]> git.sesse.net Git - ffmpeg/blob - postproc/swscale.c
ee230b7a26d4ec56d502f2a824338172c94a3afd
[ffmpeg] / postproc / swscale.c
1 /*
2     Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
3
4     This program is free software; you can redistribute it and/or modify
5     it under the terms of the GNU General Public License as published by
6     the Free Software Foundation; either version 2 of the License, or
7     (at your option) any later version.
8
9     This program is distributed in the hope that it will be useful,
10     but WITHOUT ANY WARRANTY; without even the implied warranty of
11     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12     GNU General Public License for more details.
13
14     You should have received a copy of the GNU General Public License
15     along with this program; if not, write to the Free Software
16     Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
17 */
18
19 /*
20   supported Input formats: YV12, I420/IYUV, YUY2, UYVY, BGR32, BGR24, BGR16, BGR15, RGB32, RGB24, Y8/Y800, YVU9/IF09
21   supported output formats: YV12, I420/IYUV, YUY2, {BGR,RGB}{1,4,8,15,16,24,32}, Y8/Y800, YVU9/IF09
22   {BGR,RGB}{1,4,8,15,16} support dithering
23   
24   unscaled special converters (YV12=I420=IYUV, Y800=Y8)
25   YV12 -> {BGR,RGB}{1,4,8,15,16,24,32}
26   x -> x
27   YUV9 -> YV12
28   YUV9/YV12 -> Y800
29   Y800 -> YUV9/YV12
30   BGR24 -> BGR32 & RGB24 -> RGB32
31   BGR32 -> BGR24 & RGB32 -> RGB24
32   BGR15 -> BGR16
33 */
34
35 /* 
36 tested special converters (most are tested actually but i didnt write it down ...)
37  YV12 -> BGR16
38  YV12 -> YV12
39  BGR15 -> BGR16
40  BGR16 -> BGR16
41  YVU9 -> YV12
42
43 untested special converters
44   YV12/I420 -> BGR15/BGR24/BGR32 (its the yuv2rgb stuff, so it should be ok)
45   YV12/I420 -> YV12/I420
46   YUY2/BGR15/BGR24/BGR32/RGB24/RGB32 -> same format
47   BGR24 -> BGR32 & RGB24 -> RGB32
48   BGR32 -> BGR24 & RGB32 -> RGB24
49   BGR24 -> YV12
50 */
51
52 #include <inttypes.h>
53 #include <string.h>
54 #include <math.h>
55 #include <stdio.h>
56 #include "../config.h"
57 #include "../mangle.h"
58 #include <assert.h>
59 #ifdef HAVE_MALLOC_H
60 #include <malloc.h>
61 #else
62 #include <stdlib.h>
63 #endif
64 #include "swscale.h"
65 #include "swscale_internal.h"
66 #include "../cpudetect.h"
67 #include "../bswap.h"
68 #include "../libvo/img_format.h"
69 #include "rgb2rgb.h"
70 #include "../libvo/fastmemcpy.h"
71 #include "../mp_msg.h"
72
73 #define MSG_WARN(args...) mp_msg(MSGT_SWS,MSGL_WARN, ##args )
74 #define MSG_FATAL(args...) mp_msg(MSGT_SWS,MSGL_FATAL, ##args )
75 #define MSG_ERR(args...) mp_msg(MSGT_SWS,MSGL_ERR, ##args )
76 #define MSG_V(args...) mp_msg(MSGT_SWS,MSGL_V, ##args )
77 #define MSG_DBG2(args...) mp_msg(MSGT_SWS,MSGL_DBG2, ##args )
78 #define MSG_INFO(args...) mp_msg(MSGT_SWS,MSGL_INFO, ##args )
79
80 #undef MOVNTQ
81 #undef PAVGB
82
83 //#undef HAVE_MMX2
84 //#define HAVE_3DNOW
85 //#undef HAVE_MMX
86 //#undef ARCH_X86
87 //#define WORDS_BIGENDIAN
88 #define DITHER1XBPP
89
90 #define FAST_BGR2YV12 // use 7 bit coeffs instead of 15bit
91
92 #define RET 0xC3 //near return opcode for X86
93
94 #ifdef MP_DEBUG
95 #define ASSERT(x) assert(x);
96 #else
97 #define ASSERT(x) ;
98 #endif
99
100 #ifdef M_PI
101 #define PI M_PI
102 #else
103 #define PI 3.14159265358979323846
104 #endif
105
106 //FIXME replace this with something faster
107 #define isPlanarYUV(x) ((x)==IMGFMT_YV12 || (x)==IMGFMT_YVU9 \
108                         || (x)==IMGFMT_444P || (x)==IMGFMT_422P || (x)==IMGFMT_411P)
109 #define isYUV(x)       ((x)==IMGFMT_UYVY || (x)==IMGFMT_YUY2 || isPlanarYUV(x))
110 #define isGray(x)      ((x)==IMGFMT_Y800)
111 #define isRGB(x)       (((x)&IMGFMT_RGB_MASK)==IMGFMT_RGB)
112 #define isBGR(x)       (((x)&IMGFMT_BGR_MASK)==IMGFMT_BGR)
113 #define isSupportedIn(x)  ((x)==IMGFMT_YV12 || (x)==IMGFMT_YUY2 || (x)==IMGFMT_UYVY\
114                         || (x)==IMGFMT_BGR32|| (x)==IMGFMT_BGR24|| (x)==IMGFMT_BGR16|| (x)==IMGFMT_BGR15\
115                         || (x)==IMGFMT_RGB32|| (x)==IMGFMT_RGB24\
116                         || (x)==IMGFMT_Y800 || (x)==IMGFMT_YVU9\
117                         || (x)==IMGFMT_444P || (x)==IMGFMT_422P || (x)==IMGFMT_411P)
118 #define isSupportedOut(x) ((x)==IMGFMT_YV12 || (x)==IMGFMT_YUY2\
119                         || (x)==IMGFMT_444P || (x)==IMGFMT_422P || (x)==IMGFMT_411P\
120                         || isRGB(x) || isBGR(x)\
121                         || (x)==IMGFMT_Y800 || (x)==IMGFMT_YVU9)
122 #define isPacked(x)    ((x)==IMGFMT_YUY2 || (x)==IMGFMT_UYVY ||isRGB(x) || isBGR(x))
123
124 #define RGB2YUV_SHIFT 16
125 #define BY ((int)( 0.098*(1<<RGB2YUV_SHIFT)+0.5))
126 #define BV ((int)(-0.071*(1<<RGB2YUV_SHIFT)+0.5))
127 #define BU ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5))
128 #define GY ((int)( 0.504*(1<<RGB2YUV_SHIFT)+0.5))
129 #define GV ((int)(-0.368*(1<<RGB2YUV_SHIFT)+0.5))
130 #define GU ((int)(-0.291*(1<<RGB2YUV_SHIFT)+0.5))
131 #define RY ((int)( 0.257*(1<<RGB2YUV_SHIFT)+0.5))
132 #define RV ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5))
133 #define RU ((int)(-0.148*(1<<RGB2YUV_SHIFT)+0.5))
134
135 extern int verbose; // defined in mplayer.c
136 extern const int32_t Inverse_Table_6_9[8][4];
137
138 /*
139 NOTES
140 Special versions: fast Y 1:1 scaling (no interpolation in y direction)
141
142 TODO
143 more intelligent missalignment avoidance for the horizontal scaler
144 write special vertical cubic upscale version
145 Optimize C code (yv12 / minmax)
146 add support for packed pixel yuv input & output
147 add support for Y8 output
148 optimize bgr24 & bgr32
149 add BGR4 output support
150 write special BGR->BGR scaler
151 */
152
153 #define ABS(a) ((a) > 0 ? (a) : (-(a)))
154 #define MIN(a,b) ((a) > (b) ? (b) : (a))
155 #define MAX(a,b) ((a) < (b) ? (b) : (a))
156
157 #ifdef ARCH_X86
158 #define CAN_COMPILE_X86_ASM
159 #endif
160
161 #ifdef CAN_COMPILE_X86_ASM
162 static uint64_t __attribute__((aligned(8))) bF8=       0xF8F8F8F8F8F8F8F8LL;
163 static uint64_t __attribute__((aligned(8))) bFC=       0xFCFCFCFCFCFCFCFCLL;
164 static uint64_t __attribute__((aligned(8))) w10=       0x0010001000100010LL;
165 static uint64_t __attribute__((aligned(8))) w02=       0x0002000200020002LL;
166 static uint64_t __attribute__((aligned(8))) bm00001111=0x00000000FFFFFFFFLL;
167 static uint64_t __attribute__((aligned(8))) bm00000111=0x0000000000FFFFFFLL;
168 static uint64_t __attribute__((aligned(8))) bm11111000=0xFFFFFFFFFF000000LL;
169 static uint64_t __attribute__((aligned(8))) bm01010101=0x00FF00FF00FF00FFLL;
170
171 static volatile uint64_t __attribute__((aligned(8))) b5Dither;
172 static volatile uint64_t __attribute__((aligned(8))) g5Dither;
173 static volatile uint64_t __attribute__((aligned(8))) g6Dither;
174 static volatile uint64_t __attribute__((aligned(8))) r5Dither;
175
176 static uint64_t __attribute__((aligned(8))) dither4[2]={
177         0x0103010301030103LL,
178         0x0200020002000200LL,};
179
180 static uint64_t __attribute__((aligned(8))) dither8[2]={
181         0x0602060206020602LL,
182         0x0004000400040004LL,};
183
184 static uint64_t __attribute__((aligned(8))) b16Mask=   0x001F001F001F001FLL;
185 static uint64_t __attribute__((aligned(8))) g16Mask=   0x07E007E007E007E0LL;
186 static uint64_t __attribute__((aligned(8))) r16Mask=   0xF800F800F800F800LL;
187 static uint64_t __attribute__((aligned(8))) b15Mask=   0x001F001F001F001FLL;
188 static uint64_t __attribute__((aligned(8))) g15Mask=   0x03E003E003E003E0LL;
189 static uint64_t __attribute__((aligned(8))) r15Mask=   0x7C007C007C007C00LL;
190
191 static uint64_t __attribute__((aligned(8))) M24A=   0x00FF0000FF0000FFLL;
192 static uint64_t __attribute__((aligned(8))) M24B=   0xFF0000FF0000FF00LL;
193 static uint64_t __attribute__((aligned(8))) M24C=   0x0000FF0000FF0000LL;
194
195 #ifdef FAST_BGR2YV12
196 static const uint64_t bgr2YCoeff  __attribute__((aligned(8))) = 0x000000210041000DULL;
197 static const uint64_t bgr2UCoeff  __attribute__((aligned(8))) = 0x0000FFEEFFDC0038ULL;
198 static const uint64_t bgr2VCoeff  __attribute__((aligned(8))) = 0x00000038FFD2FFF8ULL;
199 #else
200 static const uint64_t bgr2YCoeff  __attribute__((aligned(8))) = 0x000020E540830C8BULL;
201 static const uint64_t bgr2UCoeff  __attribute__((aligned(8))) = 0x0000ED0FDAC23831ULL;
202 static const uint64_t bgr2VCoeff  __attribute__((aligned(8))) = 0x00003831D0E6F6EAULL;
203 #endif
204 static const uint64_t bgr2YOffset __attribute__((aligned(8))) = 0x1010101010101010ULL;
205 static const uint64_t bgr2UVOffset __attribute__((aligned(8)))= 0x8080808080808080ULL;
206 static const uint64_t w1111       __attribute__((aligned(8))) = 0x0001000100010001ULL;
207 #endif
208
209 // clipping helper table for C implementations:
210 static unsigned char clip_table[768];
211
212 //global sws_flags from the command line
213 int sws_flags=2;
214
215 //global srcFilter
216 SwsFilter src_filter= {NULL, NULL, NULL, NULL};
217
218 float sws_lum_gblur= 0.0;
219 float sws_chr_gblur= 0.0;
220 int sws_chr_vshift= 0;
221 int sws_chr_hshift= 0;
222 float sws_chr_sharpen= 0.0;
223 float sws_lum_sharpen= 0.0;
224
225 /* cpuCaps combined from cpudetect and whats actually compiled in
226    (if there is no support for something compiled in it wont appear here) */
227 static CpuCaps cpuCaps;
228
229 int (*swScale)(SwsContext *context, uint8_t* src[], int srcStride[], int srcSliceY,
230              int srcSliceH, uint8_t* dst[], int dstStride[])=NULL;
231
232 static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b);
233                   
234 extern const uint8_t dither_2x2_4[2][8];
235 extern const uint8_t dither_2x2_8[2][8];
236 extern const uint8_t dither_8x8_32[8][8];
237 extern const uint8_t dither_8x8_73[8][8];
238 extern const uint8_t dither_8x8_220[8][8];
239
240 #ifdef CAN_COMPILE_X86_ASM
241 void in_asm_used_var_warning_killer()
242 {
243  volatile int i= bF8+bFC+w10+
244  bm00001111+bm00000111+bm11111000+b16Mask+g16Mask+r16Mask+b15Mask+g15Mask+r15Mask+
245  M24A+M24B+M24C+w02 + b5Dither+g5Dither+r5Dither+g6Dither+dither4[0]+dither8[0]+bm01010101;
246  if(i) i=0;
247 }
248 #endif
249
250 static int testFormat[]={
251 IMGFMT_YVU9,
252 IMGFMT_YV12,
253 //IMGFMT_IYUV,
254 IMGFMT_I420,
255 IMGFMT_BGR15,
256 IMGFMT_BGR16,
257 IMGFMT_BGR24,
258 IMGFMT_BGR32,
259 IMGFMT_RGB24,
260 IMGFMT_RGB32,
261 //IMGFMT_Y8,
262 IMGFMT_Y800,
263 //IMGFMT_YUY2,
264 0
265 };
266
267 static uint64_t getSSD(uint8_t *src1, uint8_t *src2, int stride1, int stride2, int w, int h){
268         int x,y;
269         uint64_t ssd=0;
270
271         for(y=0; y<h; y++){
272                 for(x=0; x<w; x++){
273                         int d= src1[x + y*stride1] - src2[x + y*stride2];
274                         ssd+= d*d;
275                 }
276         }
277         return ssd;
278 }
279
280 // test by ref -> src -> dst -> out & compare out against ref
281 // ref & out are YV12
282 static void doTest(uint8_t *ref[3], int refStride[3], int w, int h, int srcFormat, int dstFormat, 
283                    int srcW, int srcH, int dstW, int dstH, int flags){
284         uint8_t *src[3];
285         uint8_t *dst[3];
286         uint8_t *out[3];
287         int srcStride[3], dstStride[3];
288         int i;
289         uint64_t ssdY, ssdU, ssdV;
290         SwsContext *srcContext, *dstContext, *outContext;
291         
292         for(i=0; i<3; i++){
293                 // avoid stride % bpp != 0
294                 if(srcFormat==IMGFMT_RGB24 || srcFormat==IMGFMT_BGR24)
295                         srcStride[i]= srcW*3;
296                 else
297                         srcStride[i]= srcW*4;
298                 
299                 if(dstFormat==IMGFMT_RGB24 || dstFormat==IMGFMT_BGR24)
300                         dstStride[i]= dstW*3;
301                 else
302                         dstStride[i]= dstW*4;
303         
304                 src[i]= malloc(srcStride[i]*srcH);
305                 dst[i]= malloc(dstStride[i]*dstH);
306                 out[i]= malloc(refStride[i]*h);
307         }
308
309         srcContext= sws_getContext(w, h, IMGFMT_YV12, srcW, srcH, srcFormat, flags, NULL, NULL);
310         dstContext= sws_getContext(srcW, srcH, srcFormat, dstW, dstH, dstFormat, flags, NULL, NULL);
311         outContext= sws_getContext(dstW, dstH, dstFormat, w, h, IMGFMT_YV12, flags, NULL, NULL);
312         if(srcContext==NULL ||dstContext==NULL ||outContext==NULL){
313                 printf("Failed allocating swsContext\n");
314                 goto end;
315         }
316 //      printf("test %X %X %X -> %X %X %X\n", (int)ref[0], (int)ref[1], (int)ref[2],
317 //              (int)src[0], (int)src[1], (int)src[2]);
318
319         srcContext->swScale(srcContext, ref, refStride, 0, h   , src, srcStride);
320         dstContext->swScale(dstContext, src, srcStride, 0, srcH, dst, dstStride);
321         outContext->swScale(outContext, dst, dstStride, 0, dstH, out, refStride);
322              
323         ssdY= getSSD(ref[0], out[0], refStride[0], refStride[0], w, h);
324         ssdU= getSSD(ref[1], out[1], refStride[1], refStride[1], (w+1)>>1, (h+1)>>1);
325         ssdV= getSSD(ref[2], out[2], refStride[2], refStride[2], (w+1)>>1, (h+1)>>1);
326         
327         if(isGray(srcFormat) || isGray(dstFormat)) ssdU=ssdV=0; //FIXME check that output is really gray
328         
329         ssdY/= w*h;
330         ssdU/= w*h/4;
331         ssdV/= w*h/4;
332         
333         if(ssdY>100 || ssdU>50 || ssdV>50){
334                 printf(" %s %dx%d -> %s %4dx%4d flags=%2d SSD=%5lld,%5lld,%5lld\n", 
335                         vo_format_name(srcFormat), srcW, srcH, 
336                         vo_format_name(dstFormat), dstW, dstH,
337                         flags,
338                         ssdY, ssdU, ssdV);
339         }
340
341         end:
342         
343         sws_freeContext(srcContext);
344         sws_freeContext(dstContext);
345         sws_freeContext(outContext);
346
347         for(i=0; i<3; i++){
348                 free(src[i]);
349                 free(dst[i]);
350                 free(out[i]);
351         }
352 }
353
354 static void selfTest(uint8_t *src[3], int stride[3], int w, int h){
355         int srcFormat, dstFormat, srcFormatIndex, dstFormatIndex;
356         int srcW, srcH, dstW, dstH;
357         int flags;
358
359         for(srcFormatIndex=0; ;srcFormatIndex++){
360                 srcFormat= testFormat[srcFormatIndex];
361                 if(!srcFormat) break;
362                 for(dstFormatIndex=0; ;dstFormatIndex++){
363                         dstFormat= testFormat[dstFormatIndex];
364                         if(!dstFormat) break;
365                         if(!isSupportedOut(dstFormat)) continue;
366 printf("%s -> %s\n", 
367         vo_format_name(srcFormat),
368         vo_format_name(dstFormat));
369
370                         srcW= w+w/3;
371                         srcH= h+h/3;
372                         for(dstW=w; dstW<w*2; dstW+= dstW/3){
373                                 for(dstH=h; dstH<h*2; dstH+= dstH/3){
374                                         for(flags=1; flags<33; flags*=2)
375                                                 doTest(src, stride, w, h, srcFormat, dstFormat,
376                                                         srcW, srcH, dstW, dstH, flags);
377                                 }
378                         }
379                 }
380         }
381 }
382
383 static inline void yuv2yuvXinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
384                                     int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
385                                     uint8_t *dest, uint8_t *uDest, uint8_t *vDest, int dstW, int chrDstW)
386 {
387         //FIXME Optimize (just quickly writen not opti..)
388         int i;
389         for(i=0; i<dstW; i++)
390         {
391                 int val=0;
392                 int j;
393                 for(j=0; j<lumFilterSize; j++)
394                         val += lumSrc[j][i] * lumFilter[j];
395
396                 dest[i]= MIN(MAX(val>>19, 0), 255);
397         }
398
399         if(uDest != NULL)
400                 for(i=0; i<chrDstW; i++)
401                 {
402                         int u=0;
403                         int v=0;
404                         int j;
405                         for(j=0; j<chrFilterSize; j++)
406                         {
407                                 u += chrSrc[j][i] * chrFilter[j];
408                                 v += chrSrc[j][i + 2048] * chrFilter[j];
409                         }
410
411                         uDest[i]= MIN(MAX(u>>19, 0), 255);
412                         vDest[i]= MIN(MAX(v>>19, 0), 255);
413                 }
414 }
415
416
417 #define YSCALE_YUV_2_PACKEDX_C(type) \
418                 for(i=0; i<(dstW>>1); i++){\
419                         int j;\
420                         int Y1=0;\
421                         int Y2=0;\
422                         int U=0;\
423                         int V=0;\
424                         type *r, *b, *g;\
425                         const int i2= 2*i;\
426                         \
427                         for(j=0; j<lumFilterSize; j++)\
428                         {\
429                                 Y1 += lumSrc[j][i2] * lumFilter[j];\
430                                 Y2 += lumSrc[j][i2+1] * lumFilter[j];\
431                         }\
432                         for(j=0; j<chrFilterSize; j++)\
433                         {\
434                                 U += chrSrc[j][i] * chrFilter[j];\
435                                 V += chrSrc[j][i+2048] * chrFilter[j];\
436                         }\
437                         Y1>>=19;\
438                         Y2>>=19;\
439                         U >>=19;\
440                         V >>=19;\
441                         if((Y1|Y2|U|V)&256)\
442                         {\
443                                 if(Y1>255)   Y1=255;\
444                                 else if(Y1<0)Y1=0;\
445                                 if(Y2>255)   Y2=255;\
446                                 else if(Y2<0)Y2=0;\
447                                 if(U>255)    U=255;\
448                                 else if(U<0) U=0;\
449                                 if(V>255)    V=255;\
450                                 else if(V<0) V=0;\
451                         }
452                         
453 #define YSCALE_YUV_2_RGBX_C(type) \
454                         YSCALE_YUV_2_PACKEDX_C(type)\
455                         r = c->table_rV[V];\
456                         g = c->table_gU[U] + c->table_gV[V];\
457                         b = c->table_bU[U];\
458
459 #define YSCALE_YUV_2_PACKED2_C \
460                 for(i=0; i<(dstW>>1); i++){\
461                         const int i2= 2*i;\
462                         int Y1= (buf0[i2  ]*yalpha1+buf1[i2  ]*yalpha)>>19;\
463                         int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>19;\
464                         int U= (uvbuf0[i     ]*uvalpha1+uvbuf1[i     ]*uvalpha)>>19;\
465                         int V= (uvbuf0[i+2048]*uvalpha1+uvbuf1[i+2048]*uvalpha)>>19;\
466
467 #define YSCALE_YUV_2_RGB2_C(type) \
468                         YSCALE_YUV_2_PACKED2_C\
469                         type *r, *b, *g;\
470                         r = c->table_rV[V];\
471                         g = c->table_gU[U] + c->table_gV[V];\
472                         b = c->table_bU[U];\
473
474 #define YSCALE_YUV_2_PACKED1_C \
475                 for(i=0; i<(dstW>>1); i++){\
476                         const int i2= 2*i;\
477                         int Y1= buf0[i2  ]>>7;\
478                         int Y2= buf0[i2+1]>>7;\
479                         int U= (uvbuf1[i     ])>>7;\
480                         int V= (uvbuf1[i+2048])>>7;\
481
482 #define YSCALE_YUV_2_RGB1_C(type) \
483                         YSCALE_YUV_2_PACKED1_C\
484                         type *r, *b, *g;\
485                         r = c->table_rV[V];\
486                         g = c->table_gU[U] + c->table_gV[V];\
487                         b = c->table_bU[U];\
488
489 #define YSCALE_YUV_2_PACKED1B_C \
490                 for(i=0; i<(dstW>>1); i++){\
491                         const int i2= 2*i;\
492                         int Y1= buf0[i2  ]>>7;\
493                         int Y2= buf0[i2+1]>>7;\
494                         int U= (uvbuf0[i     ] + uvbuf1[i     ])>>8;\
495                         int V= (uvbuf0[i+2048] + uvbuf1[i+2048])>>8;\
496
497 #define YSCALE_YUV_2_RGB1B_C(type) \
498                         YSCALE_YUV_2_PACKED1B_C\
499                         type *r, *b, *g;\
500                         r = c->table_rV[V];\
501                         g = c->table_gU[U] + c->table_gV[V];\
502                         b = c->table_bU[U];\
503
504 #define YSCALE_YUV_2_ANYRGB_C(func, func2)\
505         switch(c->dstFormat)\
506         {\
507         case IMGFMT_BGR32:\
508         case IMGFMT_RGB32:\
509                 func(uint32_t)\
510                         ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];\
511                         ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];\
512                 }               \
513                 break;\
514         case IMGFMT_RGB24:\
515                 func(uint8_t)\
516                         ((uint8_t*)dest)[0]= r[Y1];\
517                         ((uint8_t*)dest)[1]= g[Y1];\
518                         ((uint8_t*)dest)[2]= b[Y1];\
519                         ((uint8_t*)dest)[3]= r[Y2];\
520                         ((uint8_t*)dest)[4]= g[Y2];\
521                         ((uint8_t*)dest)[5]= b[Y2];\
522                         ((uint8_t*)dest)+=6;\
523                 }\
524                 break;\
525         case IMGFMT_BGR24:\
526                 func(uint8_t)\
527                         ((uint8_t*)dest)[0]= b[Y1];\
528                         ((uint8_t*)dest)[1]= g[Y1];\
529                         ((uint8_t*)dest)[2]= r[Y1];\
530                         ((uint8_t*)dest)[3]= b[Y2];\
531                         ((uint8_t*)dest)[4]= g[Y2];\
532                         ((uint8_t*)dest)[5]= r[Y2];\
533                         ((uint8_t*)dest)+=6;\
534                 }\
535                 break;\
536         case IMGFMT_RGB16:\
537         case IMGFMT_BGR16:\
538                 {\
539                         const int dr1= dither_2x2_8[y&1    ][0];\
540                         const int dg1= dither_2x2_4[y&1    ][0];\
541                         const int db1= dither_2x2_8[(y&1)^1][0];\
542                         const int dr2= dither_2x2_8[y&1    ][1];\
543                         const int dg2= dither_2x2_4[y&1    ][1];\
544                         const int db2= dither_2x2_8[(y&1)^1][1];\
545                         func(uint16_t)\
546                                 ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
547                                 ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
548                         }\
549                 }\
550                 break;\
551         case IMGFMT_RGB15:\
552         case IMGFMT_BGR15:\
553                 {\
554                         const int dr1= dither_2x2_8[y&1    ][0];\
555                         const int dg1= dither_2x2_8[y&1    ][1];\
556                         const int db1= dither_2x2_8[(y&1)^1][0];\
557                         const int dr2= dither_2x2_8[y&1    ][1];\
558                         const int dg2= dither_2x2_8[y&1    ][0];\
559                         const int db2= dither_2x2_8[(y&1)^1][1];\
560                         func(uint16_t)\
561                                 ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
562                                 ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
563                         }\
564                 }\
565                 break;\
566         case IMGFMT_RGB8:\
567         case IMGFMT_BGR8:\
568                 {\
569                         const uint8_t * const d64= dither_8x8_73[y&7];\
570                         const uint8_t * const d32= dither_8x8_32[y&7];\
571                         func(uint8_t)\
572                                 ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];\
573                                 ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];\
574                         }\
575                 }\
576                 break;\
577         case IMGFMT_RGB4:\
578         case IMGFMT_BGR4:\
579                 {\
580                         const uint8_t * const d64= dither_8x8_73 [y&7];\
581                         const uint8_t * const d128=dither_8x8_220[y&7];\
582                         func(uint8_t)\
583                                 ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]\
584                                                  + ((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);\
585                         }\
586                 }\
587                 break;\
588         case IMGFMT_RG4B:\
589         case IMGFMT_BG4B:\
590                 {\
591                         const uint8_t * const d64= dither_8x8_73 [y&7];\
592                         const uint8_t * const d128=dither_8x8_220[y&7];\
593                         func(uint8_t)\
594                                 ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];\
595                                 ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];\
596                         }\
597                 }\
598                 break;\
599         case IMGFMT_RGB1:\
600         case IMGFMT_BGR1:\
601                 {\
602                         const uint8_t * const d128=dither_8x8_220[y&7];\
603                         uint8_t *g= c->table_gU[128] + c->table_gV[128];\
604                         for(i=0; i<dstW-7; i+=8){\
605                                 int acc;\
606                                 acc =       g[((buf0[i  ]*yalpha1+buf1[i  ]*yalpha)>>19) + d128[0]];\
607                                 acc+= acc + g[((buf0[i+1]*yalpha1+buf1[i+1]*yalpha)>>19) + d128[1]];\
608                                 acc+= acc + g[((buf0[i+2]*yalpha1+buf1[i+2]*yalpha)>>19) + d128[2]];\
609                                 acc+= acc + g[((buf0[i+3]*yalpha1+buf1[i+3]*yalpha)>>19) + d128[3]];\
610                                 acc+= acc + g[((buf0[i+4]*yalpha1+buf1[i+4]*yalpha)>>19) + d128[4]];\
611                                 acc+= acc + g[((buf0[i+5]*yalpha1+buf1[i+5]*yalpha)>>19) + d128[5]];\
612                                 acc+= acc + g[((buf0[i+6]*yalpha1+buf1[i+6]*yalpha)>>19) + d128[6]];\
613                                 acc+= acc + g[((buf0[i+7]*yalpha1+buf1[i+7]*yalpha)>>19) + d128[7]];\
614                                 ((uint8_t*)dest)[0]= acc;\
615                                 ((uint8_t*)dest)++;\
616                         }\
617 \
618 /*\
619 ((uint8_t*)dest)-= dstW>>4;\
620 {\
621                         int acc=0;\
622                         int left=0;\
623                         static int top[1024];\
624                         static int last_new[1024][1024];\
625                         static int last_in3[1024][1024];\
626                         static int drift[1024][1024];\
627                         int topLeft=0;\
628                         int shift=0;\
629                         int count=0;\
630                         const uint8_t * const d128=dither_8x8_220[y&7];\
631                         int error_new=0;\
632                         int error_in3=0;\
633                         int f=0;\
634                         \
635                         for(i=dstW>>1; i<dstW; i++){\
636                                 int in= ((buf0[i  ]*yalpha1+buf1[i  ]*yalpha)>>19);\
637                                 int in2 = (76309 * (in - 16) + 32768) >> 16;\
638                                 int in3 = (in2 < 0) ? 0 : ((in2 > 255) ? 255 : in2);\
639                                 int old= (left*7 + topLeft + top[i]*5 + top[i+1]*3)/20 + in3\
640                                         + (last_new[y][i] - in3)*f/256;\
641                                 int new= old> 128 ? 255 : 0;\
642 \
643                                 error_new+= ABS(last_new[y][i] - new);\
644                                 error_in3+= ABS(last_in3[y][i] - in3);\
645                                 f= error_new - error_in3*4;\
646                                 if(f<0) f=0;\
647                                 if(f>256) f=256;\
648 \
649                                 topLeft= top[i];\
650                                 left= top[i]= old - new;\
651                                 last_new[y][i]= new;\
652                                 last_in3[y][i]= in3;\
653 \
654                                 acc+= acc + (new&1);\
655                                 if((i&7)==6){\
656                                         ((uint8_t*)dest)[0]= acc;\
657                                         ((uint8_t*)dest)++;\
658                                 }\
659                         }\
660 }\
661 */\
662                 }\
663                 break;\
664         case IMGFMT_YUY2:\
665                 func2\
666                         ((uint8_t*)dest)[2*i2+0]= Y1;\
667                         ((uint8_t*)dest)[2*i2+1]= U;\
668                         ((uint8_t*)dest)[2*i2+2]= Y2;\
669                         ((uint8_t*)dest)[2*i2+3]= V;\
670                 }               \
671                 break;\
672         }\
673
674
675 static inline void yuv2packedXinC(SwsContext *c, int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
676                                     int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
677                                     uint8_t *dest, int dstW, int y)
678 {
679         int i;
680         switch(c->dstFormat)
681         {
682         case IMGFMT_RGB32:
683         case IMGFMT_BGR32:
684                 YSCALE_YUV_2_RGBX_C(uint32_t)
685                         ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];
686                         ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];
687                 }
688                 break;
689         case IMGFMT_RGB24:
690                 YSCALE_YUV_2_RGBX_C(uint8_t)
691                         ((uint8_t*)dest)[0]= r[Y1];
692                         ((uint8_t*)dest)[1]= g[Y1];
693                         ((uint8_t*)dest)[2]= b[Y1];
694                         ((uint8_t*)dest)[3]= r[Y2];
695                         ((uint8_t*)dest)[4]= g[Y2];
696                         ((uint8_t*)dest)[5]= b[Y2];
697                         ((uint8_t*)dest)+=6;
698                 }
699                 break;
700         case IMGFMT_BGR24:
701                 YSCALE_YUV_2_RGBX_C(uint8_t)
702                         ((uint8_t*)dest)[0]= b[Y1];
703                         ((uint8_t*)dest)[1]= g[Y1];
704                         ((uint8_t*)dest)[2]= r[Y1];
705                         ((uint8_t*)dest)[3]= b[Y2];
706                         ((uint8_t*)dest)[4]= g[Y2];
707                         ((uint8_t*)dest)[5]= r[Y2];
708                         ((uint8_t*)dest)+=6;
709                 }
710                 break;
711         case IMGFMT_RGB16:
712         case IMGFMT_BGR16:
713                 {
714                         const int dr1= dither_2x2_8[y&1    ][0];
715                         const int dg1= dither_2x2_4[y&1    ][0];
716                         const int db1= dither_2x2_8[(y&1)^1][0];
717                         const int dr2= dither_2x2_8[y&1    ][1];
718                         const int dg2= dither_2x2_4[y&1    ][1];
719                         const int db2= dither_2x2_8[(y&1)^1][1];
720                         YSCALE_YUV_2_RGBX_C(uint16_t)
721                                 ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];
722                                 ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];
723                         }
724                 }
725                 break;
726         case IMGFMT_RGB15:
727         case IMGFMT_BGR15:
728                 {
729                         const int dr1= dither_2x2_8[y&1    ][0];
730                         const int dg1= dither_2x2_8[y&1    ][1];
731                         const int db1= dither_2x2_8[(y&1)^1][0];
732                         const int dr2= dither_2x2_8[y&1    ][1];
733                         const int dg2= dither_2x2_8[y&1    ][0];
734                         const int db2= dither_2x2_8[(y&1)^1][1];
735                         YSCALE_YUV_2_RGBX_C(uint16_t)
736                                 ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];
737                                 ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];
738                         }
739                 }
740                 break;
741         case IMGFMT_RGB8:
742         case IMGFMT_BGR8:
743                 {
744                         const uint8_t * const d64= dither_8x8_73[y&7];
745                         const uint8_t * const d32= dither_8x8_32[y&7];
746                         YSCALE_YUV_2_RGBX_C(uint8_t)
747                                 ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];
748                                 ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];
749                         }
750                 }
751                 break;
752         case IMGFMT_RGB4:
753         case IMGFMT_BGR4:
754                 {
755                         const uint8_t * const d64= dither_8x8_73 [y&7];
756                         const uint8_t * const d128=dither_8x8_220[y&7];
757                         YSCALE_YUV_2_RGBX_C(uint8_t)
758                                 ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]
759                                                   +((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);
760                         }
761                 }
762                 break;
763         case IMGFMT_RG4B:
764         case IMGFMT_BG4B:
765                 {
766                         const uint8_t * const d64= dither_8x8_73 [y&7];
767                         const uint8_t * const d128=dither_8x8_220[y&7];
768                         YSCALE_YUV_2_RGBX_C(uint8_t)
769                                 ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];
770                                 ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];
771                         }
772                 }
773                 break;
774         case IMGFMT_RGB1:
775         case IMGFMT_BGR1:
776                 {
777                         const uint8_t * const d128=dither_8x8_220[y&7];
778                         uint8_t *g= c->table_gU[128] + c->table_gV[128];
779                         int acc=0;
780                         for(i=0; i<dstW-1; i+=2){
781                                 int j;
782                                 int Y1=0;
783                                 int Y2=0;
784
785                                 for(j=0; j<lumFilterSize; j++)
786                                 {
787                                         Y1 += lumSrc[j][i] * lumFilter[j];
788                                         Y2 += lumSrc[j][i+1] * lumFilter[j];
789                                 }
790                                 Y1>>=19;
791                                 Y2>>=19;
792                                 if((Y1|Y2)&256)
793                                 {
794                                         if(Y1>255)   Y1=255;
795                                         else if(Y1<0)Y1=0;
796                                         if(Y2>255)   Y2=255;
797                                         else if(Y2<0)Y2=0;
798                                 }
799                                 acc+= acc + g[Y1+d128[(i+0)&7]];
800                                 acc+= acc + g[Y2+d128[(i+1)&7]];
801                                 if((i&7)==6){
802                                         ((uint8_t*)dest)[0]= acc;
803                                         ((uint8_t*)dest)++;
804                                 }
805                         }
806                 }
807                 break;
808         case IMGFMT_YUY2:
809                 YSCALE_YUV_2_PACKEDX_C(void)
810                         ((uint8_t*)dest)[2*i2+0]= Y1;
811                         ((uint8_t*)dest)[2*i2+1]= U;
812                         ((uint8_t*)dest)[2*i2+2]= Y2;
813                         ((uint8_t*)dest)[2*i2+3]= V;
814                 }
815                 break;
816         }
817 }
818
819
820 //Note: we have C, X86, MMX, MMX2, 3DNOW version therse no 3DNOW+MMX2 one
821 //Plain C versions
822 #if !defined (HAVE_MMX) || defined (RUNTIME_CPUDETECT)
823 #define COMPILE_C
824 #endif
825
826 #ifdef CAN_COMPILE_X86_ASM
827
828 #if (defined (HAVE_MMX) && !defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)
829 #define COMPILE_MMX
830 #endif
831
832 #if defined (HAVE_MMX2) || defined (RUNTIME_CPUDETECT)
833 #define COMPILE_MMX2
834 #endif
835
836 #if (defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)
837 #define COMPILE_3DNOW
838 #endif
839 #endif //CAN_COMPILE_X86_ASM
840
841 #undef HAVE_MMX
842 #undef HAVE_MMX2
843 #undef HAVE_3DNOW
844
845 #ifdef COMPILE_C
846 #undef HAVE_MMX
847 #undef HAVE_MMX2
848 #undef HAVE_3DNOW
849 #define RENAME(a) a ## _C
850 #include "swscale_template.c"
851 #endif
852
853 #ifdef CAN_COMPILE_X86_ASM
854
855 //X86 versions
856 /*
857 #undef RENAME
858 #undef HAVE_MMX
859 #undef HAVE_MMX2
860 #undef HAVE_3DNOW
861 #define ARCH_X86
862 #define RENAME(a) a ## _X86
863 #include "swscale_template.c"
864 */
865 //MMX versions
866 #ifdef COMPILE_MMX
867 #undef RENAME
868 #define HAVE_MMX
869 #undef HAVE_MMX2
870 #undef HAVE_3DNOW
871 #define RENAME(a) a ## _MMX
872 #include "swscale_template.c"
873 #endif
874
875 //MMX2 versions
876 #ifdef COMPILE_MMX2
877 #undef RENAME
878 #define HAVE_MMX
879 #define HAVE_MMX2
880 #undef HAVE_3DNOW
881 #define RENAME(a) a ## _MMX2
882 #include "swscale_template.c"
883 #endif
884
885 //3DNOW versions
886 #ifdef COMPILE_3DNOW
887 #undef RENAME
888 #define HAVE_MMX
889 #undef HAVE_MMX2
890 #define HAVE_3DNOW
891 #define RENAME(a) a ## _3DNow
892 #include "swscale_template.c"
893 #endif
894
895 #endif //CAN_COMPILE_X86_ASM
896
897 // minor note: the HAVE_xyz is messed up after that line so dont use it
898
899
900 // old global scaler, dont use for new code
901 // will use sws_flags from the command line
902 void SwScale_YV12slice(unsigned char* src[], int srcStride[], int srcSliceY ,
903                              int srcSliceH, uint8_t* dst[], int dstStride, int dstbpp,
904                              int srcW, int srcH, int dstW, int dstH){
905
906         static SwsContext *context=NULL;
907         int dstFormat;
908         int dstStride3[3]= {dstStride, dstStride>>1, dstStride>>1};
909
910         switch(dstbpp)
911         {
912                 case 8 : dstFormat= IMGFMT_Y8;          break;
913                 case 12: dstFormat= IMGFMT_YV12;        break;
914                 case 15: dstFormat= IMGFMT_BGR15;       break;
915                 case 16: dstFormat= IMGFMT_BGR16;       break;
916                 case 24: dstFormat= IMGFMT_BGR24;       break;
917                 case 32: dstFormat= IMGFMT_BGR32;       break;
918                 default: return;
919         }
920
921         if(!context) context=sws_getContextFromCmdLine(srcW, srcH, IMGFMT_YV12, dstW, dstH, dstFormat);
922
923         context->swScale(context, src, srcStride, srcSliceY, srcSliceH, dst, dstStride3);
924 }
925
926 void sws_getFlagsAndFilterFromCmdLine(int *flags, SwsFilter **srcFilterParam, SwsFilter **dstFilterParam)
927 {
928         static int firstTime=1;
929         *flags=0;
930
931 #ifdef ARCH_X86
932         if(gCpuCaps.hasMMX)
933                 asm volatile("emms\n\t"::: "memory"); //FIXME this shouldnt be required but it IS (even for non mmx versions)
934 #endif
935         if(firstTime)
936         {
937                 firstTime=0;
938                 *flags= SWS_PRINT_INFO;
939         }
940         else if(verbose>1) *flags= SWS_PRINT_INFO;
941
942         if(src_filter.lumH) sws_freeVec(src_filter.lumH);
943         if(src_filter.lumV) sws_freeVec(src_filter.lumV);
944         if(src_filter.chrH) sws_freeVec(src_filter.chrH);
945         if(src_filter.chrV) sws_freeVec(src_filter.chrV);
946
947         if(sws_lum_gblur!=0.0){
948                 src_filter.lumH= sws_getGaussianVec(sws_lum_gblur, 3.0);
949                 src_filter.lumV= sws_getGaussianVec(sws_lum_gblur, 3.0);
950         }else{
951                 src_filter.lumH= sws_getIdentityVec();
952                 src_filter.lumV= sws_getIdentityVec();
953         }
954
955         if(sws_chr_gblur!=0.0){
956                 src_filter.chrH= sws_getGaussianVec(sws_chr_gblur, 3.0);
957                 src_filter.chrV= sws_getGaussianVec(sws_chr_gblur, 3.0);
958         }else{
959                 src_filter.chrH= sws_getIdentityVec();
960                 src_filter.chrV= sws_getIdentityVec();
961         }
962
963         if(sws_chr_sharpen!=0.0){
964                 SwsVector *g= sws_getConstVec(-1.0, 3);
965                 SwsVector *id= sws_getConstVec(10.0/sws_chr_sharpen, 1);
966                 g->coeff[1]=2.0;
967                 sws_addVec(id, g);
968                 sws_convVec(src_filter.chrH, id);
969                 sws_convVec(src_filter.chrV, id);
970                 sws_freeVec(g);
971                 sws_freeVec(id);
972         }
973
974         if(sws_lum_sharpen!=0.0){
975                 SwsVector *g= sws_getConstVec(-1.0, 3);
976                 SwsVector *id= sws_getConstVec(10.0/sws_lum_sharpen, 1);
977                 g->coeff[1]=2.0;
978                 sws_addVec(id, g);
979                 sws_convVec(src_filter.lumH, id);
980                 sws_convVec(src_filter.lumV, id);
981                 sws_freeVec(g);
982                 sws_freeVec(id);
983         }
984
985         if(sws_chr_hshift)
986                 sws_shiftVec(src_filter.chrH, sws_chr_hshift);
987
988         if(sws_chr_vshift)
989                 sws_shiftVec(src_filter.chrV, sws_chr_vshift);
990
991         sws_normalizeVec(src_filter.chrH, 1.0);
992         sws_normalizeVec(src_filter.chrV, 1.0);
993         sws_normalizeVec(src_filter.lumH, 1.0);
994         sws_normalizeVec(src_filter.lumV, 1.0);
995
996         if(verbose > 1) sws_printVec(src_filter.chrH);
997         if(verbose > 1) sws_printVec(src_filter.lumH);
998
999         switch(sws_flags)
1000         {
1001                 case 0: *flags|= SWS_FAST_BILINEAR; break;
1002                 case 1: *flags|= SWS_BILINEAR; break;
1003                 case 2: *flags|= SWS_BICUBIC; break;
1004                 case 3: *flags|= SWS_X; break;
1005                 case 4: *flags|= SWS_POINT; break;
1006                 case 5: *flags|= SWS_AREA; break;
1007                 case 6: *flags|= SWS_BICUBLIN; break;
1008                 case 7: *flags|= SWS_GAUSS; break;
1009                 case 8: *flags|= SWS_SINC; break;
1010                 case 9: *flags|= SWS_LANCZOS; break;
1011                 case 10:*flags|= SWS_SPLINE; break;
1012                 default:*flags|= SWS_BILINEAR; break;
1013         }
1014         
1015         *srcFilterParam= &src_filter;
1016         *dstFilterParam= NULL;
1017 }
1018
1019 // will use sws_flags & src_filter (from cmd line)
1020 SwsContext *sws_getContextFromCmdLine(int srcW, int srcH, int srcFormat, int dstW, int dstH, int dstFormat)
1021 {
1022         int flags;
1023         SwsFilter *dstFilterParam, *srcFilterParam;
1024         sws_getFlagsAndFilterFromCmdLine(&flags, &srcFilterParam, &dstFilterParam);
1025
1026         return sws_getContext(srcW, srcH, srcFormat, dstW, dstH, dstFormat, flags, srcFilterParam, dstFilterParam);
1027 }
1028
1029 static double getSplineCoeff(double a, double b, double c, double d, double dist)
1030 {
1031 //      printf("%f %f %f %f %f\n", a,b,c,d,dist);
1032         if(dist<=1.0)   return ((d*dist + c)*dist + b)*dist +a;
1033         else            return getSplineCoeff(  0.0, 
1034                                                  b+ 2.0*c + 3.0*d,
1035                                                         c + 3.0*d,
1036                                                 -b- 3.0*c - 6.0*d,
1037                                                 dist-1.0);
1038 }
1039
1040 static inline void initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc,
1041                               int srcW, int dstW, int filterAlign, int one, int flags,
1042                               SwsVector *srcFilter, SwsVector *dstFilter)
1043 {
1044         int i;
1045         int filterSize;
1046         int filter2Size;
1047         int minFilterSize;
1048         double *filter=NULL;
1049         double *filter2=NULL;
1050 #ifdef ARCH_X86
1051         if(gCpuCaps.hasMMX)
1052                 asm volatile("emms\n\t"::: "memory"); //FIXME this shouldnt be required but it IS (even for non mmx versions)
1053 #endif
1054
1055         // Note the +1 is for the MMXscaler which reads over the end
1056         *filterPos = (int16_t*)memalign(8, (dstW+1)*sizeof(int16_t));
1057
1058         if(ABS(xInc - 0x10000) <10) // unscaled
1059         {
1060                 int i;
1061                 filterSize= 1;
1062                 filter= (double*)memalign(8, dstW*sizeof(double)*filterSize);
1063                 for(i=0; i<dstW*filterSize; i++) filter[i]=0;
1064
1065                 for(i=0; i<dstW; i++)
1066                 {
1067                         filter[i*filterSize]=1;
1068                         (*filterPos)[i]=i;
1069                 }
1070
1071         }
1072         else if(flags&SWS_POINT) // lame looking point sampling mode
1073         {
1074                 int i;
1075                 int xDstInSrc;
1076                 filterSize= 1;
1077                 filter= (double*)memalign(8, dstW*sizeof(double)*filterSize);
1078                 
1079                 xDstInSrc= xInc/2 - 0x8000;
1080                 for(i=0; i<dstW; i++)
1081                 {
1082                         int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
1083
1084                         (*filterPos)[i]= xx;
1085                         filter[i]= 1.0;
1086                         xDstInSrc+= xInc;
1087                 }
1088         }
1089         else if((xInc <= (1<<16) && (flags&SWS_AREA)) || (flags&SWS_FAST_BILINEAR)) // bilinear upscale
1090         {
1091                 int i;
1092                 int xDstInSrc;
1093                 if     (flags&SWS_BICUBIC) filterSize= 4;
1094                 else if(flags&SWS_X      ) filterSize= 4;
1095                 else                       filterSize= 2; // SWS_BILINEAR / SWS_AREA 
1096                 filter= (double*)memalign(8, dstW*sizeof(double)*filterSize);
1097
1098                 xDstInSrc= xInc/2 - 0x8000;
1099                 for(i=0; i<dstW; i++)
1100                 {
1101                         int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
1102                         int j;
1103
1104                         (*filterPos)[i]= xx;
1105                                 //Bilinear upscale / linear interpolate / Area averaging
1106                                 for(j=0; j<filterSize; j++)
1107                                 {
1108                                         double d= ABS((xx<<16) - xDstInSrc)/(double)(1<<16);
1109                                         double coeff= 1.0 - d;
1110                                         if(coeff<0) coeff=0;
1111                                         filter[i*filterSize + j]= coeff;
1112                                         xx++;
1113                                 }
1114                         xDstInSrc+= xInc;
1115                 }
1116         }
1117         else
1118         {
1119                 double xDstInSrc;
1120                 double sizeFactor, filterSizeInSrc;
1121                 const double xInc1= (double)xInc / (double)(1<<16);
1122                 int param= (flags&SWS_PARAM_MASK)>>SWS_PARAM_SHIFT;
1123
1124                 if     (flags&SWS_BICUBIC)      sizeFactor= 4.0;
1125                 else if(flags&SWS_X)            sizeFactor= 8.0;
1126                 else if(flags&SWS_AREA)         sizeFactor= 1.0; //downscale only, for upscale it is bilinear
1127                 else if(flags&SWS_GAUSS)        sizeFactor= 8.0;   // infinite ;)
1128                 else if(flags&SWS_LANCZOS)      sizeFactor= param ? 2.0*param : 6.0;
1129                 else if(flags&SWS_SINC)         sizeFactor= 20.0; // infinite ;)
1130                 else if(flags&SWS_SPLINE)       sizeFactor= 20.0;  // infinite ;)
1131                 else if(flags&SWS_BILINEAR)     sizeFactor= 2.0;
1132                 else {
1133                         sizeFactor= 0.0; //GCC warning killer
1134                         ASSERT(0)
1135                 }
1136                 
1137                 if(xInc1 <= 1.0)        filterSizeInSrc= sizeFactor; // upscale
1138                 else                    filterSizeInSrc= sizeFactor*srcW / (double)dstW;
1139
1140                 filterSize= (int)ceil(1 + filterSizeInSrc); // will be reduced later if possible
1141                 if(filterSize > srcW-2) filterSize=srcW-2;
1142
1143                 filter= (double*)memalign(16, dstW*sizeof(double)*filterSize);
1144
1145                 xDstInSrc= xInc1 / 2.0 - 0.5;
1146                 for(i=0; i<dstW; i++)
1147                 {
1148                         int xx= (int)(xDstInSrc - (filterSize-1)*0.5 + 0.5);
1149                         int j;
1150                         (*filterPos)[i]= xx;
1151                         for(j=0; j<filterSize; j++)
1152                         {
1153                                 double d= ABS(xx - xDstInSrc)/filterSizeInSrc*sizeFactor;
1154                                 double coeff;
1155                                 if(flags & SWS_BICUBIC)
1156                                 {
1157                                         double A= param ? -param*0.01 : -0.60;
1158                                         
1159                                         // Equation is from VirtualDub
1160                                         if(d<1.0)
1161                                                 coeff = (1.0 - (A+3.0)*d*d + (A+2.0)*d*d*d);
1162                                         else if(d<2.0)
1163                                                 coeff = (-4.0*A + 8.0*A*d - 5.0*A*d*d + A*d*d*d);
1164                                         else
1165                                                 coeff=0.0;
1166                                 }
1167 /*                              else if(flags & SWS_X)
1168                                 {
1169                                         double p= param ? param*0.01 : 0.3;
1170                                         coeff = d ? sin(d*PI)/(d*PI) : 1.0;
1171                                         coeff*= pow(2.0, - p*d*d);
1172                                 }*/
1173                                 else if(flags & SWS_X)
1174                                 {
1175                                         double A= param ? param*0.1 : 1.0;
1176                                         
1177                                         if(d<1.0)
1178                                                 coeff = cos(d*PI);
1179                                         else
1180                                                 coeff=-1.0;
1181                                         if(coeff<0.0)   coeff= -pow(-coeff, A);
1182                                         else            coeff=  pow( coeff, A);
1183                                         coeff= coeff*0.5 + 0.5;
1184                                 }
1185                                 else if(flags & SWS_AREA)
1186                                 {
1187                                         double srcPixelSize= 1.0/xInc1;
1188                                         if(d + srcPixelSize/2 < 0.5) coeff= 1.0;
1189                                         else if(d - srcPixelSize/2 < 0.5) coeff= (0.5-d)/srcPixelSize + 0.5;
1190                                         else coeff=0.0;
1191                                 }
1192                                 else if(flags & SWS_GAUSS)
1193                                 {
1194                                         double p= param ? param*0.1 : 3.0;
1195                                         coeff = pow(2.0, - p*d*d);
1196                                 }
1197                                 else if(flags & SWS_SINC)
1198                                 {
1199                                         coeff = d ? sin(d*PI)/(d*PI) : 1.0;
1200                                 }
1201                                 else if(flags & SWS_LANCZOS)
1202                                 {
1203                                         double p= param ? param : 3.0; 
1204                                         coeff = d ? sin(d*PI)*sin(d*PI/p)/(d*d*PI*PI/p) : 1.0;
1205                                         if(d>p) coeff=0;
1206                                 }
1207                                 else if(flags & SWS_BILINEAR)
1208                                 {
1209                                         coeff= 1.0 - d;
1210                                         if(coeff<0) coeff=0;
1211                                 }
1212                                 else if(flags & SWS_SPLINE)
1213                                 {
1214                                         double p=-2.196152422706632;
1215                                         coeff = getSplineCoeff(1.0, 0.0, p, -p-1.0, d);
1216                                 }
1217                                 else {
1218                                         coeff= 0.0; //GCC warning killer
1219                                         ASSERT(0)
1220                                 }
1221
1222                                 filter[i*filterSize + j]= coeff;
1223                                 xx++;
1224                         }
1225                         xDstInSrc+= xInc1;
1226                 }
1227         }
1228
1229         /* apply src & dst Filter to filter -> filter2
1230            free(filter);
1231         */
1232         ASSERT(filterSize>0)
1233         filter2Size= filterSize;
1234         if(srcFilter) filter2Size+= srcFilter->length - 1;
1235         if(dstFilter) filter2Size+= dstFilter->length - 1;
1236         ASSERT(filter2Size>0)
1237         filter2= (double*)memalign(8, filter2Size*dstW*sizeof(double));
1238
1239         for(i=0; i<dstW; i++)
1240         {
1241                 int j;
1242                 SwsVector scaleFilter;
1243                 SwsVector *outVec;
1244
1245                 scaleFilter.coeff= filter + i*filterSize;
1246                 scaleFilter.length= filterSize;
1247
1248                 if(srcFilter) outVec= sws_getConvVec(srcFilter, &scaleFilter);
1249                 else          outVec= &scaleFilter;
1250
1251                 ASSERT(outVec->length == filter2Size)
1252                 //FIXME dstFilter
1253
1254                 for(j=0; j<outVec->length; j++)
1255                 {
1256                         filter2[i*filter2Size + j]= outVec->coeff[j];
1257                 }
1258
1259                 (*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2;
1260
1261                 if(outVec != &scaleFilter) sws_freeVec(outVec);
1262         }
1263         free(filter); filter=NULL;
1264
1265         /* try to reduce the filter-size (step1 find size and shift left) */
1266         // Assume its near normalized (*0.5 or *2.0 is ok but * 0.001 is not)
1267         minFilterSize= 0;
1268         for(i=dstW-1; i>=0; i--)
1269         {
1270                 int min= filter2Size;
1271                 int j;
1272                 double cutOff=0.0;
1273
1274                 /* get rid off near zero elements on the left by shifting left */
1275                 for(j=0; j<filter2Size; j++)
1276                 {
1277                         int k;
1278                         cutOff += ABS(filter2[i*filter2Size]);
1279
1280                         if(cutOff > SWS_MAX_REDUCE_CUTOFF) break;
1281
1282                         /* preserve Monotonicity because the core cant handle the filter otherwise */
1283                         if(i<dstW-1 && (*filterPos)[i] >= (*filterPos)[i+1]) break;
1284
1285                         // Move filter coeffs left
1286                         for(k=1; k<filter2Size; k++)
1287                                 filter2[i*filter2Size + k - 1]= filter2[i*filter2Size + k];
1288                         filter2[i*filter2Size + k - 1]= 0.0;
1289                         (*filterPos)[i]++;
1290                 }
1291
1292                 cutOff=0.0;
1293                 /* count near zeros on the right */
1294                 for(j=filter2Size-1; j>0; j--)
1295                 {
1296                         cutOff += ABS(filter2[i*filter2Size + j]);
1297
1298                         if(cutOff > SWS_MAX_REDUCE_CUTOFF) break;
1299                         min--;
1300                 }
1301
1302                 if(min>minFilterSize) minFilterSize= min;
1303         }
1304
1305         ASSERT(minFilterSize > 0)
1306         filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1));
1307         ASSERT(filterSize > 0)
1308         filter= (double*)memalign(8, filterSize*dstW*sizeof(double));
1309         *outFilterSize= filterSize;
1310
1311         if(flags&SWS_PRINT_INFO)
1312                 MSG_INFO("SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize);
1313         /* try to reduce the filter-size (step2 reduce it) */
1314         for(i=0; i<dstW; i++)
1315         {
1316                 int j;
1317
1318                 for(j=0; j<filterSize; j++)
1319                 {
1320                         if(j>=filter2Size) filter[i*filterSize + j]= 0.0;
1321                         else               filter[i*filterSize + j]= filter2[i*filter2Size + j];
1322                 }
1323         }
1324         free(filter2); filter2=NULL;
1325         
1326
1327         //FIXME try to align filterpos if possible
1328
1329         //fix borders
1330         for(i=0; i<dstW; i++)
1331         {
1332                 int j;
1333                 if((*filterPos)[i] < 0)
1334                 {
1335                         // Move filter coeffs left to compensate for filterPos
1336                         for(j=1; j<filterSize; j++)
1337                         {
1338                                 int left= MAX(j + (*filterPos)[i], 0);
1339                                 filter[i*filterSize + left] += filter[i*filterSize + j];
1340                                 filter[i*filterSize + j]=0;
1341                         }
1342                         (*filterPos)[i]= 0;
1343                 }
1344
1345                 if((*filterPos)[i] + filterSize > srcW)
1346                 {
1347                         int shift= (*filterPos)[i] + filterSize - srcW;
1348                         // Move filter coeffs right to compensate for filterPos
1349                         for(j=filterSize-2; j>=0; j--)
1350                         {
1351                                 int right= MIN(j + shift, filterSize-1);
1352                                 filter[i*filterSize +right] += filter[i*filterSize +j];
1353                                 filter[i*filterSize +j]=0;
1354                         }
1355                         (*filterPos)[i]= srcW - filterSize;
1356                 }
1357         }
1358
1359         // Note the +1 is for the MMXscaler which reads over the end
1360         *outFilter= (int16_t*)memalign(8, *outFilterSize*(dstW+1)*sizeof(int16_t));
1361         memset(*outFilter, 0, *outFilterSize*(dstW+1)*sizeof(int16_t));
1362
1363         /* Normalize & Store in outFilter */
1364         for(i=0; i<dstW; i++)
1365         {
1366                 int j;
1367                 double sum=0;
1368                 double scale= one;
1369                 for(j=0; j<filterSize; j++)
1370                 {
1371                         sum+= filter[i*filterSize + j];
1372                 }
1373                 scale/= sum;
1374                 for(j=0; j<*outFilterSize; j++)
1375                 {
1376                         (*outFilter)[i*(*outFilterSize) + j]= (int)(filter[i*filterSize + j]*scale);
1377                 }
1378         }
1379         
1380         (*filterPos)[dstW]= (*filterPos)[dstW-1]; // the MMX scaler will read over the end
1381         for(i=0; i<*outFilterSize; i++)
1382         {
1383                 int j= dstW*(*outFilterSize);
1384                 (*outFilter)[j + i]= (*outFilter)[j + i - (*outFilterSize)];
1385         }
1386
1387         free(filter);
1388 }
1389
1390 #ifdef ARCH_X86
1391 static void initMMX2HScaler(int dstW, int xInc, uint8_t *funnyCode, int16_t *filter, int32_t *filterPos, int numSplits)
1392 {
1393         uint8_t *fragmentA;
1394         int imm8OfPShufW1A;
1395         int imm8OfPShufW2A;
1396         int fragmentLengthA;
1397         uint8_t *fragmentB;
1398         int imm8OfPShufW1B;
1399         int imm8OfPShufW2B;
1400         int fragmentLengthB;
1401         int fragmentPos;
1402
1403         int xpos, i;
1404
1405         // create an optimized horizontal scaling routine
1406
1407         //code fragment
1408
1409         asm volatile(
1410                 "jmp 9f                         \n\t"
1411         // Begin
1412                 "0:                             \n\t"
1413                 "movq (%%edx, %%eax), %%mm3     \n\t" 
1414                 "movd (%%ecx, %%esi), %%mm0     \n\t" 
1415                 "movd 1(%%ecx, %%esi), %%mm1    \n\t"
1416                 "punpcklbw %%mm7, %%mm1         \n\t"
1417                 "punpcklbw %%mm7, %%mm0         \n\t"
1418                 "pshufw $0xFF, %%mm1, %%mm1     \n\t"
1419                 "1:                             \n\t"
1420                 "pshufw $0xFF, %%mm0, %%mm0     \n\t"
1421                 "2:                             \n\t"
1422                 "psubw %%mm1, %%mm0             \n\t"
1423                 "movl 8(%%ebx, %%eax), %%esi    \n\t"
1424                 "pmullw %%mm3, %%mm0            \n\t"
1425                 "psllw $7, %%mm1                \n\t"
1426                 "paddw %%mm1, %%mm0             \n\t"
1427
1428                 "movq %%mm0, (%%edi, %%eax)     \n\t"
1429
1430                 "addl $8, %%eax                 \n\t"
1431         // End
1432                 "9:                             \n\t"
1433 //              "int $3\n\t"
1434                 "leal 0b, %0                    \n\t"
1435                 "leal 1b, %1                    \n\t"
1436                 "leal 2b, %2                    \n\t"
1437                 "decl %1                        \n\t"
1438                 "decl %2                        \n\t"
1439                 "subl %0, %1                    \n\t"
1440                 "subl %0, %2                    \n\t"
1441                 "leal 9b, %3                    \n\t"
1442                 "subl %0, %3                    \n\t"
1443
1444
1445                 :"=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
1446                 "=r" (fragmentLengthA)
1447         );
1448
1449         asm volatile(
1450                 "jmp 9f                         \n\t"
1451         // Begin
1452                 "0:                             \n\t"
1453                 "movq (%%edx, %%eax), %%mm3     \n\t" 
1454                 "movd (%%ecx, %%esi), %%mm0     \n\t" 
1455                 "punpcklbw %%mm7, %%mm0         \n\t"
1456                 "pshufw $0xFF, %%mm0, %%mm1     \n\t"
1457                 "1:                             \n\t"
1458                 "pshufw $0xFF, %%mm0, %%mm0     \n\t"
1459                 "2:                             \n\t"
1460                 "psubw %%mm1, %%mm0             \n\t"
1461                 "movl 8(%%ebx, %%eax), %%esi    \n\t"
1462                 "pmullw %%mm3, %%mm0            \n\t"
1463                 "psllw $7, %%mm1                \n\t"
1464                 "paddw %%mm1, %%mm0             \n\t"
1465
1466                 "movq %%mm0, (%%edi, %%eax)     \n\t"
1467
1468                 "addl $8, %%eax                 \n\t"
1469         // End
1470                 "9:                             \n\t"
1471 //              "int $3\n\t"
1472                 "leal 0b, %0                    \n\t"
1473                 "leal 1b, %1                    \n\t"
1474                 "leal 2b, %2                    \n\t"
1475                 "decl %1                        \n\t"
1476                 "decl %2                        \n\t"
1477                 "subl %0, %1                    \n\t"
1478                 "subl %0, %2                    \n\t"
1479                 "leal 9b, %3                    \n\t"
1480                 "subl %0, %3                    \n\t"
1481
1482
1483                 :"=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
1484                 "=r" (fragmentLengthB)
1485         );
1486
1487         xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
1488         fragmentPos=0;
1489         
1490         for(i=0; i<dstW/numSplits; i++)
1491         {
1492                 int xx=xpos>>16;
1493
1494                 if((i&3) == 0)
1495                 {
1496                         int a=0;
1497                         int b=((xpos+xInc)>>16) - xx;
1498                         int c=((xpos+xInc*2)>>16) - xx;
1499                         int d=((xpos+xInc*3)>>16) - xx;
1500
1501                         filter[i  ] = (( xpos         & 0xFFFF) ^ 0xFFFF)>>9;
1502                         filter[i+1] = (((xpos+xInc  ) & 0xFFFF) ^ 0xFFFF)>>9;
1503                         filter[i+2] = (((xpos+xInc*2) & 0xFFFF) ^ 0xFFFF)>>9;
1504                         filter[i+3] = (((xpos+xInc*3) & 0xFFFF) ^ 0xFFFF)>>9;
1505                         filterPos[i/2]= xx;
1506
1507                         if(d+1<4)
1508                         {
1509                                 int maxShift= 3-(d+1);
1510                                 int shift=0;
1511
1512                                 memcpy(funnyCode + fragmentPos, fragmentB, fragmentLengthB);
1513
1514                                 funnyCode[fragmentPos + imm8OfPShufW1B]=
1515                                         (a+1) | ((b+1)<<2) | ((c+1)<<4) | ((d+1)<<6);
1516                                 funnyCode[fragmentPos + imm8OfPShufW2B]=
1517                                         a | (b<<2) | (c<<4) | (d<<6);
1518
1519                                 if(i+3>=dstW) shift=maxShift; //avoid overread
1520                                 else if((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //Align
1521
1522                                 if(shift && i>=shift)
1523                                 {
1524                                         funnyCode[fragmentPos + imm8OfPShufW1B]+= 0x55*shift;
1525                                         funnyCode[fragmentPos + imm8OfPShufW2B]+= 0x55*shift;
1526                                         filterPos[i/2]-=shift;
1527                                 }
1528
1529                                 fragmentPos+= fragmentLengthB;
1530                         }
1531                         else
1532                         {
1533                                 int maxShift= 3-d;
1534                                 int shift=0;
1535
1536                                 memcpy(funnyCode + fragmentPos, fragmentA, fragmentLengthA);
1537
1538                                 funnyCode[fragmentPos + imm8OfPShufW1A]=
1539                                 funnyCode[fragmentPos + imm8OfPShufW2A]=
1540                                         a | (b<<2) | (c<<4) | (d<<6);
1541
1542                                 if(i+4>=dstW) shift=maxShift; //avoid overread
1543                                 else if((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //partial align
1544
1545                                 if(shift && i>=shift)
1546                                 {
1547                                         funnyCode[fragmentPos + imm8OfPShufW1A]+= 0x55*shift;
1548                                         funnyCode[fragmentPos + imm8OfPShufW2A]+= 0x55*shift;
1549                                         filterPos[i/2]-=shift;
1550                                 }
1551
1552                                 fragmentPos+= fragmentLengthA;
1553                         }
1554
1555                         funnyCode[fragmentPos]= RET;
1556                 }
1557                 xpos+=xInc;
1558         }
1559         filterPos[i/2]= xpos>>16; // needed to jump to the next part
1560 }
1561 #endif // ARCH_X86
1562
1563 //FIXME remove
1564 void SwScale_Init(){
1565 }
1566
1567 static void globalInit(){
1568     // generating tables:
1569     int i;
1570     for(i=0; i<768; i++){
1571         int c= MIN(MAX(i-256, 0), 255);
1572         clip_table[i]=c;
1573     }
1574
1575 cpuCaps= gCpuCaps;
1576
1577 #ifdef RUNTIME_CPUDETECT
1578 #ifdef CAN_COMPILE_X86_ASM
1579         // ordered per speed fasterst first
1580         if(gCpuCaps.hasMMX2)
1581                 swScale= swScale_MMX2;
1582         else if(gCpuCaps.has3DNow)
1583                 swScale= swScale_3DNow;
1584         else if(gCpuCaps.hasMMX)
1585                 swScale= swScale_MMX;
1586         else
1587                 swScale= swScale_C;
1588
1589 #else
1590         swScale= swScale_C;
1591         cpuCaps.hasMMX2 = cpuCaps.hasMMX = cpuCaps.has3DNow = 0;
1592 #endif
1593 #else //RUNTIME_CPUDETECT
1594 #ifdef HAVE_MMX2
1595         swScale= swScale_MMX2;
1596         cpuCaps.has3DNow = 0;
1597 #elif defined (HAVE_3DNOW)
1598         swScale= swScale_3DNow;
1599         cpuCaps.hasMMX2 = 0;
1600 #elif defined (HAVE_MMX)
1601         swScale= swScale_MMX;
1602         cpuCaps.hasMMX2 = cpuCaps.has3DNow = 0;
1603 #else
1604         swScale= swScale_C;
1605         cpuCaps.hasMMX2 = cpuCaps.hasMMX = cpuCaps.has3DNow = 0;
1606 #endif
1607 #endif //!RUNTIME_CPUDETECT
1608 }
1609
1610 static int PlanarToNV12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1611              int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1612         uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1613         /* Copy Y plane */
1614         if(dstStride[0]==srcStride[0])
1615                 memcpy(dst, src[0], srcSliceH*dstStride[0]);
1616         else
1617         {
1618                 int i;
1619                 uint8_t *srcPtr= src[0];
1620                 uint8_t *dstPtr= dst;
1621                 for(i=0; i<srcSliceH; i++)
1622                 {
1623                         memcpy(dstPtr, srcPtr, srcStride[0]);
1624                         srcPtr+= srcStride[0];
1625                         dstPtr+= dstStride[0];
1626                 }
1627         }
1628         dst = dstParam[1] + dstStride[1]*srcSliceY;
1629         interleaveBytes( src[1],src[2],dst,c->srcW,srcSliceH,srcStride[1],srcStride[2],dstStride[0] );
1630
1631         return srcSliceH;
1632 }
1633
1634 static int PlanarToYuy2Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1635              int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1636         uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1637
1638         yv12toyuy2( src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0] );
1639
1640         return srcSliceH;
1641 }
1642
1643 /* {RGB,BGR}{15,16,24,32} -> {RGB,BGR}{15,16,24,32} */
1644 static int rgb2rgbWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1645                            int srcSliceH, uint8_t* dst[], int dstStride[]){
1646         const int srcFormat= c->srcFormat;
1647         const int dstFormat= c->dstFormat;
1648         const int srcBpp= ((srcFormat&0xFF) + 7)>>3;
1649         const int dstBpp= ((dstFormat&0xFF) + 7)>>3;
1650         const int srcId= (srcFormat&0xFF)>>2; // 1:0, 4:1, 8:2, 15:3, 16:4, 24:6, 32:8 
1651         const int dstId= (dstFormat&0xFF)>>2;
1652         void (*conv)(const uint8_t *src, uint8_t *dst, unsigned src_size)=NULL;
1653
1654         /* BGR -> BGR */
1655         if(   (isBGR(srcFormat) && isBGR(dstFormat))
1656            || (isRGB(srcFormat) && isRGB(dstFormat))){
1657                 switch(srcId | (dstId<<4)){
1658                 case 0x34: conv= rgb16to15; break;
1659                 case 0x36: conv= rgb24to15; break;
1660                 case 0x38: conv= rgb32to15; break;
1661                 case 0x43: conv= rgb15to16; break;
1662                 case 0x46: conv= rgb24to16; break;
1663                 case 0x48: conv= rgb32to16; break;
1664                 case 0x63: conv= rgb15to24; break;
1665                 case 0x64: conv= rgb16to24; break;
1666                 case 0x68: conv= rgb32to24; break;
1667                 case 0x83: conv= rgb15to32; break;
1668                 case 0x84: conv= rgb16to32; break;
1669                 case 0x86: conv= rgb24to32; break;
1670                 default: MSG_ERR("swScaler: internal error %s -> %s converter\n", 
1671                                  vo_format_name(srcFormat), vo_format_name(dstFormat)); break;
1672                 }
1673         }else if(   (isBGR(srcFormat) && isRGB(dstFormat))
1674                  || (isRGB(srcFormat) && isBGR(dstFormat))){
1675                 switch(srcId | (dstId<<4)){
1676                 case 0x33: conv= rgb15tobgr15; break;
1677                 case 0x34: conv= rgb16tobgr15; break;
1678                 case 0x36: conv= rgb24tobgr15; break;
1679                 case 0x38: conv= rgb32tobgr15; break;
1680                 case 0x43: conv= rgb15tobgr16; break;
1681                 case 0x44: conv= rgb16tobgr16; break;
1682                 case 0x46: conv= rgb24tobgr16; break;
1683                 case 0x48: conv= rgb32tobgr16; break;
1684                 case 0x63: conv= rgb15tobgr24; break;
1685                 case 0x64: conv= rgb16tobgr24; break;
1686                 case 0x66: conv= rgb24tobgr24; break;
1687                 case 0x68: conv= rgb32tobgr24; break;
1688                 case 0x83: conv= rgb15tobgr32; break;
1689                 case 0x84: conv= rgb16tobgr32; break;
1690                 case 0x86: conv= rgb24tobgr32; break;
1691                 case 0x88: conv= rgb32tobgr32; break;
1692                 default: MSG_ERR("swScaler: internal error %s -> %s converter\n", 
1693                                  vo_format_name(srcFormat), vo_format_name(dstFormat)); break;
1694                 }
1695         }else{
1696                 MSG_ERR("swScaler: internal error %s -> %s converter\n", 
1697                          vo_format_name(srcFormat), vo_format_name(dstFormat));
1698         }
1699
1700         if(dstStride[0]*srcBpp == srcStride[0]*dstBpp)
1701                 conv(src[0], dst[0] + dstStride[0]*srcSliceY, srcSliceH*srcStride[0]);
1702         else
1703         {
1704                 int i;
1705                 uint8_t *srcPtr= src[0];
1706                 uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1707
1708                 for(i=0; i<srcSliceH; i++)
1709                 {
1710                         conv(srcPtr, dstPtr, c->srcW*srcBpp);
1711                         srcPtr+= srcStride[0];
1712                         dstPtr+= dstStride[0];
1713                 }
1714         }     
1715         return srcSliceH;
1716 }
1717
1718 static int bgr24toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1719              int srcSliceH, uint8_t* dst[], int dstStride[]){
1720
1721         rgb24toyv12(
1722                 src[0], 
1723                 dst[0]+ srcSliceY    *dstStride[0], 
1724                 dst[1]+(srcSliceY>>1)*dstStride[1], 
1725                 dst[2]+(srcSliceY>>1)*dstStride[2],
1726                 c->srcW, srcSliceH, 
1727                 dstStride[0], dstStride[1], srcStride[0]);
1728         return srcSliceH;
1729 }
1730
1731 static int yvu9toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1732              int srcSliceH, uint8_t* dst[], int dstStride[]){
1733         int i;
1734
1735         /* copy Y */
1736         if(srcStride[0]==dstStride[0]) 
1737                 memcpy(dst[0]+ srcSliceY*dstStride[0], src[0], srcStride[0]*srcSliceH);
1738         else{
1739                 uint8_t *srcPtr= src[0];
1740                 uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1741
1742                 for(i=0; i<srcSliceH; i++)
1743                 {
1744                         memcpy(dstPtr, srcPtr, c->srcW);
1745                         srcPtr+= srcStride[0];
1746                         dstPtr+= dstStride[0];
1747                 }
1748         }
1749
1750         if(c->dstFormat==IMGFMT_YV12){
1751                 planar2x(src[1], dst[1], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[1]);
1752                 planar2x(src[2], dst[2], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[2]);
1753         }else{
1754                 planar2x(src[1], dst[2], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[2]);
1755                 planar2x(src[2], dst[1], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[1]);
1756         }
1757         return srcSliceH;
1758 }
1759
1760 /**
1761  * bring pointers in YUV order instead of YVU
1762  */
1763 static inline void sws_orderYUV(int format, uint8_t * sortedP[], int sortedStride[], uint8_t * p[], int stride[]){
1764         if(format == IMGFMT_YV12 || format == IMGFMT_YVU9
1765            || format == IMGFMT_444P || format == IMGFMT_422P || format == IMGFMT_411P){
1766                 sortedP[0]= p[0];
1767                 sortedP[1]= p[2];
1768                 sortedP[2]= p[1];
1769                 sortedStride[0]= stride[0];
1770                 sortedStride[1]= stride[2];
1771                 sortedStride[2]= stride[1];
1772         }
1773         else if(isPacked(format) || isGray(format))
1774         {
1775                 sortedP[0]= p[0];
1776                 sortedP[1]= 
1777                 sortedP[2]= NULL;
1778                 sortedStride[0]= stride[0];
1779                 sortedStride[1]= 
1780                 sortedStride[2]= 0;
1781         }
1782         else if(format == IMGFMT_I420 || format == IMGFMT_IYUV)
1783         {
1784                 sortedP[0]= p[0];
1785                 sortedP[1]= p[1];
1786                 sortedP[2]= p[2];
1787                 sortedStride[0]= stride[0];
1788                 sortedStride[1]= stride[1];
1789                 sortedStride[2]= stride[2];
1790         }else{
1791                 MSG_ERR("internal error in orderYUV\n");
1792         }
1793 }
1794
1795 /* unscaled copy like stuff (assumes nearly identical formats) */
1796 static int simpleCopy(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1797              int srcSliceH, uint8_t* dst[], int dstStride[]){
1798
1799         if(isPacked(c->srcFormat))
1800         {
1801                 if(dstStride[0]==srcStride[0])
1802                         memcpy(dst[0] + dstStride[0]*srcSliceY, src[0], srcSliceH*dstStride[0]);
1803                 else
1804                 {
1805                         int i;
1806                         uint8_t *srcPtr= src[0];
1807                         uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1808                         int length=0;
1809
1810                         /* universal length finder */
1811                         while(length+c->srcW <= ABS(dstStride[0]) 
1812                            && length+c->srcW <= ABS(srcStride[0])) length+= c->srcW;
1813                         ASSERT(length!=0);
1814
1815                         for(i=0; i<srcSliceH; i++)
1816                         {
1817                                 memcpy(dstPtr, srcPtr, length);
1818                                 srcPtr+= srcStride[0];
1819                                 dstPtr+= dstStride[0];
1820                         }
1821                 }
1822         }
1823         else 
1824         { /* Planar YUV or gray */
1825                 int plane;
1826                 for(plane=0; plane<3; plane++)
1827                 {
1828                         int length= plane==0 ? c->srcW  : -((-c->srcW  )>>c->chrDstHSubSample);
1829                         int y=      plane==0 ? srcSliceY: -((-srcSliceY)>>c->chrDstVSubSample);
1830                         int height= plane==0 ? srcSliceH: -((-srcSliceH)>>c->chrDstVSubSample);
1831
1832                         if((isGray(c->srcFormat) || isGray(c->dstFormat)) && plane>0)
1833                         {
1834                                 if(!isGray(c->dstFormat))
1835                                         memset(dst[plane], 128, dstStride[plane]*height);
1836                         }
1837                         else
1838                         {
1839                                 if(dstStride[plane]==srcStride[plane])
1840                                         memcpy(dst[plane] + dstStride[plane]*y, src[plane], height*dstStride[plane]);
1841                                 else
1842                                 {
1843                                         int i;
1844                                         uint8_t *srcPtr= src[plane];
1845                                         uint8_t *dstPtr= dst[plane] + dstStride[plane]*y;
1846                                         for(i=0; i<height; i++)
1847                                         {
1848                                                 memcpy(dstPtr, srcPtr, length);
1849                                                 srcPtr+= srcStride[plane];
1850                                                 dstPtr+= dstStride[plane];
1851                                         }
1852                                 }
1853                         }
1854                 }
1855         }
1856         return srcSliceH;
1857 }
1858
1859 static int remove_dup_fourcc(int fourcc)
1860 {
1861         switch(fourcc)
1862         {
1863             case IMGFMT_I420:
1864             case IMGFMT_IYUV: return IMGFMT_YV12;
1865             case IMGFMT_Y8  : return IMGFMT_Y800;
1866             case IMGFMT_IF09: return IMGFMT_YVU9;
1867             default: return fourcc;
1868         }
1869 }
1870
1871 static void getSubSampleFactors(int *h, int *v, int format){
1872         switch(format){
1873         case IMGFMT_UYVY:
1874         case IMGFMT_YUY2:
1875                 *h=1;
1876                 *v=0;
1877                 break;
1878         case IMGFMT_YV12:
1879         case IMGFMT_Y800: //FIXME remove after different subsamplings are fully implemented
1880                 *h=1;
1881                 *v=1;
1882                 break;
1883         case IMGFMT_YVU9:
1884                 *h=2;
1885                 *v=2;
1886                 break;
1887         case IMGFMT_444P:
1888                 *h=0;
1889                 *v=0;
1890                 break;
1891         case IMGFMT_422P:
1892                 *h=1;
1893                 *v=0;
1894                 break;
1895         case IMGFMT_411P:
1896                 *h=2;
1897                 *v=0;
1898                 break;
1899         default:
1900                 *h=0;
1901                 *v=0;
1902                 break;
1903         }
1904 }
1905
1906 static uint16_t roundToInt16(int64_t f){
1907         int r= (f + (1<<15))>>16;
1908              if(r<-0x7FFF) return 0x8000;
1909         else if(r> 0x7FFF) return 0x7FFF;
1910         else               return r;
1911 }
1912
1913 /**
1914  * @param inv_table the yuv2rgb coeffs, normally Inverse_Table_6_9[x]
1915  * @param fullRange if 1 then the luma range is 0..255 if 0 its 16..235
1916  * @return -1 if not supported
1917  */
1918 int sws_setColorspaceDetails(SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation){
1919         int64_t crv =  inv_table[0];
1920         int64_t cbu =  inv_table[1];
1921         int64_t cgu = -inv_table[2];
1922         int64_t cgv = -inv_table[3];
1923         int64_t cy  = 1<<16;
1924         int64_t oy  = 0;
1925
1926         if(isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
1927         memcpy(c->srcColorspaceTable, inv_table, sizeof(int)*4);
1928         memcpy(c->dstColorspaceTable,     table, sizeof(int)*4);
1929
1930         c->brightness= brightness;
1931         c->contrast  = contrast;
1932         c->saturation= saturation;
1933         c->srcRange  = srcRange;
1934         c->dstRange  = dstRange;
1935
1936         c->uOffset=   0x0400040004000400LL;
1937         c->vOffset=   0x0400040004000400LL;
1938
1939         if(!srcRange){
1940                 cy= (cy*255) / 219;
1941                 oy= 16<<16;
1942         }
1943
1944         cy = (cy *contrast             )>>16;
1945         crv= (crv*contrast * saturation)>>32;
1946         cbu= (cbu*contrast * saturation)>>32;
1947         cgu= (cgu*contrast * saturation)>>32;
1948         cgv= (cgv*contrast * saturation)>>32;
1949
1950         oy -= 256*brightness;
1951
1952         c->yCoeff=    roundToInt16(cy *8192) * 0x0001000100010001ULL;
1953         c->vrCoeff=   roundToInt16(crv*8192) * 0x0001000100010001ULL;
1954         c->ubCoeff=   roundToInt16(cbu*8192) * 0x0001000100010001ULL;
1955         c->vgCoeff=   roundToInt16(cgv*8192) * 0x0001000100010001ULL;
1956         c->ugCoeff=   roundToInt16(cgu*8192) * 0x0001000100010001ULL;
1957         c->yOffset=   roundToInt16(oy *   8) * 0x0001000100010001ULL;
1958
1959         yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness, contrast, saturation);
1960         //FIXME factorize
1961         
1962         return 0;
1963 }
1964
1965 /**
1966  * @return -1 if not supported
1967  */
1968 int sws_getColorspaceDetails(SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation){
1969         if(isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
1970
1971         *inv_table = c->srcColorspaceTable;
1972         *table     = c->dstColorspaceTable;
1973         *srcRange  = c->srcRange;
1974         *dstRange  = c->dstRange;
1975         *brightness= c->brightness;
1976         *contrast  = c->contrast;
1977         *saturation= c->saturation;
1978         
1979         return 0;       
1980 }
1981
1982 SwsContext *sws_getContext(int srcW, int srcH, int origSrcFormat, int dstW, int dstH, int origDstFormat, int flags,
1983                          SwsFilter *srcFilter, SwsFilter *dstFilter){
1984
1985         SwsContext *c;
1986         int i;
1987         int usesFilter;
1988         int unscaled, needsDither;
1989         int srcFormat, dstFormat;
1990         SwsFilter dummyFilter= {NULL, NULL, NULL, NULL};
1991 #ifdef ARCH_X86
1992         if(gCpuCaps.hasMMX)
1993                 asm volatile("emms\n\t"::: "memory");
1994 #endif
1995         if(swScale==NULL) globalInit();
1996
1997         /* avoid dupplicate Formats, so we dont need to check to much */
1998         srcFormat = remove_dup_fourcc(origSrcFormat);
1999         dstFormat = remove_dup_fourcc(origDstFormat);
2000
2001         unscaled = (srcW == dstW && srcH == dstH);
2002         needsDither= (isBGR(dstFormat) || isRGB(dstFormat)) 
2003                      && (dstFormat&0xFF)<24
2004                      && ((dstFormat&0xFF)<(srcFormat&0xFF) || (!(isRGB(srcFormat) || isBGR(srcFormat))));
2005
2006         if(!isSupportedIn(srcFormat)) 
2007         {
2008                 MSG_ERR("swScaler: %s is not supported as input format\n", vo_format_name(srcFormat));
2009                 return NULL;
2010         }
2011         if(!isSupportedOut(dstFormat))
2012         {
2013                 MSG_ERR("swScaler: %s is not supported as output format\n", vo_format_name(dstFormat));
2014                 return NULL;
2015         }
2016
2017         /* sanity check */
2018         if(srcW<4 || srcH<1 || dstW<8 || dstH<1) //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code
2019         {
2020                  MSG_ERR("swScaler: %dx%d -> %dx%d is invalid scaling dimension\n", 
2021                         srcW, srcH, dstW, dstH);
2022                 return NULL;
2023         }
2024
2025         if(!dstFilter) dstFilter= &dummyFilter;
2026         if(!srcFilter) srcFilter= &dummyFilter;
2027
2028         c= memalign(64, sizeof(SwsContext));
2029         memset(c, 0, sizeof(SwsContext));
2030
2031         c->srcW= srcW;
2032         c->srcH= srcH;
2033         c->dstW= dstW;
2034         c->dstH= dstH;
2035         c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW;
2036         c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH;
2037         c->flags= flags;
2038         c->dstFormat= dstFormat;
2039         c->srcFormat= srcFormat;
2040         c->origDstFormat= origDstFormat;
2041         c->origSrcFormat= origSrcFormat;
2042
2043         usesFilter=0;
2044         if(dstFilter->lumV!=NULL && dstFilter->lumV->length>1) usesFilter=1;
2045         if(dstFilter->lumH!=NULL && dstFilter->lumH->length>1) usesFilter=1;
2046         if(dstFilter->chrV!=NULL && dstFilter->chrV->length>1) usesFilter=1;
2047         if(dstFilter->chrH!=NULL && dstFilter->chrH->length>1) usesFilter=1;
2048         if(srcFilter->lumV!=NULL && srcFilter->lumV->length>1) usesFilter=1;
2049         if(srcFilter->lumH!=NULL && srcFilter->lumH->length>1) usesFilter=1;
2050         if(srcFilter->chrV!=NULL && srcFilter->chrV->length>1) usesFilter=1;
2051         if(srcFilter->chrH!=NULL && srcFilter->chrH->length>1) usesFilter=1;
2052
2053         getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
2054         getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
2055
2056         // reuse chroma for 2 pixles rgb/bgr unless user wants full chroma interpolation
2057         if((isBGR(dstFormat) || isRGB(dstFormat)) && !(flags&SWS_FULL_CHR_H_INT)) c->chrDstHSubSample=1;
2058
2059         // drop some chroma lines if the user wants it
2060         c->vChrDrop= (flags&SWS_SRC_V_CHR_DROP_MASK)>>SWS_SRC_V_CHR_DROP_SHIFT;
2061         c->chrSrcVSubSample+= c->vChrDrop;
2062
2063         // drop every 2. pixel for chroma calculation unless user wants full chroma
2064         if((isBGR(srcFormat) || isRGB(srcFormat)) && !(flags&SWS_FULL_CHR_H_INP)) 
2065                 c->chrSrcHSubSample=1;
2066
2067         c->chrIntHSubSample= c->chrDstHSubSample;
2068         c->chrIntVSubSample= c->chrSrcVSubSample;
2069
2070         // note the -((-x)>>y) is so that we allways round toward +inf
2071         c->chrSrcW= -((-srcW) >> c->chrSrcHSubSample);
2072         c->chrSrcH= -((-srcH) >> c->chrSrcVSubSample);
2073         c->chrDstW= -((-dstW) >> c->chrDstHSubSample);
2074         c->chrDstH= -((-dstH) >> c->chrDstVSubSample);
2075
2076         sws_setColorspaceDetails(c, Inverse_Table_6_9[SWS_CS_DEFAULT], 0, Inverse_Table_6_9[SWS_CS_DEFAULT] /* FIXME*/, 0, 0, 1<<16, 1<<16); 
2077
2078         /* unscaled special Cases */
2079         if(unscaled && !usesFilter)
2080         {
2081                 /* yv12_to_nv12 */
2082                 if(srcFormat == IMGFMT_YV12 && dstFormat == IMGFMT_NV12)
2083                 {
2084                         c->swScale= PlanarToNV12Wrapper;
2085                 }
2086                 /* yuv2bgr */
2087                 if((srcFormat==IMGFMT_YV12 || srcFormat==IMGFMT_422P) && (isBGR(dstFormat) || isRGB(dstFormat)))
2088                 {
2089                         c->swScale= yuv2rgb_get_func_ptr(c);
2090                 }
2091                 
2092                 if( srcFormat==IMGFMT_YVU9 && dstFormat==IMGFMT_YV12 )
2093                 {
2094                         c->swScale= yvu9toyv12Wrapper;
2095                 }
2096
2097                 /* bgr24toYV12 */
2098                 if(srcFormat==IMGFMT_BGR24 && dstFormat==IMGFMT_YV12)
2099                         c->swScale= bgr24toyv12Wrapper;
2100                 
2101                 /* rgb/bgr -> rgb/bgr (no dither needed forms) */
2102                 if(   (isBGR(srcFormat) || isRGB(srcFormat))
2103                    && (isBGR(dstFormat) || isRGB(dstFormat)) 
2104                    && !needsDither)
2105                         c->swScale= rgb2rgbWrapper;
2106
2107                 /* LQ converters if -sws 0 or -sws 4*/
2108                 if(c->flags&(SWS_FAST_BILINEAR|SWS_POINT)){
2109                         /* rgb/bgr -> rgb/bgr (dither needed forms) */
2110                         if(  (isBGR(srcFormat) || isRGB(srcFormat))
2111                           && (isBGR(dstFormat) || isRGB(dstFormat)) 
2112                           && needsDither)
2113                                 c->swScale= rgb2rgbWrapper;
2114
2115                         /* yv12_to_yuy2 */
2116                         if(srcFormat == IMGFMT_YV12 && dstFormat == IMGFMT_YUY2)
2117                         {
2118                                 c->swScale= PlanarToYuy2Wrapper;
2119                         }
2120                 }
2121
2122                 /* simple copy */
2123                 if(   srcFormat == dstFormat
2124                    || (isPlanarYUV(srcFormat) && isGray(dstFormat))
2125                    || (isPlanarYUV(dstFormat) && isGray(srcFormat))
2126                   )
2127                 {
2128                         c->swScale= simpleCopy;
2129                 }
2130
2131                 if(c->swScale){
2132                         if(flags&SWS_PRINT_INFO)
2133                                 MSG_INFO("SwScaler: using unscaled %s -> %s special converter\n", 
2134                                         vo_format_name(srcFormat), vo_format_name(dstFormat));
2135                         return c;
2136                 }
2137         }
2138
2139         if(cpuCaps.hasMMX2)
2140         {
2141                 c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0;
2142                 if(!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR))
2143                 {
2144                         if(flags&SWS_PRINT_INFO)
2145                                 MSG_INFO("SwScaler: output Width is not a multiple of 32 -> no MMX2 scaler\n");
2146                 }
2147         }
2148         else
2149                 c->canMMX2BeUsed=0;
2150
2151         c->chrXInc= ((c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW;
2152         c->chrYInc= ((c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH;
2153
2154         // match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
2155         // but only for the FAST_BILINEAR mode otherwise do correct scaling
2156         // n-2 is the last chrominance sample available
2157         // this is not perfect, but noone shuld notice the difference, the more correct variant
2158         // would be like the vertical one, but that would require some special code for the
2159         // first and last pixel
2160         if(flags&SWS_FAST_BILINEAR)
2161         {
2162                 if(c->canMMX2BeUsed)
2163                 {
2164                         c->lumXInc+= 20;
2165                         c->chrXInc+= 20;
2166                 }
2167                 //we dont use the x86asm scaler if mmx is available
2168                 else if(cpuCaps.hasMMX)
2169                 {
2170                         c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20;
2171                         c->chrXInc = ((c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20;
2172                 }
2173         }
2174
2175         /* precalculate horizontal scaler filter coefficients */
2176         {
2177                 const int filterAlign= cpuCaps.hasMMX ? 4 : 1;
2178
2179                 initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc,
2180                                  srcW      ,       dstW, filterAlign, 1<<14,
2181                                  (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC)  : flags,
2182                                  srcFilter->lumH, dstFilter->lumH);
2183                 initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc,
2184                                  c->chrSrcW, c->chrDstW, filterAlign, 1<<14,
2185                                  (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
2186                                  srcFilter->chrH, dstFilter->chrH);
2187
2188 #ifdef ARCH_X86
2189 // cant downscale !!!
2190                 if(c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR))
2191                 {
2192                         c->lumMmx2Filter   = (int16_t*)memalign(8, (dstW        /8+8)*sizeof(int16_t));
2193                         c->chrMmx2Filter   = (int16_t*)memalign(8, (c->chrDstW  /4+8)*sizeof(int16_t));
2194                         c->lumMmx2FilterPos= (int32_t*)memalign(8, (dstW      /2/8+8)*sizeof(int32_t));
2195                         c->chrMmx2FilterPos= (int32_t*)memalign(8, (c->chrDstW/2/4+8)*sizeof(int32_t));
2196
2197                         initMMX2HScaler(      dstW, c->lumXInc, c->funnyYCode , c->lumMmx2Filter, c->lumMmx2FilterPos, 8);
2198                         initMMX2HScaler(c->chrDstW, c->chrXInc, c->funnyUVCode, c->chrMmx2Filter, c->chrMmx2FilterPos, 4);
2199                 }
2200 #endif
2201         } // Init Horizontal stuff
2202
2203
2204
2205         /* precalculate vertical scaler filter coefficients */
2206         initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc,
2207                         srcH      ,        dstH, 1, (1<<12)-4,
2208                         (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC)  : flags,
2209                         srcFilter->lumV, dstFilter->lumV);
2210         initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc,
2211                         c->chrSrcH, c->chrDstH, 1, (1<<12)-4,
2212                         (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
2213                         srcFilter->chrV, dstFilter->chrV);
2214
2215         // Calculate Buffer Sizes so that they wont run out while handling these damn slices
2216         c->vLumBufSize= c->vLumFilterSize;
2217         c->vChrBufSize= c->vChrFilterSize;
2218         for(i=0; i<dstH; i++)
2219         {
2220                 int chrI= i*c->chrDstH / dstH;
2221                 int nextSlice= MAX(c->vLumFilterPos[i   ] + c->vLumFilterSize - 1,
2222                                  ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<<c->chrSrcVSubSample));
2223                 nextSlice&= ~3; // Slices start at boundaries which are divisable through 4
2224                 if(c->vLumFilterPos[i   ] + c->vLumBufSize < nextSlice)
2225                         c->vLumBufSize= nextSlice - c->vLumFilterPos[i   ];
2226                 if(c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>c->chrSrcVSubSample))
2227                         c->vChrBufSize= (nextSlice>>c->chrSrcVSubSample) - c->vChrFilterPos[chrI];
2228         }
2229
2230         // allocate pixbufs (we use dynamic allocation because otherwise we would need to
2231         c->lumPixBuf= (int16_t**)memalign(4, c->vLumBufSize*2*sizeof(int16_t*));
2232         c->chrPixBuf= (int16_t**)memalign(4, c->vChrBufSize*2*sizeof(int16_t*));
2233         //Note we need at least one pixel more at the end because of the mmx code (just in case someone wanna replace the 4000/8000)
2234         for(i=0; i<c->vLumBufSize; i++)
2235                 c->lumPixBuf[i]= c->lumPixBuf[i+c->vLumBufSize]= (uint16_t*)memalign(8, 4000);
2236         for(i=0; i<c->vChrBufSize; i++)
2237                 c->chrPixBuf[i]= c->chrPixBuf[i+c->vChrBufSize]= (uint16_t*)memalign(8, 8000);
2238
2239         //try to avoid drawing green stuff between the right end and the stride end
2240         for(i=0; i<c->vLumBufSize; i++) memset(c->lumPixBuf[i], 0, 4000);
2241         for(i=0; i<c->vChrBufSize; i++) memset(c->chrPixBuf[i], 64, 8000);
2242
2243         ASSERT(c->chrDstH <= dstH)
2244
2245         if(flags&SWS_PRINT_INFO)
2246         {
2247 #ifdef DITHER1XBPP
2248                 char *dither= " dithered";
2249 #else
2250                 char *dither= "";
2251 #endif
2252                 if(flags&SWS_FAST_BILINEAR)
2253                         MSG_INFO("\nSwScaler: FAST_BILINEAR scaler, ");
2254                 else if(flags&SWS_BILINEAR)
2255                         MSG_INFO("\nSwScaler: BILINEAR scaler, ");
2256                 else if(flags&SWS_BICUBIC)
2257                         MSG_INFO("\nSwScaler: BICUBIC scaler, ");
2258                 else if(flags&SWS_X)
2259                         MSG_INFO("\nSwScaler: Experimental scaler, ");
2260                 else if(flags&SWS_POINT)
2261                         MSG_INFO("\nSwScaler: Nearest Neighbor / POINT scaler, ");
2262                 else if(flags&SWS_AREA)
2263                         MSG_INFO("\nSwScaler: Area Averageing scaler, ");
2264                 else if(flags&SWS_BICUBLIN)
2265                         MSG_INFO("\nSwScaler: luma BICUBIC / chroma BILINEAR scaler, ");
2266                 else if(flags&SWS_GAUSS)
2267                         MSG_INFO("\nSwScaler: Gaussian scaler, ");
2268                 else if(flags&SWS_SINC)
2269                         MSG_INFO("\nSwScaler: Sinc scaler, ");
2270                 else if(flags&SWS_LANCZOS)
2271                         MSG_INFO("\nSwScaler: Lanczos scaler, ");
2272                 else if(flags&SWS_SPLINE)
2273                         MSG_INFO("\nSwScaler: Bicubic spline scaler, ");
2274                 else
2275                         MSG_INFO("\nSwScaler: ehh flags invalid?! ");
2276
2277                 if(dstFormat==IMGFMT_BGR15 || dstFormat==IMGFMT_BGR16)
2278                         MSG_INFO("from %s to%s %s ", 
2279                                 vo_format_name(srcFormat), dither, vo_format_name(dstFormat));
2280                 else
2281                         MSG_INFO("from %s to %s ", 
2282                                 vo_format_name(srcFormat), vo_format_name(dstFormat));
2283
2284                 if(cpuCaps.hasMMX2)
2285                         MSG_INFO("using MMX2\n");
2286                 else if(cpuCaps.has3DNow)
2287                         MSG_INFO("using 3DNOW\n");
2288                 else if(cpuCaps.hasMMX)
2289                         MSG_INFO("using MMX\n");
2290                 else
2291                         MSG_INFO("using C\n");
2292         }
2293
2294         if((flags & SWS_PRINT_INFO) && verbose>0)
2295         {
2296                 if(cpuCaps.hasMMX)
2297                 {
2298                         if(c->canMMX2BeUsed && (flags&SWS_FAST_BILINEAR))
2299                                 MSG_V("SwScaler: using FAST_BILINEAR MMX2 scaler for horizontal scaling\n");
2300                         else
2301                         {
2302                                 if(c->hLumFilterSize==4)
2303                                         MSG_V("SwScaler: using 4-tap MMX scaler for horizontal luminance scaling\n");
2304                                 else if(c->hLumFilterSize==8)
2305                                         MSG_V("SwScaler: using 8-tap MMX scaler for horizontal luminance scaling\n");
2306                                 else
2307                                         MSG_V("SwScaler: using n-tap MMX scaler for horizontal luminance scaling\n");
2308
2309                                 if(c->hChrFilterSize==4)
2310                                         MSG_V("SwScaler: using 4-tap MMX scaler for horizontal chrominance scaling\n");
2311                                 else if(c->hChrFilterSize==8)
2312                                         MSG_V("SwScaler: using 8-tap MMX scaler for horizontal chrominance scaling\n");
2313                                 else
2314                                         MSG_V("SwScaler: using n-tap MMX scaler for horizontal chrominance scaling\n");
2315                         }
2316                 }
2317                 else
2318                 {
2319 #ifdef ARCH_X86
2320                         MSG_V("SwScaler: using X86-Asm scaler for horizontal scaling\n");
2321 #else
2322                         if(flags & SWS_FAST_BILINEAR)
2323                                 MSG_V("SwScaler: using FAST_BILINEAR C scaler for horizontal scaling\n");
2324                         else
2325                                 MSG_V("SwScaler: using C scaler for horizontal scaling\n");
2326 #endif
2327                 }
2328                 if(isPlanarYUV(dstFormat))
2329                 {
2330                         if(c->vLumFilterSize==1)
2331                                 MSG_V("SwScaler: using 1-tap %s \"scaler\" for vertical scaling (YV12 like)\n", cpuCaps.hasMMX ? "MMX" : "C");
2332                         else
2333                                 MSG_V("SwScaler: using n-tap %s scaler for vertical scaling (YV12 like)\n", cpuCaps.hasMMX ? "MMX" : "C");
2334                 }
2335                 else
2336                 {
2337                         if(c->vLumFilterSize==1 && c->vChrFilterSize==2)
2338                                 MSG_V("SwScaler: using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n"
2339                                        "SwScaler:       2-tap scaler for vertical chrominance scaling (BGR)\n",cpuCaps.hasMMX ? "MMX" : "C");
2340                         else if(c->vLumFilterSize==2 && c->vChrFilterSize==2)
2341                                 MSG_V("SwScaler: using 2-tap linear %s scaler for vertical scaling (BGR)\n", cpuCaps.hasMMX ? "MMX" : "C");
2342                         else
2343                                 MSG_V("SwScaler: using n-tap %s scaler for vertical scaling (BGR)\n", cpuCaps.hasMMX ? "MMX" : "C");
2344                 }
2345
2346                 if(dstFormat==IMGFMT_BGR24)
2347                         MSG_V("SwScaler: using %s YV12->BGR24 Converter\n",
2348                                 cpuCaps.hasMMX2 ? "MMX2" : (cpuCaps.hasMMX ? "MMX" : "C"));
2349                 else if(dstFormat==IMGFMT_BGR32)
2350                         MSG_V("SwScaler: using %s YV12->BGR32 Converter\n", cpuCaps.hasMMX ? "MMX" : "C");
2351                 else if(dstFormat==IMGFMT_BGR16)
2352                         MSG_V("SwScaler: using %s YV12->BGR16 Converter\n", cpuCaps.hasMMX ? "MMX" : "C");
2353                 else if(dstFormat==IMGFMT_BGR15)
2354                         MSG_V("SwScaler: using %s YV12->BGR15 Converter\n", cpuCaps.hasMMX ? "MMX" : "C");
2355
2356                 MSG_V("SwScaler: %dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
2357         }
2358         if((flags & SWS_PRINT_INFO) && verbose>1)
2359         {
2360                 MSG_DBG2("SwScaler:Lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
2361                         c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
2362                 MSG_DBG2("SwScaler:Chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
2363                         c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, c->chrXInc, c->chrYInc);
2364         }
2365
2366         c->swScale= swScale;
2367         return c;
2368 }
2369
2370 /**
2371  * swscale warper, so we dont need to export the SwsContext.
2372  * assumes planar YUV to be in YUV order instead of YVU
2373  */
2374 int sws_scale_ordered(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
2375                            int srcSliceH, uint8_t* dst[], int dstStride[]){
2376         c->swScale(c, src, srcStride, srcSliceY, srcSliceH, dst, dstStride);
2377 }
2378
2379 /**
2380  * swscale warper, so we dont need to export the SwsContext
2381  */
2382 int sws_scale(SwsContext *c, uint8_t* srcParam[], int srcStrideParam[], int srcSliceY,
2383                            int srcSliceH, uint8_t* dstParam[], int dstStrideParam[]){
2384         int srcStride[3];
2385         int dstStride[3];
2386         uint8_t *src[3];
2387         uint8_t *dst[3];
2388         sws_orderYUV(c->origSrcFormat, src, srcStride, srcParam, srcStrideParam);
2389         sws_orderYUV(c->origDstFormat, dst, dstStride, dstParam, dstStrideParam);
2390 //printf("sws: slice %d %d\n", srcSliceY, srcSliceH);
2391         c->swScale(c, src, srcStride, srcSliceY, srcSliceH, dst, dstStride);
2392 }
2393
2394 /**
2395  * returns a normalized gaussian curve used to filter stuff
2396  * quality=3 is high quality, lowwer is lowwer quality
2397  */
2398
2399 SwsVector *sws_getGaussianVec(double variance, double quality){
2400         const int length= (int)(variance*quality + 0.5) | 1;
2401         int i;
2402         double *coeff= memalign(sizeof(double), length*sizeof(double));
2403         double middle= (length-1)*0.5;
2404         SwsVector *vec= malloc(sizeof(SwsVector));
2405
2406         vec->coeff= coeff;
2407         vec->length= length;
2408
2409         for(i=0; i<length; i++)
2410         {
2411                 double dist= i-middle;
2412                 coeff[i]= exp( -dist*dist/(2*variance*variance) ) / sqrt(2*variance*PI);
2413         }
2414
2415         sws_normalizeVec(vec, 1.0);
2416
2417         return vec;
2418 }
2419
2420 SwsVector *sws_getConstVec(double c, int length){
2421         int i;
2422         double *coeff= memalign(sizeof(double), length*sizeof(double));
2423         SwsVector *vec= malloc(sizeof(SwsVector));
2424
2425         vec->coeff= coeff;
2426         vec->length= length;
2427
2428         for(i=0; i<length; i++)
2429                 coeff[i]= c;
2430
2431         return vec;
2432 }
2433
2434
2435 SwsVector *sws_getIdentityVec(void){
2436         double *coeff= memalign(sizeof(double), sizeof(double));
2437         SwsVector *vec= malloc(sizeof(SwsVector));
2438         coeff[0]= 1.0;
2439
2440         vec->coeff= coeff;
2441         vec->length= 1;
2442
2443         return vec;
2444 }
2445
2446 void sws_normalizeVec(SwsVector *a, double height){
2447         int i;
2448         double sum=0;
2449         double inv;
2450
2451         for(i=0; i<a->length; i++)
2452                 sum+= a->coeff[i];
2453
2454         inv= height/sum;
2455
2456         for(i=0; i<a->length; i++)
2457                 a->coeff[i]*= inv;
2458 }
2459
2460 void sws_scaleVec(SwsVector *a, double scalar){
2461         int i;
2462
2463         for(i=0; i<a->length; i++)
2464                 a->coeff[i]*= scalar;
2465 }
2466
2467 static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b){
2468         int length= a->length + b->length - 1;
2469         double *coeff= memalign(sizeof(double), length*sizeof(double));
2470         int i, j;
2471         SwsVector *vec= malloc(sizeof(SwsVector));
2472
2473         vec->coeff= coeff;
2474         vec->length= length;
2475
2476         for(i=0; i<length; i++) coeff[i]= 0.0;
2477
2478         for(i=0; i<a->length; i++)
2479         {
2480                 for(j=0; j<b->length; j++)
2481                 {
2482                         coeff[i+j]+= a->coeff[i]*b->coeff[j];
2483                 }
2484         }
2485
2486         return vec;
2487 }
2488
2489 static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b){
2490         int length= MAX(a->length, b->length);
2491         double *coeff= memalign(sizeof(double), length*sizeof(double));
2492         int i;
2493         SwsVector *vec= malloc(sizeof(SwsVector));
2494
2495         vec->coeff= coeff;
2496         vec->length= length;
2497
2498         for(i=0; i<length; i++) coeff[i]= 0.0;
2499
2500         for(i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
2501         for(i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]+= b->coeff[i];
2502
2503         return vec;
2504 }
2505
2506 static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b){
2507         int length= MAX(a->length, b->length);
2508         double *coeff= memalign(sizeof(double), length*sizeof(double));
2509         int i;
2510         SwsVector *vec= malloc(sizeof(SwsVector));
2511
2512         vec->coeff= coeff;
2513         vec->length= length;
2514
2515         for(i=0; i<length; i++) coeff[i]= 0.0;
2516
2517         for(i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
2518         for(i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]-= b->coeff[i];
2519
2520         return vec;
2521 }
2522
2523 /* shift left / or right if "shift" is negative */
2524 static SwsVector *sws_getShiftedVec(SwsVector *a, int shift){
2525         int length= a->length + ABS(shift)*2;
2526         double *coeff= memalign(sizeof(double), length*sizeof(double));
2527         int i;
2528         SwsVector *vec= malloc(sizeof(SwsVector));
2529
2530         vec->coeff= coeff;
2531         vec->length= length;
2532
2533         for(i=0; i<length; i++) coeff[i]= 0.0;
2534
2535         for(i=0; i<a->length; i++)
2536         {
2537                 coeff[i + (length-1)/2 - (a->length-1)/2 - shift]= a->coeff[i];
2538         }
2539
2540         return vec;
2541 }
2542
2543 void sws_shiftVec(SwsVector *a, int shift){
2544         SwsVector *shifted= sws_getShiftedVec(a, shift);
2545         free(a->coeff);
2546         a->coeff= shifted->coeff;
2547         a->length= shifted->length;
2548         free(shifted);
2549 }
2550
2551 void sws_addVec(SwsVector *a, SwsVector *b){
2552         SwsVector *sum= sws_sumVec(a, b);
2553         free(a->coeff);
2554         a->coeff= sum->coeff;
2555         a->length= sum->length;
2556         free(sum);
2557 }
2558
2559 void sws_subVec(SwsVector *a, SwsVector *b){
2560         SwsVector *diff= sws_diffVec(a, b);
2561         free(a->coeff);
2562         a->coeff= diff->coeff;
2563         a->length= diff->length;
2564         free(diff);
2565 }
2566
2567 void sws_convVec(SwsVector *a, SwsVector *b){
2568         SwsVector *conv= sws_getConvVec(a, b);
2569         free(a->coeff);  
2570         a->coeff= conv->coeff;
2571         a->length= conv->length;
2572         free(conv);
2573 }
2574
2575 SwsVector *sws_cloneVec(SwsVector *a){
2576         double *coeff= memalign(sizeof(double), a->length*sizeof(double));
2577         int i;
2578         SwsVector *vec= malloc(sizeof(SwsVector));
2579
2580         vec->coeff= coeff;
2581         vec->length= a->length;
2582
2583         for(i=0; i<a->length; i++) coeff[i]= a->coeff[i];
2584
2585         return vec;
2586 }
2587
2588 void sws_printVec(SwsVector *a){
2589         int i;
2590         double max=0;
2591         double min=0;
2592         double range;
2593
2594         for(i=0; i<a->length; i++)
2595                 if(a->coeff[i]>max) max= a->coeff[i];
2596
2597         for(i=0; i<a->length; i++)
2598                 if(a->coeff[i]<min) min= a->coeff[i];
2599
2600         range= max - min;
2601
2602         for(i=0; i<a->length; i++)
2603         {
2604                 int x= (int)((a->coeff[i]-min)*60.0/range +0.5);
2605                 MSG_DBG2("%1.3f ", a->coeff[i]);
2606                 for(;x>0; x--) MSG_DBG2(" ");
2607                 MSG_DBG2("|\n");
2608         }
2609 }
2610
2611 void sws_freeVec(SwsVector *a){
2612         if(!a) return;
2613         if(a->coeff) free(a->coeff);
2614         a->coeff=NULL;
2615         a->length=0;
2616         free(a);
2617 }
2618
2619 void sws_freeContext(SwsContext *c){
2620         int i;
2621         if(!c) return;
2622
2623         if(c->lumPixBuf)
2624         {
2625                 for(i=0; i<c->vLumBufSize; i++)
2626                 {
2627                         if(c->lumPixBuf[i]) free(c->lumPixBuf[i]);
2628                         c->lumPixBuf[i]=NULL;
2629                 }
2630                 free(c->lumPixBuf);
2631                 c->lumPixBuf=NULL;
2632         }
2633
2634         if(c->chrPixBuf)
2635         {
2636                 for(i=0; i<c->vChrBufSize; i++)
2637                 {
2638                         if(c->chrPixBuf[i]) free(c->chrPixBuf[i]);
2639                         c->chrPixBuf[i]=NULL;
2640                 }
2641                 free(c->chrPixBuf);
2642                 c->chrPixBuf=NULL;
2643         }
2644
2645         if(c->vLumFilter) free(c->vLumFilter);
2646         c->vLumFilter = NULL;
2647         if(c->vChrFilter) free(c->vChrFilter);
2648         c->vChrFilter = NULL;
2649         if(c->hLumFilter) free(c->hLumFilter);
2650         c->hLumFilter = NULL;
2651         if(c->hChrFilter) free(c->hChrFilter);
2652         c->hChrFilter = NULL;
2653
2654         if(c->vLumFilterPos) free(c->vLumFilterPos);
2655         c->vLumFilterPos = NULL;
2656         if(c->vChrFilterPos) free(c->vChrFilterPos);
2657         c->vChrFilterPos = NULL;
2658         if(c->hLumFilterPos) free(c->hLumFilterPos);
2659         c->hLumFilterPos = NULL;
2660         if(c->hChrFilterPos) free(c->hChrFilterPos);
2661         c->hChrFilterPos = NULL;
2662
2663         if(c->lumMmx2Filter) free(c->lumMmx2Filter);
2664         c->lumMmx2Filter=NULL;
2665         if(c->chrMmx2Filter) free(c->chrMmx2Filter);
2666         c->chrMmx2Filter=NULL;
2667         if(c->lumMmx2FilterPos) free(c->lumMmx2FilterPos);
2668         c->lumMmx2FilterPos=NULL;
2669         if(c->chrMmx2FilterPos) free(c->chrMmx2FilterPos);
2670         c->chrMmx2FilterPos=NULL;
2671         if(c->yuvTable) free(c->yuvTable);
2672         c->yuvTable=NULL;
2673
2674         free(c);
2675 }
2676