1 /*****************************************************************************
2 * mtime.c: high resolution time management functions
3 * Functions are prototyped in vlc_mtime.h.
4 *****************************************************************************
5 * Copyright (C) 1998-2007 the VideoLAN team
6 * Copyright © 2006-2007 Rémi Denis-Courmont
9 * Authors: Vincent Seguin <seguin@via.ecp.fr>
10 * Rémi Denis-Courmont <rem$videolan,org>
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301, USA.
26 *****************************************************************************/
28 /*****************************************************************************
30 *****************************************************************************/
34 #include <stdio.h> /* sprintf() */
35 #include <time.h> /* clock_gettime(), clock_nanosleep() */
36 #include <stdlib.h> /* lldiv() */
41 #if defined( PTH_INIT_IN_PTH_H ) /* GNU Pth */
46 # include <unistd.h> /* select() */
49 #ifdef HAVE_KERNEL_OS_H
50 # include <kernel/OS.h>
53 #if defined( WIN32 ) || defined( UNDER_CE )
56 #if defined(HAVE_SYS_TIME_H)
57 # include <sys/time.h>
60 #if !defined(HAVE_STRUCT_TIMESPEC)
68 #if defined(HAVE_NANOSLEEP) && !defined(HAVE_DECL_NANOSLEEP)
69 int nanosleep(struct timespec *, struct timespec *);
73 * Return a date in a readable format
75 * This function converts a mtime date into a string.
76 * psz_buffer should be a buffer long enough to store the formatted
78 * \param date to be converted
79 * \param psz_buffer should be a buffer at least MSTRTIME_MAX_SIZE characters
80 * \return psz_buffer is returned so this can be used as printf parameter.
82 char *mstrtime( char *psz_buffer, mtime_t date )
84 static mtime_t ll1000 = 1000, ll60 = 60, ll24 = 24;
86 snprintf( psz_buffer, MSTRTIME_MAX_SIZE, "%02d:%02d:%02d-%03d.%03d",
87 (int) (date / (ll1000 * ll1000 * ll60 * ll60) % ll24),
88 (int) (date / (ll1000 * ll1000 * ll60) % ll60),
89 (int) (date / (ll1000 * ll1000) % ll60),
90 (int) (date / ll1000 % ll1000),
91 (int) (date % ll1000) );
96 * Convert seconds to a time in the format h:mm:ss.
98 * This function is provided for any interface function which need to print a
99 * time string in the format h:mm:ss
101 * \param secs the date to be converted
102 * \param psz_buffer should be a buffer at least MSTRTIME_MAX_SIZE characters
103 * \return psz_buffer is returned so this can be used as printf parameter.
105 char *secstotimestr( char *psz_buffer, int i_seconds )
107 snprintf( psz_buffer, MSTRTIME_MAX_SIZE, "%d:%2.2d:%2.2d",
108 (int) (i_seconds / (60 *60)),
109 (int) ((i_seconds / 60) % 60),
110 (int) (i_seconds % 60) );
111 return( psz_buffer );
115 * Return a value that is no bigger than the clock precision
118 static inline unsigned mprec( void )
120 #if defined (HAVE_CLOCK_NANOSLEEP)
122 if( clock_getres( CLOCK_MONOTONIC, &ts ))
123 clock_getres( CLOCK_REALTIME, &ts );
125 return ts.tv_nsec / 1000;
130 static unsigned prec = 0;
131 static volatile mtime_t cached_time = 0;
132 #if defined( HAVE_CLOCK_NANOSLEEP )
133 # if (_POSIX_MONOTONIC_CLOCK - 0 < 0)
134 # define CLOCK_MONOTONIC CLOCK_REALTIME
139 * Return high precision date
141 * Uses the gettimeofday() function when possible (1 MHz resolution) or the
142 * ftime() function (1 kHz resolution).
144 mtime_t mdate( void )
148 #if defined (HAVE_CLOCK_NANOSLEEP)
151 /* Try to use POSIX monotonic clock if available */
152 if( clock_gettime( CLOCK_MONOTONIC, &ts ) == EINVAL )
153 /* Run-time fallback to real-time clock (always available) */
154 (void)clock_gettime( CLOCK_REALTIME, &ts );
156 res = ((mtime_t)ts.tv_sec * (mtime_t)1000000)
157 + (mtime_t)(ts.tv_nsec / 1000);
159 #elif defined( HAVE_KERNEL_OS_H )
160 res = real_time_clock_usecs();
162 #elif defined( WIN32 ) || defined( UNDER_CE )
163 /* We don't need the real date, just the value of a high precision timer */
164 static mtime_t freq = I64C(-1);
166 if( freq == I64C(-1) )
168 /* Extract from the Tcl source code:
169 * (http://www.cs.man.ac.uk/fellowsd-bin/TIP/7.html)
171 * Some hardware abstraction layers use the CPU clock
172 * in place of the real-time clock as a performance counter
173 * reference. This results in:
174 * - inconsistent results among the processors on
175 * multi-processor systems.
176 * - unpredictable changes in performance counter frequency
177 * on "gearshift" processors such as Transmeta and
179 * There seems to be no way to test whether the performance
180 * counter is reliable, but a useful heuristic is that
181 * if its frequency is 1.193182 MHz or 3.579545 MHz, it's
182 * derived from a colorburst crystal and is therefore
183 * the RTC rather than the TSC. If it's anything else, we
184 * presume that the performance counter is unreliable.
188 freq = ( QueryPerformanceFrequency( &buf ) &&
189 (buf.QuadPart == I64C(1193182) || buf.QuadPart == I64C(3579545) ) )
195 LARGE_INTEGER counter;
196 QueryPerformanceCounter (&counter);
198 /* Convert to from (1/freq) to microsecond resolution */
199 /* We need to split the division to avoid 63-bits overflow */
200 lldiv_t d = lldiv (counter.QuadPart, freq);
202 res = (d.quot * 1000000) + ((d.rem * 1000000) / freq);
206 /* Fallback on GetTickCount() which has a milisecond resolution
207 * (actually, best case is about 10 ms resolution)
208 * GetTickCount() only returns a DWORD thus will wrap after
209 * about 49.7 days so we try to detect the wrapping. */
211 static CRITICAL_SECTION date_lock;
212 static mtime_t i_previous_time = I64C(-1);
213 static int i_wrap_counts = -1;
215 if( i_wrap_counts == -1 )
218 i_previous_time = I64C(1000) * GetTickCount();
219 InitializeCriticalSection( &date_lock );
223 EnterCriticalSection( &date_lock );
225 (i_wrap_counts * I64C(0x100000000) + GetTickCount());
226 if( i_previous_time > res )
228 /* Counter wrapped */
230 res += I64C(0x100000000) * 1000;
232 i_previous_time = res;
233 LeaveCriticalSection( &date_lock );
236 struct timeval tv_date;
238 /* gettimeofday() cannot fail given &tv_date is a valid address */
239 (void)gettimeofday( &tv_date, NULL );
240 res = (mtime_t) tv_date.tv_sec * 1000000 + (mtime_t) tv_date.tv_usec;
243 return cached_time = res;
249 * This function uses select() and an system date function to wake up at a
250 * precise date. It should be used for process synchronization. If current date
251 * is posterior to wished date, the function returns immediately.
252 * \param date The date to wake up at
254 void mwait( mtime_t date )
259 /* If the deadline is already elapsed, or within the clock precision,
260 * do not even bother the clock. */
261 if( ( date - cached_time ) < (mtime_t)prec ) // OK: mtime_t is signed
264 #if 0 && defined (HAVE_CLOCK_NANOSLEEP)
265 lldiv_t d = lldiv( date, 1000000 );
266 struct timespec ts = { d.quot, d.rem * 1000 };
269 while( ( val = clock_nanosleep( CLOCK_MONOTONIC, TIMER_ABSTIME, &ts,
273 ts.tv_sec = d.quot; ts.tv_nsec = d.rem * 1000;
274 while( clock_nanosleep( CLOCK_REALTIME, 0, &ts, NULL ) == EINTR );
278 mtime_t delay = date - mdate();
286 * More precise sleep()
288 * Portable usleep() function.
289 * \param delay the amount of time to sleep
291 void msleep( mtime_t delay )
293 mtime_t earlier = cached_time;
295 #if defined( HAVE_CLOCK_NANOSLEEP )
296 lldiv_t d = lldiv( delay, 1000000 );
297 struct timespec ts = { d.quot, d.rem * 1000 };
300 while( ( val = clock_nanosleep( CLOCK_MONOTONIC, 0, &ts, &ts ) ) == EINTR );
303 ts.tv_sec = d.quot; ts.tv_nsec = d.rem * 1000;
304 while( clock_nanosleep( CLOCK_REALTIME, 0, &ts, &ts ) == EINTR );
307 #elif defined( HAVE_KERNEL_OS_H )
310 #elif defined( PTH_INIT_IN_PTH_H )
313 #elif defined( ST_INIT_IN_ST_H )
316 #elif defined( WIN32 ) || defined( UNDER_CE )
317 Sleep( (int) (delay / 1000) );
319 #elif defined( HAVE_NANOSLEEP )
320 struct timespec ts_delay;
322 ts_delay.tv_sec = delay / 1000000;
323 ts_delay.tv_nsec = (delay % 1000000) * 1000;
325 while( nanosleep( &ts_delay, &ts_delay ) && ( errno == EINTR ) );
328 struct timeval tv_delay;
330 tv_delay.tv_sec = delay / 1000000;
331 tv_delay.tv_usec = delay % 1000000;
333 /* If a signal is caught, you are screwed. Update your OS to nanosleep()
334 * or clock_nanosleep() if this is an issue. */
335 select( 0, NULL, NULL, NULL, &tv_delay );
339 if( cached_time < earlier )
340 cached_time = earlier;
344 * Date management (internal and external)
348 * Initialize a date_t.
350 * \param date to initialize
351 * \param divider (sample rate) numerator
352 * \param divider (sample rate) denominator
355 void date_Init( date_t *p_date, uint32_t i_divider_n, uint32_t i_divider_d )
358 p_date->i_divider_num = i_divider_n;
359 p_date->i_divider_den = i_divider_d;
360 p_date->i_remainder = 0;
366 * \param date to change
367 * \param divider (sample rate) numerator
368 * \param divider (sample rate) denominator
371 void date_Change( date_t *p_date, uint32_t i_divider_n, uint32_t i_divider_d )
373 p_date->i_divider_num = i_divider_n;
374 p_date->i_divider_den = i_divider_d;
378 * Set the date value of a date_t.
383 void date_Set( date_t *p_date, mtime_t i_new_date )
385 p_date->date = i_new_date;
386 p_date->i_remainder = 0;
390 * Get the date of a date_t
395 mtime_t date_Get( const date_t *p_date )
401 * Move forwards or backwards the date of a date_t.
403 * \param date to move
404 * \param difference value
406 void date_Move( date_t *p_date, mtime_t i_difference )
408 p_date->date += i_difference;
412 * Increment the date and return the result, taking into account
415 * \param date to increment
416 * \param incrementation in number of samples
419 mtime_t date_Increment( date_t *p_date, uint32_t i_nb_samples )
421 mtime_t i_dividend = (mtime_t)i_nb_samples * 1000000;
422 p_date->date += i_dividend / p_date->i_divider_num * p_date->i_divider_den;
423 p_date->i_remainder += (int)(i_dividend % p_date->i_divider_num);
425 if( p_date->i_remainder >= p_date->i_divider_num )
427 /* This is Bresenham algorithm. */
428 p_date->date += p_date->i_divider_den;
429 p_date->i_remainder -= p_date->i_divider_num;
435 #ifndef HAVE_GETTIMEOFDAY
440 * Number of micro-seconds between the beginning of the Windows epoch
441 * (Jan. 1, 1601) and the Unix epoch (Jan. 1, 1970).
443 * This assumes all Win32 compilers have 64-bit support.
445 #if defined(_MSC_VER) || defined(_MSC_EXTENSIONS) || defined(__WATCOMC__)
446 # define DELTA_EPOCH_IN_USEC 11644473600000000Ui64
448 # define DELTA_EPOCH_IN_USEC 11644473600000000ULL
451 static uint64_t filetime_to_unix_epoch (const FILETIME *ft)
453 uint64_t res = (uint64_t) ft->dwHighDateTime << 32;
455 res |= ft->dwLowDateTime;
456 res /= 10; /* from 100 nano-sec periods to usec */
457 res -= DELTA_EPOCH_IN_USEC; /* from Win epoch to Unix epoch */
461 static int gettimeofday (struct timeval *tv, void *tz )
469 GetSystemTimeAsFileTime (&ft);
470 tim = filetime_to_unix_epoch (&ft);
471 tv->tv_sec = (long) (tim / 1000000L);
472 tv->tv_usec = (long) (tim % 1000000L);
481 * @return NTP 64-bits timestamp in host byte order.
483 uint64_t NTPtime64 (void)
486 #if defined (CLOCK_REALTIME)
487 clock_gettime (CLOCK_REALTIME, &ts);
491 gettimeofday (&tv, NULL);
492 ts.tv_sec = tv.tv_sec;
493 ts.tv_nsec = tv.tv_usec * 1000;
497 /* Convert nanoseconds to 32-bits fraction (232 picosecond units) */
498 uint64_t t = (uint64_t)(ts.tv_nsec) << 32;
502 /* There is 70 years (incl. 17 leap ones) offset to the Unix Epoch.
503 * No leap seconds during that period since they were not invented yet.
505 assert (t < 0x100000000);
506 t |= ((70LL * 365 + 17) * 24 * 60 * 60 + ts.tv_sec) << 32;