]> git.sesse.net Git - vlc/blob - src/input/input_clock.c
31660561bdd2897a24d41ca6a1f8d0821f895a99
[vlc] / src / input / input_clock.c
1 /*****************************************************************************
2  * input_clock.c: Clock/System date convertions, stream management
3  *****************************************************************************
4  * Copyright (C) 1999, 2000 VideoLAN
5  * $Id: input_clock.c,v 1.9 2001/04/06 09:15:47 sam Exp $
6  *
7  * Authors: Christophe Massiot <massiot@via.ecp.fr>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  * 
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111, USA.
22  *****************************************************************************/
23
24 /*****************************************************************************
25  * Preamble
26  *****************************************************************************/
27 #include "defs.h"
28
29 #include <string.h>                                    /* memcpy(), memset() */
30
31 #include "config.h"
32 #include "common.h"
33 #include "threads.h"
34 #include "mtime.h"
35 #include "intf_msg.h"
36
37 #include "stream_control.h"
38 #include "input_ext-intf.h"
39 #include "input_ext-dec.h"
40
41 #include "input.h"
42
43 /*
44  * DISCUSSION : SYNCHRONIZATION METHOD
45  *
46  * In some cases we can impose the pace of reading (when reading from a
47  * file or a pipe), and for the synchronization we simply sleep() until
48  * it is time to deliver the packet to the decoders. When reading from
49  * the network, we must be read at the same pace as the server writes,
50  * otherwise the kernel's buffer will trash packets. The risk is now to
51  * overflow the input buffers in case the server goes too fast, that is
52  * why we do these calculations :
53  *
54  * We compute a mean for the pcr because we want to eliminate the
55  * network jitter and keep the low frequency variations. The mean is
56  * in fact a low pass filter and the jitter is a high frequency signal
57  * that is why it is eliminated by the filter/average.
58  *
59  * The low frequency variations enable us to synchronize the client clock
60  * with the server clock because they represent the time variation between
61  * the 2 clocks. Those variations (ie the filtered pcr) are used to compute
62  * the presentation dates for the audio and video frames. With those dates
63  * we can decode (or trash) the MPEG2 stream at "exactly" the same rate
64  * as it is sent by the server and so we keep the synchronization between
65  * the server and the client.
66  *
67  * It is a very important matter if you want to avoid underflow or overflow
68  * in all the FIFOs, but it may be not enough.
69  */
70
71 /*****************************************************************************
72  * Constants
73  *****************************************************************************/
74
75 /* Maximum number of samples used to compute the dynamic average value.
76  * We use the following formula :
77  * new_average = (old_average * c_average + new_sample_value) / (c_average +1)
78  */
79 #define CR_MAX_AVERAGE_COUNTER 40
80
81 /* Maximum gap allowed between two CRs. */
82 #define CR_MAX_GAP 1000000
83
84 /*****************************************************************************
85  * ClockToSysdate: converts a movie clock to system date
86  *****************************************************************************/
87 static mtime_t ClockToSysdate( input_thread_t * p_input,
88                                pgrm_descriptor_t * p_pgrm, mtime_t i_clock )
89 {
90     mtime_t     i_sysdate = 0;
91
92     if( p_pgrm->i_synchro_state == SYNCHRO_OK )
93     {
94         i_sysdate = (mtime_t)(i_clock - p_pgrm->cr_ref) 
95                         * (mtime_t)p_input->stream.control.i_rate
96                         * (mtime_t)300
97                         / (mtime_t)27
98                         / (mtime_t)DEFAULT_RATE
99                         + (mtime_t)p_pgrm->sysdate_ref;
100     }
101
102     return( i_sysdate );
103 }
104
105 /*****************************************************************************
106  * ClockCurrent: converts current system date to clock units
107  *****************************************************************************
108  * Caution : the synchro state must be SYNCHRO_OK for this to operate.
109  *****************************************************************************/
110 static mtime_t ClockCurrent( input_thread_t * p_input,
111                              pgrm_descriptor_t * p_pgrm )
112 {
113     return( (mdate() - p_pgrm->sysdate_ref) * 27 * DEFAULT_RATE
114              / p_input->stream.control.i_rate / 300
115              + p_pgrm->cr_ref );
116 }
117
118 /*****************************************************************************
119  * ClockNewRef: writes a new clock reference
120  *****************************************************************************/
121 static void ClockNewRef( input_thread_t * p_input, pgrm_descriptor_t * p_pgrm,
122                          mtime_t i_clock, mtime_t i_sysdate )
123 {
124     p_pgrm->cr_ref = i_clock;
125     p_pgrm->sysdate_ref = i_sysdate;
126 }
127
128 /*****************************************************************************
129  * input_ClockInit: reinitializes the clock reference after a stream
130  *                  discontinuity
131  *****************************************************************************/
132 void input_ClockInit( pgrm_descriptor_t * p_pgrm )
133 {
134     p_pgrm->last_cr = 0;
135     p_pgrm->cr_ref = 0;
136     p_pgrm->sysdate_ref = 0;
137     p_pgrm->delta_cr = 0;
138     p_pgrm->c_average_count = 0;
139 }
140
141 /*****************************************************************************
142  * input_ClockManageRef: manages a clock reference
143  *****************************************************************************/
144 void input_ClockManageRef( input_thread_t * p_input,
145                            pgrm_descriptor_t * p_pgrm, mtime_t i_clock )
146 {
147     if( p_pgrm->i_synchro_state != SYNCHRO_OK )
148     {
149         /* Feed synchro with a new reference point. */
150         ClockNewRef( p_input, p_pgrm, i_clock, mdate() );
151         p_pgrm->i_synchro_state = SYNCHRO_OK;
152     }
153     else
154     {
155         if ( p_pgrm->last_cr != 0 &&
156                (    (p_pgrm->last_cr - i_clock) > CR_MAX_GAP
157                  || (p_pgrm->last_cr - i_clock) < - CR_MAX_GAP ) )
158         {
159             /* Stream discontinuity, for which we haven't received a
160              * warning from the stream control facilities (dd-edited
161              * stream ?). */
162             intf_WarnMsg( 3, "Clock gap, unexpected stream discontinuity" );
163             input_ClockInit( p_pgrm );
164             p_pgrm->i_synchro_state = SYNCHRO_START;
165             input_EscapeDiscontinuity( p_input, p_pgrm );
166         }
167
168         p_pgrm->last_cr = i_clock;
169
170         if( p_input->stream.b_pace_control
171              && p_input->stream.pp_programs[0] == p_pgrm )
172         {
173             /* Wait a while before delivering the packets to the decoder.
174              * In case of multiple programs, we arbitrarily follow the
175              * clock of the first program. */
176             mwait( ClockToSysdate( p_input, p_pgrm, i_clock ) );
177
178             /* Now take into account interface changes. */
179             vlc_mutex_lock( &p_input->stream.stream_lock );
180             if( p_input->stream.i_new_status != UNDEF_S )
181             {
182                 if( p_input->stream.i_new_status == PAUSE_S )
183                 {
184                     vlc_cond_wait( &p_input->stream.stream_wait,
185                                    &p_input->stream.stream_lock );
186                     ClockNewRef( p_input, p_pgrm, i_clock, mdate() );
187                 }
188                 else
189                 {
190                     ClockNewRef( p_input, p_pgrm, i_clock,
191                                ClockToSysdate( p_input, p_pgrm, i_clock ) );
192                 }
193
194                 vlc_mutex_lock( &p_input->stream.control.control_lock );
195                 p_input->stream.control.i_status = p_input->stream.i_new_status;
196
197                 if( p_input->stream.control.i_status != PLAYING_S
198                      && p_input->stream.control.i_status != PAUSE_S )
199                 {
200                     p_input->stream.control.i_rate = p_input->stream.i_new_rate;
201                     p_input->stream.control.b_mute = 1;
202
203                     /* Feed the audio decoders with a NULL packet to avoid
204                      * discontinuities. */
205                     input_EscapeAudioDiscontinuity( p_input, p_pgrm );
206                 }
207                 else
208                 {
209                     p_input->stream.control.i_rate = DEFAULT_RATE;
210                     p_input->stream.control.b_mute = 0;
211                 }
212                 vlc_mutex_unlock( &p_input->stream.control.control_lock );
213
214                 p_input->stream.i_new_status = UNDEF_S;
215                 p_input->stream.i_new_rate = UNDEF_S;
216             }
217             vlc_mutex_unlock( &p_input->stream.stream_lock );
218         }
219         else
220         {
221             /* Smooth clock reference variations. */
222             mtime_t     i_extrapoled_clock = ClockCurrent( p_input, p_pgrm );
223
224             /* Bresenham algorithm to smooth variations. */
225             if( p_pgrm->c_average_count == CR_MAX_AVERAGE_COUNTER )
226             {
227                 p_pgrm->delta_cr = ( p_pgrm->delta_cr
228                                         * (CR_MAX_AVERAGE_COUNTER - 1)
229                                       + i_extrapoled_clock )
230                                     / CR_MAX_AVERAGE_COUNTER;
231             }
232             else
233             {
234                 p_pgrm->delta_cr = ( p_pgrm->delta_cr
235                                         * p_pgrm->c_average_count
236                                       + i_extrapoled_clock )
237                                     / (p_pgrm->c_average_count + 1);
238                 p_pgrm->c_average_count++;
239             }
240         }
241     }
242 }
243
244 /*****************************************************************************
245  * input_ClockGetTS: manages a PTS or DTS
246  *****************************************************************************/
247 mtime_t input_ClockGetTS( input_thread_t * p_input,
248                           pgrm_descriptor_t * p_pgrm, mtime_t i_ts )
249 {
250     if( p_pgrm->i_synchro_state == SYNCHRO_OK )
251     {
252         return( ClockToSysdate( p_input, p_pgrm, i_ts + p_pgrm->delta_cr )
253                  + DEFAULT_PTS_DELAY );
254     }
255     else
256     {
257         return 0;
258     }
259 }
260