2 Stockfish, a UCI chess playing engine derived from Glaurung 2.1
3 Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
4 Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad
5 Copyright (C) 2015-2018 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad
7 Stockfish is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
12 Stockfish is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>.
21 #include <algorithm> // For std::min
23 #include <cstring> // For std::memset
32 // Polynomial material imbalance parameters
34 constexpr int QuadraticOurs[][PIECE_TYPE_NB] = {
36 // pair pawn knight bishop rook queen
37 {1667 }, // Bishop pair
39 { 32, 255, -3 }, // Knight OUR PIECES
40 { 0, 104, 4, 0 }, // Bishop
41 { -26, -2, 47, 105, -149 }, // Rook
42 {-189, 24, 117, 133, -134, -10 } // Queen
45 constexpr int QuadraticTheirs[][PIECE_TYPE_NB] = {
47 // pair pawn knight bishop rook queen
50 { 9, 63, 0 }, // Knight OUR PIECES
51 { 59, 65, 42, 0 }, // Bishop
52 { 46, 39, 24, -24, 0 }, // Rook
53 { 97, 100, -42, 137, 268, 0 } // Queen
56 // Endgame evaluation and scaling functions are accessed directly and not through
57 // the function maps because they correspond to more than one material hash key.
58 Endgame<KXK> EvaluateKXK[] = { Endgame<KXK>(WHITE), Endgame<KXK>(BLACK) };
60 Endgame<KBPsK> ScaleKBPsK[] = { Endgame<KBPsK>(WHITE), Endgame<KBPsK>(BLACK) };
61 Endgame<KQKRPs> ScaleKQKRPs[] = { Endgame<KQKRPs>(WHITE), Endgame<KQKRPs>(BLACK) };
62 Endgame<KPsK> ScaleKPsK[] = { Endgame<KPsK>(WHITE), Endgame<KPsK>(BLACK) };
63 Endgame<KPKP> ScaleKPKP[] = { Endgame<KPKP>(WHITE), Endgame<KPKP>(BLACK) };
65 // Helper used to detect a given material distribution
66 bool is_KXK(const Position& pos, Color us) {
67 return !more_than_one(pos.pieces(~us))
68 && pos.non_pawn_material(us) >= RookValueMg;
71 bool is_KBPsK(const Position& pos, Color us) {
72 return pos.non_pawn_material(us) == BishopValueMg
73 && pos.count<BISHOP>(us) == 1
74 && pos.count<PAWN >(us) >= 1;
77 bool is_KQKRPs(const Position& pos, Color us) {
78 return !pos.count<PAWN>(us)
79 && pos.non_pawn_material(us) == QueenValueMg
80 && pos.count<QUEEN>(us) == 1
81 && pos.count<ROOK>(~us) == 1
82 && pos.count<PAWN>(~us) >= 1;
85 /// imbalance() calculates the imbalance by comparing the piece count of each
86 /// piece type for both colors.
88 int imbalance(const int pieceCount[][PIECE_TYPE_NB]) {
90 constexpr Color Them = (Us == WHITE ? BLACK : WHITE);
94 // Second-degree polynomial material imbalance, by Tord Romstad
95 for (int pt1 = NO_PIECE_TYPE; pt1 <= QUEEN; ++pt1)
97 if (!pieceCount[Us][pt1])
102 for (int pt2 = NO_PIECE_TYPE; pt2 <= pt1; ++pt2)
103 v += QuadraticOurs[pt1][pt2] * pieceCount[Us][pt2]
104 + QuadraticTheirs[pt1][pt2] * pieceCount[Them][pt2];
106 bonus += pieceCount[Us][pt1] * v;
116 /// Material::probe() looks up the current position's material configuration in
117 /// the material hash table. It returns a pointer to the Entry if the position
118 /// is found. Otherwise a new Entry is computed and stored there, so we don't
119 /// have to recompute all when the same material configuration occurs again.
121 Entry* probe(const Position& pos) {
123 Key key = pos.material_key();
124 Entry* e = pos.this_thread()->materialTable[key];
129 std::memset(e, 0, sizeof(Entry));
131 e->factor[WHITE] = e->factor[BLACK] = (uint8_t)SCALE_FACTOR_NORMAL;
133 Value npm_w = pos.non_pawn_material(WHITE);
134 Value npm_b = pos.non_pawn_material(BLACK);
135 Value npm = std::max(EndgameLimit, std::min(npm_w + npm_b, MidgameLimit));
137 // Map total non-pawn material into [PHASE_ENDGAME, PHASE_MIDGAME]
138 e->gamePhase = Phase(((npm - EndgameLimit) * PHASE_MIDGAME) / (MidgameLimit - EndgameLimit));
140 // Let's look if we have a specialized evaluation function for this particular
141 // material configuration. Firstly we look for a fixed configuration one, then
142 // for a generic one if the previous search failed.
143 if ((e->evaluationFunction = pos.this_thread()->endgames.probe<Value>(key)) != nullptr)
146 for (Color c = WHITE; c <= BLACK; ++c)
149 e->evaluationFunction = &EvaluateKXK[c];
153 // OK, we didn't find any special evaluation function for the current material
154 // configuration. Is there a suitable specialized scaling function?
155 EndgameBase<ScaleFactor>* sf;
157 if ((sf = pos.this_thread()->endgames.probe<ScaleFactor>(key)) != nullptr)
159 e->scalingFunction[sf->strongSide] = sf; // Only strong color assigned
163 // We didn't find any specialized scaling function, so fall back on generic
164 // ones that refer to more than one material distribution. Note that in this
165 // case we don't return after setting the function.
166 for (Color c = WHITE; c <= BLACK; ++c)
168 if (is_KBPsK(pos, c))
169 e->scalingFunction[c] = &ScaleKBPsK[c];
171 else if (is_KQKRPs(pos, c))
172 e->scalingFunction[c] = &ScaleKQKRPs[c];
175 if (npm_w + npm_b == VALUE_ZERO && pos.pieces(PAWN)) // Only pawns on the board
177 if (!pos.count<PAWN>(BLACK))
179 assert(pos.count<PAWN>(WHITE) >= 2);
181 e->scalingFunction[WHITE] = &ScaleKPsK[WHITE];
183 else if (!pos.count<PAWN>(WHITE))
185 assert(pos.count<PAWN>(BLACK) >= 2);
187 e->scalingFunction[BLACK] = &ScaleKPsK[BLACK];
189 else if (pos.count<PAWN>(WHITE) == 1 && pos.count<PAWN>(BLACK) == 1)
191 // This is a special case because we set scaling functions
192 // for both colors instead of only one.
193 e->scalingFunction[WHITE] = &ScaleKPKP[WHITE];
194 e->scalingFunction[BLACK] = &ScaleKPKP[BLACK];
198 // Zero or just one pawn makes it difficult to win, even with a small material
199 // advantage. This catches some trivial draws like KK, KBK and KNK and gives a
200 // drawish scale factor for cases such as KRKBP and KmmKm (except for KBBKN).
201 if (!pos.count<PAWN>(WHITE) && npm_w - npm_b <= BishopValueMg)
202 e->factor[WHITE] = uint8_t(npm_w < RookValueMg ? SCALE_FACTOR_DRAW :
203 npm_b <= BishopValueMg ? 4 : 14);
205 if (!pos.count<PAWN>(BLACK) && npm_b - npm_w <= BishopValueMg)
206 e->factor[BLACK] = uint8_t(npm_b < RookValueMg ? SCALE_FACTOR_DRAW :
207 npm_w <= BishopValueMg ? 4 : 14);
209 // Evaluate the material imbalance. We use PIECE_TYPE_NONE as a place holder
210 // for the bishop pair "extended piece", which allows us to be more flexible
211 // in defining bishop pair bonuses.
212 const int pieceCount[COLOR_NB][PIECE_TYPE_NB] = {
213 { pos.count<BISHOP>(WHITE) > 1, pos.count<PAWN>(WHITE), pos.count<KNIGHT>(WHITE),
214 pos.count<BISHOP>(WHITE) , pos.count<ROOK>(WHITE), pos.count<QUEEN >(WHITE) },
215 { pos.count<BISHOP>(BLACK) > 1, pos.count<PAWN>(BLACK), pos.count<KNIGHT>(BLACK),
216 pos.count<BISHOP>(BLACK) , pos.count<ROOK>(BLACK), pos.count<QUEEN >(BLACK) } };
218 e->value = int16_t((imbalance<WHITE>(pieceCount) - imbalance<BLACK>(pieceCount)) / 16);
222 } // namespace Material