2 Stockfish, a UCI chess playing engine derived from Glaurung 2.1
3 Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
4 Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad
5 Copyright (C) 2015-2017 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad
7 Stockfish is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
12 Stockfish is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>.
24 #include <cstring> // For std::memset
38 #include "syzygy/tbprobe.h"
45 namespace Tablebases {
54 namespace TB = Tablebases;
58 using namespace Search;
62 // Different node types, used as a template parameter
63 enum NodeType { NonPV, PV };
65 // Sizes and phases of the skip-blocks, used for distributing search depths across the threads
66 const int skipSize[] = { 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4 };
67 const int skipPhase[] = { 0, 1, 0, 1, 2, 3, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 6, 7 };
69 // Razoring and futility margin based on depth
70 // razor_margin[0] is unused as long as depth >= ONE_PLY in search
71 const int razor_margin[] = { 0, 570, 603, 554 };
72 Value futility_margin(Depth d) { return Value(150 * d / ONE_PLY); }
74 // Futility and reductions lookup tables, initialized at startup
75 int FutilityMoveCounts[2][16]; // [improving][depth]
76 int Reductions[2][2][64][64]; // [pv][improving][depth][moveNumber]
78 // Threshold used for countermoves based pruning
79 const int CounterMovePruneThreshold = 0;
81 template <bool PvNode> Depth reduction(bool i, Depth d, int mn) {
82 return Reductions[PvNode][i][std::min(d / ONE_PLY, 63)][std::min(mn, 63)] * ONE_PLY;
85 // History and stats update bonus, based on depth
86 int stat_bonus(Depth depth) {
87 int d = depth / ONE_PLY;
88 return d > 17 ? 0 : d * d + 2 * d - 2;
91 // Skill structure is used to implement strength limit
93 Skill(int l) : level(l) {}
94 bool enabled() const { return level < 20; }
95 bool time_to_pick(Depth depth) const { return depth / ONE_PLY == 1 + level; }
96 Move best_move(size_t multiPV) { return best ? best : pick_best(multiPV); }
97 Move pick_best(size_t multiPV);
100 Move best = MOVE_NONE;
103 // EasyMoveManager structure is used to detect an 'easy move'. When the PV is stable
104 // across multiple search iterations, we can quickly return the best move.
105 struct EasyMoveManager {
110 pv[0] = pv[1] = pv[2] = MOVE_NONE;
113 Move get(Key key) const {
114 return expectedPosKey == key ? pv[2] : MOVE_NONE;
117 void update(Position& pos, const std::vector<Move>& newPv) {
119 assert(newPv.size() >= 3);
121 // Keep track of how many times in a row the 3rd ply remains stable
122 stableCnt = (newPv[2] == pv[2]) ? stableCnt + 1 : 0;
124 if (!std::equal(newPv.begin(), newPv.begin() + 3, pv))
126 std::copy(newPv.begin(), newPv.begin() + 3, pv);
129 pos.do_move(newPv[0], st[0]);
130 pos.do_move(newPv[1], st[1]);
131 expectedPosKey = pos.key();
132 pos.undo_move(newPv[1]);
133 pos.undo_move(newPv[0]);
142 EasyMoveManager EasyMove;
143 Value DrawValue[COLOR_NB];
145 template <NodeType NT>
146 Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth, bool cutNode, bool skipEarlyPruning);
148 template <NodeType NT, bool InCheck>
149 Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth = DEPTH_ZERO);
151 Value value_to_tt(Value v, int ply);
152 Value value_from_tt(Value v, int ply);
153 void update_pv(Move* pv, Move move, Move* childPv);
154 void update_continuation_histories(Stack* ss, Piece pc, Square to, int bonus);
155 void update_stats(const Position& pos, Stack* ss, Move move, Move* quiets, int quietsCnt, int bonus);
157 // perft() is our utility to verify move generation. All the leaf nodes up
158 // to the given depth are generated and counted, and the sum is returned.
160 uint64_t perft(Position& pos, Depth depth) {
163 uint64_t cnt, nodes = 0;
164 const bool leaf = (depth == 2 * ONE_PLY);
166 for (const auto& m : MoveList<LEGAL>(pos))
168 if (Root && depth <= ONE_PLY)
173 cnt = leaf ? MoveList<LEGAL>(pos).size() : perft<false>(pos, depth - ONE_PLY);
178 sync_cout << UCI::move(m, pos.is_chess960()) << ": " << cnt << sync_endl;
186 /// Search::init() is called during startup to initialize various lookup tables
188 void Search::init() {
190 for (int imp = 0; imp <= 1; ++imp)
191 for (int d = 1; d < 64; ++d)
192 for (int mc = 1; mc < 64; ++mc)
194 double r = log(d) * log(mc) / 1.95;
196 Reductions[NonPV][imp][d][mc] = int(std::round(r));
197 Reductions[PV][imp][d][mc] = std::max(Reductions[NonPV][imp][d][mc] - 1, 0);
199 // Increase reduction for non-PV nodes when eval is not improving
200 if (!imp && Reductions[NonPV][imp][d][mc] >= 2)
201 Reductions[NonPV][imp][d][mc]++;
204 for (int d = 0; d < 16; ++d)
206 FutilityMoveCounts[0][d] = int(2.4 + 0.74 * pow(d, 1.78));
207 FutilityMoveCounts[1][d] = int(5.0 + 1.00 * pow(d, 2.00));
212 /// Search::clear() resets search state to its initial value
214 void Search::clear() {
216 Threads.main()->wait_for_search_finished();
218 Time.availableNodes = 0;
221 for (Thread* th : Threads)
223 th->counterMoves.fill(MOVE_NONE);
224 th->mainHistory.fill(0);
226 for (auto& to : th->contHistory)
230 th->contHistory[NO_PIECE][0].fill(CounterMovePruneThreshold - 1);
233 Threads.main()->callsCnt = 0;
234 Threads.main()->previousScore = VALUE_INFINITE;
238 /// MainThread::search() is called by the main thread when the program receives
239 /// the UCI 'go' command. It searches from the root position and outputs the "bestmove".
241 void MainThread::search() {
245 nodes = perft<true>(rootPos, Limits.perft * ONE_PLY);
246 sync_cout << "\nNodes searched: " << nodes << "\n" << sync_endl;
250 Color us = rootPos.side_to_move();
251 Time.init(Limits, us, rootPos.game_ply());
254 int contempt = Options["Contempt"] * PawnValueEg / 100; // From centipawns
255 DrawValue[ us] = VALUE_DRAW - Value(contempt);
256 DrawValue[~us] = VALUE_DRAW + Value(contempt);
258 if (rootMoves.empty())
260 rootMoves.emplace_back(MOVE_NONE);
261 sync_cout << "info depth 0 score "
262 << UCI::value(rootPos.checkers() ? -VALUE_MATE : VALUE_DRAW)
267 for (Thread* th : Threads)
269 th->start_searching();
271 Thread::search(); // Let's start searching!
274 // When playing in 'nodes as time' mode, subtract the searched nodes from
275 // the available ones before exiting.
277 Time.availableNodes += Limits.inc[us] - Threads.nodes_searched();
279 // When we reach the maximum depth, we can arrive here without a raise of
280 // Threads.stop. However, if we are pondering or in an infinite search,
281 // the UCI protocol states that we shouldn't print the best move before the
282 // GUI sends a "stop" or "ponderhit" command. We therefore simply wait here
283 // until the GUI sends one of those commands (which also raises Threads.stop).
284 Threads.stopOnPonderhit = true;
286 while (!Threads.stop && (Threads.ponder || Limits.infinite))
287 {} // Busy wait for a stop or a ponder reset
289 // Stop the threads if not already stopped (also raise the stop if
290 // "ponderhit" just reset Threads.ponder).
293 // Wait until all threads have finished
294 for (Thread* th : Threads)
296 th->wait_for_search_finished();
298 // Check if there are threads with a better score than main thread
299 Thread* bestThread = this;
300 if ( !this->easyMovePlayed
301 && Options["MultiPV"] == 1
303 && !Skill(Options["Skill Level"]).enabled()
304 && rootMoves[0].pv[0] != MOVE_NONE)
306 for (Thread* th : Threads)
308 Depth depthDiff = th->completedDepth - bestThread->completedDepth;
309 Value scoreDiff = th->rootMoves[0].score - bestThread->rootMoves[0].score;
311 if (scoreDiff > 0 && depthDiff >= 0)
316 previousScore = bestThread->rootMoves[0].score;
318 // Send new PV when needed
319 if (bestThread != this)
320 sync_cout << UCI::pv(bestThread->rootPos, bestThread->completedDepth, -VALUE_INFINITE, VALUE_INFINITE) << sync_endl;
322 sync_cout << "bestmove " << UCI::move(bestThread->rootMoves[0].pv[0], rootPos.is_chess960());
324 if (bestThread->rootMoves[0].pv.size() > 1 || bestThread->rootMoves[0].extract_ponder_from_tt(rootPos))
325 std::cout << " ponder " << UCI::move(bestThread->rootMoves[0].pv[1], rootPos.is_chess960());
327 std::cout << sync_endl;
331 /// Thread::search() is the main iterative deepening loop. It calls search()
332 /// repeatedly with increasing depth until the allocated thinking time has been
333 /// consumed, the user stops the search, or the maximum search depth is reached.
335 void Thread::search() {
337 Stack stack[MAX_PLY+7], *ss = stack+4; // To allow referencing (ss-4) and (ss+2)
338 Value bestValue, alpha, beta, delta;
339 Move easyMove = MOVE_NONE;
340 MainThread* mainThread = (this == Threads.main() ? Threads.main() : nullptr);
342 std::memset(ss-4, 0, 7 * sizeof(Stack));
343 for (int i = 4; i > 0; i--)
344 (ss-i)->contHistory = &this->contHistory[NO_PIECE][0]; // Use as sentinel
346 bestValue = delta = alpha = -VALUE_INFINITE;
347 beta = VALUE_INFINITE;
351 easyMove = EasyMove.get(rootPos.key());
353 mainThread->easyMovePlayed = mainThread->failedLow = false;
354 mainThread->bestMoveChanges = 0;
357 size_t multiPV = Options["MultiPV"];
358 Skill skill(Options["Skill Level"]);
360 // When playing with strength handicap enable MultiPV search that we will
361 // use behind the scenes to retrieve a set of possible moves.
363 multiPV = std::max(multiPV, (size_t)4);
365 multiPV = std::min(multiPV, rootMoves.size());
367 // Iterative deepening loop until requested to stop or the target depth is reached
368 while ( (rootDepth += ONE_PLY) < DEPTH_MAX
370 && !(Limits.depth && mainThread && rootDepth / ONE_PLY > Limits.depth))
372 // Distribute search depths across the threads
375 int i = (idx - 1) % 20;
376 if (((rootDepth / ONE_PLY + rootPos.game_ply() + skipPhase[i]) / skipSize[i]) % 2)
380 // Age out PV variability metric
382 mainThread->bestMoveChanges *= 0.505, mainThread->failedLow = false;
384 // Save the last iteration's scores before first PV line is searched and
385 // all the move scores except the (new) PV are set to -VALUE_INFINITE.
386 for (RootMove& rm : rootMoves)
387 rm.previousScore = rm.score;
389 // MultiPV loop. We perform a full root search for each PV line
390 for (PVIdx = 0; PVIdx < multiPV && !Threads.stop; ++PVIdx)
392 // Reset UCI info selDepth for each depth and each PV line
395 // Reset aspiration window starting size
396 if (rootDepth >= 5 * ONE_PLY)
399 alpha = std::max(rootMoves[PVIdx].previousScore - delta,-VALUE_INFINITE);
400 beta = std::min(rootMoves[PVIdx].previousScore + delta, VALUE_INFINITE);
403 // Start with a small aspiration window and, in the case of a fail
404 // high/low, re-search with a bigger window until we're not failing
408 bestValue = ::search<PV>(rootPos, ss, alpha, beta, rootDepth, false, false);
410 // Bring the best move to the front. It is critical that sorting
411 // is done with a stable algorithm because all the values but the
412 // first and eventually the new best one are set to -VALUE_INFINITE
413 // and we want to keep the same order for all the moves except the
414 // new PV that goes to the front. Note that in case of MultiPV
415 // search the already searched PV lines are preserved.
416 std::stable_sort(rootMoves.begin() + PVIdx, rootMoves.end());
418 // If search has been stopped, we break immediately. Sorting and
419 // writing PV back to TT is safe because RootMoves is still
420 // valid, although it refers to the previous iteration.
424 // When failing high/low give some update (without cluttering
425 // the UI) before a re-search.
428 && (bestValue <= alpha || bestValue >= beta)
429 && Time.elapsed() > 3000)
430 sync_cout << UCI::pv(rootPos, rootDepth, alpha, beta) << sync_endl;
432 // In case of failing low/high increase aspiration window and
433 // re-search, otherwise exit the loop.
434 if (bestValue <= alpha)
436 beta = (alpha + beta) / 2;
437 alpha = std::max(bestValue - delta, -VALUE_INFINITE);
441 mainThread->failedLow = true;
442 Threads.stopOnPonderhit = false;
445 else if (bestValue >= beta)
446 beta = std::min(bestValue + delta, VALUE_INFINITE);
450 delta += delta / 4 + 5;
452 assert(alpha >= -VALUE_INFINITE && beta <= VALUE_INFINITE);
455 // Sort the PV lines searched so far and update the GUI
456 std::stable_sort(rootMoves.begin(), rootMoves.begin() + PVIdx + 1);
461 if (Threads.stop || PVIdx + 1 == multiPV || Time.elapsed() > 3000)
462 sync_cout << UCI::pv(rootPos, rootDepth, alpha, beta) << sync_endl;
466 completedDepth = rootDepth;
471 // If skill level is enabled and time is up, pick a sub-optimal best move
472 if (skill.enabled() && skill.time_to_pick(rootDepth))
473 skill.pick_best(multiPV);
475 // Have we found a "mate in x"?
477 && bestValue >= VALUE_MATE_IN_MAX_PLY
478 && VALUE_MATE - bestValue <= 2 * Limits.mate)
481 // Do we have time for the next iteration? Can we stop searching now?
482 if (Limits.use_time_management())
484 if (!Threads.stop && !Threads.stopOnPonderhit)
486 // Stop the search if only one legal move is available, or if all
487 // of the available time has been used, or if we matched an easyMove
488 // from the previous search and just did a fast verification.
489 const int F[] = { mainThread->failedLow,
490 bestValue - mainThread->previousScore };
492 int improvingFactor = std::max(229, std::min(715, 357 + 119 * F[0] - 6 * F[1]));
493 double unstablePvFactor = 1 + mainThread->bestMoveChanges;
495 bool doEasyMove = rootMoves[0].pv[0] == easyMove
496 && mainThread->bestMoveChanges < 0.03
497 && Time.elapsed() > Time.optimum() * 5 / 44;
499 if ( rootMoves.size() == 1
500 || Time.elapsed() > Time.optimum() * unstablePvFactor * improvingFactor / 628
501 || (mainThread->easyMovePlayed = doEasyMove, doEasyMove))
503 // If we are allowed to ponder do not stop the search now but
504 // keep pondering until the GUI sends "ponderhit" or "stop".
506 Threads.stopOnPonderhit = true;
512 if (rootMoves[0].pv.size() >= 3)
513 EasyMove.update(rootPos, rootMoves[0].pv);
522 // Clear any candidate easy move that wasn't stable for the last search
523 // iterations; the second condition prevents consecutive fast moves.
524 if (EasyMove.stableCnt < 6 || mainThread->easyMovePlayed)
527 // If skill level is enabled, swap best PV line with the sub-optimal one
529 std::swap(rootMoves[0], *std::find(rootMoves.begin(),
530 rootMoves.end(), skill.best_move(multiPV)));
536 // search<>() is the main search function for both PV and non-PV nodes
538 template <NodeType NT>
539 Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth, bool cutNode, bool skipEarlyPruning) {
541 const bool PvNode = NT == PV;
542 const bool rootNode = PvNode && (ss-1)->ply == 0;
544 assert(-VALUE_INFINITE <= alpha && alpha < beta && beta <= VALUE_INFINITE);
545 assert(PvNode || (alpha == beta - 1));
546 assert(DEPTH_ZERO < depth && depth < DEPTH_MAX);
547 assert(!(PvNode && cutNode));
548 assert(depth / ONE_PLY * ONE_PLY == depth);
550 Move pv[MAX_PLY+1], quietsSearched[64];
554 Move ttMove, move, excludedMove, bestMove;
555 Depth extension, newDepth;
556 Value bestValue, value, ttValue, eval;
557 bool ttHit, inCheck, givesCheck, singularExtensionNode, improving;
558 bool captureOrPromotion, doFullDepthSearch, moveCountPruning, skipQuiets, ttCapture;
560 int moveCount, quietCount;
562 // Step 1. Initialize node
563 Thread* thisThread = pos.this_thread();
564 inCheck = pos.checkers();
565 moveCount = quietCount = ss->moveCount = 0;
567 bestValue = -VALUE_INFINITE;
568 ss->ply = (ss-1)->ply + 1;
570 // Check for the available remaining time
571 if (thisThread == Threads.main())
572 static_cast<MainThread*>(thisThread)->check_time();
574 // Used to send selDepth info to GUI
575 if (PvNode && thisThread->selDepth < ss->ply)
576 thisThread->selDepth = ss->ply;
580 // Step 2. Check for aborted search and immediate draw
581 if (Threads.stop.load(std::memory_order_relaxed) || pos.is_draw(ss->ply) || ss->ply >= MAX_PLY)
582 return ss->ply >= MAX_PLY && !inCheck ? evaluate(pos)
583 : DrawValue[pos.side_to_move()];
585 // Step 3. Mate distance pruning. Even if we mate at the next move our score
586 // would be at best mate_in(ss->ply+1), but if alpha is already bigger because
587 // a shorter mate was found upward in the tree then there is no need to search
588 // because we will never beat the current alpha. Same logic but with reversed
589 // signs applies also in the opposite condition of being mated instead of giving
590 // mate. In this case return a fail-high score.
591 alpha = std::max(mated_in(ss->ply), alpha);
592 beta = std::min(mate_in(ss->ply+1), beta);
597 assert(0 <= ss->ply && ss->ply < MAX_PLY);
599 ss->currentMove = (ss+1)->excludedMove = bestMove = MOVE_NONE;
600 ss->contHistory = &thisThread->contHistory[NO_PIECE][0];
601 (ss+2)->killers[0] = (ss+2)->killers[1] = MOVE_NONE;
602 Square prevSq = to_sq((ss-1)->currentMove);
604 // Step 4. Transposition table lookup. We don't want the score of a partial
605 // search to overwrite a previous full search TT value, so we use a different
606 // position key in case of an excluded move.
607 excludedMove = ss->excludedMove;
608 posKey = pos.key() ^ Key(excludedMove);
609 tte = TT.probe(posKey, ttHit);
610 ttValue = ttHit ? value_from_tt(tte->value(), ss->ply) : VALUE_NONE;
611 ttMove = rootNode ? thisThread->rootMoves[thisThread->PVIdx].pv[0]
612 : ttHit ? tte->move() : MOVE_NONE;
614 // At non-PV nodes we check for an early TT cutoff
617 && tte->depth() >= depth
618 && ttValue != VALUE_NONE // Possible in case of TT access race
619 && (ttValue >= beta ? (tte->bound() & BOUND_LOWER)
620 : (tte->bound() & BOUND_UPPER)))
622 // If ttMove is quiet, update move sorting heuristics on TT hit
627 if (!pos.capture_or_promotion(ttMove))
628 update_stats(pos, ss, ttMove, nullptr, 0, stat_bonus(depth));
630 // Extra penalty for a quiet TT move in previous ply when it gets refuted
631 if ((ss-1)->moveCount == 1 && !pos.captured_piece())
632 update_continuation_histories(ss-1, pos.piece_on(prevSq), prevSq, -stat_bonus(depth + ONE_PLY));
634 // Penalty for a quiet ttMove that fails low
635 else if (!pos.capture_or_promotion(ttMove))
637 int penalty = -stat_bonus(depth);
638 thisThread->mainHistory.update(pos.side_to_move(), ttMove, penalty);
639 update_continuation_histories(ss, pos.moved_piece(ttMove), to_sq(ttMove), penalty);
645 // Step 4a. Tablebase probe
646 if (!rootNode && TB::Cardinality)
648 int piecesCount = pos.count<ALL_PIECES>();
650 if ( piecesCount <= TB::Cardinality
651 && (piecesCount < TB::Cardinality || depth >= TB::ProbeDepth)
652 && pos.rule50_count() == 0
653 && !pos.can_castle(ANY_CASTLING))
656 TB::WDLScore v = Tablebases::probe_wdl(pos, &err);
658 if (err != TB::ProbeState::FAIL)
660 thisThread->tbHits.fetch_add(1, std::memory_order_relaxed);
662 int drawScore = TB::UseRule50 ? 1 : 0;
664 value = v < -drawScore ? -VALUE_MATE + MAX_PLY + ss->ply
665 : v > drawScore ? VALUE_MATE - MAX_PLY - ss->ply
666 : VALUE_DRAW + 2 * v * drawScore;
668 tte->save(posKey, value_to_tt(value, ss->ply), BOUND_EXACT,
669 std::min(DEPTH_MAX - ONE_PLY, depth + 6 * ONE_PLY),
670 MOVE_NONE, VALUE_NONE, TT.generation());
677 // Step 5. Evaluate the position statically
680 ss->staticEval = eval = VALUE_NONE;
686 // Never assume anything on values stored in TT
687 if ((ss->staticEval = eval = tte->eval()) == VALUE_NONE)
688 eval = ss->staticEval = evaluate(pos);
690 // Can ttValue be used as a better position evaluation?
691 if ( ttValue != VALUE_NONE
692 && (tte->bound() & (ttValue > eval ? BOUND_LOWER : BOUND_UPPER)))
697 eval = ss->staticEval =
698 (ss-1)->currentMove != MOVE_NULL ? evaluate(pos)
699 : -(ss-1)->staticEval + 2 * Eval::Tempo;
701 tte->save(posKey, VALUE_NONE, BOUND_NONE, DEPTH_NONE, MOVE_NONE,
702 ss->staticEval, TT.generation());
705 if (skipEarlyPruning)
708 // Step 6. Razoring (skipped when in check)
710 && depth < 4 * ONE_PLY
711 && eval + razor_margin[depth / ONE_PLY] <= alpha)
713 if (depth <= ONE_PLY)
714 return qsearch<NonPV, false>(pos, ss, alpha, alpha+1);
716 Value ralpha = alpha - razor_margin[depth / ONE_PLY];
717 Value v = qsearch<NonPV, false>(pos, ss, ralpha, ralpha+1);
722 // Step 7. Futility pruning: child node (skipped when in check)
724 && depth < 7 * ONE_PLY
725 && eval - futility_margin(depth) >= beta
726 && eval < VALUE_KNOWN_WIN // Do not return unproven wins
727 && pos.non_pawn_material(pos.side_to_move()))
730 // Step 8. Null move search with verification search (is omitted in PV nodes)
733 && (ss->staticEval >= beta - 35 * (depth / ONE_PLY - 6) || depth >= 13 * ONE_PLY)
734 && pos.non_pawn_material(pos.side_to_move()))
737 assert(eval - beta >= 0);
739 // Null move dynamic reduction based on depth and value
740 Depth R = ((823 + 67 * depth / ONE_PLY) / 256 + std::min((eval - beta) / PawnValueMg, 3)) * ONE_PLY;
742 ss->currentMove = MOVE_NULL;
743 ss->contHistory = &thisThread->contHistory[NO_PIECE][0];
745 pos.do_null_move(st);
746 Value nullValue = depth-R < ONE_PLY ? -qsearch<NonPV, false>(pos, ss+1, -beta, -beta+1)
747 : - search<NonPV>(pos, ss+1, -beta, -beta+1, depth-R, !cutNode, true);
748 pos.undo_null_move();
750 if (nullValue >= beta)
752 // Do not return unproven mate scores
753 if (nullValue >= VALUE_MATE_IN_MAX_PLY)
756 if (depth < 12 * ONE_PLY && abs(beta) < VALUE_KNOWN_WIN)
759 // Do verification search at high depths
760 Value v = depth-R < ONE_PLY ? qsearch<NonPV, false>(pos, ss, beta-1, beta)
761 : search<NonPV>(pos, ss, beta-1, beta, depth-R, false, true);
768 // Step 9. ProbCut (skipped when in check)
769 // If we have a good enough capture and a reduced search returns a value
770 // much above beta, we can (almost) safely prune the previous move.
772 && depth >= 5 * ONE_PLY
773 && abs(beta) < VALUE_MATE_IN_MAX_PLY)
775 Value rbeta = std::min(beta + 200, VALUE_INFINITE);
777 assert(is_ok((ss-1)->currentMove));
779 MovePicker mp(pos, ttMove, rbeta - ss->staticEval);
781 while ((move = mp.next_move()) != MOVE_NONE)
784 ss->currentMove = move;
785 ss->contHistory = &thisThread->contHistory[pos.moved_piece(move)][to_sq(move)];
787 assert(depth >= 5 * ONE_PLY);
788 pos.do_move(move, st);
789 value = -search<NonPV>(pos, ss+1, -rbeta, -rbeta+1, depth - 4 * ONE_PLY, !cutNode, false);
796 // Step 10. Internal iterative deepening (skipped when in check)
797 if ( depth >= 6 * ONE_PLY
799 && (PvNode || ss->staticEval + 256 >= beta))
801 Depth d = (3 * depth / (4 * ONE_PLY) - 2) * ONE_PLY;
802 search<NT>(pos, ss, alpha, beta, d, cutNode, true);
804 tte = TT.probe(posKey, ttHit);
805 ttMove = ttHit ? tte->move() : MOVE_NONE;
808 moves_loop: // When in check search starts from here
810 const PieceToHistory* contHist[] = { (ss-1)->contHistory, (ss-2)->contHistory, nullptr, (ss-4)->contHistory };
811 Move countermove = thisThread->counterMoves[pos.piece_on(prevSq)][prevSq];
813 MovePicker mp(pos, ttMove, depth, &thisThread->mainHistory, contHist, countermove, ss->killers);
814 value = bestValue; // Workaround a bogus 'uninitialized' warning under gcc
815 improving = ss->staticEval >= (ss-2)->staticEval
816 /* || ss->staticEval == VALUE_NONE Already implicit in the previous condition */
817 ||(ss-2)->staticEval == VALUE_NONE;
819 singularExtensionNode = !rootNode
820 && depth >= 8 * ONE_PLY
821 && ttMove != MOVE_NONE
822 && ttValue != VALUE_NONE
823 && !excludedMove // Recursive singular search is not allowed
824 && (tte->bound() & BOUND_LOWER)
825 && tte->depth() >= depth - 3 * ONE_PLY;
829 // Step 11. Loop through moves
830 // Loop through all pseudo-legal moves until no moves remain or a beta cutoff occurs
831 while ((move = mp.next_move(skipQuiets)) != MOVE_NONE)
835 if (move == excludedMove)
838 // At root obey the "searchmoves" option and skip moves not listed in Root
839 // Move List. As a consequence any illegal move is also skipped. In MultiPV
840 // mode we also skip PV moves which have been already searched.
841 if (rootNode && !std::count(thisThread->rootMoves.begin() + thisThread->PVIdx,
842 thisThread->rootMoves.end(), move))
845 ss->moveCount = ++moveCount;
847 if (rootNode && thisThread == Threads.main() && Time.elapsed() > 3000)
848 sync_cout << "info depth " << depth / ONE_PLY
849 << " currmove " << UCI::move(move, pos.is_chess960())
850 << " currmovenumber " << moveCount + thisThread->PVIdx << sync_endl;
853 (ss+1)->pv = nullptr;
855 extension = DEPTH_ZERO;
856 captureOrPromotion = pos.capture_or_promotion(move);
857 movedPiece = pos.moved_piece(move);
859 givesCheck = type_of(move) == NORMAL && !pos.discovered_check_candidates()
860 ? pos.check_squares(type_of(pos.piece_on(from_sq(move)))) & to_sq(move)
861 : pos.gives_check(move);
863 moveCountPruning = depth < 16 * ONE_PLY
864 && moveCount >= FutilityMoveCounts[improving][depth / ONE_PLY];
866 // Step 12. Singular and Gives Check Extensions
868 // Singular extension search. If all moves but one fail low on a search of
869 // (alpha-s, beta-s), and just one fails high on (alpha, beta), then that move
870 // is singular and should be extended. To verify this we do a reduced search
871 // on all the other moves but the ttMove and if the result is lower than
872 // ttValue minus a margin then we will extend the ttMove.
873 if ( singularExtensionNode
877 Value rBeta = std::max(ttValue - 2 * depth / ONE_PLY, -VALUE_MATE);
878 Depth d = (depth / (2 * ONE_PLY)) * ONE_PLY;
879 ss->excludedMove = move;
880 value = search<NonPV>(pos, ss, rBeta - 1, rBeta, d, cutNode, true);
881 ss->excludedMove = MOVE_NONE;
891 // Calculate new depth for this move
892 newDepth = depth - ONE_PLY + extension;
894 // Step 13. Pruning at shallow depth
896 && pos.non_pawn_material(pos.side_to_move())
897 && bestValue > VALUE_MATED_IN_MAX_PLY)
899 if ( !captureOrPromotion
901 && (!pos.advanced_pawn_push(move) || pos.non_pawn_material() >= Value(5000)))
903 // Move count based pruning
904 if (moveCountPruning)
910 // Reduced depth of the next LMR search
911 int lmrDepth = std::max(newDepth - reduction<PvNode>(improving, depth, moveCount), DEPTH_ZERO) / ONE_PLY;
913 // Countermoves based pruning
915 && (*contHist[0])[movedPiece][to_sq(move)] < CounterMovePruneThreshold
916 && (*contHist[1])[movedPiece][to_sq(move)] < CounterMovePruneThreshold)
919 // Futility pruning: parent node
922 && ss->staticEval + 256 + 200 * lmrDepth <= alpha)
925 // Prune moves with negative SEE
927 && !pos.see_ge(move, Value(-35 * lmrDepth * lmrDepth)))
930 else if ( depth < 7 * ONE_PLY
932 && !pos.see_ge(move, -PawnValueEg * (depth / ONE_PLY)))
936 // Speculative prefetch as early as possible
937 prefetch(TT.first_entry(pos.key_after(move)));
939 // Check for legality just before making the move
940 if (!rootNode && !pos.legal(move))
942 ss->moveCount = --moveCount;
946 if (move == ttMove && captureOrPromotion)
949 // Update the current move (this must be done after singular extension search)
950 ss->currentMove = move;
951 ss->contHistory = &thisThread->contHistory[movedPiece][to_sq(move)];
953 // Step 14. Make the move
954 pos.do_move(move, st, givesCheck);
956 // Step 15. Reduced depth search (LMR). If the move fails high it will be
957 // re-searched at full depth.
958 if ( depth >= 3 * ONE_PLY
960 && (!captureOrPromotion || moveCountPruning))
962 Depth r = reduction<PvNode>(improving, depth, moveCount);
964 if (captureOrPromotion)
965 r -= r ? ONE_PLY : DEPTH_ZERO;
968 // Increase reduction if ttMove is a capture
972 // Increase reduction for cut nodes
976 // Decrease reduction for moves that escape a capture. Filter out
977 // castling moves, because they are coded as "king captures rook" and
978 // hence break make_move().
979 else if ( type_of(move) == NORMAL
980 && !pos.see_ge(make_move(to_sq(move), from_sq(move))))
983 ss->statScore = thisThread->mainHistory[~pos.side_to_move()][from_to(move)]
984 + (*contHist[0])[movedPiece][to_sq(move)]
985 + (*contHist[1])[movedPiece][to_sq(move)]
986 + (*contHist[3])[movedPiece][to_sq(move)]
989 // Decrease/increase reduction by comparing opponent's stat score
990 if (ss->statScore > 0 && (ss-1)->statScore < 0)
993 else if (ss->statScore < 0 && (ss-1)->statScore > 0)
996 // Decrease/increase reduction for moves with a good/bad history
997 r = std::max(DEPTH_ZERO, (r / ONE_PLY - ss->statScore / 20000) * ONE_PLY);
1000 Depth d = std::max(newDepth - r, ONE_PLY);
1002 value = -search<NonPV>(pos, ss+1, -(alpha+1), -alpha, d, true, false);
1004 doFullDepthSearch = (value > alpha && d != newDepth);
1007 doFullDepthSearch = !PvNode || moveCount > 1;
1009 // Step 16. Full depth search when LMR is skipped or fails high
1010 if (doFullDepthSearch)
1011 value = newDepth < ONE_PLY ?
1012 givesCheck ? -qsearch<NonPV, true>(pos, ss+1, -(alpha+1), -alpha)
1013 : -qsearch<NonPV, false>(pos, ss+1, -(alpha+1), -alpha)
1014 : - search<NonPV>(pos, ss+1, -(alpha+1), -alpha, newDepth, !cutNode, false);
1016 // For PV nodes only, do a full PV search on the first move or after a fail
1017 // high (in the latter case search only if value < beta), otherwise let the
1018 // parent node fail low with value <= alpha and try another move.
1019 if (PvNode && (moveCount == 1 || (value > alpha && (rootNode || value < beta))))
1022 (ss+1)->pv[0] = MOVE_NONE;
1024 value = newDepth < ONE_PLY ?
1025 givesCheck ? -qsearch<PV, true>(pos, ss+1, -beta, -alpha)
1026 : -qsearch<PV, false>(pos, ss+1, -beta, -alpha)
1027 : - search<PV>(pos, ss+1, -beta, -alpha, newDepth, false, false);
1030 // Step 17. Undo move
1031 pos.undo_move(move);
1033 assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
1035 // Step 18. Check for a new best move
1036 // Finished searching the move. If a stop occurred, the return value of
1037 // the search cannot be trusted, and we return immediately without
1038 // updating best move, PV and TT.
1039 if (Threads.stop.load(std::memory_order_relaxed))
1044 RootMove& rm = *std::find(thisThread->rootMoves.begin(),
1045 thisThread->rootMoves.end(), move);
1047 // PV move or new best move ?
1048 if (moveCount == 1 || value > alpha)
1051 rm.selDepth = thisThread->selDepth;
1056 for (Move* m = (ss+1)->pv; *m != MOVE_NONE; ++m)
1057 rm.pv.push_back(*m);
1059 // We record how often the best move has been changed in each
1060 // iteration. This information is used for time management: When
1061 // the best move changes frequently, we allocate some more time.
1062 if (moveCount > 1 && thisThread == Threads.main())
1063 ++static_cast<MainThread*>(thisThread)->bestMoveChanges;
1066 // All other moves but the PV are set to the lowest value: this
1067 // is not a problem when sorting because the sort is stable and the
1068 // move position in the list is preserved - just the PV is pushed up.
1069 rm.score = -VALUE_INFINITE;
1072 if (value > bestValue)
1080 if (PvNode && !rootNode) // Update pv even in fail-high case
1081 update_pv(ss->pv, move, (ss+1)->pv);
1083 if (PvNode && value < beta) // Update alpha! Always alpha < beta
1087 assert(value >= beta); // Fail high
1093 if (!captureOrPromotion && move != bestMove && quietCount < 64)
1094 quietsSearched[quietCount++] = move;
1097 // The following condition would detect a stop only after move loop has been
1098 // completed. But in this case bestValue is valid because we have fully
1099 // searched our subtree, and we can anyhow save the result in TT.
1105 // Step 20. Check for mate and stalemate
1106 // All legal moves have been searched and if there are no legal moves, it
1107 // must be a mate or a stalemate. If we are in a singular extension search then
1108 // return a fail low score.
1110 assert(moveCount || !inCheck || excludedMove || !MoveList<LEGAL>(pos).size());
1113 bestValue = excludedMove ? alpha
1114 : inCheck ? mated_in(ss->ply) : DrawValue[pos.side_to_move()];
1117 // Quiet best move: update move sorting heuristics
1118 if (!pos.capture_or_promotion(bestMove))
1119 update_stats(pos, ss, bestMove, quietsSearched, quietCount, stat_bonus(depth));
1121 // Extra penalty for a quiet TT move in previous ply when it gets refuted
1122 if ((ss-1)->moveCount == 1 && !pos.captured_piece())
1123 update_continuation_histories(ss-1, pos.piece_on(prevSq), prevSq, -stat_bonus(depth + ONE_PLY));
1125 // Bonus for prior countermove that caused the fail low
1126 else if ( depth >= 3 * ONE_PLY
1127 && !pos.captured_piece()
1128 && is_ok((ss-1)->currentMove))
1129 update_continuation_histories(ss-1, pos.piece_on(prevSq), prevSq, stat_bonus(depth));
1132 tte->save(posKey, value_to_tt(bestValue, ss->ply),
1133 bestValue >= beta ? BOUND_LOWER :
1134 PvNode && bestMove ? BOUND_EXACT : BOUND_UPPER,
1135 depth, bestMove, ss->staticEval, TT.generation());
1137 assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
1143 // qsearch() is the quiescence search function, which is called by the main
1144 // search function with depth zero, or recursively with depth less than ONE_PLY.
1146 template <NodeType NT, bool InCheck>
1147 Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth) {
1149 const bool PvNode = NT == PV;
1151 assert(InCheck == !!pos.checkers());
1152 assert(alpha >= -VALUE_INFINITE && alpha < beta && beta <= VALUE_INFINITE);
1153 assert(PvNode || (alpha == beta - 1));
1154 assert(depth <= DEPTH_ZERO);
1155 assert(depth / ONE_PLY * ONE_PLY == depth);
1161 Move ttMove, move, bestMove;
1162 Value bestValue, value, ttValue, futilityValue, futilityBase, oldAlpha;
1163 bool ttHit, givesCheck, evasionPrunable;
1169 oldAlpha = alpha; // To flag BOUND_EXACT when eval above alpha and no available moves
1171 ss->pv[0] = MOVE_NONE;
1174 ss->currentMove = bestMove = MOVE_NONE;
1175 ss->ply = (ss-1)->ply + 1;
1178 // Check for an instant draw or if the maximum ply has been reached
1179 if (pos.is_draw(ss->ply) || ss->ply >= MAX_PLY)
1180 return ss->ply >= MAX_PLY && !InCheck ? evaluate(pos)
1181 : DrawValue[pos.side_to_move()];
1183 assert(0 <= ss->ply && ss->ply < MAX_PLY);
1185 // Decide whether or not to include checks: this fixes also the type of
1186 // TT entry depth that we are going to use. Note that in qsearch we use
1187 // only two types of depth in TT: DEPTH_QS_CHECKS or DEPTH_QS_NO_CHECKS.
1188 ttDepth = InCheck || depth >= DEPTH_QS_CHECKS ? DEPTH_QS_CHECKS
1189 : DEPTH_QS_NO_CHECKS;
1191 // Transposition table lookup
1193 tte = TT.probe(posKey, ttHit);
1194 ttMove = ttHit ? tte->move() : MOVE_NONE;
1195 ttValue = ttHit ? value_from_tt(tte->value(), ss->ply) : VALUE_NONE;
1199 && tte->depth() >= ttDepth
1200 && ttValue != VALUE_NONE // Only in case of TT access race
1201 && (ttValue >= beta ? (tte->bound() & BOUND_LOWER)
1202 : (tte->bound() & BOUND_UPPER)))
1205 // Evaluate the position statically
1208 ss->staticEval = VALUE_NONE;
1209 bestValue = futilityBase = -VALUE_INFINITE;
1215 // Never assume anything on values stored in TT
1216 if ((ss->staticEval = bestValue = tte->eval()) == VALUE_NONE)
1217 ss->staticEval = bestValue = evaluate(pos);
1219 // Can ttValue be used as a better position evaluation?
1220 if ( ttValue != VALUE_NONE
1221 && (tte->bound() & (ttValue > bestValue ? BOUND_LOWER : BOUND_UPPER)))
1222 bestValue = ttValue;
1225 ss->staticEval = bestValue =
1226 (ss-1)->currentMove != MOVE_NULL ? evaluate(pos)
1227 : -(ss-1)->staticEval + 2 * Eval::Tempo;
1229 // Stand pat. Return immediately if static value is at least beta
1230 if (bestValue >= beta)
1233 tte->save(pos.key(), value_to_tt(bestValue, ss->ply), BOUND_LOWER,
1234 DEPTH_NONE, MOVE_NONE, ss->staticEval, TT.generation());
1239 if (PvNode && bestValue > alpha)
1242 futilityBase = bestValue + 128;
1245 // Initialize a MovePicker object for the current position, and prepare
1246 // to search the moves. Because the depth is <= 0 here, only captures,
1247 // queen promotions and checks (only if depth >= DEPTH_QS_CHECKS) will
1249 const PieceToHistory* contHist[4] = {};
1250 MovePicker mp(pos, ttMove, depth, &pos.this_thread()->mainHistory, contHist, to_sq((ss-1)->currentMove));
1252 // Loop through the moves until no moves remain or a beta cutoff occurs
1253 while ((move = mp.next_move()) != MOVE_NONE)
1255 assert(is_ok(move));
1257 givesCheck = type_of(move) == NORMAL && !pos.discovered_check_candidates()
1258 ? pos.check_squares(type_of(pos.piece_on(from_sq(move)))) & to_sq(move)
1259 : pos.gives_check(move);
1266 && futilityBase > -VALUE_KNOWN_WIN
1267 && !pos.advanced_pawn_push(move))
1269 assert(type_of(move) != ENPASSANT); // Due to !pos.advanced_pawn_push
1271 futilityValue = futilityBase + PieceValue[EG][pos.piece_on(to_sq(move))];
1273 if (futilityValue <= alpha)
1275 bestValue = std::max(bestValue, futilityValue);
1279 if (futilityBase <= alpha && !pos.see_ge(move, VALUE_ZERO + 1))
1281 bestValue = std::max(bestValue, futilityBase);
1286 // Detect non-capture evasions that are candidates to be pruned
1287 evasionPrunable = InCheck
1288 && (depth != DEPTH_ZERO || moveCount > 2)
1289 && bestValue > VALUE_MATED_IN_MAX_PLY
1290 && !pos.capture(move);
1292 // Don't search moves with negative SEE values
1293 if ( (!InCheck || evasionPrunable)
1294 && type_of(move) != PROMOTION
1295 && !pos.see_ge(move))
1298 // Speculative prefetch as early as possible
1299 prefetch(TT.first_entry(pos.key_after(move)));
1301 // Check for legality just before making the move
1302 if (!pos.legal(move))
1308 ss->currentMove = move;
1310 // Make and search the move
1311 pos.do_move(move, st, givesCheck);
1312 value = givesCheck ? -qsearch<NT, true>(pos, ss+1, -beta, -alpha, depth - ONE_PLY)
1313 : -qsearch<NT, false>(pos, ss+1, -beta, -alpha, depth - ONE_PLY);
1314 pos.undo_move(move);
1316 assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
1318 // Check for a new best move
1319 if (value > bestValue)
1325 if (PvNode) // Update pv even in fail-high case
1326 update_pv(ss->pv, move, (ss+1)->pv);
1328 if (PvNode && value < beta) // Update alpha here!
1335 tte->save(posKey, value_to_tt(value, ss->ply), BOUND_LOWER,
1336 ttDepth, move, ss->staticEval, TT.generation());
1344 // All legal moves have been searched. A special case: If we're in check
1345 // and no legal moves were found, it is checkmate.
1346 if (InCheck && bestValue == -VALUE_INFINITE)
1347 return mated_in(ss->ply); // Plies to mate from the root
1349 tte->save(posKey, value_to_tt(bestValue, ss->ply),
1350 PvNode && bestValue > oldAlpha ? BOUND_EXACT : BOUND_UPPER,
1351 ttDepth, bestMove, ss->staticEval, TT.generation());
1353 assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
1359 // value_to_tt() adjusts a mate score from "plies to mate from the root" to
1360 // "plies to mate from the current position". Non-mate scores are unchanged.
1361 // The function is called before storing a value in the transposition table.
1363 Value value_to_tt(Value v, int ply) {
1365 assert(v != VALUE_NONE);
1367 return v >= VALUE_MATE_IN_MAX_PLY ? v + ply
1368 : v <= VALUE_MATED_IN_MAX_PLY ? v - ply : v;
1372 // value_from_tt() is the inverse of value_to_tt(): It adjusts a mate score
1373 // from the transposition table (which refers to the plies to mate/be mated
1374 // from current position) to "plies to mate/be mated from the root".
1376 Value value_from_tt(Value v, int ply) {
1378 return v == VALUE_NONE ? VALUE_NONE
1379 : v >= VALUE_MATE_IN_MAX_PLY ? v - ply
1380 : v <= VALUE_MATED_IN_MAX_PLY ? v + ply : v;
1384 // update_pv() adds current move and appends child pv[]
1386 void update_pv(Move* pv, Move move, Move* childPv) {
1388 for (*pv++ = move; childPv && *childPv != MOVE_NONE; )
1394 // update_continuation_histories() updates histories of the move pairs formed
1395 // by moves at ply -1, -2, and -4 with current move.
1397 void update_continuation_histories(Stack* ss, Piece pc, Square to, int bonus) {
1399 for (int i : {1, 2, 4})
1400 if (is_ok((ss-i)->currentMove))
1401 (ss-i)->contHistory->update(pc, to, bonus);
1405 // update_stats() updates move sorting heuristics when a new quiet best move is found
1407 void update_stats(const Position& pos, Stack* ss, Move move,
1408 Move* quiets, int quietsCnt, int bonus) {
1410 if (ss->killers[0] != move)
1412 ss->killers[1] = ss->killers[0];
1413 ss->killers[0] = move;
1416 Color c = pos.side_to_move();
1417 Thread* thisThread = pos.this_thread();
1418 thisThread->mainHistory.update(c, move, bonus);
1419 update_continuation_histories(ss, pos.moved_piece(move), to_sq(move), bonus);
1421 if (is_ok((ss-1)->currentMove))
1423 Square prevSq = to_sq((ss-1)->currentMove);
1424 thisThread->counterMoves[pos.piece_on(prevSq)][prevSq] = move;
1427 // Decrease all the other played quiet moves
1428 for (int i = 0; i < quietsCnt; ++i)
1430 thisThread->mainHistory.update(c, quiets[i], -bonus);
1431 update_continuation_histories(ss, pos.moved_piece(quiets[i]), to_sq(quiets[i]), -bonus);
1436 // When playing with strength handicap, choose best move among a set of RootMoves
1437 // using a statistical rule dependent on 'level'. Idea by Heinz van Saanen.
1439 Move Skill::pick_best(size_t multiPV) {
1441 const RootMoves& rootMoves = Threads.main()->rootMoves;
1442 static PRNG rng(now()); // PRNG sequence should be non-deterministic
1444 // RootMoves are already sorted by score in descending order
1445 Value topScore = rootMoves[0].score;
1446 int delta = std::min(topScore - rootMoves[multiPV - 1].score, PawnValueMg);
1447 int weakness = 120 - 2 * level;
1448 int maxScore = -VALUE_INFINITE;
1450 // Choose best move. For each move score we add two terms, both dependent on
1451 // weakness. One is deterministic and bigger for weaker levels, and one is
1452 // random. Then we choose the move with the resulting highest score.
1453 for (size_t i = 0; i < multiPV; ++i)
1455 // This is our magic formula
1456 int push = ( weakness * int(topScore - rootMoves[i].score)
1457 + delta * (rng.rand<unsigned>() % weakness)) / 128;
1459 if (rootMoves[i].score + push > maxScore)
1461 maxScore = rootMoves[i].score + push;
1462 best = rootMoves[i].pv[0];
1471 // check_time() is used to print debug info and, more importantly, to detect
1472 // when we are out of available time and thus stop the search.
1474 void MainThread::check_time() {
1479 // At low node count increase the checking rate to about 0.1% of nodes
1480 // otherwise use a default value.
1481 callsCnt = Limits.nodes ? std::min(4096, int(Limits.nodes / 1024)) : 4096;
1483 static TimePoint lastInfoTime = now();
1485 int elapsed = Time.elapsed();
1486 TimePoint tick = Limits.startTime + elapsed;
1488 if (tick - lastInfoTime >= 1000)
1490 lastInfoTime = tick;
1494 // An engine may not stop pondering until told so by the GUI
1498 if ( (Limits.use_time_management() && elapsed > Time.maximum())
1499 || (Limits.movetime && elapsed >= Limits.movetime)
1500 || (Limits.nodes && Threads.nodes_searched() >= (uint64_t)Limits.nodes))
1501 Threads.stop = true;
1505 /// UCI::pv() formats PV information according to the UCI protocol. UCI requires
1506 /// that all (if any) unsearched PV lines are sent using a previous search score.
1508 string UCI::pv(const Position& pos, Depth depth, Value alpha, Value beta) {
1510 std::stringstream ss;
1511 int elapsed = Time.elapsed() + 1;
1512 const RootMoves& rootMoves = pos.this_thread()->rootMoves;
1513 size_t PVIdx = pos.this_thread()->PVIdx;
1514 size_t multiPV = std::min((size_t)Options["MultiPV"], rootMoves.size());
1515 uint64_t nodesSearched = Threads.nodes_searched();
1516 uint64_t tbHits = Threads.tb_hits() + (TB::RootInTB ? rootMoves.size() : 0);
1518 for (size_t i = 0; i < multiPV; ++i)
1520 bool updated = (i <= PVIdx && rootMoves[i].score != -VALUE_INFINITE);
1522 if (depth == ONE_PLY && !updated)
1525 Depth d = updated ? depth : depth - ONE_PLY;
1526 Value v = updated ? rootMoves[i].score : rootMoves[i].previousScore;
1528 bool tb = TB::RootInTB && abs(v) < VALUE_MATE - MAX_PLY;
1529 v = tb ? TB::Score : v;
1531 if (ss.rdbuf()->in_avail()) // Not at first line
1535 << " depth " << d / ONE_PLY
1536 << " seldepth " << rootMoves[i].selDepth
1537 << " multipv " << i + 1
1538 << " score " << UCI::value(v);
1540 if (!tb && i == PVIdx)
1541 ss << (v >= beta ? " lowerbound" : v <= alpha ? " upperbound" : "");
1543 ss << " nodes " << nodesSearched
1544 << " nps " << nodesSearched * 1000 / elapsed;
1546 if (elapsed > 1000) // Earlier makes little sense
1547 ss << " hashfull " << TT.hashfull();
1549 ss << " tbhits " << tbHits
1550 << " time " << elapsed
1553 for (Move m : rootMoves[i].pv)
1554 ss << " " << UCI::move(m, pos.is_chess960());
1561 /// RootMove::extract_ponder_from_tt() is called in case we have no ponder move
1562 /// before exiting the search, for instance, in case we stop the search during a
1563 /// fail high at root. We try hard to have a ponder move to return to the GUI,
1564 /// otherwise in case of 'ponder on' we have nothing to think on.
1566 bool RootMove::extract_ponder_from_tt(Position& pos) {
1571 assert(pv.size() == 1);
1576 pos.do_move(pv[0], st);
1577 TTEntry* tte = TT.probe(pos.key(), ttHit);
1581 Move m = tte->move(); // Local copy to be SMP safe
1582 if (MoveList<LEGAL>(pos).contains(m))
1586 pos.undo_move(pv[0]);
1587 return pv.size() > 1;
1590 void Tablebases::filter_root_moves(Position& pos, Search::RootMoves& rootMoves) {
1593 UseRule50 = Options["Syzygy50MoveRule"];
1594 ProbeDepth = Options["SyzygyProbeDepth"] * ONE_PLY;
1595 Cardinality = Options["SyzygyProbeLimit"];
1597 // Skip TB probing when no TB found: !TBLargest -> !TB::Cardinality
1598 if (Cardinality > MaxCardinality)
1600 Cardinality = MaxCardinality;
1601 ProbeDepth = DEPTH_ZERO;
1604 if (Cardinality < popcount(pos.pieces()) || pos.can_castle(ANY_CASTLING))
1607 // If the current root position is in the tablebases, then RootMoves
1608 // contains only moves that preserve the draw or the win.
1609 RootInTB = root_probe(pos, rootMoves, TB::Score);
1612 Cardinality = 0; // Do not probe tablebases during the search
1614 else // If DTZ tables are missing, use WDL tables as a fallback
1616 // Filter out moves that do not preserve the draw or the win.
1617 RootInTB = root_probe_wdl(pos, rootMoves, TB::Score);
1619 // Only probe during search if winning
1620 if (RootInTB && TB::Score <= VALUE_DRAW)
1624 if (RootInTB && !UseRule50)
1625 TB::Score = TB::Score > VALUE_DRAW ? VALUE_MATE - MAX_PLY - 1
1626 : TB::Score < VALUE_DRAW ? -VALUE_MATE + MAX_PLY + 1