1 /*****************************************************************************
2 * clock.c: Clock/System date convertions, stream management
3 *****************************************************************************
4 * Copyright (C) 1999-2008 the VideoLAN team
5 * Copyright (C) 2008 Laurent Aimar
8 * Authors: Christophe Massiot <massiot@via.ecp.fr>
9 * Laurent Aimar < fenrir _AT_ videolan _DOT_ org >
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301, USA.
24 *****************************************************************************/
26 /*****************************************************************************
28 *****************************************************************************/
33 #include <vlc_common.h>
34 #include <vlc_input.h>
39 * - clean up locking once clock code is stable
44 * DISCUSSION : SYNCHRONIZATION METHOD
46 * In some cases we can impose the pace of reading (when reading from a
47 * file or a pipe), and for the synchronization we simply sleep() until
48 * it is time to deliver the packet to the decoders. When reading from
49 * the network, we must be read at the same pace as the server writes,
50 * otherwise the kernel's buffer will trash packets. The risk is now to
51 * overflow the input buffers in case the server goes too fast, that is
52 * why we do these calculations :
54 * We compute a mean for the pcr because we want to eliminate the
55 * network jitter and keep the low frequency variations. The mean is
56 * in fact a low pass filter and the jitter is a high frequency signal
57 * that is why it is eliminated by the filter/average.
59 * The low frequency variations enable us to synchronize the client clock
60 * with the server clock because they represent the time variation between
61 * the 2 clocks. Those variations (ie the filtered pcr) are used to compute
62 * the presentation dates for the audio and video frames. With those dates
63 * we can decode (or trash) the MPEG2 stream at "exactly" the same rate
64 * as it is sent by the server and so we keep the synchronization between
65 * the server and the client.
67 * It is a very important matter if you want to avoid underflow or overflow
68 * in all the FIFOs, but it may be not enough.
71 /* i_cr_average : Maximum number of samples used to compute the
72 * dynamic average value.
73 * We use the following formula :
74 * new_average = (old_average * c_average + new_sample_value) / (c_average +1)
78 /*****************************************************************************
80 *****************************************************************************/
82 /* Maximum gap allowed between two CRs. */
83 #define CR_MAX_GAP (INT64_C(2000000)*100/9)
85 /* Latency introduced on DVDs with CR == 0 on chapter change - this is from
87 #define CR_MEAN_PTS_GAP (300000)
89 /* Rate (in 1/256) at which we will read faster to try to increase our
90 * internal buffer (if we control the pace of the source).
92 #define CR_BUFFERING_RATE (48)
94 /* Extra internal buffer value (in CLOCK_FREQ)
95 * It is 60s max, remember as it is limited by the size it takes by es_out.c
96 * it can be really large.
98 //#define CR_BUFFERING_TARGET (60000000)
99 /* Due to some problems in es_out, we cannot use a large value yet */
100 #define CR_BUFFERING_TARGET (100000)
102 /*****************************************************************************
104 *****************************************************************************/
107 * This structure holds long term average
117 static void AvgInit( average_t *, int i_divider );
118 static void AvgClean( average_t * );
120 static void AvgReset( average_t * );
121 static void AvgUpdate( average_t *, mtime_t i_value );
122 static mtime_t AvgGet( average_t * );
123 static void AvgRescale( average_t *, int i_divider );
132 static inline clock_point_t clock_point_Create( mtime_t i_stream, mtime_t i_system )
134 clock_point_t p = { .i_stream = i_stream, .i_system = i_system };
139 #define INPUT_CLOCK_LATE_COUNT (3)
148 * It is used to detect unexpected stream discontinuities */
151 /* Maximal timestamp returned by input_clock_ConvertTS (in system unit) */
154 /* Amount of extra buffering expressed in stream clock */
155 mtime_t i_buffering_duration;
158 mtime_t i_next_drift_update;
161 /* Late statistics */
164 mtime_t pi_value[INPUT_CLOCK_LATE_COUNT];
168 /* Reference point */
170 bool b_has_reference;
172 /* External clock drift */
173 mtime_t i_external_clock;
174 bool b_has_external_clock;
176 /* Current modifiers */
180 mtime_t i_pause_date;
183 static mtime_t ClockStreamToSystem( input_clock_t *, mtime_t i_stream );
184 static mtime_t ClockSystemToStream( input_clock_t *, mtime_t i_system );
186 static mtime_t ClockGetTsOffset( input_clock_t * );
188 /*****************************************************************************
189 * input_clock_New: create a new clock
190 *****************************************************************************/
191 input_clock_t *input_clock_New( int i_rate )
193 input_clock_t *cl = malloc( sizeof(*cl) );
197 vlc_mutex_init( &cl->lock );
198 cl->b_has_reference = false;
199 cl->ref = clock_point_Create( VLC_TS_INVALID, VLC_TS_INVALID );
200 cl->b_has_external_clock = false;
202 cl->last = clock_point_Create( VLC_TS_INVALID, VLC_TS_INVALID );
204 cl->i_ts_max = VLC_TS_INVALID;
206 cl->i_buffering_duration = 0;
208 cl->i_next_drift_update = VLC_TS_INVALID;
209 AvgInit( &cl->drift, 10 );
211 cl->late.i_index = 0;
212 for( int i = 0; i < INPUT_CLOCK_LATE_COUNT; i++ )
213 cl->late.pi_value[i] = 0;
217 cl->b_paused = false;
218 cl->i_pause_date = VLC_TS_INVALID;
223 /*****************************************************************************
224 * input_clock_Delete: destroy a new clock
225 *****************************************************************************/
226 void input_clock_Delete( input_clock_t *cl )
228 AvgClean( &cl->drift );
229 vlc_mutex_destroy( &cl->lock );
233 /*****************************************************************************
234 * input_clock_Update: manages a clock reference
236 * i_ck_stream: date in stream clock
237 * i_ck_system: date in system clock
238 *****************************************************************************/
239 void input_clock_Update( input_clock_t *cl, vlc_object_t *p_log,
241 bool b_can_pace_control, bool b_buffering_allowed,
242 mtime_t i_ck_stream, mtime_t i_ck_system )
244 bool b_reset_reference = false;
246 assert( i_ck_stream > VLC_TS_INVALID && i_ck_system > VLC_TS_INVALID );
248 vlc_mutex_lock( &cl->lock );
250 if( !cl->b_has_reference )
253 b_reset_reference= true;
255 else if( cl->last.i_stream > VLC_TS_INVALID &&
256 ( (cl->last.i_stream - i_ck_stream) > CR_MAX_GAP ||
257 (cl->last.i_stream - i_ck_stream) < -CR_MAX_GAP ) )
259 /* Stream discontinuity, for which we haven't received a
260 * warning from the stream control facilities (dd-edited
262 msg_Warn( p_log, "clock gap, unexpected stream discontinuity" );
263 cl->i_ts_max = VLC_TS_INVALID;
266 msg_Warn( p_log, "feeding synchro with a new reference point trying to recover from clock gap" );
267 b_reset_reference= true;
271 if( b_reset_reference )
273 cl->i_next_drift_update = VLC_TS_INVALID;
274 AvgReset( &cl->drift );
276 /* Feed synchro with a new reference point. */
277 cl->b_has_reference = true;
278 cl->ref = clock_point_Create( i_ck_stream,
279 __MAX( cl->i_ts_max + CR_MEAN_PTS_GAP, i_ck_system ) );
280 cl->b_has_external_clock = false;
283 /* Compute the drift between the stream clock and the system clock
284 * when we don't control the source pace */
285 if( !b_can_pace_control && cl->i_next_drift_update < i_ck_system )
287 const mtime_t i_converted = ClockSystemToStream( cl, i_ck_system );
289 AvgUpdate( &cl->drift, i_converted - i_ck_stream );
291 cl->i_next_drift_update = i_ck_system + CLOCK_FREQ/5; /* FIXME why that */
294 /* Update the extra buffering value */
295 if( !b_can_pace_control || b_reset_reference )
297 cl->i_buffering_duration = 0;
299 else if( b_buffering_allowed )
301 /* Try to bufferize more than necessary by reading
302 * CR_BUFFERING_RATE/256 faster until we have CR_BUFFERING_TARGET.
304 const mtime_t i_duration = __MAX( i_ck_stream - cl->last.i_stream, 0 );
306 cl->i_buffering_duration += ( i_duration * CR_BUFFERING_RATE + 255 ) / 256;
307 if( cl->i_buffering_duration > CR_BUFFERING_TARGET )
308 cl->i_buffering_duration = CR_BUFFERING_TARGET;
310 //fprintf( stderr, "input_clock_Update: %d :: %lld\n", b_buffering_allowed, cl->i_buffering_duration/1000 );
313 cl->last = clock_point_Create( i_ck_stream, i_ck_system );
315 /* It does not take the decoder latency into account but it is not really
316 * the goal of the clock here */
317 const mtime_t i_system_expected = ClockStreamToSystem( cl, i_ck_stream + AvgGet( &cl->drift ) );
318 const mtime_t i_late = ( i_ck_system - cl->i_pts_delay ) - i_system_expected;
319 *pb_late = i_late > 0;
322 cl->late.pi_value[cl->late.i_index] = i_late;
323 cl->late.i_index = ( cl->late.i_index + 1 ) % INPUT_CLOCK_LATE_COUNT;
326 vlc_mutex_unlock( &cl->lock );
329 /*****************************************************************************
331 *****************************************************************************/
332 void input_clock_Reset( input_clock_t *cl )
334 vlc_mutex_lock( &cl->lock );
336 cl->b_has_reference = false;
337 cl->ref = clock_point_Create( VLC_TS_INVALID, VLC_TS_INVALID );
338 cl->b_has_external_clock = false;
339 cl->i_ts_max = VLC_TS_INVALID;
341 vlc_mutex_unlock( &cl->lock );
344 /*****************************************************************************
345 * input_clock_ChangeRate:
346 *****************************************************************************/
347 void input_clock_ChangeRate( input_clock_t *cl, int i_rate )
349 vlc_mutex_lock( &cl->lock );
351 if( cl->b_has_reference )
353 /* Move the reference point (as if we were playing at the new rate
355 cl->ref.i_system = cl->last.i_system - (cl->last.i_system - cl->ref.i_system) * i_rate / cl->i_rate;
359 vlc_mutex_unlock( &cl->lock );
362 /*****************************************************************************
363 * input_clock_ChangePause:
364 *****************************************************************************/
365 void input_clock_ChangePause( input_clock_t *cl, bool b_paused, mtime_t i_date )
367 vlc_mutex_lock( &cl->lock );
368 assert( (!cl->b_paused) != (!b_paused) );
372 const mtime_t i_duration = i_date - cl->i_pause_date;
374 if( cl->b_has_reference && i_duration > 0 )
376 cl->ref.i_system += i_duration;
377 cl->last.i_system += i_duration;
380 cl->i_pause_date = i_date;
381 cl->b_paused = b_paused;
383 vlc_mutex_unlock( &cl->lock );
386 /*****************************************************************************
387 * input_clock_GetWakeup
388 *****************************************************************************/
389 mtime_t input_clock_GetWakeup( input_clock_t *cl )
391 mtime_t i_wakeup = 0;
393 vlc_mutex_lock( &cl->lock );
395 /* Synchronized, we can wait */
396 if( cl->b_has_reference )
397 i_wakeup = ClockStreamToSystem( cl, cl->last.i_stream + AvgGet( &cl->drift ) - cl->i_buffering_duration );
399 vlc_mutex_unlock( &cl->lock );
404 /*****************************************************************************
405 * input_clock_ConvertTS
406 *****************************************************************************/
407 int input_clock_ConvertTS( input_clock_t *cl,
408 int *pi_rate, mtime_t *pi_ts0, mtime_t *pi_ts1,
412 vlc_mutex_lock( &cl->lock );
415 *pi_rate = cl->i_rate;
417 if( !cl->b_has_reference )
419 vlc_mutex_unlock( &cl->lock );
420 *pi_ts0 = VLC_TS_INVALID;
422 *pi_ts1 = VLC_TS_INVALID;
427 const mtime_t i_ts_buffering = cl->i_buffering_duration * cl->i_rate / INPUT_RATE_DEFAULT;
428 const mtime_t i_ts_delay = cl->i_pts_delay + ClockGetTsOffset( cl );
431 if( *pi_ts0 > VLC_TS_INVALID )
433 *pi_ts0 = ClockStreamToSystem( cl, *pi_ts0 + AvgGet( &cl->drift ) );
434 if( *pi_ts0 > cl->i_ts_max )
435 cl->i_ts_max = *pi_ts0;
436 *pi_ts0 += i_ts_delay;
439 /* XXX we do not ipdate i_ts_max on purpose */
440 if( pi_ts1 && *pi_ts1 > VLC_TS_INVALID )
442 *pi_ts1 = ClockStreamToSystem( cl, *pi_ts1 + AvgGet( &cl->drift ) ) +
446 vlc_mutex_unlock( &cl->lock );
448 /* Check ts validity */
449 if( i_ts_bound != INT64_MAX &&
450 *pi_ts0 > VLC_TS_INVALID && *pi_ts0 >= mdate() + i_ts_delay + i_ts_buffering + i_ts_bound )
455 /*****************************************************************************
456 * input_clock_GetRate: Return current rate
457 *****************************************************************************/
458 int input_clock_GetRate( input_clock_t *cl )
462 vlc_mutex_lock( &cl->lock );
464 vlc_mutex_unlock( &cl->lock );
469 int input_clock_GetState( input_clock_t *cl,
470 mtime_t *pi_stream_start, mtime_t *pi_system_start,
471 mtime_t *pi_stream_duration, mtime_t *pi_system_duration )
473 vlc_mutex_lock( &cl->lock );
475 if( !cl->b_has_reference )
477 vlc_mutex_unlock( &cl->lock );
481 *pi_stream_start = cl->ref.i_stream;
482 *pi_system_start = cl->ref.i_system;
484 *pi_stream_duration = cl->last.i_stream - cl->ref.i_stream;
485 *pi_system_duration = cl->last.i_system - cl->ref.i_system;
487 vlc_mutex_unlock( &cl->lock );
492 void input_clock_ChangeSystemOrigin( input_clock_t *cl, bool b_absolute, mtime_t i_system )
494 vlc_mutex_lock( &cl->lock );
496 assert( cl->b_has_reference );
500 i_offset = i_system - cl->ref.i_system - ClockGetTsOffset( cl );
504 if( !cl->b_has_external_clock )
506 cl->b_has_external_clock = true;
507 cl->i_external_clock = i_system;
509 i_offset = i_system - cl->i_external_clock;
512 cl->ref.i_system += i_offset;
513 cl->last.i_system += i_offset;
515 vlc_mutex_unlock( &cl->lock );
518 void input_clock_GetSystemOrigin( input_clock_t *cl, mtime_t *pi_system, mtime_t *pi_delay )
520 vlc_mutex_lock( &cl->lock );
522 assert( cl->b_has_reference );
524 *pi_system = cl->ref.i_system;
526 *pi_delay = cl->i_pts_delay;
528 vlc_mutex_unlock( &cl->lock );
531 #warning "input_clock_SetJitter needs more work"
532 void input_clock_SetJitter( input_clock_t *cl,
533 mtime_t i_pts_delay, int i_cr_average )
535 vlc_mutex_lock( &cl->lock );
537 /* Update late observations */
538 const mtime_t i_delay_delta = i_pts_delay - cl->i_pts_delay;
539 mtime_t pi_late[INPUT_CLOCK_LATE_COUNT];
540 for( int i = 0; i < INPUT_CLOCK_LATE_COUNT; i++ )
541 pi_late[i] = __MAX( cl->late.pi_value[(cl->late.i_index + 1 + i)%INPUT_CLOCK_LATE_COUNT] - i_delay_delta, 0 );
543 for( int i = 0; i < INPUT_CLOCK_LATE_COUNT; i++ )
544 cl->late.pi_value[i] = 0;
545 cl->late.i_index = 0;
547 for( int i = 0; i < INPUT_CLOCK_LATE_COUNT; i++ )
549 if( pi_late[i] <= 0 )
551 cl->late.pi_value[cl->late.i_index] = pi_late[i];
552 cl->late.i_index = ( cl->late.i_index + 1 ) % INPUT_CLOCK_LATE_COUNT;
555 /* TODO always save the value, and when rebuffering use the new one if smaller
556 * TODO when increasing -> force rebuffering
558 if( cl->i_pts_delay < i_pts_delay )
559 cl->i_pts_delay = i_pts_delay;
562 if( i_cr_average < 10 )
565 if( cl->drift.i_divider != i_cr_average )
566 AvgRescale( &cl->drift, i_cr_average );
568 vlc_mutex_unlock( &cl->lock );
571 mtime_t input_clock_GetJitter( input_clock_t *cl )
573 vlc_mutex_lock( &cl->lock );
575 #if INPUT_CLOCK_LATE_COUNT != 3
576 # error "unsupported INPUT_CLOCK_LATE_COUNT"
578 /* Find the median of the last late values
579 * It works pretty well at rejecting bad values
581 * XXX we only increase pts_delay over time, decreasing it is
582 * not that easy if we want to be robust.
584 const mtime_t *p = cl->late.pi_value;
585 mtime_t i_late_median = p[0] + p[1] + p[2] - __MIN(__MIN(p[0],p[1]),p[2]) - __MAX(__MAX(p[0],p[1]),p[2]);
586 mtime_t i_pts_delay = cl->i_pts_delay ;
588 vlc_mutex_unlock( &cl->lock );
590 return i_pts_delay + i_late_median;
593 /*****************************************************************************
594 * ClockStreamToSystem: converts a movie clock to system date
595 *****************************************************************************/
596 static mtime_t ClockStreamToSystem( input_clock_t *cl, mtime_t i_stream )
598 if( !cl->b_has_reference )
599 return VLC_TS_INVALID;
601 return ( i_stream - cl->ref.i_stream ) * cl->i_rate / INPUT_RATE_DEFAULT +
605 /*****************************************************************************
606 * ClockSystemToStream: converts a system date to movie clock
607 *****************************************************************************
608 * Caution : a valid reference point is needed for this to operate.
609 *****************************************************************************/
610 static mtime_t ClockSystemToStream( input_clock_t *cl, mtime_t i_system )
612 assert( cl->b_has_reference );
613 return ( i_system - cl->ref.i_system ) * INPUT_RATE_DEFAULT / cl->i_rate +
618 * It returns timestamp display offset due to ref/last modfied on rate changes
619 * It ensures that currently converted dates are not changed.
621 static mtime_t ClockGetTsOffset( input_clock_t *cl )
623 return cl->i_pts_delay * ( cl->i_rate - INPUT_RATE_DEFAULT ) / INPUT_RATE_DEFAULT;
626 /*****************************************************************************
627 * Long term average helpers
628 *****************************************************************************/
629 static void AvgInit( average_t *p_avg, int i_divider )
631 p_avg->i_divider = i_divider;
634 static void AvgClean( average_t *p_avg )
638 static void AvgReset( average_t *p_avg )
641 p_avg->i_residue = 0;
644 static void AvgUpdate( average_t *p_avg, mtime_t i_value )
646 const int i_f0 = __MIN( p_avg->i_divider - 1, p_avg->i_count );
647 const int i_f1 = p_avg->i_divider - i_f0;
649 const mtime_t i_tmp = i_f0 * p_avg->i_value + i_f1 * i_value + p_avg->i_residue;
651 p_avg->i_value = i_tmp / p_avg->i_divider;
652 p_avg->i_residue = i_tmp % p_avg->i_divider;
656 static mtime_t AvgGet( average_t *p_avg )
658 return p_avg->i_value;
660 static void AvgRescale( average_t *p_avg, int i_divider )
662 const mtime_t i_tmp = p_avg->i_value * p_avg->i_divider + p_avg->i_residue;
664 p_avg->i_divider = i_divider;
665 p_avg->i_value = i_tmp / p_avg->i_divider;
666 p_avg->i_residue = i_tmp % p_avg->i_divider;