2 Stockfish, a UCI chess playing engine derived from Glaurung 2.1
3 Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
4 Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad
6 Stockfish is free software: you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation, either version 3 of the License, or
9 (at your option) any later version.
11 Stockfish is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>.
30 #include "ucioption.h"
34 // Struct EvalInfo contains various information computed and collected
35 // by the evaluation functions.
38 // Pointers to material and pawn hash table entries
42 // attackedBy[color][piece type] is a bitboard representing all squares
43 // attacked by a given color and piece type, attackedBy[color][0] contains
44 // all squares attacked by the given color.
45 Bitboard attackedBy[2][8];
47 // kingZone[color] is the zone around the enemy king which is considered
48 // by the king safety evaluation. This consists of the squares directly
49 // adjacent to the king, and the three (or two, for a king on an edge file)
50 // squares two ranks in front of the king. For instance, if black's king
51 // is on g8, kingZone[WHITE] is a bitboard containing the squares f8, h8,
52 // f7, g7, h7, f6, g6 and h6.
55 // kingAttackersCount[color] is the number of pieces of the given color
56 // which attack a square in the kingZone of the enemy king.
57 int kingAttackersCount[2];
59 // kingAttackersWeight[color] is the sum of the "weight" of the pieces of the
60 // given color which attack a square in the kingZone of the enemy king. The
61 // weights of the individual piece types are given by the variables
62 // QueenAttackWeight, RookAttackWeight, BishopAttackWeight and
63 // KnightAttackWeight in evaluate.cpp
64 int kingAttackersWeight[2];
66 // kingAdjacentZoneAttacksCount[color] is the number of attacks to squares
67 // directly adjacent to the king of the given color. Pieces which attack
68 // more than one square are counted multiple times. For instance, if black's
69 // king is on g8 and there's a white knight on g5, this knight adds
70 // 2 to kingAdjacentZoneAttacksCount[BLACK].
71 int kingAdjacentZoneAttacksCount[2];
74 // Evaluation grain size, must be a power of 2
75 const int GrainSize = 8;
77 // Evaluation weights, initialized from UCI options
78 enum { Mobility, PassedPawns, Space, KingDangerUs, KingDangerThem };
82 #define S(mg, eg) make_score(mg, eg)
84 // Internal evaluation weights. These are applied on top of the evaluation
85 // weights read from UCI parameters. The purpose is to be able to change
86 // the evaluation weights while keeping the default values of the UCI
87 // parameters at 100, which looks prettier.
89 // Values modified by Joona Kiiski
90 const Score WeightsInternal[] = {
91 S(248, 271), S(252, 259), S(46, 0), S(247, 0), S(259, 0)
94 // MobilityBonus[PieceType][attacked] contains mobility bonuses for middle and
95 // end game, indexed by piece type and number of attacked squares not occupied
96 // by friendly pieces.
97 const Score MobilityBonus[][32] = {
99 { S(-38,-33), S(-25,-23), S(-12,-13), S( 0, -3), S(12, 7), S(25, 17), // Knights
100 S( 31, 22), S( 38, 27), S( 38, 27) },
101 { S(-25,-30), S(-11,-16), S( 3, -2), S(17, 12), S(31, 26), S(45, 40), // Bishops
102 S( 57, 52), S( 65, 60), S( 71, 65), S(74, 69), S(76, 71), S(78, 73),
103 S( 79, 74), S( 80, 75), S( 81, 76), S(81, 76) },
104 { S(-20,-36), S(-14,-19), S( -8, -3), S(-2, 13), S( 4, 29), S(10, 46), // Rooks
105 S( 14, 62), S( 19, 79), S( 23, 95), S(26,106), S(27,111), S(28,114),
106 S( 29,116), S( 30,117), S( 31,118), S(32,118) },
107 { S(-10,-18), S( -8,-13), S( -6, -7), S(-3, -2), S(-1, 3), S( 1, 8), // Queens
108 S( 3, 13), S( 5, 19), S( 8, 23), S(10, 27), S(12, 32), S(15, 34),
109 S( 16, 35), S( 17, 35), S( 18, 35), S(20, 35), S(20, 35), S(20, 35),
110 S( 20, 35), S( 20, 35), S( 20, 35), S(20, 35), S(20, 35), S(20, 35),
111 S( 20, 35), S( 20, 35), S( 20, 35), S(20, 35), S(20, 35), S(20, 35),
112 S( 20, 35), S( 20, 35) }
115 // OutpostBonus[PieceType][Square] contains outpost bonuses of knights and
116 // bishops, indexed by piece type and square (from white's point of view).
117 const Value OutpostBonus[][64] = {
120 V(0), V(0), V(0), V(0), V(0), V(0), V(0), V(0), // Knights
121 V(0), V(0), V(0), V(0), V(0), V(0), V(0), V(0),
122 V(0), V(0), V(4), V(8), V(8), V(4), V(0), V(0),
123 V(0), V(4),V(17),V(26),V(26),V(17), V(4), V(0),
124 V(0), V(8),V(26),V(35),V(35),V(26), V(8), V(0),
125 V(0), V(4),V(17),V(17),V(17),V(17), V(4), V(0) },
127 V(0), V(0), V(0), V(0), V(0), V(0), V(0), V(0), // Bishops
128 V(0), V(0), V(0), V(0), V(0), V(0), V(0), V(0),
129 V(0), V(0), V(5), V(5), V(5), V(5), V(0), V(0),
130 V(0), V(5),V(10),V(10),V(10),V(10), V(5), V(0),
131 V(0),V(10),V(21),V(21),V(21),V(21),V(10), V(0),
132 V(0), V(5), V(8), V(8), V(8), V(8), V(5), V(0) }
135 // ThreatBonus[attacking][attacked] contains threat bonuses according to
136 // which piece type attacks which one.
137 const Score ThreatBonus[][8] = {
139 { S(0, 0), S( 7, 39), S( 0, 0), S(24, 49), S(41,100), S(41,100) }, // KNIGHT
140 { S(0, 0), S( 7, 39), S(24, 49), S( 0, 0), S(41,100), S(41,100) }, // BISHOP
141 { S(0, 0), S(-1, 29), S(15, 49), S(15, 49), S( 0, 0), S(24, 49) }, // ROOK
142 { S(0, 0), S(15, 39), S(15, 39), S(15, 39), S(15, 39), S( 0, 0) } // QUEEN
145 // ThreatenedByPawnPenalty[PieceType] contains a penalty according to which
146 // piece type is attacked by an enemy pawn.
147 const Score ThreatenedByPawnPenalty[] = {
148 S(0, 0), S(0, 0), S(56, 70), S(56, 70), S(76, 99), S(86, 118)
153 // Rooks and queens on the 7th rank (modified by Joona Kiiski)
154 const Score RookOn7thBonus = make_score(47, 98);
155 const Score QueenOn7thBonus = make_score(27, 54);
157 // Rooks on open files (modified by Joona Kiiski)
158 const Score RookOpenFileBonus = make_score(43, 43);
159 const Score RookHalfOpenFileBonus = make_score(19, 19);
161 // Penalty for rooks trapped inside a friendly king which has lost the
163 const Value TrappedRookPenalty = Value(180);
165 // Penalty for a bishop on a1/h1 (a8/h8 for black) which is trapped by
166 // a friendly pawn on b2/g2 (b7/g7 for black). This can obviously only
167 // happen in Chess960 games.
168 const Score TrappedBishopA1H1Penalty = make_score(100, 100);
170 // The SpaceMask[Color] contains the area of the board which is considered
171 // by the space evaluation. In the middle game, each side is given a bonus
172 // based on how many squares inside this area are safe and available for
173 // friendly minor pieces.
174 const Bitboard SpaceMask[] = {
175 (1ULL << SQ_C2) | (1ULL << SQ_D2) | (1ULL << SQ_E2) | (1ULL << SQ_F2) |
176 (1ULL << SQ_C3) | (1ULL << SQ_D3) | (1ULL << SQ_E3) | (1ULL << SQ_F3) |
177 (1ULL << SQ_C4) | (1ULL << SQ_D4) | (1ULL << SQ_E4) | (1ULL << SQ_F4),
178 (1ULL << SQ_C7) | (1ULL << SQ_D7) | (1ULL << SQ_E7) | (1ULL << SQ_F7) |
179 (1ULL << SQ_C6) | (1ULL << SQ_D6) | (1ULL << SQ_E6) | (1ULL << SQ_F6) |
180 (1ULL << SQ_C5) | (1ULL << SQ_D5) | (1ULL << SQ_E5) | (1ULL << SQ_F5)
183 // King danger constants and variables. The king danger scores are taken
184 // from the KingDangerTable[]. Various little "meta-bonuses" measuring
185 // the strength of the enemy attack are added up into an integer, which
186 // is used as an index to KingDangerTable[].
188 // KingAttackWeights[PieceType] contains king attack weights by piece type
189 const int KingAttackWeights[] = { 0, 0, 2, 2, 3, 5 };
191 // Bonuses for enemy's safe checks
192 const int QueenContactCheckBonus = 6;
193 const int RookContactCheckBonus = 4;
194 const int QueenCheckBonus = 3;
195 const int RookCheckBonus = 2;
196 const int BishopCheckBonus = 1;
197 const int KnightCheckBonus = 1;
199 // InitKingDanger[Square] contains penalties based on the position of the
200 // defending king, indexed by king's square (from white's point of view).
201 const int InitKingDanger[] = {
202 2, 0, 2, 5, 5, 2, 0, 2,
203 2, 2, 4, 8, 8, 4, 2, 2,
204 7, 10, 12, 12, 12, 12, 10, 7,
205 15, 15, 15, 15, 15, 15, 15, 15,
206 15, 15, 15, 15, 15, 15, 15, 15,
207 15, 15, 15, 15, 15, 15, 15, 15,
208 15, 15, 15, 15, 15, 15, 15, 15,
209 15, 15, 15, 15, 15, 15, 15, 15
212 // KingDangerTable[Color][attackUnits] contains the actual king danger
213 // weighted scores, indexed by color and by a calculated integer number.
214 Score KingDangerTable[2][128];
216 // TracedTerms[Color][PieceType || TracedType] contains a breakdown of the
217 // evaluation terms, used when tracing.
218 Score TracedScores[2][16];
219 std::stringstream TraceStream;
222 PST = 8, IMBALANCE = 9, MOBILITY = 10, THREAT = 11,
223 PASSED = 12, UNSTOPPABLE = 13, SPACE = 14, TOTAL = 15
226 // Function prototypes
227 template<bool HasPopCnt, bool Trace>
228 Value do_evaluate(const Position& pos, Value& margin);
230 template<Color Us, bool HasPopCnt>
231 void init_eval_info(const Position& pos, EvalInfo& ei);
233 template<Color Us, bool HasPopCnt, bool Trace>
234 Score evaluate_pieces_of_color(const Position& pos, EvalInfo& ei, Score& mobility);
236 template<Color Us, bool HasPopCnt, bool Trace>
237 Score evaluate_king(const Position& pos, EvalInfo& ei, Value margins[]);
240 Score evaluate_threats(const Position& pos, EvalInfo& ei);
242 template<Color Us, bool HasPopCnt>
243 int evaluate_space(const Position& pos, EvalInfo& ei);
246 Score evaluate_passed_pawns(const Position& pos, EvalInfo& ei);
248 template<bool HasPopCnt>
249 Score evaluate_unstoppable_pawns(const Position& pos, EvalInfo& ei);
251 inline Score apply_weight(Score v, Score weight);
252 Value scale_by_game_phase(const Score& v, Phase ph, ScaleFactor sf);
253 Score weight_option(const std::string& mgOpt, const std::string& egOpt, Score internalWeight);
255 double to_cp(Value v);
256 void trace_add(int idx, Score term_w, Score term_b = SCORE_ZERO);
260 /// evaluate() is the main evaluation function. It always computes two
261 /// values, an endgame score and a middle game score, and interpolates
262 /// between them based on the remaining material.
263 Value evaluate(const Position& pos, Value& margin) {
265 return CpuHasPOPCNT ? do_evaluate<true, false>(pos, margin)
266 : do_evaluate<false, false>(pos, margin);
271 template<bool HasPopCnt, bool Trace>
272 Value do_evaluate(const Position& pos, Value& margin) {
276 Score score, mobilityWhite, mobilityBlack;
278 assert(pos.thread() >= 0 && pos.thread() < MAX_THREADS);
279 assert(!pos.in_check());
281 // Initialize score by reading the incrementally updated scores included
282 // in the position object (material + piece square tables).
285 // margins[] store the uncertainty estimation of position's evaluation
286 // that typically is used by the search for pruning decisions.
287 margins[WHITE] = margins[BLACK] = VALUE_ZERO;
289 // Probe the material hash table
290 ei.mi = Threads[pos.thread()].materialTable.get_material_info(pos);
291 score += ei.mi->material_value();
293 // If we have a specialized evaluation function for the current material
294 // configuration, call it and return.
295 if (ei.mi->specialized_eval_exists())
298 return ei.mi->evaluate(pos);
301 // Probe the pawn hash table
302 ei.pi = Threads[pos.thread()].pawnTable.get_pawn_info(pos);
303 score += ei.pi->pawns_value();
305 // Initialize attack and king safety bitboards
306 init_eval_info<WHITE, HasPopCnt>(pos, ei);
307 init_eval_info<BLACK, HasPopCnt>(pos, ei);
309 // Evaluate pieces and mobility
310 score += evaluate_pieces_of_color<WHITE, HasPopCnt, Trace>(pos, ei, mobilityWhite)
311 - evaluate_pieces_of_color<BLACK, HasPopCnt, Trace>(pos, ei, mobilityBlack);
313 score += apply_weight(mobilityWhite - mobilityBlack, Weights[Mobility]);
315 // Evaluate kings after all other pieces because we need complete attack
316 // information when computing the king safety evaluation.
317 score += evaluate_king<WHITE, HasPopCnt, Trace>(pos, ei, margins)
318 - evaluate_king<BLACK, HasPopCnt, Trace>(pos, ei, margins);
320 // Evaluate tactical threats, we need full attack information including king
321 score += evaluate_threats<WHITE>(pos, ei)
322 - evaluate_threats<BLACK>(pos, ei);
324 // Evaluate passed pawns, we need full attack information including king
325 score += evaluate_passed_pawns<WHITE>(pos, ei)
326 - evaluate_passed_pawns<BLACK>(pos, ei);
328 // If one side has only a king, check whether exists any unstoppable passed pawn
329 if (!pos.non_pawn_material(WHITE) || !pos.non_pawn_material(BLACK))
330 score += evaluate_unstoppable_pawns<HasPopCnt>(pos, ei);
332 // Evaluate space for both sides, only in middle-game.
333 if (ei.mi->space_weight())
335 int s = evaluate_space<WHITE, HasPopCnt>(pos, ei) - evaluate_space<BLACK, HasPopCnt>(pos, ei);
336 score += apply_weight(make_score(s * ei.mi->space_weight(), 0), Weights[Space]);
339 // Scale winning side if position is more drawish that what it appears
340 ScaleFactor sf = eg_value(score) > VALUE_DRAW ? ei.mi->scale_factor(pos, WHITE)
341 : ei.mi->scale_factor(pos, BLACK);
343 // If we don't already have an unusual scale factor, check for opposite
344 // colored bishop endgames, and use a lower scale for those.
345 if ( ei.mi->game_phase() < PHASE_MIDGAME
346 && pos.opposite_colored_bishops()
347 && sf == SCALE_FACTOR_NORMAL)
349 // Only the two bishops ?
350 if ( pos.non_pawn_material(WHITE) == BishopValueMidgame
351 && pos.non_pawn_material(BLACK) == BishopValueMidgame)
353 // Check for KBP vs KB with only a single pawn that is almost
354 // certainly a draw or at least two pawns.
355 bool one_pawn = (pos.piece_count(WHITE, PAWN) + pos.piece_count(BLACK, PAWN) == 1);
356 sf = one_pawn ? ScaleFactor(8) : ScaleFactor(32);
359 // Endgame with opposite-colored bishops, but also other pieces. Still
360 // a bit drawish, but not as drawish as with only the two bishops.
361 sf = ScaleFactor(50);
364 // Interpolate between the middle game and the endgame score
365 margin = margins[pos.side_to_move()];
366 Value v = scale_by_game_phase(score, ei.mi->game_phase(), sf);
368 // In case of tracing add all single evaluation contributions for both white and black
371 trace_add(PST, pos.value());
372 trace_add(IMBALANCE, ei.mi->material_value());
373 trace_add(PAWN, ei.pi->pawns_value());
374 trace_add(MOBILITY, apply_weight(mobilityWhite, Weights[Mobility]), apply_weight(mobilityBlack, Weights[Mobility]));
375 trace_add(THREAT, evaluate_threats<WHITE>(pos, ei), evaluate_threats<BLACK>(pos, ei));
376 trace_add(PASSED, evaluate_passed_pawns<WHITE>(pos, ei), evaluate_passed_pawns<BLACK>(pos, ei));
377 trace_add(UNSTOPPABLE, evaluate_unstoppable_pawns<false>(pos, ei));
378 Score w = make_score(ei.mi->space_weight() * evaluate_space<WHITE, false>(pos, ei), 0);
379 Score b = make_score(ei.mi->space_weight() * evaluate_space<BLACK, false>(pos, ei), 0);
380 trace_add(SPACE, apply_weight(w, Weights[Space]), apply_weight(b, Weights[Space]));
381 trace_add(TOTAL, score);
382 TraceStream << "\nUncertainty margin: White: " << to_cp(margins[WHITE])
383 << ", Black: " << to_cp(margins[BLACK])
384 << "\nScaling: " << std::noshowpos
385 << std::setw(6) << 100.0 * ei.mi->game_phase() / 128.0 << "% MG, "
386 << std::setw(6) << 100.0 * (1.0 - ei.mi->game_phase() / 128.0) << "% * "
387 << std::setw(6) << (100.0 * sf) / SCALE_FACTOR_NORMAL << "% EG.\n"
388 << "Total evaluation: " << to_cp(v);
391 return pos.side_to_move() == WHITE ? v : -v;
397 /// read_weights() reads evaluation weights from the corresponding UCI parameters
399 void read_evaluation_uci_options(Color us) {
401 // King safety is asymmetrical. Our king danger level is weighted by
402 // "Cowardice" UCI parameter, instead the opponent one by "Aggressiveness".
403 const int kingDangerUs = (us == WHITE ? KingDangerUs : KingDangerThem);
404 const int kingDangerThem = (us == WHITE ? KingDangerThem : KingDangerUs);
406 Weights[Mobility] = weight_option("Mobility (Middle Game)", "Mobility (Endgame)", WeightsInternal[Mobility]);
407 Weights[PassedPawns] = weight_option("Passed Pawns (Middle Game)", "Passed Pawns (Endgame)", WeightsInternal[PassedPawns]);
408 Weights[Space] = weight_option("Space", "Space", WeightsInternal[Space]);
409 Weights[kingDangerUs] = weight_option("Cowardice", "Cowardice", WeightsInternal[KingDangerUs]);
410 Weights[kingDangerThem] = weight_option("Aggressiveness", "Aggressiveness", WeightsInternal[KingDangerThem]);
412 // If running in analysis mode, make sure we use symmetrical king safety. We do this
413 // by replacing both Weights[kingDangerUs] and Weights[kingDangerThem] by their average.
414 if (Options["UCI_AnalyseMode"].value<bool>())
415 Weights[kingDangerUs] = Weights[kingDangerThem] = (Weights[kingDangerUs] + Weights[kingDangerThem]) / 2;
423 // init_eval_info() initializes king bitboards for given color adding
424 // pawn attacks. To be done at the beginning of the evaluation.
426 template<Color Us, bool HasPopCnt>
427 void init_eval_info(const Position& pos, EvalInfo& ei) {
429 const BitCountType Max15 = HasPopCnt ? CNT_POPCNT : CpuIs64Bit ? CNT64_MAX15 : CNT32_MAX15;
430 const Color Them = (Us == WHITE ? BLACK : WHITE);
432 Bitboard b = ei.attackedBy[Them][KING] = pos.attacks_from<KING>(pos.king_square(Them));
433 ei.attackedBy[Us][PAWN] = ei.pi->pawn_attacks(Us);
435 // Init king safety tables only if we are going to use them
436 if ( pos.piece_count(Us, QUEEN)
437 && pos.non_pawn_material(Us) >= QueenValueMidgame + RookValueMidgame)
439 ei.kingZone[Us] = (b | (Us == WHITE ? b >> 8 : b << 8));
440 b &= ei.attackedBy[Us][PAWN];
441 ei.kingAttackersCount[Us] = b ? count_1s<Max15>(b) / 2 : 0;
442 ei.kingAdjacentZoneAttacksCount[Us] = ei.kingAttackersWeight[Us] = 0;
444 ei.kingZone[Us] = ei.kingAttackersCount[Us] = 0;
448 // evaluate_outposts() evaluates bishop and knight outposts squares
450 template<PieceType Piece, Color Us>
451 Score evaluate_outposts(const Position& pos, EvalInfo& ei, Square s) {
453 const Color Them = (Us == WHITE ? BLACK : WHITE);
455 assert (Piece == BISHOP || Piece == KNIGHT);
457 // Initial bonus based on square
458 Value bonus = OutpostBonus[Piece == BISHOP][relative_square(Us, s)];
460 // Increase bonus if supported by pawn, especially if the opponent has
461 // no minor piece which can exchange the outpost piece.
462 if (bonus && bit_is_set(ei.attackedBy[Us][PAWN], s))
464 if ( pos.pieces(KNIGHT, Them) == EmptyBoardBB
465 && (SquaresByColorBB[square_color(s)] & pos.pieces(BISHOP, Them)) == EmptyBoardBB)
466 bonus += bonus + bonus / 2;
470 return make_score(bonus, bonus);
474 // evaluate_pieces<>() assigns bonuses and penalties to the pieces of a given color
476 template<PieceType Piece, Color Us, bool HasPopCnt, bool Trace>
477 Score evaluate_pieces(const Position& pos, EvalInfo& ei, Score& mobility, Bitboard mobilityArea) {
483 Score score = SCORE_ZERO;
485 const BitCountType Full = HasPopCnt ? CNT_POPCNT : CpuIs64Bit ? CNT64 : CNT32;
486 const BitCountType Max15 = HasPopCnt ? CNT_POPCNT : CpuIs64Bit ? CNT64_MAX15 : CNT32_MAX15;
487 const Color Them = (Us == WHITE ? BLACK : WHITE);
488 const Square* pl = pos.piece_list(Us, Piece);
490 ei.attackedBy[Us][Piece] = EmptyBoardBB;
492 while ((s = *pl++) != SQ_NONE)
494 // Find attacked squares, including x-ray attacks for bishops and rooks
495 if (Piece == KNIGHT || Piece == QUEEN)
496 b = pos.attacks_from<Piece>(s);
497 else if (Piece == BISHOP)
498 b = bishop_attacks_bb(s, pos.occupied_squares() & ~pos.pieces(QUEEN, Us));
499 else if (Piece == ROOK)
500 b = rook_attacks_bb(s, pos.occupied_squares() & ~pos.pieces(ROOK, QUEEN, Us));
504 // Update attack info
505 ei.attackedBy[Us][Piece] |= b;
508 if (b & ei.kingZone[Us])
510 ei.kingAttackersCount[Us]++;
511 ei.kingAttackersWeight[Us] += KingAttackWeights[Piece];
512 Bitboard bb = (b & ei.attackedBy[Them][KING]);
514 ei.kingAdjacentZoneAttacksCount[Us] += count_1s<Max15>(bb);
518 mob = (Piece != QUEEN ? count_1s<Max15>(b & mobilityArea)
519 : count_1s<Full >(b & mobilityArea));
521 mobility += MobilityBonus[Piece][mob];
523 // Decrease score if we are attacked by an enemy pawn. Remaining part
524 // of threat evaluation must be done later when we have full attack info.
525 if (bit_is_set(ei.attackedBy[Them][PAWN], s))
526 score -= ThreatenedByPawnPenalty[Piece];
528 // Bishop and knight outposts squares
529 if ( (Piece == BISHOP || Piece == KNIGHT)
530 && !(pos.pieces(PAWN, Them) & attack_span_mask(Us, s)))
531 score += evaluate_outposts<Piece, Us>(pos, ei, s);
533 // Queen or rook on 7th rank
534 if ( (Piece == ROOK || Piece == QUEEN)
535 && relative_rank(Us, s) == RANK_7
536 && relative_rank(Us, pos.king_square(Them)) == RANK_8)
538 score += (Piece == ROOK ? RookOn7thBonus : QueenOn7thBonus);
541 // Special extra evaluation for bishops
542 if (Piece == BISHOP && pos.is_chess960())
544 // An important Chess960 pattern: A cornered bishop blocked by
545 // a friendly pawn diagonally in front of it is a very serious
546 // problem, especially when that pawn is also blocked.
547 if (s == relative_square(Us, SQ_A1) || s == relative_square(Us, SQ_H1))
549 Square d = pawn_push(Us) + (square_file(s) == FILE_A ? DELTA_E : DELTA_W);
550 if (pos.piece_on(s + d) == make_piece(Us, PAWN))
552 if (!pos.square_is_empty(s + d + pawn_push(Us)))
553 score -= 2*TrappedBishopA1H1Penalty;
554 else if (pos.piece_on(s + 2*d) == make_piece(Us, PAWN))
555 score -= TrappedBishopA1H1Penalty;
557 score -= TrappedBishopA1H1Penalty / 2;
562 // Special extra evaluation for rooks
565 // Open and half-open files
567 if (ei.pi->file_is_half_open(Us, f))
569 if (ei.pi->file_is_half_open(Them, f))
570 score += RookOpenFileBonus;
572 score += RookHalfOpenFileBonus;
575 // Penalize rooks which are trapped inside a king. Penalize more if
576 // king has lost right to castle.
577 if (mob > 6 || ei.pi->file_is_half_open(Us, f))
580 ksq = pos.king_square(Us);
582 if ( square_file(ksq) >= FILE_E
583 && square_file(s) > square_file(ksq)
584 && (relative_rank(Us, ksq) == RANK_1 || square_rank(ksq) == square_rank(s)))
586 // Is there a half-open file between the king and the edge of the board?
587 if (!ei.pi->has_open_file_to_right(Us, square_file(ksq)))
588 score -= make_score(pos.can_castle(Us) ? (TrappedRookPenalty - mob * 16) / 2
589 : (TrappedRookPenalty - mob * 16), 0);
591 else if ( square_file(ksq) <= FILE_D
592 && square_file(s) < square_file(ksq)
593 && (relative_rank(Us, ksq) == RANK_1 || square_rank(ksq) == square_rank(s)))
595 // Is there a half-open file between the king and the edge of the board?
596 if (!ei.pi->has_open_file_to_left(Us, square_file(ksq)))
597 score -= make_score(pos.can_castle(Us) ? (TrappedRookPenalty - mob * 16) / 2
598 : (TrappedRookPenalty - mob * 16), 0);
604 TracedScores[Us][Piece] = score;
610 // evaluate_threats<>() assigns bonuses according to the type of attacking piece
611 // and the type of attacked one.
614 Score evaluate_threats(const Position& pos, EvalInfo& ei) {
616 const Color Them = (Us == WHITE ? BLACK : WHITE);
619 Score score = SCORE_ZERO;
621 // Enemy pieces not defended by a pawn and under our attack
622 Bitboard weakEnemies = pos.pieces(Them)
623 & ~ei.attackedBy[Them][PAWN]
624 & ei.attackedBy[Us][0];
628 // Add bonus according to type of attacked enemy piece and to the
629 // type of attacking piece, from knights to queens. Kings are not
630 // considered because are already handled in king evaluation.
631 for (PieceType pt1 = KNIGHT; pt1 < KING; pt1++)
633 b = ei.attackedBy[Us][pt1] & weakEnemies;
635 for (PieceType pt2 = PAWN; pt2 < KING; pt2++)
636 if (b & pos.pieces(pt2))
637 score += ThreatBonus[pt1][pt2];
643 // evaluate_pieces_of_color<>() assigns bonuses and penalties to all the
644 // pieces of a given color.
646 template<Color Us, bool HasPopCnt, bool Trace>
647 Score evaluate_pieces_of_color(const Position& pos, EvalInfo& ei, Score& mobility) {
649 const Color Them = (Us == WHITE ? BLACK : WHITE);
651 Score score = mobility = SCORE_ZERO;
653 // Do not include in mobility squares protected by enemy pawns or occupied by our pieces
654 const Bitboard mobilityArea = ~(ei.attackedBy[Them][PAWN] | pos.pieces(Us));
656 score += evaluate_pieces<KNIGHT, Us, HasPopCnt, Trace>(pos, ei, mobility, mobilityArea);
657 score += evaluate_pieces<BISHOP, Us, HasPopCnt, Trace>(pos, ei, mobility, mobilityArea);
658 score += evaluate_pieces<ROOK, Us, HasPopCnt, Trace>(pos, ei, mobility, mobilityArea);
659 score += evaluate_pieces<QUEEN, Us, HasPopCnt, Trace>(pos, ei, mobility, mobilityArea);
661 // Sum up all attacked squares
662 ei.attackedBy[Us][0] = ei.attackedBy[Us][PAWN] | ei.attackedBy[Us][KNIGHT]
663 | ei.attackedBy[Us][BISHOP] | ei.attackedBy[Us][ROOK]
664 | ei.attackedBy[Us][QUEEN] | ei.attackedBy[Us][KING];
669 // evaluate_king<>() assigns bonuses and penalties to a king of a given color
671 template<Color Us, bool HasPopCnt, bool Trace>
672 Score evaluate_king(const Position& pos, EvalInfo& ei, Value margins[]) {
674 const BitCountType Max15 = HasPopCnt ? CNT_POPCNT : CpuIs64Bit ? CNT64_MAX15 : CNT32_MAX15;
675 const Color Them = (Us == WHITE ? BLACK : WHITE);
677 Bitboard undefended, b, b1, b2, safe;
679 const Square ksq = pos.king_square(Us);
682 Score score = ei.pi->king_shelter<Us>(pos, ksq);
684 // King safety. This is quite complicated, and is almost certainly far
685 // from optimally tuned.
686 if ( ei.kingAttackersCount[Them] >= 2
687 && ei.kingAdjacentZoneAttacksCount[Them])
689 // Find the attacked squares around the king which has no defenders
690 // apart from the king itself
691 undefended = ei.attackedBy[Them][0] & ei.attackedBy[Us][KING];
692 undefended &= ~( ei.attackedBy[Us][PAWN] | ei.attackedBy[Us][KNIGHT]
693 | ei.attackedBy[Us][BISHOP] | ei.attackedBy[Us][ROOK]
694 | ei.attackedBy[Us][QUEEN]);
696 // Initialize the 'attackUnits' variable, which is used later on as an
697 // index to the KingDangerTable[] array. The initial value is based on
698 // the number and types of the enemy's attacking pieces, the number of
699 // attacked and undefended squares around our king, the square of the
700 // king, and the quality of the pawn shelter.
701 attackUnits = Min(25, (ei.kingAttackersCount[Them] * ei.kingAttackersWeight[Them]) / 2)
702 + 3 * (ei.kingAdjacentZoneAttacksCount[Them] + count_1s<Max15>(undefended))
703 + InitKingDanger[relative_square(Us, ksq)]
704 - mg_value(ei.pi->king_shelter<Us>(pos, ksq)) / 32;
706 // Analyse enemy's safe queen contact checks. First find undefended
707 // squares around the king attacked by enemy queen...
708 b = undefended & ei.attackedBy[Them][QUEEN] & ~pos.pieces(Them);
711 // ...then remove squares not supported by another enemy piece
712 b &= ( ei.attackedBy[Them][PAWN] | ei.attackedBy[Them][KNIGHT]
713 | ei.attackedBy[Them][BISHOP] | ei.attackedBy[Them][ROOK]);
715 attackUnits += QueenContactCheckBonus
717 * (Them == pos.side_to_move() ? 2 : 1);
720 // Analyse enemy's safe rook contact checks. First find undefended
721 // squares around the king attacked by enemy rooks...
722 b = undefended & ei.attackedBy[Them][ROOK] & ~pos.pieces(Them);
724 // Consider only squares where the enemy rook gives check
725 b &= RookPseudoAttacks[ksq];
729 // ...then remove squares not supported by another enemy piece
730 b &= ( ei.attackedBy[Them][PAWN] | ei.attackedBy[Them][KNIGHT]
731 | ei.attackedBy[Them][BISHOP] | ei.attackedBy[Them][QUEEN]);
733 attackUnits += RookContactCheckBonus
735 * (Them == pos.side_to_move() ? 2 : 1);
738 // Analyse enemy's safe distance checks for sliders and knights
739 safe = ~(pos.pieces(Them) | ei.attackedBy[Us][0]);
741 b1 = pos.attacks_from<ROOK>(ksq) & safe;
742 b2 = pos.attacks_from<BISHOP>(ksq) & safe;
744 // Enemy queen safe checks
745 b = (b1 | b2) & ei.attackedBy[Them][QUEEN];
747 attackUnits += QueenCheckBonus * count_1s<Max15>(b);
749 // Enemy rooks safe checks
750 b = b1 & ei.attackedBy[Them][ROOK];
752 attackUnits += RookCheckBonus * count_1s<Max15>(b);
754 // Enemy bishops safe checks
755 b = b2 & ei.attackedBy[Them][BISHOP];
757 attackUnits += BishopCheckBonus * count_1s<Max15>(b);
759 // Enemy knights safe checks
760 b = pos.attacks_from<KNIGHT>(ksq) & ei.attackedBy[Them][KNIGHT] & safe;
762 attackUnits += KnightCheckBonus * count_1s<Max15>(b);
764 // To index KingDangerTable[] attackUnits must be in [0, 99] range
765 attackUnits = Min(99, Max(0, attackUnits));
767 // Finally, extract the king danger score from the KingDangerTable[]
768 // array and subtract the score from evaluation. Set also margins[]
769 // value that will be used for pruning because this value can sometimes
770 // be very big, and so capturing a single attacking piece can therefore
771 // result in a score change far bigger than the value of the captured piece.
772 score -= KingDangerTable[Us][attackUnits];
773 margins[Us] += mg_value(KingDangerTable[Us][attackUnits]);
777 TracedScores[Us][KING] = score;
783 // evaluate_passed_pawns<>() evaluates the passed pawns of the given color
786 Score evaluate_passed_pawns(const Position& pos, EvalInfo& ei) {
788 const Color Them = (Us == WHITE ? BLACK : WHITE);
790 Bitboard b, squaresToQueen, defendedSquares, unsafeSquares, supportingPawns;
791 Score score = SCORE_ZERO;
793 b = ei.pi->passed_pawns(Us);
799 Square s = pop_1st_bit(&b);
801 assert(pos.pawn_is_passed(Us, s));
803 int r = int(relative_rank(Us, s) - RANK_2);
804 int rr = r * (r - 1);
806 // Base bonus based on rank
807 Value mbonus = Value(20 * rr);
808 Value ebonus = Value(10 * (rr + r + 1));
812 Square blockSq = s + pawn_push(Us);
814 // Adjust bonus based on kings proximity
815 ebonus += Value(square_distance(pos.king_square(Them), blockSq) * 6 * rr);
816 ebonus -= Value(square_distance(pos.king_square(Us), blockSq) * 3 * rr);
818 // If blockSq is not the queening square then consider also a second push
819 if (square_rank(blockSq) != (Us == WHITE ? RANK_8 : RANK_1))
820 ebonus -= Value(square_distance(pos.king_square(Us), blockSq + pawn_push(Us)) * rr);
822 // If the pawn is free to advance, increase bonus
823 if (pos.square_is_empty(blockSq))
825 squaresToQueen = squares_in_front_of(Us, s);
826 defendedSquares = squaresToQueen & ei.attackedBy[Us][0];
828 // If there is an enemy rook or queen attacking the pawn from behind,
829 // add all X-ray attacks by the rook or queen. Otherwise consider only
830 // the squares in the pawn's path attacked or occupied by the enemy.
831 if ( (squares_in_front_of(Them, s) & pos.pieces(ROOK, QUEEN, Them))
832 && (squares_in_front_of(Them, s) & pos.pieces(ROOK, QUEEN, Them) & pos.attacks_from<ROOK>(s)))
833 unsafeSquares = squaresToQueen;
835 unsafeSquares = squaresToQueen & (ei.attackedBy[Them][0] | pos.pieces(Them));
837 // If there aren't enemy attacks or pieces along the path to queen give
838 // huge bonus. Even bigger if we protect the pawn's path.
840 ebonus += Value(rr * (squaresToQueen == defendedSquares ? 17 : 15));
842 // OK, there are enemy attacks or pieces (but not pawns). Are those
843 // squares which are attacked by the enemy also attacked by us ?
844 // If yes, big bonus (but smaller than when there are no enemy attacks),
845 // if no, somewhat smaller bonus.
846 ebonus += Value(rr * ((unsafeSquares & defendedSquares) == unsafeSquares ? 13 : 8));
848 // At last, add a small bonus when there are no *friendly* pieces
849 // in the pawn's path.
850 if (!(squaresToQueen & pos.pieces(Us)))
855 // Increase the bonus if the passed pawn is supported by a friendly pawn
856 // on the same rank and a bit smaller if it's on the previous rank.
857 supportingPawns = pos.pieces(PAWN, Us) & neighboring_files_bb(s);
858 if (supportingPawns & rank_bb(s))
859 ebonus += Value(r * 20);
860 else if (supportingPawns & rank_bb(s - pawn_push(Us)))
861 ebonus += Value(r * 12);
863 // Rook pawns are a special case: They are sometimes worse, and
864 // sometimes better than other passed pawns. It is difficult to find
865 // good rules for determining whether they are good or bad. For now,
866 // we try the following: Increase the value for rook pawns if the
867 // other side has no pieces apart from a knight, and decrease the
868 // value if the other side has a rook or queen.
869 if (square_file(s) == FILE_A || square_file(s) == FILE_H)
871 if (pos.non_pawn_material(Them) <= KnightValueMidgame)
872 ebonus += ebonus / 4;
873 else if (pos.pieces(ROOK, QUEEN, Them))
874 ebonus -= ebonus / 4;
876 score += make_score(mbonus, ebonus);
880 // Add the scores to the middle game and endgame eval
881 return apply_weight(score, Weights[PassedPawns]);
885 // evaluate_unstoppable_pawns() evaluates the unstoppable passed pawns for both sides, this is quite
886 // conservative and returns a winning score only when we are very sure that the pawn is winning.
888 template<bool HasPopCnt>
889 Score evaluate_unstoppable_pawns(const Position& pos, EvalInfo& ei) {
891 const BitCountType Max15 = HasPopCnt ? CNT_POPCNT : CpuIs64Bit ? CNT64_MAX15 : CNT32_MAX15;
893 Bitboard b, b2, blockers, supporters, queeningPath, candidates;
894 Square s, blockSq, queeningSquare;
895 Color c, winnerSide, loserSide;
896 bool pathDefended, opposed;
897 int pliesToGo, movesToGo, oppMovesToGo, sacptg, blockersCount, minKingDist, kingptg, d;
898 int pliesToQueen[] = { 256, 256 };
900 // Step 1. Hunt for unstoppable passed pawns. If we find at least one,
901 // record how many plies are required for promotion.
902 for (c = WHITE; c <= BLACK; c++)
904 // Skip if other side has non-pawn pieces
905 if (pos.non_pawn_material(opposite_color(c)))
908 b = ei.pi->passed_pawns(c);
913 queeningSquare = relative_square(c, make_square(square_file(s), RANK_8));
914 queeningPath = squares_in_front_of(c, s);
916 // Compute plies to queening and check direct advancement
917 movesToGo = rank_distance(s, queeningSquare) - int(relative_rank(c, s) == RANK_2);
918 oppMovesToGo = square_distance(pos.king_square(opposite_color(c)), queeningSquare) - int(c != pos.side_to_move());
919 pathDefended = ((ei.attackedBy[c][0] & queeningPath) == queeningPath);
921 if (movesToGo >= oppMovesToGo && !pathDefended)
924 // Opponent king cannot block because path is defended and position
925 // is not in check. So only friendly pieces can be blockers.
926 assert(!pos.in_check());
927 assert((queeningPath & pos.occupied_squares()) == (queeningPath & pos.pieces(c)));
929 // Add moves needed to free the path from friendly pieces and retest condition
930 movesToGo += count_1s<Max15>(queeningPath & pos.pieces(c));
932 if (movesToGo >= oppMovesToGo && !pathDefended)
935 pliesToGo = 2 * movesToGo - int(c == pos.side_to_move());
936 pliesToQueen[c] = Min(pliesToQueen[c], pliesToGo);
940 // Step 2. If either side cannot promote at least three plies before the other side then situation
941 // becomes too complex and we give up. Otherwise we determine the possibly "winning side"
942 if (abs(pliesToQueen[WHITE] - pliesToQueen[BLACK]) < 3)
945 winnerSide = (pliesToQueen[WHITE] < pliesToQueen[BLACK] ? WHITE : BLACK);
946 loserSide = opposite_color(winnerSide);
948 // Step 3. Can the losing side possibly create a new passed pawn and thus prevent the loss?
949 b = candidates = pos.pieces(PAWN, loserSide);
955 // Compute plies from queening
956 queeningSquare = relative_square(loserSide, make_square(square_file(s), RANK_8));
957 movesToGo = rank_distance(s, queeningSquare) - int(relative_rank(loserSide, s) == RANK_2);
958 pliesToGo = 2 * movesToGo - int(loserSide == pos.side_to_move());
960 // Check if (without even considering any obstacles) we're too far away or doubled
961 if ( pliesToQueen[winnerSide] + 3 <= pliesToGo
962 || (squares_in_front_of(loserSide, s) & pos.pieces(PAWN, loserSide)))
963 clear_bit(&candidates, s);
966 // If any candidate is already a passed pawn it _may_ promote in time. We give up.
967 if (candidates & ei.pi->passed_pawns(loserSide))
970 // Step 4. Check new passed pawn creation through king capturing and pawn sacrifices
976 sacptg = blockersCount = 0;
977 minKingDist = kingptg = 256;
979 // Compute plies from queening
980 queeningSquare = relative_square(loserSide, make_square(square_file(s), RANK_8));
981 movesToGo = rank_distance(s, queeningSquare) - int(relative_rank(loserSide, s) == RANK_2);
982 pliesToGo = 2 * movesToGo - int(loserSide == pos.side_to_move());
984 // Generate list of blocking pawns and supporters
985 supporters = neighboring_files_bb(s) & candidates;
986 opposed = squares_in_front_of(loserSide, s) & pos.pieces(PAWN, winnerSide);
987 blockers = passed_pawn_mask(loserSide, s) & pos.pieces(PAWN, winnerSide);
991 // How many plies does it take to remove all the blocking pawns?
994 blockSq = pop_1st_bit(&blockers);
997 // Check pawns that can give support to overcome obstacle, for instance
998 // black pawns: a4, b4 white: b2 then pawn in b4 is giving support.
1001 b2 = supporters & in_front_bb(winnerSide, blockSq + pawn_push(winnerSide));
1003 while (b2) // This while-loop could be replaced with LSB/MSB (depending on color)
1005 d = square_distance(blockSq, pop_1st_bit(&b2)) - 2;
1006 movesToGo = Min(movesToGo, d);
1010 // Check pawns that can be sacrificed against the blocking pawn
1011 b2 = attack_span_mask(winnerSide, blockSq) & candidates & ~(1ULL << s);
1013 while (b2) // This while-loop could be replaced with LSB/MSB (depending on color)
1015 d = square_distance(blockSq, pop_1st_bit(&b2)) - 2;
1016 movesToGo = Min(movesToGo, d);
1019 // If obstacle can be destroyed with an immediate pawn exchange / sacrifice,
1020 // it's not a real obstacle and we have nothing to add to pliesToGo.
1024 // Plies needed to sacrifice against all the blocking pawns
1025 sacptg += movesToGo * 2;
1028 // Plies needed for the king to capture all the blocking pawns
1029 d = square_distance(pos.king_square(loserSide), blockSq);
1030 minKingDist = Min(minKingDist, d);
1031 kingptg = (minKingDist + blockersCount) * 2;
1034 // Check if pawn sacrifice plan _may_ save the day
1035 if (pliesToQueen[winnerSide] + 3 > pliesToGo + sacptg)
1038 // Check if king capture plan _may_ save the day (contains some false positives)
1039 if (pliesToQueen[winnerSide] + 3 > pliesToGo + kingptg)
1043 // Winning pawn is unstoppable and will promote as first, return big score
1044 Score score = make_score(0, (Value) 0x500 - 0x20 * pliesToQueen[winnerSide]);
1045 return winnerSide == WHITE ? score : -score;
1049 // evaluate_space() computes the space evaluation for a given side. The
1050 // space evaluation is a simple bonus based on the number of safe squares
1051 // available for minor pieces on the central four files on ranks 2--4. Safe
1052 // squares one, two or three squares behind a friendly pawn are counted
1053 // twice. Finally, the space bonus is scaled by a weight taken from the
1054 // material hash table. The aim is to improve play on game opening.
1055 template<Color Us, bool HasPopCnt>
1056 int evaluate_space(const Position& pos, EvalInfo& ei) {
1058 const BitCountType Max15 = HasPopCnt ? CNT_POPCNT : CpuIs64Bit ? CNT64_MAX15 : CNT32_MAX15;
1059 const Color Them = (Us == WHITE ? BLACK : WHITE);
1061 // Find the safe squares for our pieces inside the area defined by
1062 // SpaceMask[]. A square is unsafe if it is attacked by an enemy
1063 // pawn, or if it is undefended and attacked by an enemy piece.
1064 Bitboard safe = SpaceMask[Us]
1065 & ~pos.pieces(PAWN, Us)
1066 & ~ei.attackedBy[Them][PAWN]
1067 & (ei.attackedBy[Us][0] | ~ei.attackedBy[Them][0]);
1069 // Find all squares which are at most three squares behind some friendly pawn
1070 Bitboard behind = pos.pieces(PAWN, Us);
1071 behind |= (Us == WHITE ? behind >> 8 : behind << 8);
1072 behind |= (Us == WHITE ? behind >> 16 : behind << 16);
1074 return count_1s<Max15>(safe) + count_1s<Max15>(behind & safe);
1078 // apply_weight() applies an evaluation weight to a value trying to prevent overflow
1080 inline Score apply_weight(Score v, Score w) {
1081 return make_score((int(mg_value(v)) * mg_value(w)) / 0x100,
1082 (int(eg_value(v)) * eg_value(w)) / 0x100);
1086 // scale_by_game_phase() interpolates between a middle game and an endgame score,
1087 // based on game phase. It also scales the return value by a ScaleFactor array.
1089 Value scale_by_game_phase(const Score& v, Phase ph, ScaleFactor sf) {
1091 assert(mg_value(v) > -VALUE_INFINITE && mg_value(v) < VALUE_INFINITE);
1092 assert(eg_value(v) > -VALUE_INFINITE && eg_value(v) < VALUE_INFINITE);
1093 assert(ph >= PHASE_ENDGAME && ph <= PHASE_MIDGAME);
1095 int ev = (eg_value(v) * int(sf)) / SCALE_FACTOR_NORMAL;
1096 int result = (mg_value(v) * int(ph) + ev * int(128 - ph)) / 128;
1097 return Value((result + GrainSize / 2) & ~(GrainSize - 1));
1101 // weight_option() computes the value of an evaluation weight, by combining
1102 // two UCI-configurable weights (midgame and endgame) with an internal weight.
1104 Score weight_option(const std::string& mgOpt, const std::string& egOpt, Score internalWeight) {
1106 // Scale option value from 100 to 256
1107 int mg = Options[mgOpt].value<int>() * 256 / 100;
1108 int eg = Options[egOpt].value<int>() * 256 / 100;
1110 return apply_weight(make_score(mg, eg), internalWeight);
1114 // init_safety() initizes the king safety evaluation, based on UCI
1115 // parameters. It is called from read_weights().
1117 void init_safety() {
1119 const Value MaxSlope = Value(30);
1120 const Value Peak = Value(1280);
1123 // First setup the base table
1124 for (int i = 0; i < 100; i++)
1126 t[i] = Value(int(0.4 * i * i));
1129 t[i] = Min(t[i], t[i - 1] + MaxSlope);
1131 t[i] = Min(t[i], Peak);
1134 // Then apply the weights and get the final KingDangerTable[] array
1135 for (Color c = WHITE; c <= BLACK; c++)
1136 for (int i = 0; i < 100; i++)
1137 KingDangerTable[c][i] = apply_weight(make_score(t[i], 0), Weights[KingDangerUs + c]);
1141 // A couple of little helpers used by tracing code, to_cp() converts a value to
1142 // a double in centipawns scale, trace_add() stores white and black scores.
1144 double to_cp(Value v) { return double(v) / double(PawnValueMidgame); }
1146 void trace_add(int idx, Score wScore, Score bScore) {
1148 TracedScores[WHITE][idx] = wScore;
1149 TracedScores[BLACK][idx] = bScore;
1152 // trace_row() is an helper function used by tracing code to register the
1153 // values of a single evaluation term.
1155 void trace_row(const char *name, int idx) {
1157 Score wScore = TracedScores[WHITE][idx];
1158 Score bScore = TracedScores[BLACK][idx];
1161 case PST: case IMBALANCE: case PAWN: case UNSTOPPABLE: case TOTAL:
1162 TraceStream << std::setw(20) << name << " | --- --- | --- --- | "
1163 << std::setw(6) << to_cp(mg_value(wScore)) << " "
1164 << std::setw(6) << to_cp(eg_value(wScore)) << " \n";
1167 TraceStream << std::setw(20) << name << " | " << std::noshowpos
1168 << std::setw(5) << to_cp(mg_value(wScore)) << " "
1169 << std::setw(5) << to_cp(eg_value(wScore)) << " | "
1170 << std::setw(5) << to_cp(mg_value(bScore)) << " "
1171 << std::setw(5) << to_cp(eg_value(bScore)) << " | "
1173 << std::setw(6) << to_cp(mg_value(wScore - bScore)) << " "
1174 << std::setw(6) << to_cp(eg_value(wScore - bScore)) << " \n";
1180 /// trace_evaluate() is like evaluate() but instead of a value returns a string
1181 /// suitable to be print on stdout with the detailed descriptions and values of
1182 /// each evaluation term. Used mainly for debugging.
1184 std::string trace_evaluate(const Position& pos) {
1189 TraceStream.str("");
1190 TraceStream << std::showpoint << std::showpos << std::fixed << std::setprecision(2);
1191 memset(TracedScores, 0, 2 * 16 * sizeof(Score));
1193 do_evaluate<false, true>(pos, margin);
1195 totals = TraceStream.str();
1196 TraceStream.str("");
1198 TraceStream << std::setw(21) << "Eval term " << "| White | Black | Total \n"
1199 << " | MG EG | MG EG | MG EG \n"
1200 << "---------------------+-------------+-------------+---------------\n";
1202 trace_row("Material, PST, Tempo", PST);
1203 trace_row("Material imbalance", IMBALANCE);
1204 trace_row("Pawns", PAWN);
1205 trace_row("Knights", KNIGHT);
1206 trace_row("Bishops", BISHOP);
1207 trace_row("Rooks", ROOK);
1208 trace_row("Queens", QUEEN);
1209 trace_row("Mobility", MOBILITY);
1210 trace_row("King safety", KING);
1211 trace_row("Threats", THREAT);
1212 trace_row("Passed pawns", PASSED);
1213 trace_row("Unstoppable pawns", UNSTOPPABLE);
1214 trace_row("Space", SPACE);
1216 TraceStream << "---------------------+-------------+-------------+---------------\n";
1217 trace_row("Total", TOTAL);
1218 TraceStream << totals;
1220 return TraceStream.str();