2 Stockfish, a UCI chess playing engine derived from Glaurung 2.1
3 Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
4 Copyright (C) 2008-2009 Marco Costalba
6 Stockfish is free software: you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation, either version 3 of the License, or
9 (at your option) any later version.
11 Stockfish is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>.
33 //// Local definitions
38 // Table used to drive the defending king towards the edge of the board
39 // in KX vs K and KQ vs KR endgames.
40 const uint8_t MateTable[64] = {
41 100, 90, 80, 70, 70, 80, 90, 100,
42 90, 70, 60, 50, 50, 60, 70, 90,
43 80, 60, 40, 30, 30, 40, 60, 80,
44 70, 50, 30, 20, 20, 30, 50, 70,
45 70, 50, 30, 20, 20, 30, 50, 70,
46 80, 60, 40, 30, 30, 40, 60, 80,
47 90, 70, 60, 50, 50, 60, 70, 90,
48 100, 90, 80, 70, 70, 80, 90, 100,
51 // Table used to drive the defending king towards a corner square of the
52 // right color in KBN vs K endgames.
53 const uint8_t KBNKMateTable[64] = {
54 200, 190, 180, 170, 160, 150, 140, 130,
55 190, 180, 170, 160, 150, 140, 130, 140,
56 180, 170, 155, 140, 140, 125, 140, 150,
57 170, 160, 140, 120, 110, 140, 150, 160,
58 160, 150, 140, 110, 120, 140, 160, 170,
59 150, 140, 125, 140, 140, 155, 170, 180,
60 140, 130, 140, 150, 160, 170, 180, 190,
61 130, 140, 150, 160, 170, 180, 190, 200
64 // The attacking side is given a descending bonus based on distance between
65 // the two kings in basic endgames.
66 const int DistanceBonus[8] = { 0, 0, 100, 80, 60, 40, 20, 10 };
68 // Bitbase for KP vs K
69 uint8_t KPKBitbase[24576];
71 // Penalty for big distance between king and knight for the defending king
72 // and knight in KR vs KN endgames.
73 const int KRKNKingKnightDistancePenalty[8] = { 0, 0, 4, 10, 20, 32, 48, 70 };
75 // Various inline functions for accessing the above arrays
76 inline Value mate_table(Square s) {
77 return Value(MateTable[s]);
80 inline Value kbnk_mate_table(Square s) {
81 return Value(KBNKMateTable[s]);
84 inline Value distance_bonus(int d) {
85 return Value(DistanceBonus[d]);
88 inline Value krkn_king_knight_distance_penalty(int d) {
89 return Value(KRKNKingKnightDistancePenalty[d]);
92 // Function for probing the KP vs K bitbase
93 int probe_kpk(Square wksq, Square wpsq, Square bksq, Color stm);
102 /// Mate with KX vs K. This function is used to evaluate positions with
103 /// King and plenty of material vs a lone king. It simply gives the
104 /// attacking side a bonus for driving the defending king towards the edge
105 /// of the board, and for keeping the distance between the two kings small.
107 Value EvaluationFunction<KXK>::apply(const Position& pos) {
109 assert(pos.non_pawn_material(weakerSide) == Value(0));
110 assert(pos.piece_count(weakerSide, PAWN) == Value(0));
112 Square winnerKSq = pos.king_square(strongerSide);
113 Square loserKSq = pos.king_square(weakerSide);
115 Value result = pos.non_pawn_material(strongerSide)
116 + pos.piece_count(strongerSide, PAWN) * PawnValueEndgame
117 + mate_table(loserKSq)
118 + distance_bonus(square_distance(winnerKSq, loserKSq));
120 if ( pos.piece_count(strongerSide, QUEEN) > 0
121 || pos.piece_count(strongerSide, ROOK) > 0
122 || pos.piece_count(strongerSide, BISHOP) > 1)
123 // TODO: check for two equal-colored bishops!
124 result += VALUE_KNOWN_WIN;
126 return (strongerSide == pos.side_to_move() ? result : -result);
130 /// Mate with KBN vs K. This is similar to KX vs K, but we have to drive the
131 /// defending king towards a corner square of the right color.
133 Value EvaluationFunction<KBNK>::apply(const Position& pos) {
135 assert(pos.non_pawn_material(weakerSide) == Value(0));
136 assert(pos.piece_count(weakerSide, PAWN) == Value(0));
137 assert(pos.non_pawn_material(strongerSide) == KnightValueMidgame + BishopValueMidgame);
138 assert(pos.piece_count(strongerSide, BISHOP) == 1);
139 assert(pos.piece_count(strongerSide, KNIGHT) == 1);
140 assert(pos.piece_count(strongerSide, PAWN) == 0);
142 Square winnerKSq = pos.king_square(strongerSide);
143 Square loserKSq = pos.king_square(weakerSide);
144 Square bishopSquare = pos.piece_list(strongerSide, BISHOP, 0);
146 if (square_color(bishopSquare) == BLACK)
148 winnerKSq = flop_square(winnerKSq);
149 loserKSq = flop_square(loserKSq);
152 Value result = VALUE_KNOWN_WIN
153 + distance_bonus(square_distance(winnerKSq, loserKSq))
154 + kbnk_mate_table(loserKSq);
156 return (strongerSide == pos.side_to_move() ? result : -result);
160 /// KP vs K. This endgame is evaluated with the help of a bitbase.
162 Value EvaluationFunction<KPK>::apply(const Position& pos) {
164 assert(pos.non_pawn_material(strongerSide) == Value(0));
165 assert(pos.non_pawn_material(weakerSide) == Value(0));
166 assert(pos.piece_count(strongerSide, PAWN) == 1);
167 assert(pos.piece_count(weakerSide, PAWN) == 0);
169 Square wksq, bksq, wpsq;
172 if (strongerSide == WHITE)
174 wksq = pos.king_square(WHITE);
175 bksq = pos.king_square(BLACK);
176 wpsq = pos.piece_list(WHITE, PAWN, 0);
177 stm = pos.side_to_move();
181 wksq = flip_square(pos.king_square(BLACK));
182 bksq = flip_square(pos.king_square(WHITE));
183 wpsq = flip_square(pos.piece_list(BLACK, PAWN, 0));
184 stm = opposite_color(pos.side_to_move());
187 if (square_file(wpsq) >= FILE_E)
189 wksq = flop_square(wksq);
190 bksq = flop_square(bksq);
191 wpsq = flop_square(wpsq);
194 if (!probe_kpk(wksq, wpsq, bksq, stm))
197 Value result = VALUE_KNOWN_WIN
199 + Value(square_rank(wpsq));
201 return (strongerSide == pos.side_to_move() ? result : -result);
205 /// KR vs KP. This is a somewhat tricky endgame to evaluate precisely without
206 /// a bitbase. The function below returns drawish scores when the pawn is
207 /// far advanced with support of the king, while the attacking king is far
210 Value EvaluationFunction<KRKP>::apply(const Position& pos) {
212 assert(pos.non_pawn_material(strongerSide) == RookValueMidgame);
213 assert(pos.piece_count(strongerSide, PAWN) == 0);
214 assert(pos.non_pawn_material(weakerSide) == 0);
215 assert(pos.piece_count(weakerSide, PAWN) == 1);
217 Square wksq, wrsq, bksq, bpsq;
218 int tempo = (pos.side_to_move() == strongerSide);
220 wksq = pos.king_square(strongerSide);
221 wrsq = pos.piece_list(strongerSide, ROOK, 0);
222 bksq = pos.king_square(weakerSide);
223 bpsq = pos.piece_list(weakerSide, PAWN, 0);
225 if (strongerSide == BLACK)
227 wksq = flip_square(wksq);
228 wrsq = flip_square(wrsq);
229 bksq = flip_square(bksq);
230 bpsq = flip_square(bpsq);
233 Square queeningSq = make_square(square_file(bpsq), RANK_1);
236 // If the stronger side's king is in front of the pawn, it's a win
237 if (wksq < bpsq && square_file(wksq) == square_file(bpsq))
238 result = RookValueEndgame - Value(square_distance(wksq, bpsq));
240 // If the weaker side's king is too far from the pawn and the rook,
242 else if ( square_distance(bksq, bpsq) - (tempo^1) >= 3
243 && square_distance(bksq, wrsq) >= 3)
244 result = RookValueEndgame - Value(square_distance(wksq, bpsq));
246 // If the pawn is far advanced and supported by the defending king,
247 // the position is drawish
248 else if ( square_rank(bksq) <= RANK_3
249 && square_distance(bksq, bpsq) == 1
250 && square_rank(wksq) >= RANK_4
251 && square_distance(wksq, bpsq) - tempo > 2)
252 result = Value(80 - square_distance(wksq, bpsq) * 8);
256 - Value(square_distance(wksq, bpsq + DELTA_S) * 8)
257 + Value(square_distance(bksq, bpsq + DELTA_S) * 8)
258 + Value(square_distance(bpsq, queeningSq) * 8);
260 return (strongerSide == pos.side_to_move() ? result : -result);
264 /// KR vs KB. This is very simple, and always returns drawish scores. The
265 /// score is slightly bigger when the defending king is close to the edge.
267 Value EvaluationFunction<KRKB>::apply(const Position& pos) {
269 assert(pos.non_pawn_material(strongerSide) == RookValueMidgame);
270 assert(pos.piece_count(strongerSide, PAWN) == 0);
271 assert(pos.non_pawn_material(weakerSide) == BishopValueMidgame);
272 assert(pos.piece_count(weakerSide, PAWN) == 0);
273 assert(pos.piece_count(weakerSide, BISHOP) == 1);
275 Value result = mate_table(pos.king_square(weakerSide));
276 return (pos.side_to_move() == strongerSide ? result : -result);
280 /// KR vs KN. The attacking side has slightly better winning chances than
281 /// in KR vs KB, particularly if the king and the knight are far apart.
283 Value EvaluationFunction<KRKN>::apply(const Position& pos) {
285 assert(pos.non_pawn_material(strongerSide) == RookValueMidgame);
286 assert(pos.piece_count(strongerSide, PAWN) == 0);
287 assert(pos.non_pawn_material(weakerSide) == KnightValueMidgame);
288 assert(pos.piece_count(weakerSide, PAWN) == 0);
289 assert(pos.piece_count(weakerSide, KNIGHT) == 1);
291 Square defendingKSq = pos.king_square(weakerSide);
292 Square nSq = pos.piece_list(weakerSide, KNIGHT, 0);
294 Value result = Value(10) + mate_table(defendingKSq) +
295 krkn_king_knight_distance_penalty(square_distance(defendingKSq, nSq));
297 return (strongerSide == pos.side_to_move())? result : -result;
301 /// KQ vs KR. This is almost identical to KX vs K: We give the attacking
302 /// king a bonus for having the kings close together, and for forcing the
303 /// defending king towards the edge. If we also take care to avoid null move
304 /// for the defending side in the search, this is usually sufficient to be
305 /// able to win KQ vs KR.
307 Value EvaluationFunction<KQKR>::apply(const Position& pos) {
309 assert(pos.non_pawn_material(strongerSide) == QueenValueMidgame);
310 assert(pos.piece_count(strongerSide, PAWN) == 0);
311 assert(pos.non_pawn_material(weakerSide) == RookValueMidgame);
312 assert(pos.piece_count(weakerSide, PAWN) == 0);
314 Square winnerKSq = pos.king_square(strongerSide);
315 Square loserKSq = pos.king_square(weakerSide);
317 Value result = QueenValueEndgame
319 + mate_table(loserKSq)
320 + distance_bonus(square_distance(winnerKSq, loserKSq));
322 return (strongerSide == pos.side_to_move())? result : -result;
326 Value EvaluationFunction<KBBKN>::apply(const Position& pos) {
328 assert(pos.piece_count(strongerSide, BISHOP) == 2);
329 assert(pos.non_pawn_material(strongerSide) == 2*BishopValueMidgame);
330 assert(pos.piece_count(weakerSide, KNIGHT) == 1);
331 assert(pos.non_pawn_material(weakerSide) == KnightValueMidgame);
332 assert(pos.pawns() == EmptyBoardBB);
334 Value result = BishopValueEndgame;
335 Square wksq = pos.king_square(strongerSide);
336 Square bksq = pos.king_square(weakerSide);
337 Square nsq = pos.piece_list(weakerSide, KNIGHT, 0);
339 // Bonus for attacking king close to defending king
340 result += distance_bonus(square_distance(wksq, bksq));
342 // Bonus for driving the defending king and knight apart
343 result += Value(square_distance(bksq, nsq) * 32);
345 // Bonus for restricting the knight's mobility
346 result += Value((8 - count_1s_max_15(pos.piece_attacks<KNIGHT>(nsq))) * 8);
348 return (strongerSide == pos.side_to_move() ? result : -result);
352 Value EvaluationFunction<KmmKm>::apply(const Position&) {
357 /// KBPKScalingFunction scales endgames where the stronger side has king,
358 /// bishop and one or more pawns. It checks for draws with rook pawns and a
359 /// bishop of the wrong color. If such a draw is detected, ScaleFactor(0) is
360 /// returned. If not, the return value is SCALE_FACTOR_NONE, i.e. no scaling
363 ScaleFactor ScalingFunction<KBPK>::apply(const Position& pos) {
365 assert(pos.non_pawn_material(strongerSide) == BishopValueMidgame);
366 assert(pos.piece_count(strongerSide, BISHOP) == 1);
367 assert(pos.piece_count(strongerSide, PAWN) >= 1);
369 // No assertions about the material of weakerSide, because we want draws to
370 // be detected even when the weaker side has some pawns.
372 Bitboard pawns = pos.pawns(strongerSide);
373 File pawnFile = square_file(pos.piece_list(strongerSide, PAWN, 0));
375 // All pawns are on a single rook file ?
376 if ( (pawnFile == FILE_A || pawnFile == FILE_H)
377 && (pawns & ~file_bb(pawnFile)) == EmptyBoardBB)
379 Square bishopSq = pos.piece_list(strongerSide, BISHOP, 0);
380 Square queeningSq = relative_square(strongerSide, make_square(pawnFile, RANK_8));
381 Square kingSq = pos.king_square(weakerSide);
383 if ( square_color(queeningSq) != square_color(bishopSq)
384 && file_distance(square_file(kingSq), pawnFile) <= 1)
386 // The bishop has the wrong color, and the defending king is on the
387 // file of the pawn(s) or the neighboring file. Find the rank of the
391 if (strongerSide == WHITE)
393 for (rank = RANK_7; (rank_bb(rank) & pawns) == EmptyBoardBB; rank--) {}
394 assert(rank >= RANK_2 && rank <= RANK_7);
398 for(rank = RANK_2; (rank_bb(rank) & pawns) == EmptyBoardBB; rank++) {}
399 rank = Rank(rank^7); // HACK to get the relative rank
400 assert(rank >= RANK_2 && rank <= RANK_7);
402 // If the defending king has distance 1 to the promotion square or
403 // is placed somewhere in front of the pawn, it's a draw.
404 if ( square_distance(kingSq, queeningSq) <= 1
405 || relative_rank(strongerSide, kingSq) >= rank)
406 return ScaleFactor(0);
409 return SCALE_FACTOR_NONE;
413 /// KQKRPScalingFunction scales endgames where the stronger side has only
414 /// king and queen, while the weaker side has at least a rook and a pawn.
415 /// It tests for fortress draws with a rook on the third rank defended by
418 ScaleFactor ScalingFunction<KQKRP>::apply(const Position& pos) {
420 assert(pos.non_pawn_material(strongerSide) == QueenValueMidgame);
421 assert(pos.piece_count(strongerSide, QUEEN) == 1);
422 assert(pos.piece_count(strongerSide, PAWN) == 0);
423 assert(pos.piece_count(weakerSide, ROOK) == 1);
424 assert(pos.piece_count(weakerSide, PAWN) >= 1);
426 Square kingSq = pos.king_square(weakerSide);
427 if ( relative_rank(weakerSide, kingSq) <= RANK_2
428 && relative_rank(weakerSide, pos.king_square(strongerSide)) >= RANK_4
429 && (pos.rooks(weakerSide) & relative_rank_bb(weakerSide, RANK_3))
430 && (pos.pawns(weakerSide) & relative_rank_bb(weakerSide, RANK_2))
431 && (pos.piece_attacks<KING>(kingSq) & pos.pawns(weakerSide)))
433 Square rsq = pos.piece_list(weakerSide, ROOK, 0);
434 if (pos.pawn_attacks(strongerSide, rsq) & pos.pawns(weakerSide))
435 return ScaleFactor(0);
437 return SCALE_FACTOR_NONE;
441 /// KRPKRScalingFunction scales KRP vs KR endgames. This function knows a
442 /// handful of the most important classes of drawn positions, but is far
443 /// from perfect. It would probably be a good idea to add more knowledge
446 /// It would also be nice to rewrite the actual code for this function,
447 /// which is mostly copied from Glaurung 1.x, and not very pretty.
449 ScaleFactor ScalingFunction<KRPKR>::apply(const Position &pos) {
451 assert(pos.non_pawn_material(strongerSide) == RookValueMidgame);
452 assert(pos.piece_count(strongerSide, PAWN) == 1);
453 assert(pos.non_pawn_material(weakerSide) == RookValueMidgame);
454 assert(pos.piece_count(weakerSide, PAWN) == 0);
456 Square wksq = pos.king_square(strongerSide);
457 Square wrsq = pos.piece_list(strongerSide, ROOK, 0);
458 Square wpsq = pos.piece_list(strongerSide, PAWN, 0);
459 Square bksq = pos.king_square(weakerSide);
460 Square brsq = pos.piece_list(weakerSide, ROOK, 0);
462 // Orient the board in such a way that the stronger side is white, and the
463 // pawn is on the left half of the board.
464 if (strongerSide == BLACK)
466 wksq = flip_square(wksq);
467 wrsq = flip_square(wrsq);
468 wpsq = flip_square(wpsq);
469 bksq = flip_square(bksq);
470 brsq = flip_square(brsq);
472 if (square_file(wpsq) > FILE_D)
474 wksq = flop_square(wksq);
475 wrsq = flop_square(wrsq);
476 wpsq = flop_square(wpsq);
477 bksq = flop_square(bksq);
478 brsq = flop_square(brsq);
481 File f = square_file(wpsq);
482 Rank r = square_rank(wpsq);
483 Square queeningSq = make_square(f, RANK_8);
484 int tempo = (pos.side_to_move() == strongerSide);
486 // If the pawn is not too far advanced and the defending king defends the
487 // queening square, use the third-rank defence.
489 && square_distance(bksq, queeningSq) <= 1
491 && (square_rank(brsq) == RANK_6 || (r <= RANK_3 && square_rank(wrsq) != RANK_6)))
492 return ScaleFactor(0);
494 // The defending side saves a draw by checking from behind in case the pawn
495 // has advanced to the 6th rank with the king behind.
497 && square_distance(bksq, queeningSq) <= 1
498 && square_rank(wksq) + tempo <= RANK_6
499 && (square_rank(brsq) == RANK_1 || (!tempo && abs(square_file(brsq) - f) >= 3)))
500 return ScaleFactor(0);
503 && bksq == queeningSq
504 && square_rank(brsq) == RANK_1
505 && (!tempo || square_distance(wksq, wpsq) >= 2))
506 return ScaleFactor(0);
508 // White pawn on a7 and rook on a8 is a draw if black's king is on g7 or h7
509 // and the black rook is behind the pawn.
512 && (bksq == SQ_H7 || bksq == SQ_G7)
513 && square_file(brsq) == FILE_A
514 && (square_rank(brsq) <= RANK_3 || square_file(wksq) >= FILE_D || square_rank(wksq) <= RANK_5))
515 return ScaleFactor(0);
517 // If the defending king blocks the pawn and the attacking king is too far
518 // away, it's a draw.
520 && bksq == wpsq + DELTA_N
521 && square_distance(wksq, wpsq) - tempo >= 2
522 && square_distance(wksq, brsq) - tempo >= 2)
523 return ScaleFactor(0);
525 // Pawn on the 7th rank supported by the rook from behind usually wins if the
526 // attacking king is closer to the queening square than the defending king,
527 // and the defending king cannot gain tempi by threatening the attacking rook.
530 && square_file(wrsq) == f
531 && wrsq != queeningSq
532 && (square_distance(wksq, queeningSq) < square_distance(bksq, queeningSq) - 2 + tempo)
533 && (square_distance(wksq, queeningSq) < square_distance(bksq, wrsq) + tempo))
534 return ScaleFactor(SCALE_FACTOR_MAX - 2 * square_distance(wksq, queeningSq));
536 // Similar to the above, but with the pawn further back
538 && square_file(wrsq) == f
540 && (square_distance(wksq, queeningSq) < square_distance(bksq, queeningSq) - 2 + tempo)
541 && (square_distance(wksq, wpsq + DELTA_N) < square_distance(bksq, wpsq + DELTA_N) - 2 + tempo)
542 && ( square_distance(bksq, wrsq) + tempo >= 3
543 || ( square_distance(wksq, queeningSq) < square_distance(bksq, wrsq) + tempo
544 && (square_distance(wksq, wpsq + DELTA_N) < square_distance(bksq, wrsq) + tempo))))
545 return ScaleFactor( SCALE_FACTOR_MAX
546 - (8 * square_distance(wpsq, queeningSq)
547 + 2 * square_distance(wksq, queeningSq)));
549 // If the pawn is not far advanced, and the defending king is somewhere in
550 // the pawn's path, it's probably a draw.
551 if (r <= RANK_4 && bksq > wpsq)
553 if (square_file(bksq) == square_file(wpsq))
554 return ScaleFactor(10);
555 if ( abs(square_file(bksq) - square_file(wpsq)) == 1
556 && square_distance(wksq, bksq) > 2)
557 return ScaleFactor(24 - 2 * square_distance(wksq, bksq));
559 return SCALE_FACTOR_NONE;
563 /// KRPPKRPScalingFunction scales KRPP vs KRP endgames. There is only a
564 /// single pattern: If the stronger side has no pawns and the defending king
565 /// is actively placed, the position is drawish.
567 ScaleFactor ScalingFunction<KRPPKRP>::apply(const Position &pos) {
569 assert(pos.non_pawn_material(strongerSide) == RookValueMidgame);
570 assert(pos.piece_count(strongerSide, PAWN) == 2);
571 assert(pos.non_pawn_material(weakerSide) == RookValueMidgame);
572 assert(pos.piece_count(weakerSide, PAWN) == 1);
574 Square wpsq1 = pos.piece_list(strongerSide, PAWN, 0);
575 Square wpsq2 = pos.piece_list(strongerSide, PAWN, 1);
576 Square bksq = pos.king_square(weakerSide);
578 // Does the stronger side have a passed pawn?
579 if ( pos.pawn_is_passed(strongerSide, wpsq1)
580 || pos.pawn_is_passed(strongerSide, wpsq2))
581 return SCALE_FACTOR_NONE;
583 Rank r = Max(relative_rank(strongerSide, wpsq1), relative_rank(strongerSide, wpsq2));
585 if ( file_distance(bksq, wpsq1) <= 1
586 && file_distance(bksq, wpsq2) <= 1
587 && relative_rank(strongerSide, bksq) > r)
590 case RANK_2: return ScaleFactor(10);
591 case RANK_3: return ScaleFactor(10);
592 case RANK_4: return ScaleFactor(15);
593 case RANK_5: return ScaleFactor(20);
594 case RANK_6: return ScaleFactor(40);
595 default: assert(false);
598 return SCALE_FACTOR_NONE;
602 /// KPsKScalingFunction scales endgames with king and two or more pawns
603 /// against king. There is just a single rule here: If all pawns are on
604 /// the same rook file and are blocked by the defending king, it's a draw.
606 ScaleFactor ScalingFunction<KPsK>::apply(const Position &pos) {
608 assert(pos.non_pawn_material(strongerSide) == Value(0));
609 assert(pos.piece_count(strongerSide, PAWN) >= 2);
610 assert(pos.non_pawn_material(weakerSide) == Value(0));
611 assert(pos.piece_count(weakerSide, PAWN) == 0);
613 Bitboard pawns = pos.pawns(strongerSide);
615 // Are all pawns on the 'a' file?
616 if ((pawns & ~FileABB) == EmptyBoardBB)
618 // Does the defending king block the pawns?
619 Square ksq = pos.king_square(weakerSide);
620 if (square_distance(ksq, relative_square(strongerSide, SQ_A8)) <= 1)
621 return ScaleFactor(0);
622 else if( square_file(ksq) == FILE_A
623 && (in_front_bb(strongerSide, ksq) & pawns) == EmptyBoardBB)
624 return ScaleFactor(0);
626 return SCALE_FACTOR_NONE;
628 // Are all pawns on the 'h' file?
629 else if ((pawns & ~FileHBB) == EmptyBoardBB)
631 // Does the defending king block the pawns?
632 Square ksq = pos.king_square(weakerSide);
633 if (square_distance(ksq, relative_square(strongerSide, SQ_H8)) <= 1)
634 return ScaleFactor(0);
635 else if ( square_file(ksq) == FILE_H
636 && (in_front_bb(strongerSide, ksq) & pawns) == EmptyBoardBB)
637 return ScaleFactor(0);
639 return SCALE_FACTOR_NONE;
642 return SCALE_FACTOR_NONE;
646 /// KBPKBScalingFunction scales KBP vs KB endgames. There are two rules:
647 /// If the defending king is somewhere along the path of the pawn, and the
648 /// square of the king is not of the same color as the stronger side's bishop,
649 /// it's a draw. If the two bishops have opposite color, it's almost always
652 ScaleFactor ScalingFunction<KBPKB>::apply(const Position &pos) {
654 assert(pos.non_pawn_material(strongerSide) == BishopValueMidgame);
655 assert(pos.piece_count(strongerSide, BISHOP) == 1);
656 assert(pos.piece_count(strongerSide, PAWN) == 1);
657 assert(pos.non_pawn_material(weakerSide) == BishopValueMidgame);
658 assert(pos.piece_count(weakerSide, BISHOP) == 1);
659 assert(pos.piece_count(weakerSide, PAWN) == 0);
661 Square pawnSq = pos.piece_list(strongerSide, PAWN, 0);
662 Square strongerBishopSq = pos.piece_list(strongerSide, BISHOP, 0);
663 Square weakerBishopSq = pos.piece_list(weakerSide, BISHOP, 0);
664 Square weakerKingSq = pos.king_square(weakerSide);
666 // Case 1: Defending king blocks the pawn, and cannot be driven away
667 if ( square_file(weakerKingSq) == square_file(pawnSq)
668 && relative_rank(strongerSide, pawnSq) < relative_rank(strongerSide, weakerKingSq)
669 && ( square_color(weakerKingSq) != square_color(strongerBishopSq)
670 || relative_rank(strongerSide, weakerKingSq) <= RANK_6))
671 return ScaleFactor(0);
673 // Case 2: Opposite colored bishops
674 if (square_color(strongerBishopSq) != square_color(weakerBishopSq))
676 // We assume that the position is drawn in the following three situations:
678 // a. The pawn is on rank 5 or further back.
679 // b. The defending king is somewhere in the pawn's path.
680 // c. The defending bishop attacks some square along the pawn's path,
681 // and is at least three squares away from the pawn.
683 // These rules are probably not perfect, but in practice they work
686 if (relative_rank(strongerSide, pawnSq) <= RANK_5)
687 return ScaleFactor(0);
690 Bitboard ray = ray_bb(pawnSq, (strongerSide == WHITE)? SIGNED_DIR_N : SIGNED_DIR_S);
691 if (ray & pos.kings(weakerSide))
692 return ScaleFactor(0);
693 if( (pos.piece_attacks<BISHOP>(weakerBishopSq) & ray)
694 && square_distance(weakerBishopSq, pawnSq) >= 3)
695 return ScaleFactor(0);
698 return SCALE_FACTOR_NONE;
702 /// KBPPKBScalingFunction scales KBPP vs KB endgames. It detects a few basic
703 /// draws with opposite-colored bishops.
705 ScaleFactor ScalingFunction<KBPPKB>::apply(const Position& pos) {
707 assert(pos.non_pawn_material(strongerSide) == BishopValueMidgame);
708 assert(pos.piece_count(strongerSide, BISHOP) == 1);
709 assert(pos.piece_count(strongerSide, PAWN) == 2);
710 assert(pos.non_pawn_material(weakerSide) == BishopValueMidgame);
711 assert(pos.piece_count(weakerSide, BISHOP) == 1);
712 assert(pos.piece_count(weakerSide, PAWN) == 0);
714 Square wbsq = pos.piece_list(strongerSide, BISHOP, 0);
715 Square bbsq = pos.piece_list(weakerSide, BISHOP, 0);
717 if (square_color(wbsq) == square_color(bbsq))
718 // Not opposite-colored bishops, no scaling
719 return SCALE_FACTOR_NONE;
721 Square ksq = pos.king_square(weakerSide);
722 Square psq1 = pos.piece_list(strongerSide, PAWN, 0);
723 Square psq2 = pos.piece_list(strongerSide, PAWN, 1);
724 Rank r1 = square_rank(psq1);
725 Rank r2 = square_rank(psq2);
726 Square blockSq1, blockSq2;
728 if (relative_rank(strongerSide, psq1) > relative_rank(strongerSide, psq2))
730 blockSq1 = psq1 + pawn_push(strongerSide);
731 blockSq2 = make_square(square_file(psq2), square_rank(psq1));
735 blockSq1 = psq2 + pawn_push(strongerSide);
736 blockSq2 = make_square(square_file(psq1), square_rank(psq2));
739 switch (file_distance(psq1, psq2))
742 // Both pawns are on the same file. Easy draw if defender firmly controls
743 // some square in the frontmost pawn's path.
744 if ( square_file(ksq) == square_file(blockSq1)
745 && relative_rank(strongerSide, ksq) >= relative_rank(strongerSide, blockSq1)
746 && square_color(ksq) != square_color(wbsq))
747 return ScaleFactor(0);
749 return SCALE_FACTOR_NONE;
752 // Pawns on neighboring files. Draw if defender firmly controls the square
753 // in front of the frontmost pawn's path, and the square diagonally behind
754 // this square on the file of the other pawn.
756 && square_color(ksq) != square_color(wbsq)
757 && ( bbsq == blockSq2
758 || (pos.piece_attacks<BISHOP>(blockSq2) & pos.bishops(weakerSide))
759 || rank_distance(r1, r2) >= 2))
760 return ScaleFactor(0);
761 else if ( ksq == blockSq2
762 && square_color(ksq) != square_color(wbsq)
763 && ( bbsq == blockSq1
764 || (pos.piece_attacks<BISHOP>(blockSq1) & pos.bishops(weakerSide))))
765 return ScaleFactor(0);
767 return SCALE_FACTOR_NONE;
770 // The pawns are not on the same file or adjacent files. No scaling.
771 return SCALE_FACTOR_NONE;
776 /// KBPKNScalingFunction scales KBP vs KN endgames. There is a single rule:
777 /// If the defending king is somewhere along the path of the pawn, and the
778 /// square of the king is not of the same color as the stronger side's bishop,
781 ScaleFactor ScalingFunction<KBPKN>::apply(const Position &pos) {
783 assert(pos.non_pawn_material(strongerSide) == BishopValueMidgame);
784 assert(pos.piece_count(strongerSide, BISHOP) == 1);
785 assert(pos.piece_count(strongerSide, PAWN) == 1);
786 assert(pos.non_pawn_material(weakerSide) == KnightValueMidgame);
787 assert(pos.piece_count(weakerSide, KNIGHT) == 1);
788 assert(pos.piece_count(weakerSide, PAWN) == 0);
790 Square pawnSq = pos.piece_list(strongerSide, PAWN, 0);
791 Square strongerBishopSq = pos.piece_list(strongerSide, BISHOP, 0);
792 Square weakerKingSq = pos.king_square(weakerSide);
794 if ( square_file(weakerKingSq) == square_file(pawnSq)
795 && relative_rank(strongerSide, pawnSq) < relative_rank(strongerSide, weakerKingSq)
796 && ( square_color(weakerKingSq) != square_color(strongerBishopSq)
797 || relative_rank(strongerSide, weakerKingSq) <= RANK_6))
798 return ScaleFactor(0);
800 return SCALE_FACTOR_NONE;
804 /// KNPKScalingFunction scales KNP vs K endgames. There is a single rule:
805 /// If the pawn is a rook pawn on the 7th rank and the defending king prevents
806 /// the pawn from advancing, the position is drawn.
808 ScaleFactor ScalingFunction<KNPK>::apply(const Position &pos) {
810 assert(pos.non_pawn_material(strongerSide) == KnightValueMidgame);
811 assert(pos.piece_count(strongerSide, KNIGHT) == 1);
812 assert(pos.piece_count(strongerSide, PAWN) == 1);
813 assert(pos.non_pawn_material(weakerSide) == Value(0));
814 assert(pos.piece_count(weakerSide, PAWN) == 0);
816 Square pawnSq = pos.piece_list(strongerSide, PAWN, 0);
817 Square weakerKingSq = pos.king_square(weakerSide);
819 if ( pawnSq == relative_square(strongerSide, SQ_A7)
820 && square_distance(weakerKingSq, relative_square(strongerSide, SQ_A8)) <= 1)
821 return ScaleFactor(0);
823 if ( pawnSq == relative_square(strongerSide, SQ_H7)
824 && square_distance(weakerKingSq, relative_square(strongerSide, SQ_H8)) <= 1)
825 return ScaleFactor(0);
827 return SCALE_FACTOR_NONE;
831 /// KPKPScalingFunction scales KP vs KP endgames. This is done by removing
832 /// the weakest side's pawn and probing the KP vs K bitbase: If the weakest
833 /// side has a draw without the pawn, she probably has at least a draw with
834 /// the pawn as well. The exception is when the stronger side's pawn is far
835 /// advanced and not on a rook file; in this case it is often possible to win
836 /// (e.g. 8/4k3/3p4/3P4/6K1/8/8/8 w - - 0 1).
838 ScaleFactor ScalingFunction<KPKP>::apply(const Position &pos) {
840 assert(pos.non_pawn_material(strongerSide) == Value(0));
841 assert(pos.non_pawn_material(weakerSide) == Value(0));
842 assert(pos.piece_count(WHITE, PAWN) == 1);
843 assert(pos.piece_count(BLACK, PAWN) == 1);
845 Square wksq, bksq, wpsq;
848 if (strongerSide == WHITE)
850 wksq = pos.king_square(WHITE);
851 bksq = pos.king_square(BLACK);
852 wpsq = pos.piece_list(WHITE, PAWN, 0);
853 stm = pos.side_to_move();
857 wksq = flip_square(pos.king_square(BLACK));
858 bksq = flip_square(pos.king_square(WHITE));
859 wpsq = flip_square(pos.piece_list(BLACK, PAWN, 0));
860 stm = opposite_color(pos.side_to_move());
863 if (square_file(wpsq) >= FILE_E)
865 wksq = flop_square(wksq);
866 bksq = flop_square(bksq);
867 wpsq = flop_square(wpsq);
870 // If the pawn has advanced to the fifth rank or further, and is not a
871 // rook pawn, it's too dangerous to assume that it's at least a draw.
872 if ( square_rank(wpsq) >= RANK_5
873 && square_file(wpsq) != FILE_A)
874 return SCALE_FACTOR_NONE;
876 // Probe the KPK bitbase with the weakest side's pawn removed. If it's a
877 // draw, it's probably at least a draw even with the pawn.
878 if (probe_kpk(wksq, wpsq, bksq, stm))
879 return SCALE_FACTOR_NONE;
881 return ScaleFactor(0);
885 /// init_bitbases() is called during program initialization, and simply loads
886 /// bitbases from disk into memory. At the moment, there is only the bitbase
887 /// for KP vs K, but we may decide to add other bitbases later.
889 void init_bitbases() {
890 generate_kpk_bitbase(KPKBitbase);
896 // Probe the KP vs K bitbase:
898 int probe_kpk(Square wksq, Square wpsq, Square bksq, Color stm) {
900 int wp = int(square_file(wpsq)) + (int(square_rank(wpsq)) - 1) * 4;
901 int index = int(stm) + 2*int(bksq) + 128*int(wksq) + 8192*wp;
903 assert(index >= 0 && index < 24576*8);
904 return KPKBitbase[index/8] & (1 << (index&7));