]> git.sesse.net Git - ffmpeg/blob - postproc/swscale.c
e3c16a50943a4bb34d6bc730f298e691e96af10d
[ffmpeg] / postproc / swscale.c
1 /*
2     Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
3
4     This program is free software; you can redistribute it and/or modify
5     it under the terms of the GNU General Public License as published by
6     the Free Software Foundation; either version 2 of the License, or
7     (at your option) any later version.
8
9     This program is distributed in the hope that it will be useful,
10     but WITHOUT ANY WARRANTY; without even the implied warranty of
11     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12     GNU General Public License for more details.
13
14     You should have received a copy of the GNU General Public License
15     along with this program; if not, write to the Free Software
16     Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
17 */
18
19 /*
20   supported Input formats: YV12, I420/IYUV, YUY2, UYVY, BGR32, BGR24, BGR16, BGR15, RGB32, RGB24, Y8/Y800, YVU9/IF09
21   supported output formats: YV12, I420/IYUV, YUY2, UYVY, {BGR,RGB}{1,4,8,15,16,24,32}, Y8/Y800, YVU9/IF09
22   {BGR,RGB}{1,4,8,15,16} support dithering
23   
24   unscaled special converters (YV12=I420=IYUV, Y800=Y8)
25   YV12 -> {BGR,RGB}{1,4,8,15,16,24,32}
26   x -> x
27   YUV9 -> YV12
28   YUV9/YV12 -> Y800
29   Y800 -> YUV9/YV12
30   BGR24 -> BGR32 & RGB24 -> RGB32
31   BGR32 -> BGR24 & RGB32 -> RGB24
32   BGR15 -> BGR16
33 */
34
35 /* 
36 tested special converters (most are tested actually but i didnt write it down ...)
37  YV12 -> BGR16
38  YV12 -> YV12
39  BGR15 -> BGR16
40  BGR16 -> BGR16
41  YVU9 -> YV12
42
43 untested special converters
44   YV12/I420 -> BGR15/BGR24/BGR32 (its the yuv2rgb stuff, so it should be ok)
45   YV12/I420 -> YV12/I420
46   YUY2/BGR15/BGR24/BGR32/RGB24/RGB32 -> same format
47   BGR24 -> BGR32 & RGB24 -> RGB32
48   BGR32 -> BGR24 & RGB32 -> RGB24
49   BGR24 -> YV12
50 */
51
52 #include <inttypes.h>
53 #include <string.h>
54 #include <math.h>
55 #include <stdio.h>
56 #include "../config.h"
57 #include "../mangle.h"
58 #include <assert.h>
59 #ifdef HAVE_MALLOC_H
60 #include <malloc.h>
61 #else
62 #include <stdlib.h>
63 #endif
64 #include "swscale.h"
65 #include "swscale_internal.h"
66 #include "../cpudetect.h"
67 #include "../bswap.h"
68 #include "../libvo/img_format.h"
69 #include "rgb2rgb.h"
70 #include "../libvo/fastmemcpy.h"
71
72 #undef MOVNTQ
73 #undef PAVGB
74
75 //#undef HAVE_MMX2
76 //#define HAVE_3DNOW
77 //#undef HAVE_MMX
78 //#undef ARCH_X86
79 //#define WORDS_BIGENDIAN
80 #define DITHER1XBPP
81
82 #define FAST_BGR2YV12 // use 7 bit coeffs instead of 15bit
83
84 #define RET 0xC3 //near return opcode for X86
85
86 #ifdef MP_DEBUG
87 #define ASSERT(x) assert(x);
88 #else
89 #define ASSERT(x) ;
90 #endif
91
92 #ifdef M_PI
93 #define PI M_PI
94 #else
95 #define PI 3.14159265358979323846
96 #endif
97
98 //FIXME replace this with something faster
99 #define isPlanarYUV(x) ((x)==IMGFMT_YV12 || (x)==IMGFMT_YVU9 \
100                         || (x)==IMGFMT_444P || (x)==IMGFMT_422P || (x)==IMGFMT_411P)
101 #define isYUV(x)       ((x)==IMGFMT_UYVY || (x)==IMGFMT_YUY2 || isPlanarYUV(x))
102 #define isGray(x)      ((x)==IMGFMT_Y800)
103 #define isRGB(x)       (((x)&IMGFMT_RGB_MASK)==IMGFMT_RGB)
104 #define isBGR(x)       (((x)&IMGFMT_BGR_MASK)==IMGFMT_BGR)
105 #define isSupportedIn(x)  ((x)==IMGFMT_YV12 || (x)==IMGFMT_YUY2 || (x)==IMGFMT_UYVY\
106                         || (x)==IMGFMT_BGR32|| (x)==IMGFMT_BGR24|| (x)==IMGFMT_BGR16|| (x)==IMGFMT_BGR15\
107                         || (x)==IMGFMT_RGB32|| (x)==IMGFMT_RGB24\
108                         || (x)==IMGFMT_Y800 || (x)==IMGFMT_YVU9\
109                         || (x)==IMGFMT_444P || (x)==IMGFMT_422P || (x)==IMGFMT_411P)
110 #define isSupportedOut(x) ((x)==IMGFMT_YV12 || (x)==IMGFMT_YUY2 || (x)==IMGFMT_UYVY\
111                         || (x)==IMGFMT_444P || (x)==IMGFMT_422P || (x)==IMGFMT_411P\
112                         || isRGB(x) || isBGR(x)\
113                         || (x)==IMGFMT_Y800 || (x)==IMGFMT_YVU9)
114 #define isPacked(x)    ((x)==IMGFMT_YUY2 || (x)==IMGFMT_UYVY ||isRGB(x) || isBGR(x))
115
116 #define RGB2YUV_SHIFT 16
117 #define BY ((int)( 0.098*(1<<RGB2YUV_SHIFT)+0.5))
118 #define BV ((int)(-0.071*(1<<RGB2YUV_SHIFT)+0.5))
119 #define BU ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5))
120 #define GY ((int)( 0.504*(1<<RGB2YUV_SHIFT)+0.5))
121 #define GV ((int)(-0.368*(1<<RGB2YUV_SHIFT)+0.5))
122 #define GU ((int)(-0.291*(1<<RGB2YUV_SHIFT)+0.5))
123 #define RY ((int)( 0.257*(1<<RGB2YUV_SHIFT)+0.5))
124 #define RV ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5))
125 #define RU ((int)(-0.148*(1<<RGB2YUV_SHIFT)+0.5))
126
127 extern const int32_t Inverse_Table_6_9[8][4];
128
129 /*
130 NOTES
131 Special versions: fast Y 1:1 scaling (no interpolation in y direction)
132
133 TODO
134 more intelligent missalignment avoidance for the horizontal scaler
135 write special vertical cubic upscale version
136 Optimize C code (yv12 / minmax)
137 add support for packed pixel yuv input & output
138 add support for Y8 output
139 optimize bgr24 & bgr32
140 add BGR4 output support
141 write special BGR->BGR scaler
142 */
143
144 #define ABS(a) ((a) > 0 ? (a) : (-(a)))
145 #define MIN(a,b) ((a) > (b) ? (b) : (a))
146 #define MAX(a,b) ((a) < (b) ? (b) : (a))
147
148 #ifdef ARCH_X86
149 static uint64_t __attribute__((aligned(8))) bF8=       0xF8F8F8F8F8F8F8F8LL;
150 static uint64_t __attribute__((aligned(8))) bFC=       0xFCFCFCFCFCFCFCFCLL;
151 static uint64_t __attribute__((aligned(8))) w10=       0x0010001000100010LL;
152 static uint64_t __attribute__((aligned(8))) w02=       0x0002000200020002LL;
153 static uint64_t __attribute__((aligned(8))) bm00001111=0x00000000FFFFFFFFLL;
154 static uint64_t __attribute__((aligned(8))) bm00000111=0x0000000000FFFFFFLL;
155 static uint64_t __attribute__((aligned(8))) bm11111000=0xFFFFFFFFFF000000LL;
156 static uint64_t __attribute__((aligned(8))) bm01010101=0x00FF00FF00FF00FFLL;
157
158 static volatile uint64_t __attribute__((aligned(8))) b5Dither;
159 static volatile uint64_t __attribute__((aligned(8))) g5Dither;
160 static volatile uint64_t __attribute__((aligned(8))) g6Dither;
161 static volatile uint64_t __attribute__((aligned(8))) r5Dither;
162
163 static uint64_t __attribute__((aligned(8))) dither4[2]={
164         0x0103010301030103LL,
165         0x0200020002000200LL,};
166
167 static uint64_t __attribute__((aligned(8))) dither8[2]={
168         0x0602060206020602LL,
169         0x0004000400040004LL,};
170
171 static uint64_t __attribute__((aligned(8))) b16Mask=   0x001F001F001F001FLL;
172 static uint64_t __attribute__((aligned(8))) g16Mask=   0x07E007E007E007E0LL;
173 static uint64_t __attribute__((aligned(8))) r16Mask=   0xF800F800F800F800LL;
174 static uint64_t __attribute__((aligned(8))) b15Mask=   0x001F001F001F001FLL;
175 static uint64_t __attribute__((aligned(8))) g15Mask=   0x03E003E003E003E0LL;
176 static uint64_t __attribute__((aligned(8))) r15Mask=   0x7C007C007C007C00LL;
177
178 static uint64_t __attribute__((aligned(8))) M24A=   0x00FF0000FF0000FFLL;
179 static uint64_t __attribute__((aligned(8))) M24B=   0xFF0000FF0000FF00LL;
180 static uint64_t __attribute__((aligned(8))) M24C=   0x0000FF0000FF0000LL;
181
182 #ifdef FAST_BGR2YV12
183 static const uint64_t bgr2YCoeff  __attribute__((aligned(8))) = 0x000000210041000DULL;
184 static const uint64_t bgr2UCoeff  __attribute__((aligned(8))) = 0x0000FFEEFFDC0038ULL;
185 static const uint64_t bgr2VCoeff  __attribute__((aligned(8))) = 0x00000038FFD2FFF8ULL;
186 #else
187 static const uint64_t bgr2YCoeff  __attribute__((aligned(8))) = 0x000020E540830C8BULL;
188 static const uint64_t bgr2UCoeff  __attribute__((aligned(8))) = 0x0000ED0FDAC23831ULL;
189 static const uint64_t bgr2VCoeff  __attribute__((aligned(8))) = 0x00003831D0E6F6EAULL;
190 #endif
191 static const uint64_t bgr2YOffset __attribute__((aligned(8))) = 0x1010101010101010ULL;
192 static const uint64_t bgr2UVOffset __attribute__((aligned(8)))= 0x8080808080808080ULL;
193 static const uint64_t w1111       __attribute__((aligned(8))) = 0x0001000100010001ULL;
194 #endif
195
196 // clipping helper table for C implementations:
197 static unsigned char clip_table[768];
198
199 static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b);
200                   
201 extern const uint8_t dither_2x2_4[2][8];
202 extern const uint8_t dither_2x2_8[2][8];
203 extern const uint8_t dither_8x8_32[8][8];
204 extern const uint8_t dither_8x8_73[8][8];
205 extern const uint8_t dither_8x8_220[8][8];
206
207 #ifdef ARCH_X86
208 void in_asm_used_var_warning_killer()
209 {
210  volatile int i= bF8+bFC+w10+
211  bm00001111+bm00000111+bm11111000+b16Mask+g16Mask+r16Mask+b15Mask+g15Mask+r15Mask+
212  M24A+M24B+M24C+w02 + b5Dither+g5Dither+r5Dither+g6Dither+dither4[0]+dither8[0]+bm01010101;
213  if(i) i=0;
214 }
215 #endif
216
217 static inline void yuv2yuvXinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
218                                     int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
219                                     uint8_t *dest, uint8_t *uDest, uint8_t *vDest, int dstW, int chrDstW)
220 {
221         //FIXME Optimize (just quickly writen not opti..)
222         int i;
223         for(i=0; i<dstW; i++)
224         {
225                 int val=1<<18;
226                 int j;
227                 for(j=0; j<lumFilterSize; j++)
228                         val += lumSrc[j][i] * lumFilter[j];
229
230                 dest[i]= MIN(MAX(val>>19, 0), 255);
231         }
232
233         if(uDest != NULL)
234                 for(i=0; i<chrDstW; i++)
235                 {
236                         int u=1<<18;
237                         int v=1<<18;
238                         int j;
239                         for(j=0; j<chrFilterSize; j++)
240                         {
241                                 u += chrSrc[j][i] * chrFilter[j];
242                                 v += chrSrc[j][i + 2048] * chrFilter[j];
243                         }
244
245                         uDest[i]= MIN(MAX(u>>19, 0), 255);
246                         vDest[i]= MIN(MAX(v>>19, 0), 255);
247                 }
248 }
249
250
251 #define YSCALE_YUV_2_PACKEDX_C(type) \
252                 for(i=0; i<(dstW>>1); i++){\
253                         int j;\
254                         int Y1=1<<18;\
255                         int Y2=1<<18;\
256                         int U=1<<18;\
257                         int V=1<<18;\
258                         type *r, *b, *g;\
259                         const int i2= 2*i;\
260                         \
261                         for(j=0; j<lumFilterSize; j++)\
262                         {\
263                                 Y1 += lumSrc[j][i2] * lumFilter[j];\
264                                 Y2 += lumSrc[j][i2+1] * lumFilter[j];\
265                         }\
266                         for(j=0; j<chrFilterSize; j++)\
267                         {\
268                                 U += chrSrc[j][i] * chrFilter[j];\
269                                 V += chrSrc[j][i+2048] * chrFilter[j];\
270                         }\
271                         Y1>>=19;\
272                         Y2>>=19;\
273                         U >>=19;\
274                         V >>=19;\
275                         if((Y1|Y2|U|V)&256)\
276                         {\
277                                 if(Y1>255)   Y1=255;\
278                                 else if(Y1<0)Y1=0;\
279                                 if(Y2>255)   Y2=255;\
280                                 else if(Y2<0)Y2=0;\
281                                 if(U>255)    U=255;\
282                                 else if(U<0) U=0;\
283                                 if(V>255)    V=255;\
284                                 else if(V<0) V=0;\
285                         }
286                         
287 #define YSCALE_YUV_2_RGBX_C(type) \
288                         YSCALE_YUV_2_PACKEDX_C(type)\
289                         r = c->table_rV[V];\
290                         g = c->table_gU[U] + c->table_gV[V];\
291                         b = c->table_bU[U];\
292
293 #define YSCALE_YUV_2_PACKED2_C \
294                 for(i=0; i<(dstW>>1); i++){\
295                         const int i2= 2*i;\
296                         int Y1= (buf0[i2  ]*yalpha1+buf1[i2  ]*yalpha)>>19;\
297                         int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>19;\
298                         int U= (uvbuf0[i     ]*uvalpha1+uvbuf1[i     ]*uvalpha)>>19;\
299                         int V= (uvbuf0[i+2048]*uvalpha1+uvbuf1[i+2048]*uvalpha)>>19;\
300
301 #define YSCALE_YUV_2_RGB2_C(type) \
302                         YSCALE_YUV_2_PACKED2_C\
303                         type *r, *b, *g;\
304                         r = c->table_rV[V];\
305                         g = c->table_gU[U] + c->table_gV[V];\
306                         b = c->table_bU[U];\
307
308 #define YSCALE_YUV_2_PACKED1_C \
309                 for(i=0; i<(dstW>>1); i++){\
310                         const int i2= 2*i;\
311                         int Y1= buf0[i2  ]>>7;\
312                         int Y2= buf0[i2+1]>>7;\
313                         int U= (uvbuf1[i     ])>>7;\
314                         int V= (uvbuf1[i+2048])>>7;\
315
316 #define YSCALE_YUV_2_RGB1_C(type) \
317                         YSCALE_YUV_2_PACKED1_C\
318                         type *r, *b, *g;\
319                         r = c->table_rV[V];\
320                         g = c->table_gU[U] + c->table_gV[V];\
321                         b = c->table_bU[U];\
322
323 #define YSCALE_YUV_2_PACKED1B_C \
324                 for(i=0; i<(dstW>>1); i++){\
325                         const int i2= 2*i;\
326                         int Y1= buf0[i2  ]>>7;\
327                         int Y2= buf0[i2+1]>>7;\
328                         int U= (uvbuf0[i     ] + uvbuf1[i     ])>>8;\
329                         int V= (uvbuf0[i+2048] + uvbuf1[i+2048])>>8;\
330
331 #define YSCALE_YUV_2_RGB1B_C(type) \
332                         YSCALE_YUV_2_PACKED1B_C\
333                         type *r, *b, *g;\
334                         r = c->table_rV[V];\
335                         g = c->table_gU[U] + c->table_gV[V];\
336                         b = c->table_bU[U];\
337
338 #define YSCALE_YUV_2_ANYRGB_C(func, func2)\
339         switch(c->dstFormat)\
340         {\
341         case IMGFMT_BGR32:\
342         case IMGFMT_RGB32:\
343                 func(uint32_t)\
344                         ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];\
345                         ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];\
346                 }               \
347                 break;\
348         case IMGFMT_RGB24:\
349                 func(uint8_t)\
350                         ((uint8_t*)dest)[0]= r[Y1];\
351                         ((uint8_t*)dest)[1]= g[Y1];\
352                         ((uint8_t*)dest)[2]= b[Y1];\
353                         ((uint8_t*)dest)[3]= r[Y2];\
354                         ((uint8_t*)dest)[4]= g[Y2];\
355                         ((uint8_t*)dest)[5]= b[Y2];\
356                         ((uint8_t*)dest)+=6;\
357                 }\
358                 break;\
359         case IMGFMT_BGR24:\
360                 func(uint8_t)\
361                         ((uint8_t*)dest)[0]= b[Y1];\
362                         ((uint8_t*)dest)[1]= g[Y1];\
363                         ((uint8_t*)dest)[2]= r[Y1];\
364                         ((uint8_t*)dest)[3]= b[Y2];\
365                         ((uint8_t*)dest)[4]= g[Y2];\
366                         ((uint8_t*)dest)[5]= r[Y2];\
367                         ((uint8_t*)dest)+=6;\
368                 }\
369                 break;\
370         case IMGFMT_RGB16:\
371         case IMGFMT_BGR16:\
372                 {\
373                         const int dr1= dither_2x2_8[y&1    ][0];\
374                         const int dg1= dither_2x2_4[y&1    ][0];\
375                         const int db1= dither_2x2_8[(y&1)^1][0];\
376                         const int dr2= dither_2x2_8[y&1    ][1];\
377                         const int dg2= dither_2x2_4[y&1    ][1];\
378                         const int db2= dither_2x2_8[(y&1)^1][1];\
379                         func(uint16_t)\
380                                 ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
381                                 ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
382                         }\
383                 }\
384                 break;\
385         case IMGFMT_RGB15:\
386         case IMGFMT_BGR15:\
387                 {\
388                         const int dr1= dither_2x2_8[y&1    ][0];\
389                         const int dg1= dither_2x2_8[y&1    ][1];\
390                         const int db1= dither_2x2_8[(y&1)^1][0];\
391                         const int dr2= dither_2x2_8[y&1    ][1];\
392                         const int dg2= dither_2x2_8[y&1    ][0];\
393                         const int db2= dither_2x2_8[(y&1)^1][1];\
394                         func(uint16_t)\
395                                 ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
396                                 ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
397                         }\
398                 }\
399                 break;\
400         case IMGFMT_RGB8:\
401         case IMGFMT_BGR8:\
402                 {\
403                         const uint8_t * const d64= dither_8x8_73[y&7];\
404                         const uint8_t * const d32= dither_8x8_32[y&7];\
405                         func(uint8_t)\
406                                 ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];\
407                                 ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];\
408                         }\
409                 }\
410                 break;\
411         case IMGFMT_RGB4:\
412         case IMGFMT_BGR4:\
413                 {\
414                         const uint8_t * const d64= dither_8x8_73 [y&7];\
415                         const uint8_t * const d128=dither_8x8_220[y&7];\
416                         func(uint8_t)\
417                                 ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]\
418                                                  + ((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);\
419                         }\
420                 }\
421                 break;\
422         case IMGFMT_RG4B:\
423         case IMGFMT_BG4B:\
424                 {\
425                         const uint8_t * const d64= dither_8x8_73 [y&7];\
426                         const uint8_t * const d128=dither_8x8_220[y&7];\
427                         func(uint8_t)\
428                                 ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];\
429                                 ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];\
430                         }\
431                 }\
432                 break;\
433         case IMGFMT_RGB1:\
434         case IMGFMT_BGR1:\
435                 {\
436                         const uint8_t * const d128=dither_8x8_220[y&7];\
437                         uint8_t *g= c->table_gU[128] + c->table_gV[128];\
438                         for(i=0; i<dstW-7; i+=8){\
439                                 int acc;\
440                                 acc =       g[((buf0[i  ]*yalpha1+buf1[i  ]*yalpha)>>19) + d128[0]];\
441                                 acc+= acc + g[((buf0[i+1]*yalpha1+buf1[i+1]*yalpha)>>19) + d128[1]];\
442                                 acc+= acc + g[((buf0[i+2]*yalpha1+buf1[i+2]*yalpha)>>19) + d128[2]];\
443                                 acc+= acc + g[((buf0[i+3]*yalpha1+buf1[i+3]*yalpha)>>19) + d128[3]];\
444                                 acc+= acc + g[((buf0[i+4]*yalpha1+buf1[i+4]*yalpha)>>19) + d128[4]];\
445                                 acc+= acc + g[((buf0[i+5]*yalpha1+buf1[i+5]*yalpha)>>19) + d128[5]];\
446                                 acc+= acc + g[((buf0[i+6]*yalpha1+buf1[i+6]*yalpha)>>19) + d128[6]];\
447                                 acc+= acc + g[((buf0[i+7]*yalpha1+buf1[i+7]*yalpha)>>19) + d128[7]];\
448                                 ((uint8_t*)dest)[0]= acc;\
449                                 ((uint8_t*)dest)++;\
450                         }\
451 \
452 /*\
453 ((uint8_t*)dest)-= dstW>>4;\
454 {\
455                         int acc=0;\
456                         int left=0;\
457                         static int top[1024];\
458                         static int last_new[1024][1024];\
459                         static int last_in3[1024][1024];\
460                         static int drift[1024][1024];\
461                         int topLeft=0;\
462                         int shift=0;\
463                         int count=0;\
464                         const uint8_t * const d128=dither_8x8_220[y&7];\
465                         int error_new=0;\
466                         int error_in3=0;\
467                         int f=0;\
468                         \
469                         for(i=dstW>>1; i<dstW; i++){\
470                                 int in= ((buf0[i  ]*yalpha1+buf1[i  ]*yalpha)>>19);\
471                                 int in2 = (76309 * (in - 16) + 32768) >> 16;\
472                                 int in3 = (in2 < 0) ? 0 : ((in2 > 255) ? 255 : in2);\
473                                 int old= (left*7 + topLeft + top[i]*5 + top[i+1]*3)/20 + in3\
474                                         + (last_new[y][i] - in3)*f/256;\
475                                 int new= old> 128 ? 255 : 0;\
476 \
477                                 error_new+= ABS(last_new[y][i] - new);\
478                                 error_in3+= ABS(last_in3[y][i] - in3);\
479                                 f= error_new - error_in3*4;\
480                                 if(f<0) f=0;\
481                                 if(f>256) f=256;\
482 \
483                                 topLeft= top[i];\
484                                 left= top[i]= old - new;\
485                                 last_new[y][i]= new;\
486                                 last_in3[y][i]= in3;\
487 \
488                                 acc+= acc + (new&1);\
489                                 if((i&7)==6){\
490                                         ((uint8_t*)dest)[0]= acc;\
491                                         ((uint8_t*)dest)++;\
492                                 }\
493                         }\
494 }\
495 */\
496                 }\
497                 break;\
498         case IMGFMT_YUY2:\
499                 func2\
500                         ((uint8_t*)dest)[2*i2+0]= Y1;\
501                         ((uint8_t*)dest)[2*i2+1]= U;\
502                         ((uint8_t*)dest)[2*i2+2]= Y2;\
503                         ((uint8_t*)dest)[2*i2+3]= V;\
504                 }               \
505                 break;\
506         case IMGFMT_UYVY:\
507                 func2\
508                         ((uint8_t*)dest)[2*i2+0]= U;\
509                         ((uint8_t*)dest)[2*i2+1]= Y1;\
510                         ((uint8_t*)dest)[2*i2+2]= V;\
511                         ((uint8_t*)dest)[2*i2+3]= Y2;\
512                 }               \
513                 break;\
514         }\
515
516
517 static inline void yuv2packedXinC(SwsContext *c, int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
518                                     int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
519                                     uint8_t *dest, int dstW, int y)
520 {
521         int i;
522         switch(c->dstFormat)
523         {
524         case IMGFMT_RGB32:
525         case IMGFMT_BGR32:
526                 YSCALE_YUV_2_RGBX_C(uint32_t)
527                         ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];
528                         ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];
529                 }
530                 break;
531         case IMGFMT_RGB24:
532                 YSCALE_YUV_2_RGBX_C(uint8_t)
533                         ((uint8_t*)dest)[0]= r[Y1];
534                         ((uint8_t*)dest)[1]= g[Y1];
535                         ((uint8_t*)dest)[2]= b[Y1];
536                         ((uint8_t*)dest)[3]= r[Y2];
537                         ((uint8_t*)dest)[4]= g[Y2];
538                         ((uint8_t*)dest)[5]= b[Y2];
539                         ((uint8_t*)dest)+=6;
540                 }
541                 break;
542         case IMGFMT_BGR24:
543                 YSCALE_YUV_2_RGBX_C(uint8_t)
544                         ((uint8_t*)dest)[0]= b[Y1];
545                         ((uint8_t*)dest)[1]= g[Y1];
546                         ((uint8_t*)dest)[2]= r[Y1];
547                         ((uint8_t*)dest)[3]= b[Y2];
548                         ((uint8_t*)dest)[4]= g[Y2];
549                         ((uint8_t*)dest)[5]= r[Y2];
550                         ((uint8_t*)dest)+=6;
551                 }
552                 break;
553         case IMGFMT_RGB16:
554         case IMGFMT_BGR16:
555                 {
556                         const int dr1= dither_2x2_8[y&1    ][0];
557                         const int dg1= dither_2x2_4[y&1    ][0];
558                         const int db1= dither_2x2_8[(y&1)^1][0];
559                         const int dr2= dither_2x2_8[y&1    ][1];
560                         const int dg2= dither_2x2_4[y&1    ][1];
561                         const int db2= dither_2x2_8[(y&1)^1][1];
562                         YSCALE_YUV_2_RGBX_C(uint16_t)
563                                 ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];
564                                 ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];
565                         }
566                 }
567                 break;
568         case IMGFMT_RGB15:
569         case IMGFMT_BGR15:
570                 {
571                         const int dr1= dither_2x2_8[y&1    ][0];
572                         const int dg1= dither_2x2_8[y&1    ][1];
573                         const int db1= dither_2x2_8[(y&1)^1][0];
574                         const int dr2= dither_2x2_8[y&1    ][1];
575                         const int dg2= dither_2x2_8[y&1    ][0];
576                         const int db2= dither_2x2_8[(y&1)^1][1];
577                         YSCALE_YUV_2_RGBX_C(uint16_t)
578                                 ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];
579                                 ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];
580                         }
581                 }
582                 break;
583         case IMGFMT_RGB8:
584         case IMGFMT_BGR8:
585                 {
586                         const uint8_t * const d64= dither_8x8_73[y&7];
587                         const uint8_t * const d32= dither_8x8_32[y&7];
588                         YSCALE_YUV_2_RGBX_C(uint8_t)
589                                 ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];
590                                 ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];
591                         }
592                 }
593                 break;
594         case IMGFMT_RGB4:
595         case IMGFMT_BGR4:
596                 {
597                         const uint8_t * const d64= dither_8x8_73 [y&7];
598                         const uint8_t * const d128=dither_8x8_220[y&7];
599                         YSCALE_YUV_2_RGBX_C(uint8_t)
600                                 ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]
601                                                   +((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);
602                         }
603                 }
604                 break;
605         case IMGFMT_RG4B:
606         case IMGFMT_BG4B:
607                 {
608                         const uint8_t * const d64= dither_8x8_73 [y&7];
609                         const uint8_t * const d128=dither_8x8_220[y&7];
610                         YSCALE_YUV_2_RGBX_C(uint8_t)
611                                 ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];
612                                 ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];
613                         }
614                 }
615                 break;
616         case IMGFMT_RGB1:
617         case IMGFMT_BGR1:
618                 {
619                         const uint8_t * const d128=dither_8x8_220[y&7];
620                         uint8_t *g= c->table_gU[128] + c->table_gV[128];
621                         int acc=0;
622                         for(i=0; i<dstW-1; i+=2){
623                                 int j;
624                                 int Y1=1<<18;
625                                 int Y2=1<<18;
626
627                                 for(j=0; j<lumFilterSize; j++)
628                                 {
629                                         Y1 += lumSrc[j][i] * lumFilter[j];
630                                         Y2 += lumSrc[j][i+1] * lumFilter[j];
631                                 }
632                                 Y1>>=19;
633                                 Y2>>=19;
634                                 if((Y1|Y2)&256)
635                                 {
636                                         if(Y1>255)   Y1=255;
637                                         else if(Y1<0)Y1=0;
638                                         if(Y2>255)   Y2=255;
639                                         else if(Y2<0)Y2=0;
640                                 }
641                                 acc+= acc + g[Y1+d128[(i+0)&7]];
642                                 acc+= acc + g[Y2+d128[(i+1)&7]];
643                                 if((i&7)==6){
644                                         ((uint8_t*)dest)[0]= acc;
645                                         ((uint8_t*)dest)++;
646                                 }
647                         }
648                 }
649                 break;
650         case IMGFMT_YUY2:
651                 YSCALE_YUV_2_PACKEDX_C(void)
652                         ((uint8_t*)dest)[2*i2+0]= Y1;
653                         ((uint8_t*)dest)[2*i2+1]= U;
654                         ((uint8_t*)dest)[2*i2+2]= Y2;
655                         ((uint8_t*)dest)[2*i2+3]= V;
656                 }
657                 break;
658         case IMGFMT_UYVY:
659                 YSCALE_YUV_2_PACKEDX_C(void)
660                         ((uint8_t*)dest)[2*i2+0]= U;
661                         ((uint8_t*)dest)[2*i2+1]= Y1;
662                         ((uint8_t*)dest)[2*i2+2]= V;
663                         ((uint8_t*)dest)[2*i2+3]= Y2;
664                 }
665                 break;
666         }
667 }
668
669
670 //Note: we have C, X86, MMX, MMX2, 3DNOW version therse no 3DNOW+MMX2 one
671 //Plain C versions
672 #if !defined (HAVE_MMX) || defined (RUNTIME_CPUDETECT)
673 #define COMPILE_C
674 #endif
675
676 #ifdef ARCH_X86
677
678 #if (defined (HAVE_MMX) && !defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)
679 #define COMPILE_MMX
680 #endif
681
682 #if defined (HAVE_MMX2) || defined (RUNTIME_CPUDETECT)
683 #define COMPILE_MMX2
684 #endif
685
686 #if (defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)
687 #define COMPILE_3DNOW
688 #endif
689 #endif //ARCH_X86
690
691 #undef HAVE_MMX
692 #undef HAVE_MMX2
693 #undef HAVE_3DNOW
694
695 #ifdef COMPILE_C
696 #undef HAVE_MMX
697 #undef HAVE_MMX2
698 #undef HAVE_3DNOW
699 #define RENAME(a) a ## _C
700 #include "swscale_template.c"
701 #endif
702
703 #ifdef ARCH_X86
704
705 //X86 versions
706 /*
707 #undef RENAME
708 #undef HAVE_MMX
709 #undef HAVE_MMX2
710 #undef HAVE_3DNOW
711 #define ARCH_X86
712 #define RENAME(a) a ## _X86
713 #include "swscale_template.c"
714 */
715 //MMX versions
716 #ifdef COMPILE_MMX
717 #undef RENAME
718 #define HAVE_MMX
719 #undef HAVE_MMX2
720 #undef HAVE_3DNOW
721 #define RENAME(a) a ## _MMX
722 #include "swscale_template.c"
723 #endif
724
725 //MMX2 versions
726 #ifdef COMPILE_MMX2
727 #undef RENAME
728 #define HAVE_MMX
729 #define HAVE_MMX2
730 #undef HAVE_3DNOW
731 #define RENAME(a) a ## _MMX2
732 #include "swscale_template.c"
733 #endif
734
735 //3DNOW versions
736 #ifdef COMPILE_3DNOW
737 #undef RENAME
738 #define HAVE_MMX
739 #undef HAVE_MMX2
740 #define HAVE_3DNOW
741 #define RENAME(a) a ## _3DNow
742 #include "swscale_template.c"
743 #endif
744
745 #endif //ARCH_X86
746
747 // minor note: the HAVE_xyz is messed up after that line so don't use it
748
749 static double getSplineCoeff(double a, double b, double c, double d, double dist)
750 {
751 //      printf("%f %f %f %f %f\n", a,b,c,d,dist);
752         if(dist<=1.0)   return ((d*dist + c)*dist + b)*dist +a;
753         else            return getSplineCoeff(  0.0, 
754                                                  b+ 2.0*c + 3.0*d,
755                                                         c + 3.0*d,
756                                                 -b- 3.0*c - 6.0*d,
757                                                 dist-1.0);
758 }
759
760 static inline void initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc,
761                               int srcW, int dstW, int filterAlign, int one, int flags,
762                               SwsVector *srcFilter, SwsVector *dstFilter)
763 {
764         int i;
765         int filterSize;
766         int filter2Size;
767         int minFilterSize;
768         double *filter=NULL;
769         double *filter2=NULL;
770 #ifdef ARCH_X86
771         if(flags & SWS_CPU_CAPS_MMX)
772                 asm volatile("emms\n\t"::: "memory"); //FIXME this shouldnt be required but it IS (even for non mmx versions)
773 #endif
774
775         // Note the +1 is for the MMXscaler which reads over the end
776         *filterPos = (int16_t*)memalign(8, (dstW+1)*sizeof(int16_t));
777
778         if(ABS(xInc - 0x10000) <10) // unscaled
779         {
780                 int i;
781                 filterSize= 1;
782                 filter= (double*)memalign(8, dstW*sizeof(double)*filterSize);
783                 for(i=0; i<dstW*filterSize; i++) filter[i]=0;
784
785                 for(i=0; i<dstW; i++)
786                 {
787                         filter[i*filterSize]=1;
788                         (*filterPos)[i]=i;
789                 }
790
791         }
792         else if(flags&SWS_POINT) // lame looking point sampling mode
793         {
794                 int i;
795                 int xDstInSrc;
796                 filterSize= 1;
797                 filter= (double*)memalign(8, dstW*sizeof(double)*filterSize);
798                 
799                 xDstInSrc= xInc/2 - 0x8000;
800                 for(i=0; i<dstW; i++)
801                 {
802                         int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
803
804                         (*filterPos)[i]= xx;
805                         filter[i]= 1.0;
806                         xDstInSrc+= xInc;
807                 }
808         }
809         else if((xInc <= (1<<16) && (flags&SWS_AREA)) || (flags&SWS_FAST_BILINEAR)) // bilinear upscale
810         {
811                 int i;
812                 int xDstInSrc;
813                 if     (flags&SWS_BICUBIC) filterSize= 4;
814                 else if(flags&SWS_X      ) filterSize= 4;
815                 else                       filterSize= 2; // SWS_BILINEAR / SWS_AREA 
816                 filter= (double*)memalign(8, dstW*sizeof(double)*filterSize);
817
818                 xDstInSrc= xInc/2 - 0x8000;
819                 for(i=0; i<dstW; i++)
820                 {
821                         int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
822                         int j;
823
824                         (*filterPos)[i]= xx;
825                                 //Bilinear upscale / linear interpolate / Area averaging
826                                 for(j=0; j<filterSize; j++)
827                                 {
828                                         double d= ABS((xx<<16) - xDstInSrc)/(double)(1<<16);
829                                         double coeff= 1.0 - d;
830                                         if(coeff<0) coeff=0;
831                                         filter[i*filterSize + j]= coeff;
832                                         xx++;
833                                 }
834                         xDstInSrc+= xInc;
835                 }
836         }
837         else
838         {
839                 double xDstInSrc;
840                 double sizeFactor, filterSizeInSrc;
841                 const double xInc1= (double)xInc / (double)(1<<16);
842                 int param= (flags&SWS_PARAM_MASK)>>SWS_PARAM_SHIFT;
843
844                 if     (flags&SWS_BICUBIC)      sizeFactor= 4.0;
845                 else if(flags&SWS_X)            sizeFactor= 8.0;
846                 else if(flags&SWS_AREA)         sizeFactor= 1.0; //downscale only, for upscale it is bilinear
847                 else if(flags&SWS_GAUSS)        sizeFactor= 8.0;   // infinite ;)
848                 else if(flags&SWS_LANCZOS)      sizeFactor= param ? 2.0*param : 6.0;
849                 else if(flags&SWS_SINC)         sizeFactor= 20.0; // infinite ;)
850                 else if(flags&SWS_SPLINE)       sizeFactor= 20.0;  // infinite ;)
851                 else if(flags&SWS_BILINEAR)     sizeFactor= 2.0;
852                 else {
853                         sizeFactor= 0.0; //GCC warning killer
854                         ASSERT(0)
855                 }
856                 
857                 if(xInc1 <= 1.0)        filterSizeInSrc= sizeFactor; // upscale
858                 else                    filterSizeInSrc= sizeFactor*srcW / (double)dstW;
859
860                 filterSize= (int)ceil(1 + filterSizeInSrc); // will be reduced later if possible
861                 if(filterSize > srcW-2) filterSize=srcW-2;
862
863                 filter= (double*)memalign(16, dstW*sizeof(double)*filterSize);
864
865                 xDstInSrc= xInc1 / 2.0 - 0.5;
866                 for(i=0; i<dstW; i++)
867                 {
868                         int xx= (int)(xDstInSrc - (filterSize-1)*0.5 + 0.5);
869                         int j;
870                         (*filterPos)[i]= xx;
871                         for(j=0; j<filterSize; j++)
872                         {
873                                 double d= ABS(xx - xDstInSrc)/filterSizeInSrc*sizeFactor;
874                                 double coeff;
875                                 if(flags & SWS_BICUBIC)
876                                 {
877                                         double A= param ? -param*0.01 : -0.60;
878                                         
879                                         // Equation is from VirtualDub
880                                         if(d<1.0)
881                                                 coeff = (1.0 - (A+3.0)*d*d + (A+2.0)*d*d*d);
882                                         else if(d<2.0)
883                                                 coeff = (-4.0*A + 8.0*A*d - 5.0*A*d*d + A*d*d*d);
884                                         else
885                                                 coeff=0.0;
886                                 }
887 /*                              else if(flags & SWS_X)
888                                 {
889                                         double p= param ? param*0.01 : 0.3;
890                                         coeff = d ? sin(d*PI)/(d*PI) : 1.0;
891                                         coeff*= pow(2.0, - p*d*d);
892                                 }*/
893                                 else if(flags & SWS_X)
894                                 {
895                                         double A= param ? param*0.1 : 1.0;
896                                         
897                                         if(d<1.0)
898                                                 coeff = cos(d*PI);
899                                         else
900                                                 coeff=-1.0;
901                                         if(coeff<0.0)   coeff= -pow(-coeff, A);
902                                         else            coeff=  pow( coeff, A);
903                                         coeff= coeff*0.5 + 0.5;
904                                 }
905                                 else if(flags & SWS_AREA)
906                                 {
907                                         double srcPixelSize= 1.0/xInc1;
908                                         if(d + srcPixelSize/2 < 0.5) coeff= 1.0;
909                                         else if(d - srcPixelSize/2 < 0.5) coeff= (0.5-d)/srcPixelSize + 0.5;
910                                         else coeff=0.0;
911                                 }
912                                 else if(flags & SWS_GAUSS)
913                                 {
914                                         double p= param ? param*0.1 : 3.0;
915                                         coeff = pow(2.0, - p*d*d);
916                                 }
917                                 else if(flags & SWS_SINC)
918                                 {
919                                         coeff = d ? sin(d*PI)/(d*PI) : 1.0;
920                                 }
921                                 else if(flags & SWS_LANCZOS)
922                                 {
923                                         double p= param ? param : 3.0; 
924                                         coeff = d ? sin(d*PI)*sin(d*PI/p)/(d*d*PI*PI/p) : 1.0;
925                                         if(d>p) coeff=0;
926                                 }
927                                 else if(flags & SWS_BILINEAR)
928                                 {
929                                         coeff= 1.0 - d;
930                                         if(coeff<0) coeff=0;
931                                 }
932                                 else if(flags & SWS_SPLINE)
933                                 {
934                                         double p=-2.196152422706632;
935                                         coeff = getSplineCoeff(1.0, 0.0, p, -p-1.0, d);
936                                 }
937                                 else {
938                                         coeff= 0.0; //GCC warning killer
939                                         ASSERT(0)
940                                 }
941
942                                 filter[i*filterSize + j]= coeff;
943                                 xx++;
944                         }
945                         xDstInSrc+= xInc1;
946                 }
947         }
948
949         /* apply src & dst Filter to filter -> filter2
950            free(filter);
951         */
952         ASSERT(filterSize>0)
953         filter2Size= filterSize;
954         if(srcFilter) filter2Size+= srcFilter->length - 1;
955         if(dstFilter) filter2Size+= dstFilter->length - 1;
956         ASSERT(filter2Size>0)
957         filter2= (double*)memalign(8, filter2Size*dstW*sizeof(double));
958
959         for(i=0; i<dstW; i++)
960         {
961                 int j;
962                 SwsVector scaleFilter;
963                 SwsVector *outVec;
964
965                 scaleFilter.coeff= filter + i*filterSize;
966                 scaleFilter.length= filterSize;
967
968                 if(srcFilter) outVec= sws_getConvVec(srcFilter, &scaleFilter);
969                 else          outVec= &scaleFilter;
970
971                 ASSERT(outVec->length == filter2Size)
972                 //FIXME dstFilter
973
974                 for(j=0; j<outVec->length; j++)
975                 {
976                         filter2[i*filter2Size + j]= outVec->coeff[j];
977                 }
978
979                 (*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2;
980
981                 if(outVec != &scaleFilter) sws_freeVec(outVec);
982         }
983         free(filter); filter=NULL;
984
985         /* try to reduce the filter-size (step1 find size and shift left) */
986         // Assume its near normalized (*0.5 or *2.0 is ok but * 0.001 is not)
987         minFilterSize= 0;
988         for(i=dstW-1; i>=0; i--)
989         {
990                 int min= filter2Size;
991                 int j;
992                 double cutOff=0.0;
993
994                 /* get rid off near zero elements on the left by shifting left */
995                 for(j=0; j<filter2Size; j++)
996                 {
997                         int k;
998                         cutOff += ABS(filter2[i*filter2Size]);
999
1000                         if(cutOff > SWS_MAX_REDUCE_CUTOFF) break;
1001
1002                         /* preserve Monotonicity because the core can't handle the filter otherwise */
1003                         if(i<dstW-1 && (*filterPos)[i] >= (*filterPos)[i+1]) break;
1004
1005                         // Move filter coeffs left
1006                         for(k=1; k<filter2Size; k++)
1007                                 filter2[i*filter2Size + k - 1]= filter2[i*filter2Size + k];
1008                         filter2[i*filter2Size + k - 1]= 0.0;
1009                         (*filterPos)[i]++;
1010                 }
1011
1012                 cutOff=0.0;
1013                 /* count near zeros on the right */
1014                 for(j=filter2Size-1; j>0; j--)
1015                 {
1016                         cutOff += ABS(filter2[i*filter2Size + j]);
1017
1018                         if(cutOff > SWS_MAX_REDUCE_CUTOFF) break;
1019                         min--;
1020                 }
1021
1022                 if(min>minFilterSize) minFilterSize= min;
1023         }
1024
1025         ASSERT(minFilterSize > 0)
1026         filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1));
1027         ASSERT(filterSize > 0)
1028         filter= (double*)memalign(8, filterSize*dstW*sizeof(double));
1029         *outFilterSize= filterSize;
1030
1031         if(flags&SWS_PRINT_INFO)
1032                 MSG_INFO("SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize);
1033         /* try to reduce the filter-size (step2 reduce it) */
1034         for(i=0; i<dstW; i++)
1035         {
1036                 int j;
1037
1038                 for(j=0; j<filterSize; j++)
1039                 {
1040                         if(j>=filter2Size) filter[i*filterSize + j]= 0.0;
1041                         else               filter[i*filterSize + j]= filter2[i*filter2Size + j];
1042                 }
1043         }
1044         free(filter2); filter2=NULL;
1045         
1046
1047         //FIXME try to align filterpos if possible
1048
1049         //fix borders
1050         for(i=0; i<dstW; i++)
1051         {
1052                 int j;
1053                 if((*filterPos)[i] < 0)
1054                 {
1055                         // Move filter coeffs left to compensate for filterPos
1056                         for(j=1; j<filterSize; j++)
1057                         {
1058                                 int left= MAX(j + (*filterPos)[i], 0);
1059                                 filter[i*filterSize + left] += filter[i*filterSize + j];
1060                                 filter[i*filterSize + j]=0;
1061                         }
1062                         (*filterPos)[i]= 0;
1063                 }
1064
1065                 if((*filterPos)[i] + filterSize > srcW)
1066                 {
1067                         int shift= (*filterPos)[i] + filterSize - srcW;
1068                         // Move filter coeffs right to compensate for filterPos
1069                         for(j=filterSize-2; j>=0; j--)
1070                         {
1071                                 int right= MIN(j + shift, filterSize-1);
1072                                 filter[i*filterSize +right] += filter[i*filterSize +j];
1073                                 filter[i*filterSize +j]=0;
1074                         }
1075                         (*filterPos)[i]= srcW - filterSize;
1076                 }
1077         }
1078
1079         // Note the +1 is for the MMXscaler which reads over the end
1080         *outFilter= (int16_t*)memalign(8, *outFilterSize*(dstW+1)*sizeof(int16_t));
1081         memset(*outFilter, 0, *outFilterSize*(dstW+1)*sizeof(int16_t));
1082
1083         /* Normalize & Store in outFilter */
1084         for(i=0; i<dstW; i++)
1085         {
1086                 int j;
1087                 double error=0;
1088                 double sum=0;
1089                 double scale= one;
1090
1091                 for(j=0; j<filterSize; j++)
1092                 {
1093                         sum+= filter[i*filterSize + j];
1094                 }
1095                 scale/= sum;
1096                 for(j=0; j<*outFilterSize; j++)
1097                 {
1098                         double v= filter[i*filterSize + j]*scale + error;
1099                         int intV= floor(v + 0.5);
1100                         (*outFilter)[i*(*outFilterSize) + j]= intV;
1101                         error = v - intV;
1102                 }
1103         }
1104         
1105         (*filterPos)[dstW]= (*filterPos)[dstW-1]; // the MMX scaler will read over the end
1106         for(i=0; i<*outFilterSize; i++)
1107         {
1108                 int j= dstW*(*outFilterSize);
1109                 (*outFilter)[j + i]= (*outFilter)[j + i - (*outFilterSize)];
1110         }
1111
1112         free(filter);
1113 }
1114
1115 #ifdef ARCH_X86
1116 static void initMMX2HScaler(int dstW, int xInc, uint8_t *funnyCode, int16_t *filter, int32_t *filterPos, int numSplits)
1117 {
1118         uint8_t *fragmentA;
1119         int imm8OfPShufW1A;
1120         int imm8OfPShufW2A;
1121         int fragmentLengthA;
1122         uint8_t *fragmentB;
1123         int imm8OfPShufW1B;
1124         int imm8OfPShufW2B;
1125         int fragmentLengthB;
1126         int fragmentPos;
1127
1128         int xpos, i;
1129
1130         // create an optimized horizontal scaling routine
1131
1132         //code fragment
1133
1134         asm volatile(
1135                 "jmp 9f                         \n\t"
1136         // Begin
1137                 "0:                             \n\t"
1138                 "movq (%%edx, %%eax), %%mm3     \n\t" 
1139                 "movd (%%ecx, %%esi), %%mm0     \n\t" 
1140                 "movd 1(%%ecx, %%esi), %%mm1    \n\t"
1141                 "punpcklbw %%mm7, %%mm1         \n\t"
1142                 "punpcklbw %%mm7, %%mm0         \n\t"
1143                 "pshufw $0xFF, %%mm1, %%mm1     \n\t"
1144                 "1:                             \n\t"
1145                 "pshufw $0xFF, %%mm0, %%mm0     \n\t"
1146                 "2:                             \n\t"
1147                 "psubw %%mm1, %%mm0             \n\t"
1148                 "movl 8(%%ebx, %%eax), %%esi    \n\t"
1149                 "pmullw %%mm3, %%mm0            \n\t"
1150                 "psllw $7, %%mm1                \n\t"
1151                 "paddw %%mm1, %%mm0             \n\t"
1152
1153                 "movq %%mm0, (%%edi, %%eax)     \n\t"
1154
1155                 "addl $8, %%eax                 \n\t"
1156         // End
1157                 "9:                             \n\t"
1158 //              "int $3\n\t"
1159                 "leal 0b, %0                    \n\t"
1160                 "leal 1b, %1                    \n\t"
1161                 "leal 2b, %2                    \n\t"
1162                 "decl %1                        \n\t"
1163                 "decl %2                        \n\t"
1164                 "subl %0, %1                    \n\t"
1165                 "subl %0, %2                    \n\t"
1166                 "leal 9b, %3                    \n\t"
1167                 "subl %0, %3                    \n\t"
1168
1169
1170                 :"=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
1171                 "=r" (fragmentLengthA)
1172         );
1173
1174         asm volatile(
1175                 "jmp 9f                         \n\t"
1176         // Begin
1177                 "0:                             \n\t"
1178                 "movq (%%edx, %%eax), %%mm3     \n\t" 
1179                 "movd (%%ecx, %%esi), %%mm0     \n\t" 
1180                 "punpcklbw %%mm7, %%mm0         \n\t"
1181                 "pshufw $0xFF, %%mm0, %%mm1     \n\t"
1182                 "1:                             \n\t"
1183                 "pshufw $0xFF, %%mm0, %%mm0     \n\t"
1184                 "2:                             \n\t"
1185                 "psubw %%mm1, %%mm0             \n\t"
1186                 "movl 8(%%ebx, %%eax), %%esi    \n\t"
1187                 "pmullw %%mm3, %%mm0            \n\t"
1188                 "psllw $7, %%mm1                \n\t"
1189                 "paddw %%mm1, %%mm0             \n\t"
1190
1191                 "movq %%mm0, (%%edi, %%eax)     \n\t"
1192
1193                 "addl $8, %%eax                 \n\t"
1194         // End
1195                 "9:                             \n\t"
1196 //              "int $3\n\t"
1197                 "leal 0b, %0                    \n\t"
1198                 "leal 1b, %1                    \n\t"
1199                 "leal 2b, %2                    \n\t"
1200                 "decl %1                        \n\t"
1201                 "decl %2                        \n\t"
1202                 "subl %0, %1                    \n\t"
1203                 "subl %0, %2                    \n\t"
1204                 "leal 9b, %3                    \n\t"
1205                 "subl %0, %3                    \n\t"
1206
1207
1208                 :"=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
1209                 "=r" (fragmentLengthB)
1210         );
1211
1212         xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
1213         fragmentPos=0;
1214         
1215         for(i=0; i<dstW/numSplits; i++)
1216         {
1217                 int xx=xpos>>16;
1218
1219                 if((i&3) == 0)
1220                 {
1221                         int a=0;
1222                         int b=((xpos+xInc)>>16) - xx;
1223                         int c=((xpos+xInc*2)>>16) - xx;
1224                         int d=((xpos+xInc*3)>>16) - xx;
1225
1226                         filter[i  ] = (( xpos         & 0xFFFF) ^ 0xFFFF)>>9;
1227                         filter[i+1] = (((xpos+xInc  ) & 0xFFFF) ^ 0xFFFF)>>9;
1228                         filter[i+2] = (((xpos+xInc*2) & 0xFFFF) ^ 0xFFFF)>>9;
1229                         filter[i+3] = (((xpos+xInc*3) & 0xFFFF) ^ 0xFFFF)>>9;
1230                         filterPos[i/2]= xx;
1231
1232                         if(d+1<4)
1233                         {
1234                                 int maxShift= 3-(d+1);
1235                                 int shift=0;
1236
1237                                 memcpy(funnyCode + fragmentPos, fragmentB, fragmentLengthB);
1238
1239                                 funnyCode[fragmentPos + imm8OfPShufW1B]=
1240                                         (a+1) | ((b+1)<<2) | ((c+1)<<4) | ((d+1)<<6);
1241                                 funnyCode[fragmentPos + imm8OfPShufW2B]=
1242                                         a | (b<<2) | (c<<4) | (d<<6);
1243
1244                                 if(i+3>=dstW) shift=maxShift; //avoid overread
1245                                 else if((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //Align
1246
1247                                 if(shift && i>=shift)
1248                                 {
1249                                         funnyCode[fragmentPos + imm8OfPShufW1B]+= 0x55*shift;
1250                                         funnyCode[fragmentPos + imm8OfPShufW2B]+= 0x55*shift;
1251                                         filterPos[i/2]-=shift;
1252                                 }
1253
1254                                 fragmentPos+= fragmentLengthB;
1255                         }
1256                         else
1257                         {
1258                                 int maxShift= 3-d;
1259                                 int shift=0;
1260
1261                                 memcpy(funnyCode + fragmentPos, fragmentA, fragmentLengthA);
1262
1263                                 funnyCode[fragmentPos + imm8OfPShufW1A]=
1264                                 funnyCode[fragmentPos + imm8OfPShufW2A]=
1265                                         a | (b<<2) | (c<<4) | (d<<6);
1266
1267                                 if(i+4>=dstW) shift=maxShift; //avoid overread
1268                                 else if((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //partial align
1269
1270                                 if(shift && i>=shift)
1271                                 {
1272                                         funnyCode[fragmentPos + imm8OfPShufW1A]+= 0x55*shift;
1273                                         funnyCode[fragmentPos + imm8OfPShufW2A]+= 0x55*shift;
1274                                         filterPos[i/2]-=shift;
1275                                 }
1276
1277                                 fragmentPos+= fragmentLengthA;
1278                         }
1279
1280                         funnyCode[fragmentPos]= RET;
1281                 }
1282                 xpos+=xInc;
1283         }
1284         filterPos[i/2]= xpos>>16; // needed to jump to the next part
1285 }
1286 #endif // ARCH_X86
1287
1288 static void globalInit(){
1289     // generating tables:
1290     int i;
1291     for(i=0; i<768; i++){
1292         int c= MIN(MAX(i-256, 0), 255);
1293         clip_table[i]=c;
1294     }
1295 }
1296
1297 static SwsFunc getSwsFunc(int flags){
1298     
1299 #ifdef RUNTIME_CPUDETECT
1300 #ifdef ARCH_X86
1301         // ordered per speed fasterst first
1302         if(flags & SWS_CPU_CAPS_MMX2)
1303                 return swScale_MMX2;
1304         else if(flags & SWS_CPU_CAPS_3DNOW)
1305                 return swScale_3DNow;
1306         else if(flags & SWS_CPU_CAPS_MMX)
1307                 return swScale_MMX;
1308         else
1309                 return swScale_C;
1310
1311 #else
1312         return swScale_C;
1313 #endif
1314 #else //RUNTIME_CPUDETECT
1315 #ifdef HAVE_MMX2
1316         return swScale_MMX2;
1317 #elif defined (HAVE_3DNOW)
1318         return swScale_3DNow;
1319 #elif defined (HAVE_MMX)
1320         return swScale_MMX;
1321 #else
1322         return swScale_C;
1323 #endif
1324 #endif //!RUNTIME_CPUDETECT
1325 }
1326
1327 static int PlanarToNV12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1328              int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1329         uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1330         /* Copy Y plane */
1331         if(dstStride[0]==srcStride[0])
1332                 memcpy(dst, src[0], srcSliceH*dstStride[0]);
1333         else
1334         {
1335                 int i;
1336                 uint8_t *srcPtr= src[0];
1337                 uint8_t *dstPtr= dst;
1338                 for(i=0; i<srcSliceH; i++)
1339                 {
1340                         memcpy(dstPtr, srcPtr, srcStride[0]);
1341                         srcPtr+= srcStride[0];
1342                         dstPtr+= dstStride[0];
1343                 }
1344         }
1345         dst = dstParam[1] + dstStride[1]*srcSliceY;
1346         interleaveBytes( src[1],src[2],dst,c->srcW,srcSliceH,srcStride[1],srcStride[2],dstStride[0] );
1347
1348         return srcSliceH;
1349 }
1350
1351 static int PlanarToYuy2Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1352              int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1353         uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1354
1355         yv12toyuy2( src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0] );
1356
1357         return srcSliceH;
1358 }
1359
1360 static int PlanarToUyvyWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1361              int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1362         uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1363
1364         yv12touyvy( src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0] );
1365
1366         return srcSliceH;
1367 }
1368
1369 /* {RGB,BGR}{15,16,24,32} -> {RGB,BGR}{15,16,24,32} */
1370 static int rgb2rgbWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1371                            int srcSliceH, uint8_t* dst[], int dstStride[]){
1372         const int srcFormat= c->srcFormat;
1373         const int dstFormat= c->dstFormat;
1374         const int srcBpp= ((srcFormat&0xFF) + 7)>>3;
1375         const int dstBpp= ((dstFormat&0xFF) + 7)>>3;
1376         const int srcId= (srcFormat&0xFF)>>2; // 1:0, 4:1, 8:2, 15:3, 16:4, 24:6, 32:8 
1377         const int dstId= (dstFormat&0xFF)>>2;
1378         void (*conv)(const uint8_t *src, uint8_t *dst, unsigned src_size)=NULL;
1379
1380         /* BGR -> BGR */
1381         if(   (isBGR(srcFormat) && isBGR(dstFormat))
1382            || (isRGB(srcFormat) && isRGB(dstFormat))){
1383                 switch(srcId | (dstId<<4)){
1384                 case 0x34: conv= rgb16to15; break;
1385                 case 0x36: conv= rgb24to15; break;
1386                 case 0x38: conv= rgb32to15; break;
1387                 case 0x43: conv= rgb15to16; break;
1388                 case 0x46: conv= rgb24to16; break;
1389                 case 0x48: conv= rgb32to16; break;
1390                 case 0x63: conv= rgb15to24; break;
1391                 case 0x64: conv= rgb16to24; break;
1392                 case 0x68: conv= rgb32to24; break;
1393                 case 0x83: conv= rgb15to32; break;
1394                 case 0x84: conv= rgb16to32; break;
1395                 case 0x86: conv= rgb24to32; break;
1396                 default: MSG_ERR("swScaler: internal error %s -> %s converter\n", 
1397                                  vo_format_name(srcFormat), vo_format_name(dstFormat)); break;
1398                 }
1399         }else if(   (isBGR(srcFormat) && isRGB(dstFormat))
1400                  || (isRGB(srcFormat) && isBGR(dstFormat))){
1401                 switch(srcId | (dstId<<4)){
1402                 case 0x33: conv= rgb15tobgr15; break;
1403                 case 0x34: conv= rgb16tobgr15; break;
1404                 case 0x36: conv= rgb24tobgr15; break;
1405                 case 0x38: conv= rgb32tobgr15; break;
1406                 case 0x43: conv= rgb15tobgr16; break;
1407                 case 0x44: conv= rgb16tobgr16; break;
1408                 case 0x46: conv= rgb24tobgr16; break;
1409                 case 0x48: conv= rgb32tobgr16; break;
1410                 case 0x63: conv= rgb15tobgr24; break;
1411                 case 0x64: conv= rgb16tobgr24; break;
1412                 case 0x66: conv= rgb24tobgr24; break;
1413                 case 0x68: conv= rgb32tobgr24; break;
1414                 case 0x83: conv= rgb15tobgr32; break;
1415                 case 0x84: conv= rgb16tobgr32; break;
1416                 case 0x86: conv= rgb24tobgr32; break;
1417                 case 0x88: conv= rgb32tobgr32; break;
1418                 default: MSG_ERR("swScaler: internal error %s -> %s converter\n", 
1419                                  vo_format_name(srcFormat), vo_format_name(dstFormat)); break;
1420                 }
1421         }else{
1422                 MSG_ERR("swScaler: internal error %s -> %s converter\n", 
1423                          vo_format_name(srcFormat), vo_format_name(dstFormat));
1424         }
1425
1426         if(dstStride[0]*srcBpp == srcStride[0]*dstBpp)
1427                 conv(src[0], dst[0] + dstStride[0]*srcSliceY, srcSliceH*srcStride[0]);
1428         else
1429         {
1430                 int i;
1431                 uint8_t *srcPtr= src[0];
1432                 uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1433
1434                 for(i=0; i<srcSliceH; i++)
1435                 {
1436                         conv(srcPtr, dstPtr, c->srcW*srcBpp);
1437                         srcPtr+= srcStride[0];
1438                         dstPtr+= dstStride[0];
1439                 }
1440         }     
1441         return srcSliceH;
1442 }
1443
1444 static int bgr24toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1445              int srcSliceH, uint8_t* dst[], int dstStride[]){
1446
1447         rgb24toyv12(
1448                 src[0], 
1449                 dst[0]+ srcSliceY    *dstStride[0], 
1450                 dst[1]+(srcSliceY>>1)*dstStride[1], 
1451                 dst[2]+(srcSliceY>>1)*dstStride[2],
1452                 c->srcW, srcSliceH, 
1453                 dstStride[0], dstStride[1], srcStride[0]);
1454         return srcSliceH;
1455 }
1456
1457 static int yvu9toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1458              int srcSliceH, uint8_t* dst[], int dstStride[]){
1459         int i;
1460
1461         /* copy Y */
1462         if(srcStride[0]==dstStride[0]) 
1463                 memcpy(dst[0]+ srcSliceY*dstStride[0], src[0], srcStride[0]*srcSliceH);
1464         else{
1465                 uint8_t *srcPtr= src[0];
1466                 uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1467
1468                 for(i=0; i<srcSliceH; i++)
1469                 {
1470                         memcpy(dstPtr, srcPtr, c->srcW);
1471                         srcPtr+= srcStride[0];
1472                         dstPtr+= dstStride[0];
1473                 }
1474         }
1475
1476         if(c->dstFormat==IMGFMT_YV12){
1477                 planar2x(src[1], dst[1], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[1]);
1478                 planar2x(src[2], dst[2], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[2]);
1479         }else{
1480                 planar2x(src[1], dst[2], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[2]);
1481                 planar2x(src[2], dst[1], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[1]);
1482         }
1483         return srcSliceH;
1484 }
1485
1486 /**
1487  * bring pointers in YUV order instead of YVU
1488  */
1489 static inline void sws_orderYUV(int format, uint8_t * sortedP[], int sortedStride[], uint8_t * p[], int stride[]){
1490         if(format == IMGFMT_YV12 || format == IMGFMT_YVU9
1491            || format == IMGFMT_444P || format == IMGFMT_422P || format == IMGFMT_411P){
1492                 sortedP[0]= p[0];
1493                 sortedP[1]= p[2];
1494                 sortedP[2]= p[1];
1495                 sortedStride[0]= stride[0];
1496                 sortedStride[1]= stride[2];
1497                 sortedStride[2]= stride[1];
1498         }
1499         else if(isPacked(format) || isGray(format) || format == IMGFMT_Y8)
1500         {
1501                 sortedP[0]= p[0];
1502                 sortedP[1]= 
1503                 sortedP[2]= NULL;
1504                 sortedStride[0]= stride[0];
1505                 sortedStride[1]= 
1506                 sortedStride[2]= 0;
1507         }
1508         else if(format == IMGFMT_I420 || format == IMGFMT_IYUV)
1509         {
1510                 sortedP[0]= p[0];
1511                 sortedP[1]= p[1];
1512                 sortedP[2]= p[2];
1513                 sortedStride[0]= stride[0];
1514                 sortedStride[1]= stride[1];
1515                 sortedStride[2]= stride[2];
1516         }else{
1517                 MSG_ERR("internal error in orderYUV\n");
1518         }
1519 }
1520
1521 /* unscaled copy like stuff (assumes nearly identical formats) */
1522 static int simpleCopy(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1523              int srcSliceH, uint8_t* dst[], int dstStride[]){
1524
1525         if(isPacked(c->srcFormat))
1526         {
1527                 if(dstStride[0]==srcStride[0])
1528                         memcpy(dst[0] + dstStride[0]*srcSliceY, src[0], srcSliceH*dstStride[0]);
1529                 else
1530                 {
1531                         int i;
1532                         uint8_t *srcPtr= src[0];
1533                         uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1534                         int length=0;
1535
1536                         /* universal length finder */
1537                         while(length+c->srcW <= ABS(dstStride[0]) 
1538                            && length+c->srcW <= ABS(srcStride[0])) length+= c->srcW;
1539                         ASSERT(length!=0);
1540
1541                         for(i=0; i<srcSliceH; i++)
1542                         {
1543                                 memcpy(dstPtr, srcPtr, length);
1544                                 srcPtr+= srcStride[0];
1545                                 dstPtr+= dstStride[0];
1546                         }
1547                 }
1548         }
1549         else 
1550         { /* Planar YUV or gray */
1551                 int plane;
1552                 for(plane=0; plane<3; plane++)
1553                 {
1554                         int length= plane==0 ? c->srcW  : -((-c->srcW  )>>c->chrDstHSubSample);
1555                         int y=      plane==0 ? srcSliceY: -((-srcSliceY)>>c->chrDstVSubSample);
1556                         int height= plane==0 ? srcSliceH: -((-srcSliceH)>>c->chrDstVSubSample);
1557
1558                         if((isGray(c->srcFormat) || isGray(c->dstFormat)) && plane>0)
1559                         {
1560                                 if(!isGray(c->dstFormat))
1561                                         memset(dst[plane], 128, dstStride[plane]*height);
1562                         }
1563                         else
1564                         {
1565                                 if(dstStride[plane]==srcStride[plane])
1566                                         memcpy(dst[plane] + dstStride[plane]*y, src[plane], height*dstStride[plane]);
1567                                 else
1568                                 {
1569                                         int i;
1570                                         uint8_t *srcPtr= src[plane];
1571                                         uint8_t *dstPtr= dst[plane] + dstStride[plane]*y;
1572                                         for(i=0; i<height; i++)
1573                                         {
1574                                                 memcpy(dstPtr, srcPtr, length);
1575                                                 srcPtr+= srcStride[plane];
1576                                                 dstPtr+= dstStride[plane];
1577                                         }
1578                                 }
1579                         }
1580                 }
1581         }
1582         return srcSliceH;
1583 }
1584
1585 static int remove_dup_fourcc(int fourcc)
1586 {
1587         switch(fourcc)
1588         {
1589             case IMGFMT_I420:
1590             case IMGFMT_IYUV: return IMGFMT_YV12;
1591             case IMGFMT_Y8  : return IMGFMT_Y800;
1592             case IMGFMT_IF09: return IMGFMT_YVU9;
1593             default: return fourcc;
1594         }
1595 }
1596
1597 static void getSubSampleFactors(int *h, int *v, int format){
1598         switch(format){
1599         case IMGFMT_UYVY:
1600         case IMGFMT_YUY2:
1601                 *h=1;
1602                 *v=0;
1603                 break;
1604         case IMGFMT_YV12:
1605         case IMGFMT_Y800: //FIXME remove after different subsamplings are fully implemented
1606                 *h=1;
1607                 *v=1;
1608                 break;
1609         case IMGFMT_YVU9:
1610                 *h=2;
1611                 *v=2;
1612                 break;
1613         case IMGFMT_444P:
1614                 *h=0;
1615                 *v=0;
1616                 break;
1617         case IMGFMT_422P:
1618                 *h=1;
1619                 *v=0;
1620                 break;
1621         case IMGFMT_411P:
1622                 *h=2;
1623                 *v=0;
1624                 break;
1625         default:
1626                 *h=0;
1627                 *v=0;
1628                 break;
1629         }
1630 }
1631
1632 static uint16_t roundToInt16(int64_t f){
1633         int r= (f + (1<<15))>>16;
1634              if(r<-0x7FFF) return 0x8000;
1635         else if(r> 0x7FFF) return 0x7FFF;
1636         else               return r;
1637 }
1638
1639 /**
1640  * @param inv_table the yuv2rgb coeffs, normally Inverse_Table_6_9[x]
1641  * @param fullRange if 1 then the luma range is 0..255 if 0 its 16..235
1642  * @return -1 if not supported
1643  */
1644 int sws_setColorspaceDetails(SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation){
1645         int64_t crv =  inv_table[0];
1646         int64_t cbu =  inv_table[1];
1647         int64_t cgu = -inv_table[2];
1648         int64_t cgv = -inv_table[3];
1649         int64_t cy  = 1<<16;
1650         int64_t oy  = 0;
1651
1652         if(isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
1653         memcpy(c->srcColorspaceTable, inv_table, sizeof(int)*4);
1654         memcpy(c->dstColorspaceTable,     table, sizeof(int)*4);
1655
1656         c->brightness= brightness;
1657         c->contrast  = contrast;
1658         c->saturation= saturation;
1659         c->srcRange  = srcRange;
1660         c->dstRange  = dstRange;
1661
1662         c->uOffset=   0x0400040004000400LL;
1663         c->vOffset=   0x0400040004000400LL;
1664
1665         if(!srcRange){
1666                 cy= (cy*255) / 219;
1667                 oy= 16<<16;
1668         }
1669
1670         cy = (cy *contrast             )>>16;
1671         crv= (crv*contrast * saturation)>>32;
1672         cbu= (cbu*contrast * saturation)>>32;
1673         cgu= (cgu*contrast * saturation)>>32;
1674         cgv= (cgv*contrast * saturation)>>32;
1675
1676         oy -= 256*brightness;
1677
1678         c->yCoeff=    roundToInt16(cy *8192) * 0x0001000100010001ULL;
1679         c->vrCoeff=   roundToInt16(crv*8192) * 0x0001000100010001ULL;
1680         c->ubCoeff=   roundToInt16(cbu*8192) * 0x0001000100010001ULL;
1681         c->vgCoeff=   roundToInt16(cgv*8192) * 0x0001000100010001ULL;
1682         c->ugCoeff=   roundToInt16(cgu*8192) * 0x0001000100010001ULL;
1683         c->yOffset=   roundToInt16(oy *   8) * 0x0001000100010001ULL;
1684
1685         yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness, contrast, saturation);
1686         //FIXME factorize
1687         
1688         return 0;
1689 }
1690
1691 /**
1692  * @return -1 if not supported
1693  */
1694 int sws_getColorspaceDetails(SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation){
1695         if(isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
1696
1697         *inv_table = c->srcColorspaceTable;
1698         *table     = c->dstColorspaceTable;
1699         *srcRange  = c->srcRange;
1700         *dstRange  = c->dstRange;
1701         *brightness= c->brightness;
1702         *contrast  = c->contrast;
1703         *saturation= c->saturation;
1704         
1705         return 0;       
1706 }
1707
1708 SwsContext *sws_getContext(int srcW, int srcH, int origSrcFormat, int dstW, int dstH, int origDstFormat, int flags,
1709                          SwsFilter *srcFilter, SwsFilter *dstFilter){
1710
1711         SwsContext *c;
1712         int i;
1713         int usesVFilter, usesHFilter;
1714         int unscaled, needsDither;
1715         int srcFormat, dstFormat;
1716         SwsFilter dummyFilter= {NULL, NULL, NULL, NULL};
1717 #ifdef ARCH_X86
1718         if(flags & SWS_CPU_CAPS_MMX)
1719                 asm volatile("emms\n\t"::: "memory");
1720 #endif
1721
1722 #ifndef RUNTIME_CPUDETECT //ensure that the flags match the compiled variant if cpudetect is off
1723         flags &= ~(SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2|SWS_CPU_CAPS_3DNOW);
1724 #ifdef HAVE_MMX2
1725         flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2;
1726 #elif defined (HAVE_3DNOW)
1727         flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_3DNOW;
1728 #elif defined (HAVE_MMX)
1729         flags |= SWS_CPU_CAPS_MMX;
1730 #endif
1731 #endif
1732         if(clip_table[512] != 255) globalInit();
1733         if(rgb15to16 == NULL) sws_rgb2rgb_init(flags);
1734
1735         /* avoid duplicate Formats, so we don't need to check to much */
1736         srcFormat = remove_dup_fourcc(origSrcFormat);
1737         dstFormat = remove_dup_fourcc(origDstFormat);
1738
1739         unscaled = (srcW == dstW && srcH == dstH);
1740         needsDither= (isBGR(dstFormat) || isRGB(dstFormat)) 
1741                      && (dstFormat&0xFF)<24
1742                      && ((dstFormat&0xFF)<(srcFormat&0xFF) || (!(isRGB(srcFormat) || isBGR(srcFormat))));
1743
1744         if(!isSupportedIn(srcFormat)) 
1745         {
1746                 MSG_ERR("swScaler: %s is not supported as input format\n", vo_format_name(srcFormat));
1747                 return NULL;
1748         }
1749         if(!isSupportedOut(dstFormat))
1750         {
1751                 MSG_ERR("swScaler: %s is not supported as output format\n", vo_format_name(dstFormat));
1752                 return NULL;
1753         }
1754
1755         /* sanity check */
1756         if(srcW<4 || srcH<1 || dstW<8 || dstH<1) //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code
1757         {
1758                  MSG_ERR("swScaler: %dx%d -> %dx%d is invalid scaling dimension\n", 
1759                         srcW, srcH, dstW, dstH);
1760                 return NULL;
1761         }
1762
1763         if(!dstFilter) dstFilter= &dummyFilter;
1764         if(!srcFilter) srcFilter= &dummyFilter;
1765
1766         c= memalign(64, sizeof(SwsContext));
1767         memset(c, 0, sizeof(SwsContext));
1768
1769         c->srcW= srcW;
1770         c->srcH= srcH;
1771         c->dstW= dstW;
1772         c->dstH= dstH;
1773         c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW;
1774         c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH;
1775         c->flags= flags;
1776         c->dstFormat= dstFormat;
1777         c->srcFormat= srcFormat;
1778         c->origDstFormat= origDstFormat;
1779         c->origSrcFormat= origSrcFormat;
1780         c->vRounder= 4* 0x0001000100010001ULL;
1781
1782         usesHFilter= usesVFilter= 0;
1783         if(dstFilter->lumV!=NULL && dstFilter->lumV->length>1) usesVFilter=1;
1784         if(dstFilter->lumH!=NULL && dstFilter->lumH->length>1) usesHFilter=1;
1785         if(dstFilter->chrV!=NULL && dstFilter->chrV->length>1) usesVFilter=1;
1786         if(dstFilter->chrH!=NULL && dstFilter->chrH->length>1) usesHFilter=1;
1787         if(srcFilter->lumV!=NULL && srcFilter->lumV->length>1) usesVFilter=1;
1788         if(srcFilter->lumH!=NULL && srcFilter->lumH->length>1) usesHFilter=1;
1789         if(srcFilter->chrV!=NULL && srcFilter->chrV->length>1) usesVFilter=1;
1790         if(srcFilter->chrH!=NULL && srcFilter->chrH->length>1) usesHFilter=1;
1791
1792         getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
1793         getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
1794
1795         // reuse chroma for 2 pixles rgb/bgr unless user wants full chroma interpolation
1796         if((isBGR(dstFormat) || isRGB(dstFormat)) && !(flags&SWS_FULL_CHR_H_INT)) c->chrDstHSubSample=1;
1797
1798         // drop some chroma lines if the user wants it
1799         c->vChrDrop= (flags&SWS_SRC_V_CHR_DROP_MASK)>>SWS_SRC_V_CHR_DROP_SHIFT;
1800         c->chrSrcVSubSample+= c->vChrDrop;
1801
1802         // drop every 2. pixel for chroma calculation unless user wants full chroma
1803         if((isBGR(srcFormat) || isRGB(srcFormat)) && !(flags&SWS_FULL_CHR_H_INP)) 
1804                 c->chrSrcHSubSample=1;
1805
1806         c->chrIntHSubSample= c->chrDstHSubSample;
1807         c->chrIntVSubSample= c->chrSrcVSubSample;
1808
1809         // note the -((-x)>>y) is so that we allways round toward +inf
1810         c->chrSrcW= -((-srcW) >> c->chrSrcHSubSample);
1811         c->chrSrcH= -((-srcH) >> c->chrSrcVSubSample);
1812         c->chrDstW= -((-dstW) >> c->chrDstHSubSample);
1813         c->chrDstH= -((-dstH) >> c->chrDstVSubSample);
1814
1815         sws_setColorspaceDetails(c, Inverse_Table_6_9[SWS_CS_DEFAULT], 0, Inverse_Table_6_9[SWS_CS_DEFAULT] /* FIXME*/, 0, 0, 1<<16, 1<<16); 
1816
1817         /* unscaled special Cases */
1818         if(unscaled && !usesHFilter && !usesVFilter)
1819         {
1820                 /* yv12_to_nv12 */
1821                 if(srcFormat == IMGFMT_YV12 && dstFormat == IMGFMT_NV12)
1822                 {
1823                         c->swScale= PlanarToNV12Wrapper;
1824                 }
1825                 /* yuv2bgr */
1826                 if((srcFormat==IMGFMT_YV12 || srcFormat==IMGFMT_422P) && (isBGR(dstFormat) || isRGB(dstFormat)))
1827                 {
1828                         c->swScale= yuv2rgb_get_func_ptr(c);
1829                 }
1830                 
1831                 if( srcFormat==IMGFMT_YVU9 && dstFormat==IMGFMT_YV12 )
1832                 {
1833                         c->swScale= yvu9toyv12Wrapper;
1834                 }
1835
1836                 /* bgr24toYV12 */
1837                 if(srcFormat==IMGFMT_BGR24 && dstFormat==IMGFMT_YV12)
1838                         c->swScale= bgr24toyv12Wrapper;
1839                 
1840                 /* rgb/bgr -> rgb/bgr (no dither needed forms) */
1841                 if(   (isBGR(srcFormat) || isRGB(srcFormat))
1842                    && (isBGR(dstFormat) || isRGB(dstFormat)) 
1843                    && !needsDither)
1844                         c->swScale= rgb2rgbWrapper;
1845
1846                 /* LQ converters if -sws 0 or -sws 4*/
1847                 if(c->flags&(SWS_FAST_BILINEAR|SWS_POINT)){
1848                         /* rgb/bgr -> rgb/bgr (dither needed forms) */
1849                         if(  (isBGR(srcFormat) || isRGB(srcFormat))
1850                           && (isBGR(dstFormat) || isRGB(dstFormat)) 
1851                           && needsDither)
1852                                 c->swScale= rgb2rgbWrapper;
1853
1854                         /* yv12_to_yuy2 */
1855                         if(srcFormat == IMGFMT_YV12 && 
1856                             (dstFormat == IMGFMT_YUY2 || dstFormat == IMGFMT_UYVY))
1857                         {
1858                                 if (dstFormat == IMGFMT_YUY2)
1859                                     c->swScale= PlanarToYuy2Wrapper;
1860                                 else
1861                                     c->swScale= PlanarToUyvyWrapper;
1862                         }
1863                 }
1864
1865                 /* simple copy */
1866                 if(   srcFormat == dstFormat
1867                    || (isPlanarYUV(srcFormat) && isGray(dstFormat))
1868                    || (isPlanarYUV(dstFormat) && isGray(srcFormat))
1869                   )
1870                 {
1871                         c->swScale= simpleCopy;
1872                 }
1873
1874                 if(c->swScale){
1875                         if(flags&SWS_PRINT_INFO)
1876                                 MSG_INFO("SwScaler: using unscaled %s -> %s special converter\n", 
1877                                         vo_format_name(srcFormat), vo_format_name(dstFormat));
1878                         return c;
1879                 }
1880         }
1881
1882         if(flags & SWS_CPU_CAPS_MMX2)
1883         {
1884                 c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0;
1885                 if(!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR))
1886                 {
1887                         if(flags&SWS_PRINT_INFO)
1888                                 MSG_INFO("SwScaler: output Width is not a multiple of 32 -> no MMX2 scaler\n");
1889                 }
1890                 if(usesHFilter) c->canMMX2BeUsed=0;
1891         }
1892         else
1893                 c->canMMX2BeUsed=0;
1894
1895         c->chrXInc= ((c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW;
1896         c->chrYInc= ((c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH;
1897
1898         // match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
1899         // but only for the FAST_BILINEAR mode otherwise do correct scaling
1900         // n-2 is the last chrominance sample available
1901         // this is not perfect, but noone shuld notice the difference, the more correct variant
1902         // would be like the vertical one, but that would require some special code for the
1903         // first and last pixel
1904         if(flags&SWS_FAST_BILINEAR)
1905         {
1906                 if(c->canMMX2BeUsed)
1907                 {
1908                         c->lumXInc+= 20;
1909                         c->chrXInc+= 20;
1910                 }
1911                 //we don't use the x86asm scaler if mmx is available
1912                 else if(flags & SWS_CPU_CAPS_MMX)
1913                 {
1914                         c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20;
1915                         c->chrXInc = ((c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20;
1916                 }
1917         }
1918
1919         /* precalculate horizontal scaler filter coefficients */
1920         {
1921                 const int filterAlign= (flags & SWS_CPU_CAPS_MMX) ? 4 : 1;
1922
1923                 initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc,
1924                                  srcW      ,       dstW, filterAlign, 1<<14,
1925                                  (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC)  : flags,
1926                                  srcFilter->lumH, dstFilter->lumH);
1927                 initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc,
1928                                  c->chrSrcW, c->chrDstW, filterAlign, 1<<14,
1929                                  (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
1930                                  srcFilter->chrH, dstFilter->chrH);
1931
1932 #ifdef ARCH_X86
1933 // can't downscale !!!
1934                 if(c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR))
1935                 {
1936                         c->lumMmx2Filter   = (int16_t*)memalign(8, (dstW        /8+8)*sizeof(int16_t));
1937                         c->chrMmx2Filter   = (int16_t*)memalign(8, (c->chrDstW  /4+8)*sizeof(int16_t));
1938                         c->lumMmx2FilterPos= (int32_t*)memalign(8, (dstW      /2/8+8)*sizeof(int32_t));
1939                         c->chrMmx2FilterPos= (int32_t*)memalign(8, (c->chrDstW/2/4+8)*sizeof(int32_t));
1940
1941                         initMMX2HScaler(      dstW, c->lumXInc, c->funnyYCode , c->lumMmx2Filter, c->lumMmx2FilterPos, 8);
1942                         initMMX2HScaler(c->chrDstW, c->chrXInc, c->funnyUVCode, c->chrMmx2Filter, c->chrMmx2FilterPos, 4);
1943                 }
1944 #endif
1945         } // Init Horizontal stuff
1946
1947
1948
1949         /* precalculate vertical scaler filter coefficients */
1950         initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc,
1951                         srcH      ,        dstH, 1, (1<<12)-4,
1952                         (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC)  : flags,
1953                         srcFilter->lumV, dstFilter->lumV);
1954         initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc,
1955                         c->chrSrcH, c->chrDstH, 1, (1<<12)-4,
1956                         (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
1957                         srcFilter->chrV, dstFilter->chrV);
1958
1959         // Calculate Buffer Sizes so that they won't run out while handling these damn slices
1960         c->vLumBufSize= c->vLumFilterSize;
1961         c->vChrBufSize= c->vChrFilterSize;
1962         for(i=0; i<dstH; i++)
1963         {
1964                 int chrI= i*c->chrDstH / dstH;
1965                 int nextSlice= MAX(c->vLumFilterPos[i   ] + c->vLumFilterSize - 1,
1966                                  ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<<c->chrSrcVSubSample));
1967
1968                 nextSlice>>= c->chrSrcVSubSample;
1969                 nextSlice<<= c->chrSrcVSubSample;
1970                 if(c->vLumFilterPos[i   ] + c->vLumBufSize < nextSlice)
1971                         c->vLumBufSize= nextSlice - c->vLumFilterPos[i   ];
1972                 if(c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>c->chrSrcVSubSample))
1973                         c->vChrBufSize= (nextSlice>>c->chrSrcVSubSample) - c->vChrFilterPos[chrI];
1974         }
1975
1976         // allocate pixbufs (we use dynamic allocation because otherwise we would need to
1977         c->lumPixBuf= (int16_t**)memalign(4, c->vLumBufSize*2*sizeof(int16_t*));
1978         c->chrPixBuf= (int16_t**)memalign(4, c->vChrBufSize*2*sizeof(int16_t*));
1979         //Note we need at least one pixel more at the end because of the mmx code (just in case someone wanna replace the 4000/8000)
1980         for(i=0; i<c->vLumBufSize; i++)
1981                 c->lumPixBuf[i]= c->lumPixBuf[i+c->vLumBufSize]= (uint16_t*)memalign(8, 4000);
1982         for(i=0; i<c->vChrBufSize; i++)
1983                 c->chrPixBuf[i]= c->chrPixBuf[i+c->vChrBufSize]= (uint16_t*)memalign(8, 8000);
1984
1985         //try to avoid drawing green stuff between the right end and the stride end
1986         for(i=0; i<c->vLumBufSize; i++) memset(c->lumPixBuf[i], 0, 4000);
1987         for(i=0; i<c->vChrBufSize; i++) memset(c->chrPixBuf[i], 64, 8000);
1988
1989         ASSERT(c->chrDstH <= dstH)
1990
1991         if(flags&SWS_PRINT_INFO)
1992         {
1993 #ifdef DITHER1XBPP
1994                 char *dither= " dithered";
1995 #else
1996                 char *dither= "";
1997 #endif
1998                 if(flags&SWS_FAST_BILINEAR)
1999                         MSG_INFO("\nSwScaler: FAST_BILINEAR scaler, ");
2000                 else if(flags&SWS_BILINEAR)
2001                         MSG_INFO("\nSwScaler: BILINEAR scaler, ");
2002                 else if(flags&SWS_BICUBIC)
2003                         MSG_INFO("\nSwScaler: BICUBIC scaler, ");
2004                 else if(flags&SWS_X)
2005                         MSG_INFO("\nSwScaler: Experimental scaler, ");
2006                 else if(flags&SWS_POINT)
2007                         MSG_INFO("\nSwScaler: Nearest Neighbor / POINT scaler, ");
2008                 else if(flags&SWS_AREA)
2009                         MSG_INFO("\nSwScaler: Area Averageing scaler, ");
2010                 else if(flags&SWS_BICUBLIN)
2011                         MSG_INFO("\nSwScaler: luma BICUBIC / chroma BILINEAR scaler, ");
2012                 else if(flags&SWS_GAUSS)
2013                         MSG_INFO("\nSwScaler: Gaussian scaler, ");
2014                 else if(flags&SWS_SINC)
2015                         MSG_INFO("\nSwScaler: Sinc scaler, ");
2016                 else if(flags&SWS_LANCZOS)
2017                         MSG_INFO("\nSwScaler: Lanczos scaler, ");
2018                 else if(flags&SWS_SPLINE)
2019                         MSG_INFO("\nSwScaler: Bicubic spline scaler, ");
2020                 else
2021                         MSG_INFO("\nSwScaler: ehh flags invalid?! ");
2022
2023                 if(dstFormat==IMGFMT_BGR15 || dstFormat==IMGFMT_BGR16)
2024                         MSG_INFO("from %s to%s %s ", 
2025                                 vo_format_name(srcFormat), dither, vo_format_name(dstFormat));
2026                 else
2027                         MSG_INFO("from %s to %s ", 
2028                                 vo_format_name(srcFormat), vo_format_name(dstFormat));
2029
2030                 if(flags & SWS_CPU_CAPS_MMX2)
2031                         MSG_INFO("using MMX2\n");
2032                 else if(flags & SWS_CPU_CAPS_3DNOW)
2033                         MSG_INFO("using 3DNOW\n");
2034                 else if(flags & SWS_CPU_CAPS_MMX)
2035                         MSG_INFO("using MMX\n");
2036                 else
2037                         MSG_INFO("using C\n");
2038         }
2039
2040         if(flags & SWS_PRINT_INFO)
2041         {
2042                 if(flags & SWS_CPU_CAPS_MMX)
2043                 {
2044                         if(c->canMMX2BeUsed && (flags&SWS_FAST_BILINEAR))
2045                                 MSG_V("SwScaler: using FAST_BILINEAR MMX2 scaler for horizontal scaling\n");
2046                         else
2047                         {
2048                                 if(c->hLumFilterSize==4)
2049                                         MSG_V("SwScaler: using 4-tap MMX scaler for horizontal luminance scaling\n");
2050                                 else if(c->hLumFilterSize==8)
2051                                         MSG_V("SwScaler: using 8-tap MMX scaler for horizontal luminance scaling\n");
2052                                 else
2053                                         MSG_V("SwScaler: using n-tap MMX scaler for horizontal luminance scaling\n");
2054
2055                                 if(c->hChrFilterSize==4)
2056                                         MSG_V("SwScaler: using 4-tap MMX scaler for horizontal chrominance scaling\n");
2057                                 else if(c->hChrFilterSize==8)
2058                                         MSG_V("SwScaler: using 8-tap MMX scaler for horizontal chrominance scaling\n");
2059                                 else
2060                                         MSG_V("SwScaler: using n-tap MMX scaler for horizontal chrominance scaling\n");
2061                         }
2062                 }
2063                 else
2064                 {
2065 #ifdef ARCH_X86
2066                         MSG_V("SwScaler: using X86-Asm scaler for horizontal scaling\n");
2067 #else
2068                         if(flags & SWS_FAST_BILINEAR)
2069                                 MSG_V("SwScaler: using FAST_BILINEAR C scaler for horizontal scaling\n");
2070                         else
2071                                 MSG_V("SwScaler: using C scaler for horizontal scaling\n");
2072 #endif
2073                 }
2074                 if(isPlanarYUV(dstFormat))
2075                 {
2076                         if(c->vLumFilterSize==1)
2077                                 MSG_V("SwScaler: using 1-tap %s \"scaler\" for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2078                         else
2079                                 MSG_V("SwScaler: using n-tap %s scaler for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2080                 }
2081                 else
2082                 {
2083                         if(c->vLumFilterSize==1 && c->vChrFilterSize==2)
2084                                 MSG_V("SwScaler: using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n"
2085                                        "SwScaler:       2-tap scaler for vertical chrominance scaling (BGR)\n",(flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2086                         else if(c->vLumFilterSize==2 && c->vChrFilterSize==2)
2087                                 MSG_V("SwScaler: using 2-tap linear %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2088                         else
2089                                 MSG_V("SwScaler: using n-tap %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2090                 }
2091
2092                 if(dstFormat==IMGFMT_BGR24)
2093                         MSG_V("SwScaler: using %s YV12->BGR24 Converter\n",
2094                                 (flags & SWS_CPU_CAPS_MMX2) ? "MMX2" : ((flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"));
2095                 else if(dstFormat==IMGFMT_BGR32)
2096                         MSG_V("SwScaler: using %s YV12->BGR32 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2097                 else if(dstFormat==IMGFMT_BGR16)
2098                         MSG_V("SwScaler: using %s YV12->BGR16 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2099                 else if(dstFormat==IMGFMT_BGR15)
2100                         MSG_V("SwScaler: using %s YV12->BGR15 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2101
2102                 MSG_V("SwScaler: %dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
2103         }
2104         if(flags & SWS_PRINT_INFO)
2105         {
2106                 MSG_DBG2("SwScaler:Lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
2107                         c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
2108                 MSG_DBG2("SwScaler:Chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
2109                         c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, c->chrXInc, c->chrYInc);
2110         }
2111
2112         c->swScale= getSwsFunc(flags);
2113         return c;
2114 }
2115
2116 /**
2117  * swscale warper, so we don't need to export the SwsContext.
2118  * assumes planar YUV to be in YUV order instead of YVU
2119  */
2120 int sws_scale_ordered(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
2121                            int srcSliceH, uint8_t* dst[], int dstStride[]){
2122         //copy strides, so they can safely be modified
2123         int srcStride2[3]= {srcStride[0], srcStride[1], srcStride[2]};
2124         int dstStride2[3]= {dstStride[0], dstStride[1], dstStride[2]};
2125         return c->swScale(c, src, srcStride2, srcSliceY, srcSliceH, dst, dstStride2);
2126 }
2127
2128 /**
2129  * swscale warper, so we don't need to export the SwsContext
2130  */
2131 int sws_scale(SwsContext *c, uint8_t* srcParam[], int srcStrideParam[], int srcSliceY,
2132                            int srcSliceH, uint8_t* dstParam[], int dstStrideParam[]){
2133         int srcStride[3];
2134         int dstStride[3];
2135         uint8_t *src[3];
2136         uint8_t *dst[3];
2137         sws_orderYUV(c->origSrcFormat, src, srcStride, srcParam, srcStrideParam);
2138         sws_orderYUV(c->origDstFormat, dst, dstStride, dstParam, dstStrideParam);
2139 //printf("sws: slice %d %d\n", srcSliceY, srcSliceH);
2140
2141         return c->swScale(c, src, srcStride, srcSliceY, srcSliceH, dst, dstStride);
2142 }
2143
2144 SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur, 
2145                                 float lumaSharpen, float chromaSharpen,
2146                                 float chromaHShift, float chromaVShift,
2147                                 int verbose)
2148 {
2149         SwsFilter *filter= malloc(sizeof(SwsFilter));
2150
2151         if(lumaGBlur!=0.0){
2152                 filter->lumH= sws_getGaussianVec(lumaGBlur, 3.0);
2153                 filter->lumV= sws_getGaussianVec(lumaGBlur, 3.0);
2154         }else{
2155                 filter->lumH= sws_getIdentityVec();
2156                 filter->lumV= sws_getIdentityVec();
2157         }
2158
2159         if(chromaGBlur!=0.0){
2160                 filter->chrH= sws_getGaussianVec(chromaGBlur, 3.0);
2161                 filter->chrV= sws_getGaussianVec(chromaGBlur, 3.0);
2162         }else{
2163                 filter->chrH= sws_getIdentityVec();
2164                 filter->chrV= sws_getIdentityVec();
2165         }
2166
2167         if(chromaSharpen!=0.0){
2168                 SwsVector *g= sws_getConstVec(-1.0, 3);
2169                 SwsVector *id= sws_getConstVec(10.0/chromaSharpen, 1);
2170                 g->coeff[1]=2.0;
2171                 sws_addVec(id, g);
2172                 sws_convVec(filter->chrH, id);
2173                 sws_convVec(filter->chrV, id);
2174                 sws_freeVec(g);
2175                 sws_freeVec(id);
2176         }
2177
2178         if(lumaSharpen!=0.0){
2179                 SwsVector *g= sws_getConstVec(-1.0, 3);
2180                 SwsVector *id= sws_getConstVec(10.0/lumaSharpen, 1);
2181                 g->coeff[1]=2.0;
2182                 sws_addVec(id, g);
2183                 sws_convVec(filter->lumH, id);
2184                 sws_convVec(filter->lumV, id);
2185                 sws_freeVec(g);
2186                 sws_freeVec(id);
2187         }
2188
2189         if(chromaHShift != 0.0)
2190                 sws_shiftVec(filter->chrH, (int)(chromaHShift+0.5));
2191
2192         if(chromaVShift != 0.0)
2193                 sws_shiftVec(filter->chrV, (int)(chromaVShift+0.5));
2194
2195         sws_normalizeVec(filter->chrH, 1.0);
2196         sws_normalizeVec(filter->chrV, 1.0);
2197         sws_normalizeVec(filter->lumH, 1.0);
2198         sws_normalizeVec(filter->lumV, 1.0);
2199
2200         if(verbose) sws_printVec(filter->chrH);
2201         if(verbose) sws_printVec(filter->lumH);
2202
2203         return filter;
2204 }
2205
2206 /**
2207  * returns a normalized gaussian curve used to filter stuff
2208  * quality=3 is high quality, lowwer is lowwer quality
2209  */
2210 SwsVector *sws_getGaussianVec(double variance, double quality){
2211         const int length= (int)(variance*quality + 0.5) | 1;
2212         int i;
2213         double *coeff= memalign(sizeof(double), length*sizeof(double));
2214         double middle= (length-1)*0.5;
2215         SwsVector *vec= malloc(sizeof(SwsVector));
2216
2217         vec->coeff= coeff;
2218         vec->length= length;
2219
2220         for(i=0; i<length; i++)
2221         {
2222                 double dist= i-middle;
2223                 coeff[i]= exp( -dist*dist/(2*variance*variance) ) / sqrt(2*variance*PI);
2224         }
2225
2226         sws_normalizeVec(vec, 1.0);
2227
2228         return vec;
2229 }
2230
2231 SwsVector *sws_getConstVec(double c, int length){
2232         int i;
2233         double *coeff= memalign(sizeof(double), length*sizeof(double));
2234         SwsVector *vec= malloc(sizeof(SwsVector));
2235
2236         vec->coeff= coeff;
2237         vec->length= length;
2238
2239         for(i=0; i<length; i++)
2240                 coeff[i]= c;
2241
2242         return vec;
2243 }
2244
2245
2246 SwsVector *sws_getIdentityVec(void){
2247         double *coeff= memalign(sizeof(double), sizeof(double));
2248         SwsVector *vec= malloc(sizeof(SwsVector));
2249         coeff[0]= 1.0;
2250
2251         vec->coeff= coeff;
2252         vec->length= 1;
2253
2254         return vec;
2255 }
2256
2257 void sws_normalizeVec(SwsVector *a, double height){
2258         int i;
2259         double sum=0;
2260         double inv;
2261
2262         for(i=0; i<a->length; i++)
2263                 sum+= a->coeff[i];
2264
2265         inv= height/sum;
2266
2267         for(i=0; i<a->length; i++)
2268                 a->coeff[i]*= inv;
2269 }
2270
2271 void sws_scaleVec(SwsVector *a, double scalar){
2272         int i;
2273
2274         for(i=0; i<a->length; i++)
2275                 a->coeff[i]*= scalar;
2276 }
2277
2278 static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b){
2279         int length= a->length + b->length - 1;
2280         double *coeff= memalign(sizeof(double), length*sizeof(double));
2281         int i, j;
2282         SwsVector *vec= malloc(sizeof(SwsVector));
2283
2284         vec->coeff= coeff;
2285         vec->length= length;
2286
2287         for(i=0; i<length; i++) coeff[i]= 0.0;
2288
2289         for(i=0; i<a->length; i++)
2290         {
2291                 for(j=0; j<b->length; j++)
2292                 {
2293                         coeff[i+j]+= a->coeff[i]*b->coeff[j];
2294                 }
2295         }
2296
2297         return vec;
2298 }
2299
2300 static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b){
2301         int length= MAX(a->length, b->length);
2302         double *coeff= memalign(sizeof(double), length*sizeof(double));
2303         int i;
2304         SwsVector *vec= malloc(sizeof(SwsVector));
2305
2306         vec->coeff= coeff;
2307         vec->length= length;
2308
2309         for(i=0; i<length; i++) coeff[i]= 0.0;
2310
2311         for(i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
2312         for(i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]+= b->coeff[i];
2313
2314         return vec;
2315 }
2316
2317 static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b){
2318         int length= MAX(a->length, b->length);
2319         double *coeff= memalign(sizeof(double), length*sizeof(double));
2320         int i;
2321         SwsVector *vec= malloc(sizeof(SwsVector));
2322
2323         vec->coeff= coeff;
2324         vec->length= length;
2325
2326         for(i=0; i<length; i++) coeff[i]= 0.0;
2327
2328         for(i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
2329         for(i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]-= b->coeff[i];
2330
2331         return vec;
2332 }
2333
2334 /* shift left / or right if "shift" is negative */
2335 static SwsVector *sws_getShiftedVec(SwsVector *a, int shift){
2336         int length= a->length + ABS(shift)*2;
2337         double *coeff= memalign(sizeof(double), length*sizeof(double));
2338         int i;
2339         SwsVector *vec= malloc(sizeof(SwsVector));
2340
2341         vec->coeff= coeff;
2342         vec->length= length;
2343
2344         for(i=0; i<length; i++) coeff[i]= 0.0;
2345
2346         for(i=0; i<a->length; i++)
2347         {
2348                 coeff[i + (length-1)/2 - (a->length-1)/2 - shift]= a->coeff[i];
2349         }
2350
2351         return vec;
2352 }
2353
2354 void sws_shiftVec(SwsVector *a, int shift){
2355         SwsVector *shifted= sws_getShiftedVec(a, shift);
2356         free(a->coeff);
2357         a->coeff= shifted->coeff;
2358         a->length= shifted->length;
2359         free(shifted);
2360 }
2361
2362 void sws_addVec(SwsVector *a, SwsVector *b){
2363         SwsVector *sum= sws_sumVec(a, b);
2364         free(a->coeff);
2365         a->coeff= sum->coeff;
2366         a->length= sum->length;
2367         free(sum);
2368 }
2369
2370 void sws_subVec(SwsVector *a, SwsVector *b){
2371         SwsVector *diff= sws_diffVec(a, b);
2372         free(a->coeff);
2373         a->coeff= diff->coeff;
2374         a->length= diff->length;
2375         free(diff);
2376 }
2377
2378 void sws_convVec(SwsVector *a, SwsVector *b){
2379         SwsVector *conv= sws_getConvVec(a, b);
2380         free(a->coeff);  
2381         a->coeff= conv->coeff;
2382         a->length= conv->length;
2383         free(conv);
2384 }
2385
2386 SwsVector *sws_cloneVec(SwsVector *a){
2387         double *coeff= memalign(sizeof(double), a->length*sizeof(double));
2388         int i;
2389         SwsVector *vec= malloc(sizeof(SwsVector));
2390
2391         vec->coeff= coeff;
2392         vec->length= a->length;
2393
2394         for(i=0; i<a->length; i++) coeff[i]= a->coeff[i];
2395
2396         return vec;
2397 }
2398
2399 void sws_printVec(SwsVector *a){
2400         int i;
2401         double max=0;
2402         double min=0;
2403         double range;
2404
2405         for(i=0; i<a->length; i++)
2406                 if(a->coeff[i]>max) max= a->coeff[i];
2407
2408         for(i=0; i<a->length; i++)
2409                 if(a->coeff[i]<min) min= a->coeff[i];
2410
2411         range= max - min;
2412
2413         for(i=0; i<a->length; i++)
2414         {
2415                 int x= (int)((a->coeff[i]-min)*60.0/range +0.5);
2416                 MSG_DBG2("%1.3f ", a->coeff[i]);
2417                 for(;x>0; x--) MSG_DBG2(" ");
2418                 MSG_DBG2("|\n");
2419         }
2420 }
2421
2422 void sws_freeVec(SwsVector *a){
2423         if(!a) return;
2424         if(a->coeff) free(a->coeff);
2425         a->coeff=NULL;
2426         a->length=0;
2427         free(a);
2428 }
2429
2430 void sws_freeFilter(SwsFilter *filter){
2431         if(!filter) return;
2432
2433         if(filter->lumH) sws_freeVec(filter->lumH);
2434         if(filter->lumV) sws_freeVec(filter->lumV);
2435         if(filter->chrH) sws_freeVec(filter->chrH);
2436         if(filter->chrV) sws_freeVec(filter->chrV);
2437         free(filter);
2438 }
2439
2440
2441 void sws_freeContext(SwsContext *c){
2442         int i;
2443         if(!c) return;
2444
2445         if(c->lumPixBuf)
2446         {
2447                 for(i=0; i<c->vLumBufSize; i++)
2448                 {
2449                         if(c->lumPixBuf[i]) free(c->lumPixBuf[i]);
2450                         c->lumPixBuf[i]=NULL;
2451                 }
2452                 free(c->lumPixBuf);
2453                 c->lumPixBuf=NULL;
2454         }
2455
2456         if(c->chrPixBuf)
2457         {
2458                 for(i=0; i<c->vChrBufSize; i++)
2459                 {
2460                         if(c->chrPixBuf[i]) free(c->chrPixBuf[i]);
2461                         c->chrPixBuf[i]=NULL;
2462                 }
2463                 free(c->chrPixBuf);
2464                 c->chrPixBuf=NULL;
2465         }
2466
2467         if(c->vLumFilter) free(c->vLumFilter);
2468         c->vLumFilter = NULL;
2469         if(c->vChrFilter) free(c->vChrFilter);
2470         c->vChrFilter = NULL;
2471         if(c->hLumFilter) free(c->hLumFilter);
2472         c->hLumFilter = NULL;
2473         if(c->hChrFilter) free(c->hChrFilter);
2474         c->hChrFilter = NULL;
2475
2476         if(c->vLumFilterPos) free(c->vLumFilterPos);
2477         c->vLumFilterPos = NULL;
2478         if(c->vChrFilterPos) free(c->vChrFilterPos);
2479         c->vChrFilterPos = NULL;
2480         if(c->hLumFilterPos) free(c->hLumFilterPos);
2481         c->hLumFilterPos = NULL;
2482         if(c->hChrFilterPos) free(c->hChrFilterPos);
2483         c->hChrFilterPos = NULL;
2484
2485         if(c->lumMmx2Filter) free(c->lumMmx2Filter);
2486         c->lumMmx2Filter=NULL;
2487         if(c->chrMmx2Filter) free(c->chrMmx2Filter);
2488         c->chrMmx2Filter=NULL;
2489         if(c->lumMmx2FilterPos) free(c->lumMmx2FilterPos);
2490         c->lumMmx2FilterPos=NULL;
2491         if(c->chrMmx2FilterPos) free(c->chrMmx2FilterPos);
2492         c->chrMmx2FilterPos=NULL;
2493         if(c->yuvTable) free(c->yuvTable);
2494         c->yuvTable=NULL;
2495
2496         free(c);
2497 }
2498