys->i_old_wing, i_in_nb );
178 #endif
179
180     /* Same format in and out... */
181     assert( p_filter->fmt_in.audio.i_bytes_per_frame == i_bytes_per_frame );
182
183     /* Prepare the source buffer */
184     if( p_sys->i_old_wing )
185     {   /* Copy all our samples in p_in_buf */
186         /* Normally, there should be enough room for the old wing in the
187          * buffer head room. Otherwise, we need to copy memory anyway. */
188         p_in_buf = block_Realloc( p_in_buf,
189                                   p_sys->i_old_wing * 2 * i_bytes_per_frame,
190                                   p_in_buf->i_buffer );
191         if( unlikely(p_in_buf == NULL) )
192             return NULL;
193         memcpy( p_in_buf->p_buffer, p_sys->p_buf,
194                 p_sys->i_old_wing * 2 * i_bytes_per_frame );
195     }
196     i_in_nb += (p_sys->i_old_wing * 2);
197     float *p_in = (float *)p_in_buf->p_buffer;
198     const float *p_in_orig = p_in;
199
200     /* Make sure the output buffer is reset */
201     memset( p_out, 0, p_out_buf->i_buffer );
202
203     /* Calculate the new length of the filter wing */
204     d_factor = (double)i_out_rate / p_filter->fmt_in.audio.i_rate;
205     i_filter_wing = ((SMALL_FILTER_NMULT+1)/2.0) * __MAX(1.0,1.0/d_factor) + 1;
206
207     /* Account for increased filter gain when using factors less than 1 */
208     d_old_scale_factor = SMALL_FILTER_SCALE *
209         p_sys->d_old_factor + 0.5;
210     d_scale_factor = SMALL_FILTER_SCALE * d_factor + 0.5;
211
212     /* Apply the old rate until we have enough samples for the new one */
213     i_in = p_sys->i_old_wing;
214     p_in += p_sys->i_old_wing * i_nb_channels;
215     for( ; i_in < i_filter_wing &&
216            (i_in + p_sys->i_old_wing) < i_in_nb; i_in++ )
217     {
218         if( p_sys->d_old_factor == 1 )
219         {
220             /* Just copy the samples */
221             memcpy( p_out, p_in, i_bytes_per_frame );
222             p_in += i_nb_channels;
223             p_out += i_nb_channels;
224             i_out++;
225             continue;
226         }
227
228         while( p_sys->i_remainder < p_filter->fmt_out.audio.i_rate )
229         {
230             if( p_out_buf->i_buffer/i_bytes_per_frame <= i_out )
231                 break;
232
233             if( p_sys->d_old_factor >= 1 )
234             {
235                 /* FilterFloatUP() is faster if we can use it */
236
237                 /* Perform left-wing inner product */
238                 FilterFloatUP( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
239                                SMALL_FILTER_NWING, p_in, p_out,
240                                p_sys->i_remainder,
241                                p_filter->fmt_out.audio.i_rate,
242                                -1, i_nb_channels );
243                 /* Perform right-wing inner product */
244                 FilterFloatUP( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
245                                SMALL_FILTER_NWING, p_in + i_nb_channels, p_out,
246                                p_filter->fmt_out.audio.i_rate -
247                                p_sys->i_remainder,
248                                p_filter->fmt_out.audio.i_rate,
249                                1, i_nb_channels );
250
251 #if 0
252                 /* Normalize for unity filter gain */
253                 for( i = 0; i < i_nb_channels; i++ )
254                 {
255                     *(p_out+i) *= d_old_scale_factor;
256                 }
257 #endif
258             }
259             else
260             {
261                 /* Perform left-wing inner product */
262                 FilterFloatUD( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
263                                SMALL_FILTER_NWING, p_in, p_out,
264                                p_sys->i_remainder,
265                                p_filter->fmt_out.audio.i_rate, p_filter->fmt_in.audio.i_rate,
266                                -1, i_nb_channels );
267                 /* Perform right-wing inner product */
268                 FilterFloatUD( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
269                                SMALL_FILTER_NWING, p_in + i_nb_channels, p_out,
270                                p_filter->fmt_out.audio.i_rate -
271                                p_sys->i_remainder,
272                                p_filter->fmt_out.audio.i_rate, p_filter->fmt_in.audio.i_rate,
273                                1, i_nb_channels );
274             }
275
276             p_out += i_nb_channels;
277             i_out++;
278
279             p_sys->i_remainder += p_filter->fmt_in.audio.i_rate;
280         }
281
282         p_in += i_nb_channels;
283         p_sys->i_remainder -= p_filter->fmt_out.audio.i_rate;
284     }
285
286     /* Apply the new rate for the rest of the samples */
287     if( i_in < i_in_nb - i_filter_wing )
288     {
289         p_sys->d_old_factor = d_factor;
290         p_sys->i_old_wing   = i_filter_wing;
291     }
292     for( ; i_in < i_in_nb - i_filter_wing; i_in++ )
293     {
294         while( p_sys->i_remainder < p_filter->fmt_out.audio.i_rate )
295         {
296             if( p_out_buf->i_buffer/i_bytes_per_frame <= i_out )
297                 break;
298
299             assert( i_out < p_out_buf->i_buffer/i_bytes_per_frame );
300             if( d_factor >= 1 )
301             {
302                 /* FilterFloatUP() is faster if we can use it */
303
304                 /* Perform left-wing inner product */
305                 FilterFloatUP( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
306                                SMALL_FILTER_NWING, p_in, p_out,
307                                p_sys->i_remainder,
308                                p_filter->fmt_out.audio.i_rate,
309                                -1, i_nb_channels );
310
311                 /* Perform right-wing inner product */
312                 FilterFloatUP( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
313                                SMALL_FILTER_NWING, p_in + i_nb_channels, p_out,
314                                p_filter->fmt_out.audio.i_rate -
315                                p_sys->i_remainder,
316                                p_filter->fmt_out.audio.i_rate,
317                                1, i_nb_channels );
318
319 #if 0
320                 /* Normalize for unity filter gain */
321                 for( int i = 0; i < i_nb_channels; i++ )
322                 {
323                     *(p_out+i) *= d_old_scale_factor;
324                 }
325 #endif
326             }
327             else
328             {
329                 /* Perform left-wing inner product */
330                 FilterFloatUD( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
331                                SMALL_FILTER_NWING, p_in, p_out,
332                                p_sys->i_remainder,
333                                p_filter->fmt_out.audio.i_rate, p_filter->fmt_in.audio.i_rate,
334                                -1, i_nb_channels );
335                 /* Perform right-wing inner product */
336                 FilterFloatUD( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
337                                SMALL_FILTER_NWING, p_in + i_nb_channels, p_out,
338                                p_filter->fmt_out.audio.i_rate -
339                                p_sys->i_remainder,
340                                p_filter->fmt_out.audio.i_rate, p_filter->fmt_in.audio.i_rate,
341                                1, i_nb_channels );
342             }
343
344             p_out += i_nb_channels;
345             i_out++;
346
347             p_sys->i_remainder += p_filter->fmt_in.audio.i_rate;
348         }
349
350         p_in += i_nb_channels;
351         p_sys->i_remainder -= p_filter->fmt_out.audio.i_rate;
352     }
353
354     /* Finalize aout buffer */
355     p_out_buf->i_nb_samples = i_out;
356     p_out_buf->i_pts = date_Get( &p_sys->end_date );
357     p_out_buf->i_length = date_Increment( &p_sys->end_date,
358                                   p_out_buf->i_nb_samples ) - p_out_buf->i_pts;
359
360     p_out_buf->i_buffer = p_out_buf->i_nb_samples *
361         i_nb_channels * sizeof(int32_t);
362
363     /* Buffer i_filter_wing * 2 samples for next time */
364     if( p_sys->i_old_wing )
365     {
366         size_t newsize = p_sys->i_old_wing * 2 * i_bytes_per_frame;
367         if( newsize > p_sys->i_buf_size )
368         {
369             free( p_sys->p_buf );
370             p_sys->p_buf = malloc( newsize );
371             if( p_sys->p_buf != NULL )
372                 p_sys->i_buf_size = newsize;
373             else
374             {
375                 p_sys->i_buf_size = p_sys->i_old_wing = 0; /* oops! */
376                 block_Release( p_in_buf );
377                 return p_out_buf;
378             }
379         }
380         memcpy( p_sys->p_buf,
381                 p_in_orig + (i_in_nb - 2 * p_sys->i_old_wing) *
382                 i_nb_channels, (2 * p_sys->i_old_wing) *
383                 p_filter->fmt_in.audio.i_bytes_per_frame );
384     }
385
386 #if 0
387     msg_Err( p_filter, "p_out size: %i, nb bytes out: %i", p_out_buf->i_buffer,
388              i_out * p_filter->fmt_in.audio.i_bytes_per_frame );
389 #endif
390
391     block_Release( p_in_buf );
392     return p_out_buf;
393 }
394
395 /*****************************************************************************
396  * OpenFilter:
397  *****************************************************************************/
398 static int OpenFilter( vlc_object_t *p_this )
399 {
400     filter_t *p_filter = (filter_t *)p_this;
401     filter_sys_t *p_sys;
402     unsigned int i_out_rate  = p_filter->fmt_out.audio.i_rate;
403
404     if ( p_filter->fmt_in.audio.i_rate == p_filter->fmt_out.audio.i_rate
405       || p_filter->fmt_in.audio.i_format != p_filter->fmt_out.audio.i_format
406       || p_filter->fmt_in.audio.i_physical_channels
407               != p_filter->fmt_out.audio.i_physical_channels
408       || p_filter->fmt_in.audio.i_original_channels
409               != p_filter->fmt_out.audio.i_original_channels
410       || p_filter->fmt_in.audio.i_format != VLC_CODEC_FL32 )
411     {
412         return VLC_EGENERIC;
413     }
414
415 #if !defined( SYS_DARWIN )
416     if( !var_InheritInteger( p_this, "hq-resampling" ) )
417     {
418         return VLC_EGENERIC;
419     }
420 #endif
421
422     /* Allocate the memory needed to store the module's structure */
423     p_filter->p_sys = p_sys = malloc( sizeof(struct filter_sys_t) );
424     if( p_sys == NULL )
425         return VLC_ENOMEM;
426
427     p_sys->p_buf = NULL;
428     p_sys->i_buf_size = 0;
429
430     p_sys->i_old_wing = 0;
431     p_sys->b_first = true;
432     p_filter->pf_audio_filter = Resample;
433
434     msg_Dbg( p_this, "%4.4s/%iKHz/%i->%4.4s/%iKHz/%i",
435              (char *)&p_filter->fmt_in.i_codec,
436              p_filter->fmt_in.audio.i_rate,
437              p_filter->fmt_in.audio.i_channels,
438              (char *)&p_filter->fmt_out.i_codec,
439              p_filter->fmt_out.audio.i_rate,
440              p_filter->fmt_out.audio.i_channels);
441
442     p_filter->fmt_out = p_filter->fmt_in;
443     p_filter->fmt_out.audio.i_rate = i_out_rate;
444
445     return 0;
446 }
447
448 /*****************************************************************************
449  * CloseFilter : deallocate data structures
450  *****************************************************************************/
451 static void CloseFilter( vlc_object_t *p_this )
452 {
453     filter_t *p_filter = (filter_t *)p_this;
454     free( p_filter->p_sys->p_buf );
455     free( p_filter->p_sys );
456 }
457
458 void FilterFloatUP( const float Imp[], const float ImpD[], uint16_t Nwing, float *p_in,
459                     float *p_out, uint32_t ui_remainder,
460                     uint32_t ui_output_rate, int16_t Inc, int i_nb_channels )
461 {
462     const float *Hp, *Hdp, *End;
463     float t, temp;
464     uint32_t ui_linear_remainder;
465     int i;
466
467     Hp = &Imp[(ui_remainder<<Nhc)/ui_output_rate];
468     Hdp = &ImpD[(ui_remainder<<Nhc)/ui_output_rate];
469
470     End = &Imp[Nwing];
471
472     ui_linear_remainder = (ui_remainder<<Nhc) -
473                             (ui_remainder<<Nhc)/ui_output_rate*ui_output_rate;
474
475     if (Inc == 1)               /* If doing right wing...              */
476     {                           /* ...drop extra coeff, so when Ph is  */
477         End--;                  /*    0.5, we don't do too many mult's */
478         if (ui_remainder == 0)  /* If the phase is zero...           */
479         {                       /* ...then we've already skipped the */
480             Hp += Npc;          /*    first sample, so we must also  */
481             Hdp += Npc;         /*    skip ahead in Imp[] and ImpD[] */
482         }
483     }
484
485     while (Hp < End) {
486         t = *Hp;                /* Get filter coeff */
487                                 /* t is now interp'd filter coeff */
488         t += *Hdp * ui_linear_remainder / ui_output_rate / Npc;
489         for( i = 0; i < i_nb_channels; i++ )
490         {
491             temp = t;
492             temp *= *(p_in+i);  /* Mult coeff by input sample */
493             *(p_out+i) += temp; /* The filter output */
494         }
495         Hdp += Npc;             /* Filter coeff differences step */
496         Hp += Npc;              /* Filter coeff step */
497         p_in += (Inc * i_nb_channels); /* Input signal step */
498     }
499 }
500
501 void FilterFloatUD( const float Imp[], const float ImpD[], uint16_t Nwing, float *p_in,
502                     float *p_out, uint32_t ui_remainder,
503                     uint32_t ui_output_rate, uint32_t ui_input_rate,
504                     int16_t Inc, int i_nb_channels )
505 {
506     const float *Hp, *Hdp, *End;
507     float t, temp;
508     uint32_t ui_linear_remainder;
509     int i, ui_counter = 0;
510
511     Hp = Imp + (ui_remainder<<Nhc) / ui_input_rate;
512     Hdp = ImpD  + (ui_remainder<<Nhc) / ui_input_rate;
513
514     End = &Imp[Nwing];
515
516     if (Inc == 1)               /* If doing right wing...              */
517     {                           /* ...drop extra coeff, so when Ph is  */
518         End--;                  /*    0.5, we don't do too many mult's */
519         if (ui_remainder == 0)  /* If the phase is zero...           */
520         {                       /* ...then we've already skipped the */
521             Hp = Imp +          /* first sample, so we must also  */
522                   (ui_output_rate << Nhc) / ui_input_rate;
523             Hdp = ImpD +        /* skip ahead in Imp[] and ImpD[] */
524                   (ui_output_rate << Nhc) / ui_input_rate;
525             ui_counter++;
526         }
527     }
528
529     while (Hp < End) {
530         t = *Hp;                /* Get filter coeff */
531                                 /* t is now interp'd filter coeff */
532         ui_linear_remainder =
533           ((ui_output_rate * ui_counter + ui_remainder)<< Nhc) -
534           ((ui_output_rate * ui_counter + ui_remainder)<< Nhc) /
535           ui_input_rate * ui_input_rate;
536         t += *Hdp * ui_linear_remainder / ui_input_rate / Npc;
537         for( i = 0; i < i_nb_channels; i++ )
538         {
539             temp = t;
540             temp *= *(p_in+i);  /* Mult coeff by input sample */
541             *(p_out+i) += temp; /* The filter output */
542         }
543
544         ui_counter++;
545
546         /* Filter coeff step */
547         Hp = Imp + ((ui_output_rate * ui_counter + ui_remainder)<< Nhc)
548                     / ui_input_rate;
549         /* Filter coeff differences step */
550         Hdp = ImpD + ((ui_output_rate * ui_counter + ui_remainder)<< Nhc)
551                      / ui_input_rate;
552
553         p_in += (Inc * i_nb_channels); /* Input signal step */
554     }
555 }