2 Stockfish, a UCI chess playing engine derived from Glaurung 2.1
3 Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
4 Copyright (C) 2008-2013 Marco Costalba, Joona Kiiski, Tord Romstad
6 Stockfish is free software: you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation, either version 3 of the License, or
9 (at your option) any later version.
11 Stockfish is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>.
36 #include "ucioption.h"
40 volatile SignalsType Signals;
42 std::vector<RootMove> RootMoves;
45 Time::point SearchTime;
46 StateStackPtr SetupStates;
51 using namespace Search;
55 // Set to true to force running with one thread. Used for debugging
56 const bool FakeSplit = false;
58 // This is the minimum interval in msec between two check_time() calls
59 const int TimerResolution = 5;
61 // Different node types, used as template parameter
62 enum NodeType { Root, PV, NonPV, SplitPointRoot, SplitPointPV, SplitPointNonPV };
64 // Dynamic razoring margin based on depth
65 inline Value razor_margin(Depth d) { return Value(512 + 16 * int(d)); }
67 // Futility lookup tables (initialized at startup) and their access functions
68 Value FutilityMargins[16][64]; // [depth][moveNumber]
69 int FutilityMoveCounts[2][32]; // [improving][depth]
71 inline Value futility_margin(Depth d, int mn) {
73 return d < 7 * ONE_PLY ? FutilityMargins[std::max(int(d), 1)][std::min(mn, 63)]
77 // Reduction lookup tables (initialized at startup) and their access function
78 int8_t Reductions[2][2][64][64]; // [pv][improving][depth][moveNumber]
80 template <bool PvNode> inline Depth reduction(bool i, Depth d, int mn) {
82 return (Depth) Reductions[PvNode][i][std::min(int(d) / ONE_PLY, 63)][std::min(mn, 63)];
87 float BestMoveChanges;
88 Value DrawValue[COLOR_NB];
91 CountermovesStats Countermoves;
93 template <NodeType NT>
94 Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth, bool cutNode);
96 template <NodeType NT, bool InCheck>
97 Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth);
99 void id_loop(Position& pos);
100 Value value_to_tt(Value v, int ply);
101 Value value_from_tt(Value v, int ply);
102 bool allows(const Position& pos, Move first, Move second);
103 bool refutes(const Position& pos, Move first, Move second);
104 string uci_pv(const Position& pos, int depth, Value alpha, Value beta);
107 Skill(int l) : level(l), best(MOVE_NONE) {}
109 if (enabled()) // Swap best PV line with the sub-optimal one
110 std::swap(RootMoves[0], *std::find(RootMoves.begin(),
111 RootMoves.end(), best ? best : pick_move()));
114 bool enabled() const { return level < 20; }
115 bool time_to_pick(int depth) const { return depth == 1 + level; }
125 /// Search::init() is called during startup to initialize various lookup tables
127 void Search::init() {
129 int d; // depth (ONE_PLY == 2)
130 int hd; // half depth (ONE_PLY == 1)
133 // Init reductions array
134 for (hd = 1; hd < 64; hd++) for (mc = 1; mc < 64; mc++)
136 double pvRed = log(double(hd)) * log(double(mc)) / 3.0;
137 double nonPVRed = 0.33 + log(double(hd)) * log(double(mc)) / 2.25;
138 Reductions[1][1][hd][mc] = (int8_t) ( pvRed >= 1.0 ? floor( pvRed * int(ONE_PLY)) : 0);
139 Reductions[0][1][hd][mc] = (int8_t) (nonPVRed >= 1.0 ? floor(nonPVRed * int(ONE_PLY)) : 0);
141 Reductions[1][0][hd][mc] = Reductions[1][1][hd][mc];
142 Reductions[0][0][hd][mc] = Reductions[0][1][hd][mc];
144 if (Reductions[0][0][hd][mc] > 2 * ONE_PLY)
145 Reductions[0][0][hd][mc] += ONE_PLY;
148 // Init futility margins array
149 for (d = 1; d < 16; d++) for (mc = 0; mc < 64; mc++)
150 FutilityMargins[d][mc] = Value(112 * int(log(double(d * d) / 2) / log(2.0) + 1.001) - 8 * mc + 45);
152 // Init futility move count array
153 for (d = 0; d < 32; d++)
155 FutilityMoveCounts[0][d] = int(3 + 0.3 * pow(double(d ), 1.8)) * 3/4 + (2 < d && d < 5);
156 FutilityMoveCounts[1][d] = int(3 + 0.3 * pow(double(d + 0.98), 1.8));
161 /// Search::perft() is our utility to verify move generation. All the leaf nodes
162 /// up to the given depth are generated and counted and the sum returned.
164 static size_t perft(Position& pos, Depth depth) {
169 const bool leaf = depth == 2 * ONE_PLY;
171 for (MoveList<LEGAL> it(pos); *it; ++it)
173 pos.do_move(*it, st, ci, pos.gives_check(*it, ci));
174 cnt += leaf ? MoveList<LEGAL>(pos).size() : ::perft(pos, depth - ONE_PLY);
180 size_t Search::perft(Position& pos, Depth depth) {
181 return depth > ONE_PLY ? ::perft(pos, depth) : MoveList<LEGAL>(pos).size();
184 /// Search::think() is the external interface to Stockfish's search, and is
185 /// called by the main thread when the program receives the UCI 'go' command. It
186 /// searches from RootPos and at the end prints the "bestmove" to output.
188 void Search::think() {
190 static PolyglotBook book; // Defined static to initialize the PRNG only once
192 RootColor = RootPos.side_to_move();
193 TimeMgr.init(Limits, RootPos.game_ply(), RootColor);
195 if (RootMoves.empty())
197 RootMoves.push_back(MOVE_NONE);
198 sync_cout << "info depth 0 score "
199 << score_to_uci(RootPos.checkers() ? -VALUE_MATE : VALUE_DRAW)
205 if (Options["OwnBook"] && !Limits.infinite && !Limits.mate)
207 Move bookMove = book.probe(RootPos, Options["Book File"], Options["Best Book Move"]);
209 if (bookMove && std::count(RootMoves.begin(), RootMoves.end(), bookMove))
211 std::swap(RootMoves[0], *std::find(RootMoves.begin(), RootMoves.end(), bookMove));
216 if (Options["Contempt Factor"] && !Options["UCI_AnalyseMode"])
218 int cf = Options["Contempt Factor"] * PawnValueMg / 100; // From centipawns
219 cf = cf * Material::game_phase(RootPos) / PHASE_MIDGAME; // Scale down with phase
220 DrawValue[ RootColor] = VALUE_DRAW - Value(cf);
221 DrawValue[~RootColor] = VALUE_DRAW + Value(cf);
224 DrawValue[WHITE] = DrawValue[BLACK] = VALUE_DRAW;
226 if (Options["Write Search Log"])
228 Log log(Options["Search Log Filename"]);
229 log << "\nSearching: " << RootPos.fen()
230 << "\ninfinite: " << Limits.infinite
231 << " ponder: " << Limits.ponder
232 << " time: " << Limits.time[RootColor]
233 << " increment: " << Limits.inc[RootColor]
234 << " moves to go: " << Limits.movestogo
238 // Reset the threads, still sleeping: will be wake up at split time
239 for (size_t i = 0; i < Threads.size(); ++i)
240 Threads[i]->maxPly = 0;
242 Threads.sleepWhileIdle = Options["Idle Threads Sleep"];
244 // Set best timer interval to avoid lagging under time pressure. Timer is
245 // used to check for remaining available thinking time.
246 Threads.timer->msec =
247 Limits.use_time_management() ? std::min(100, std::max(TimeMgr.available_time() / 16, TimerResolution)) :
248 Limits.nodes ? 2 * TimerResolution
251 Threads.timer->notify_one(); // Wake up the recurring timer
253 id_loop(RootPos); // Let's start searching !
255 Threads.timer->msec = 0; // Stop the timer
256 Threads.sleepWhileIdle = true; // Send idle threads to sleep
258 if (Options["Write Search Log"])
260 Time::point elapsed = Time::now() - SearchTime + 1;
262 Log log(Options["Search Log Filename"]);
263 log << "Nodes: " << RootPos.nodes_searched()
264 << "\nNodes/second: " << RootPos.nodes_searched() * 1000 / elapsed
265 << "\nBest move: " << move_to_san(RootPos, RootMoves[0].pv[0]);
268 RootPos.do_move(RootMoves[0].pv[0], st);
269 log << "\nPonder move: " << move_to_san(RootPos, RootMoves[0].pv[1]) << std::endl;
270 RootPos.undo_move(RootMoves[0].pv[0]);
275 // When search is stopped this info is not printed
276 sync_cout << "info nodes " << RootPos.nodes_searched()
277 << " time " << Time::now() - SearchTime + 1 << sync_endl;
279 // When we reach max depth we arrive here even without Signals.stop is raised,
280 // but if we are pondering or in infinite search, according to UCI protocol,
281 // we shouldn't print the best move before the GUI sends a "stop" or "ponderhit"
282 // command. We simply wait here until GUI sends one of those commands (that
283 // raise Signals.stop).
284 if (!Signals.stop && (Limits.ponder || Limits.infinite))
286 Signals.stopOnPonderhit = true;
287 RootPos.this_thread()->wait_for(Signals.stop);
290 // Best move could be MOVE_NONE when searching on a stalemate position
291 sync_cout << "bestmove " << move_to_uci(RootMoves[0].pv[0], RootPos.is_chess960())
292 << " ponder " << move_to_uci(RootMoves[0].pv[1], RootPos.is_chess960())
299 // id_loop() is the main iterative deepening loop. It calls search() repeatedly
300 // with increasing depth until the allocated thinking time has been consumed,
301 // user stops the search, or the maximum search depth is reached.
303 void id_loop(Position& pos) {
305 Stack stack[MAX_PLY_PLUS_6], *ss = stack+2; // To allow referencing (ss-2)
307 Value bestValue, alpha, beta, delta;
309 std::memset(ss-2, 0, 5 * sizeof(Stack));
310 (ss-1)->currentMove = MOVE_NULL; // Hack to skip update gains
314 bestValue = delta = alpha = -VALUE_INFINITE;
315 beta = VALUE_INFINITE;
320 Countermoves.clear();
322 PVSize = Options["MultiPV"];
323 Skill skill(Options["Skill Level"]);
325 // Do we have to play with skill handicap? In this case enable MultiPV search
326 // that we will use behind the scenes to retrieve a set of possible moves.
327 if (skill.enabled() && PVSize < 4)
330 PVSize = std::min(PVSize, RootMoves.size());
332 // Iterative deepening loop until requested to stop or target depth reached
333 while (++depth <= MAX_PLY && !Signals.stop && (!Limits.depth || depth <= Limits.depth))
335 // Age out PV variability metric
336 BestMoveChanges *= 0.8f;
338 // Save last iteration's scores before first PV line is searched and all
339 // the move scores but the (new) PV are set to -VALUE_INFINITE.
340 for (size_t i = 0; i < RootMoves.size(); ++i)
341 RootMoves[i].prevScore = RootMoves[i].score;
343 // MultiPV loop. We perform a full root search for each PV line
344 for (PVIdx = 0; PVIdx < PVSize; PVIdx++)
346 // Reset aspiration window starting size
350 alpha = std::max(RootMoves[PVIdx].prevScore - delta,-VALUE_INFINITE);
351 beta = std::min(RootMoves[PVIdx].prevScore + delta, VALUE_INFINITE);
354 // Start with a small aspiration window and, in case of fail high/low,
355 // research with bigger window until not failing high/low anymore.
358 bestValue = search<Root>(pos, ss, alpha, beta, depth * ONE_PLY, false);
360 // Bring to front the best move. It is critical that sorting is
361 // done with a stable algorithm because all the values but the first
362 // and eventually the new best one are set to -VALUE_INFINITE and
363 // we want to keep the same order for all the moves but the new
364 // PV that goes to the front. Note that in case of MultiPV search
365 // the already searched PV lines are preserved.
366 std::stable_sort(RootMoves.begin() + PVIdx, RootMoves.end());
368 // Write PV back to transposition table in case the relevant
369 // entries have been overwritten during the search.
370 for (size_t i = 0; i <= PVIdx; ++i)
371 RootMoves[i].insert_pv_in_tt(pos);
373 // If search has been stopped return immediately. Sorting and
374 // writing PV back to TT is safe becuase RootMoves is still
375 // valid, although refers to previous iteration.
379 // When failing high/low give some update (without cluttering
380 // the UI) before to research.
381 if ( (bestValue <= alpha || bestValue >= beta)
382 && Time::now() - SearchTime > 3000)
383 sync_cout << uci_pv(pos, depth, alpha, beta) << sync_endl;
385 // In case of failing low/high increase aspiration window and
386 // research, otherwise exit the loop.
387 if (bestValue <= alpha)
389 alpha = std::max(bestValue - delta, -VALUE_INFINITE);
391 Signals.failedLowAtRoot = true;
392 Signals.stopOnPonderhit = false;
394 else if (bestValue >= beta)
395 beta = std::min(bestValue + delta, VALUE_INFINITE);
402 assert(alpha >= -VALUE_INFINITE && beta <= VALUE_INFINITE);
405 // Sort the PV lines searched so far and update the GUI
406 std::stable_sort(RootMoves.begin(), RootMoves.begin() + PVIdx + 1);
408 if (PVIdx + 1 == PVSize || Time::now() - SearchTime > 3000)
409 sync_cout << uci_pv(pos, depth, alpha, beta) << sync_endl;
412 // Do we need to pick now the sub-optimal best move ?
413 if (skill.enabled() && skill.time_to_pick(depth))
416 if (Options["Write Search Log"])
418 RootMove& rm = RootMoves[0];
419 if (skill.best != MOVE_NONE)
420 rm = *std::find(RootMoves.begin(), RootMoves.end(), skill.best);
422 Log log(Options["Search Log Filename"]);
423 log << pretty_pv(pos, depth, rm.score, Time::now() - SearchTime, &rm.pv[0])
427 // Do we have found a "mate in x"?
429 && bestValue >= VALUE_MATE_IN_MAX_PLY
430 && VALUE_MATE - bestValue <= 2 * Limits.mate)
433 // Do we have time for the next iteration? Can we stop searching now?
434 if (Limits.use_time_management() && !Signals.stopOnPonderhit)
436 bool stop = false; // Local variable, not the volatile Signals.stop
438 // Take in account some extra time if the best move has changed
439 if (depth > 4 && depth < 50 && PVSize == 1)
440 TimeMgr.pv_instability(BestMoveChanges);
442 // Stop search if most of available time is already consumed. We
443 // probably don't have enough time to search the first move at the
444 // next iteration anyway.
445 if (Time::now() - SearchTime > (TimeMgr.available_time() * 62) / 100)
448 // Stop search early if one move seems to be much better than others
452 && bestValue > VALUE_MATED_IN_MAX_PLY
453 && ( RootMoves.size() == 1
454 || Time::now() - SearchTime > (TimeMgr.available_time() * 20) / 100))
456 Value rBeta = bestValue - 2 * PawnValueMg;
457 ss->excludedMove = RootMoves[0].pv[0];
458 ss->skipNullMove = true;
459 Value v = search<NonPV>(pos, ss, rBeta - 1, rBeta, (depth - 3) * ONE_PLY, true);
460 ss->skipNullMove = false;
461 ss->excludedMove = MOVE_NONE;
469 // If we are allowed to ponder do not stop the search now but
470 // keep pondering until GUI sends "ponderhit" or "stop".
472 Signals.stopOnPonderhit = true;
481 // search<>() is the main search function for both PV and non-PV nodes and for
482 // normal and SplitPoint nodes. When called just after a split point the search
483 // is simpler because we have already probed the hash table, done a null move
484 // search, and searched the first move before splitting, we don't have to repeat
485 // all this work again. We also don't need to store anything to the hash table
486 // here: This is taken care of after we return from the split point.
488 template <NodeType NT>
489 Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth, bool cutNode) {
491 const bool PvNode = (NT == PV || NT == Root || NT == SplitPointPV || NT == SplitPointRoot);
492 const bool SpNode = (NT == SplitPointPV || NT == SplitPointNonPV || NT == SplitPointRoot);
493 const bool RootNode = (NT == Root || NT == SplitPointRoot);
495 assert(alpha >= -VALUE_INFINITE && alpha < beta && beta <= VALUE_INFINITE);
496 assert(PvNode || (alpha == beta - 1));
497 assert(depth > DEPTH_ZERO);
499 Move quietsSearched[64];
502 SplitPoint* splitPoint;
504 Move ttMove, move, excludedMove, bestMove, threatMove;
506 Value bestValue, value, ttValue;
507 Value eval, nullValue, futilityValue;
508 bool inCheck, givesCheck, pvMove, singularExtensionNode, improving;
509 bool captureOrPromotion, dangerous, doFullDepthSearch;
510 int moveCount, quietCount;
512 // Step 1. Initialize node
513 Thread* thisThread = pos.this_thread();
514 inCheck = pos.checkers();
518 splitPoint = ss->splitPoint;
519 bestMove = splitPoint->bestMove;
520 threatMove = splitPoint->threatMove;
521 bestValue = splitPoint->bestValue;
523 ttMove = excludedMove = MOVE_NONE;
524 ttValue = VALUE_NONE;
526 assert(splitPoint->bestValue > -VALUE_INFINITE && splitPoint->moveCount > 0);
531 moveCount = quietCount = 0;
532 bestValue = -VALUE_INFINITE;
533 ss->currentMove = threatMove = (ss+1)->excludedMove = bestMove = MOVE_NONE;
534 ss->ply = (ss-1)->ply + 1;
535 ss->futilityMoveCount = 0;
536 (ss+1)->skipNullMove = false; (ss+1)->reduction = DEPTH_ZERO;
537 (ss+2)->killers[0] = (ss+2)->killers[1] = MOVE_NONE;
539 // Used to send selDepth info to GUI
540 if (PvNode && thisThread->maxPly < ss->ply)
541 thisThread->maxPly = ss->ply;
545 // Step 2. Check for aborted search and immediate draw
546 if (Signals.stop || pos.is_draw() || ss->ply > MAX_PLY)
547 return DrawValue[pos.side_to_move()];
549 // Step 3. Mate distance pruning. Even if we mate at the next move our score
550 // would be at best mate_in(ss->ply+1), but if alpha is already bigger because
551 // a shorter mate was found upward in the tree then there is no need to search
552 // further, we will never beat current alpha. Same logic but with reversed signs
553 // applies also in the opposite condition of being mated instead of giving mate,
554 // in this case return a fail-high score.
555 alpha = std::max(mated_in(ss->ply), alpha);
556 beta = std::min(mate_in(ss->ply+1), beta);
561 // Step 4. Transposition table lookup
562 // We don't want the score of a partial search to overwrite a previous full search
563 // TT value, so we use a different position key in case of an excluded move.
564 excludedMove = ss->excludedMove;
565 posKey = excludedMove ? pos.exclusion_key() : pos.key();
566 tte = TT.probe(posKey);
567 ttMove = RootNode ? RootMoves[PVIdx].pv[0] : tte ? tte->move() : MOVE_NONE;
568 ttValue = tte ? value_from_tt(tte->value(), ss->ply) : VALUE_NONE;
570 // At PV nodes we check for exact scores, while at non-PV nodes we check for
571 // a fail high/low. Biggest advantage at probing at PV nodes is to have a
572 // smooth experience in analysis mode. We don't probe at Root nodes otherwise
573 // we should also update RootMoveList to avoid bogus output.
576 && tte->depth() >= depth
577 && ttValue != VALUE_NONE // Only in case of TT access race
578 && ( PvNode ? tte->bound() == BOUND_EXACT
579 : ttValue >= beta ? (tte->bound() & BOUND_LOWER)
580 : (tte->bound() & BOUND_UPPER)))
583 ss->currentMove = ttMove; // Can be MOVE_NONE
587 && !pos.capture_or_promotion(ttMove)
588 && ttMove != ss->killers[0])
590 ss->killers[1] = ss->killers[0];
591 ss->killers[0] = ttMove;
596 // Step 5. Evaluate the position statically and update parent's gain statistics
599 ss->staticEval = ss->evalMargin = eval = VALUE_NONE;
605 // Never assume anything on values stored in TT
606 if ( (ss->staticEval = eval = tte->eval_value()) == VALUE_NONE
607 ||(ss->evalMargin = tte->eval_margin()) == VALUE_NONE)
608 eval = ss->staticEval = evaluate(pos, ss->evalMargin);
610 // Can ttValue be used as a better position evaluation?
611 if (ttValue != VALUE_NONE)
612 if (tte->bound() & (ttValue > eval ? BOUND_LOWER : BOUND_UPPER))
617 eval = ss->staticEval = evaluate(pos, ss->evalMargin);
618 TT.store(posKey, VALUE_NONE, BOUND_NONE, DEPTH_NONE, MOVE_NONE,
619 ss->staticEval, ss->evalMargin);
622 // Update gain for the parent non-capture move given the static position
623 // evaluation before and after the move.
624 if ( !pos.captured_piece_type()
625 && ss->staticEval != VALUE_NONE
626 && (ss-1)->staticEval != VALUE_NONE
627 && (move = (ss-1)->currentMove) != MOVE_NULL
628 && type_of(move) == NORMAL)
630 Square to = to_sq(move);
631 Gains.update(pos.piece_on(to), to, -(ss-1)->staticEval - ss->staticEval);
634 // Step 6. Razoring (skipped when in check)
636 && depth < 4 * ONE_PLY
637 && eval + razor_margin(depth) < beta
638 && ttMove == MOVE_NONE
639 && abs(beta) < VALUE_MATE_IN_MAX_PLY
640 && !pos.pawn_on_7th(pos.side_to_move()))
642 Value rbeta = beta - razor_margin(depth);
643 Value v = qsearch<NonPV, false>(pos, ss, rbeta-1, rbeta, DEPTH_ZERO);
645 // Logically we should return (v + razor_margin(depth)), but
646 // surprisingly this did slightly weaker in tests.
650 // Step 7. Static null move pruning (skipped when in check)
651 // We're betting that the opponent doesn't have a move that will reduce
652 // the score by more than futility_margin(depth) if we do a null move.
655 && depth < 4 * ONE_PLY
656 && eval - futility_margin(depth, (ss-1)->futilityMoveCount) >= beta
657 && abs(beta) < VALUE_MATE_IN_MAX_PLY
658 && abs(eval) < VALUE_KNOWN_WIN
659 && pos.non_pawn_material(pos.side_to_move()))
660 return eval - futility_margin(depth, (ss-1)->futilityMoveCount);
662 // Step 8. Null move search with verification search (is omitted in PV nodes)
665 && depth >= 2 * ONE_PLY
667 && abs(beta) < VALUE_MATE_IN_MAX_PLY
668 && pos.non_pawn_material(pos.side_to_move()))
670 ss->currentMove = MOVE_NULL;
672 // Null move dynamic reduction based on depth
673 Depth R = 3 * ONE_PLY + depth / 4;
675 // Null move dynamic reduction based on value
676 if (eval - PawnValueMg > beta)
679 pos.do_null_move(st);
680 (ss+1)->skipNullMove = true;
681 nullValue = depth-R < ONE_PLY ? -qsearch<NonPV, false>(pos, ss+1, -beta, -alpha, DEPTH_ZERO)
682 : - search<NonPV>(pos, ss+1, -beta, -alpha, depth-R, !cutNode);
683 (ss+1)->skipNullMove = false;
684 pos.undo_null_move();
686 if (nullValue >= beta)
688 // Do not return unproven mate scores
689 if (nullValue >= VALUE_MATE_IN_MAX_PLY)
692 if (depth < 12 * ONE_PLY)
695 // Do verification search at high depths
696 ss->skipNullMove = true;
697 Value v = search<NonPV>(pos, ss, alpha, beta, depth-R, false);
698 ss->skipNullMove = false;
705 // The null move failed low, which means that we may be faced with
706 // some kind of threat. If the previous move was reduced, check if
707 // the move that refuted the null move was somehow connected to the
708 // move which was reduced. If a connection is found, return a fail
709 // low score (which will cause the reduced move to fail high in the
710 // parent node, which will trigger a re-search with full depth).
711 threatMove = (ss+1)->currentMove;
713 if ( depth < 5 * ONE_PLY
715 && threatMove != MOVE_NONE
716 && allows(pos, (ss-1)->currentMove, threatMove))
721 // Step 9. ProbCut (skipped when in check)
722 // If we have a very good capture (i.e. SEE > seeValues[captured_piece_type])
723 // and a reduced search returns a value much above beta, we can (almost) safely
724 // prune the previous move.
726 && depth >= 5 * ONE_PLY
728 && abs(beta) < VALUE_MATE_IN_MAX_PLY)
730 Value rbeta = beta + 200;
731 Depth rdepth = depth - ONE_PLY - 3 * ONE_PLY;
733 assert(rdepth >= ONE_PLY);
734 assert((ss-1)->currentMove != MOVE_NONE);
735 assert((ss-1)->currentMove != MOVE_NULL);
737 MovePicker mp(pos, ttMove, History, pos.captured_piece_type());
740 while ((move = mp.next_move<false>()) != MOVE_NONE)
741 if (pos.legal(move, ci.pinned))
743 ss->currentMove = move;
744 pos.do_move(move, st, ci, pos.gives_check(move, ci));
745 value = -search<NonPV>(pos, ss+1, -rbeta, -rbeta+1, rdepth, !cutNode);
752 // Step 10. Internal iterative deepening (skipped when in check)
753 if ( depth >= (PvNode ? 5 * ONE_PLY : 8 * ONE_PLY)
754 && ttMove == MOVE_NONE
755 && (PvNode || ss->staticEval + Value(256) >= beta))
757 Depth d = depth - 2 * ONE_PLY - (PvNode ? DEPTH_ZERO : depth / 4);
759 ss->skipNullMove = true;
760 search<PvNode ? PV : NonPV>(pos, ss, alpha, beta, d, true);
761 ss->skipNullMove = false;
763 tte = TT.probe(posKey);
764 ttMove = tte ? tte->move() : MOVE_NONE;
767 moves_loop: // When in check and at SpNode search starts from here
769 Square prevMoveSq = to_sq((ss-1)->currentMove);
770 Move countermoves[] = { Countermoves[pos.piece_on(prevMoveSq)][prevMoveSq].first,
771 Countermoves[pos.piece_on(prevMoveSq)][prevMoveSq].second };
773 MovePicker mp(pos, ttMove, depth, History, countermoves, ss);
775 value = bestValue; // Workaround a bogus 'uninitialized' warning under gcc
776 improving = ss->staticEval >= (ss-2)->staticEval
777 || ss->staticEval == VALUE_NONE
778 ||(ss-2)->staticEval == VALUE_NONE;
780 singularExtensionNode = !RootNode
782 && depth >= 8 * ONE_PLY
783 && ttMove != MOVE_NONE
784 && !excludedMove // Recursive singular search is not allowed
785 && (tte->bound() & BOUND_LOWER)
786 && tte->depth() >= depth - 3 * ONE_PLY;
788 // Step 11. Loop through moves
789 // Loop through all pseudo-legal moves until no moves remain or a beta cutoff occurs
790 while ((move = mp.next_move<SpNode>()) != MOVE_NONE)
794 if (move == excludedMove)
797 // At root obey the "searchmoves" option and skip moves not listed in Root
798 // Move List, as a consequence any illegal move is also skipped. In MultiPV
799 // mode we also skip PV moves which have been already searched.
800 if (RootNode && !std::count(RootMoves.begin() + PVIdx, RootMoves.end(), move))
805 // Shared counter cannot be decremented later if move turns out to be illegal
806 if (!pos.legal(move, ci.pinned))
809 moveCount = ++splitPoint->moveCount;
810 splitPoint->mutex.unlock();
817 Signals.firstRootMove = (moveCount == 1);
819 if (thisThread == Threads.main() && Time::now() - SearchTime > 3000)
820 sync_cout << "info depth " << depth / ONE_PLY
821 << " currmove " << move_to_uci(move, pos.is_chess960())
822 << " currmovenumber " << moveCount + PVIdx << sync_endl;
826 captureOrPromotion = pos.capture_or_promotion(move);
827 givesCheck = pos.gives_check(move, ci);
828 dangerous = givesCheck
829 || pos.passed_pawn_push(move)
830 || type_of(move) == CASTLE;
832 // Step 12. Extend checks
833 if (givesCheck && pos.see_sign(move) >= 0)
836 // Singular extension search. If all moves but one fail low on a search of
837 // (alpha-s, beta-s), and just one fails high on (alpha, beta), then that move
838 // is singular and should be extended. To verify this we do a reduced search
839 // on all the other moves but the ttMove, if result is lower than ttValue minus
840 // a margin then we extend ttMove.
841 if ( singularExtensionNode
844 && pos.legal(move, ci.pinned)
845 && abs(ttValue) < VALUE_KNOWN_WIN)
847 assert(ttValue != VALUE_NONE);
849 Value rBeta = ttValue - int(depth);
850 ss->excludedMove = move;
851 ss->skipNullMove = true;
852 value = search<NonPV>(pos, ss, rBeta - 1, rBeta, depth / 2, cutNode);
853 ss->skipNullMove = false;
854 ss->excludedMove = MOVE_NONE;
860 // Update current move (this must be done after singular extension search)
861 newDepth = depth - ONE_PLY + ext;
863 // Step 13. Futility pruning (is omitted in PV nodes)
865 && !captureOrPromotion
868 /* && move != ttMove Already implicit in the next condition */
869 && bestValue > VALUE_MATED_IN_MAX_PLY)
871 // Move count based pruning
872 if ( depth < 16 * ONE_PLY
873 && moveCount >= FutilityMoveCounts[improving][depth]
874 && (!threatMove || !refutes(pos, move, threatMove)))
877 splitPoint->mutex.lock();
882 // Value based pruning
883 // We illogically ignore reduction condition depth >= 3*ONE_PLY for predicted depth,
884 // but fixing this made program slightly weaker.
885 Depth predictedDepth = newDepth - reduction<PvNode>(improving, depth, moveCount);
886 futilityValue = ss->staticEval + ss->evalMargin + futility_margin(predictedDepth, moveCount)
887 + Gains[pos.moved_piece(move)][to_sq(move)];
889 if (futilityValue < beta)
891 bestValue = std::max(bestValue, futilityValue);
895 splitPoint->mutex.lock();
896 if (bestValue > splitPoint->bestValue)
897 splitPoint->bestValue = bestValue;
902 // Prune moves with negative SEE at low depths
903 if ( predictedDepth < 4 * ONE_PLY
904 && pos.see_sign(move) < 0)
907 splitPoint->mutex.lock();
912 // We have not pruned the move that will be searched, but remember how
913 // far in the move list we are to be more aggressive in the child node.
914 ss->futilityMoveCount = moveCount;
917 ss->futilityMoveCount = 0;
919 // Check for legality only before to do the move
920 if (!RootNode && !SpNode && !pos.legal(move, ci.pinned))
926 pvMove = PvNode && moveCount == 1;
927 ss->currentMove = move;
928 if (!SpNode && !captureOrPromotion && quietCount < 64)
929 quietsSearched[quietCount++] = move;
931 // Step 14. Make the move
932 pos.do_move(move, st, ci, givesCheck);
934 // Step 15. Reduced depth search (LMR). If the move fails high will be
935 // re-searched at full depth.
936 if ( depth >= 3 * ONE_PLY
938 && !captureOrPromotion
940 && move != ss->killers[0]
941 && move != ss->killers[1])
943 ss->reduction = reduction<PvNode>(improving, depth, moveCount);
945 if (!PvNode && cutNode)
946 ss->reduction += ONE_PLY;
948 else if (History[pos.piece_on(to_sq(move))][to_sq(move)] < 0)
949 ss->reduction += ONE_PLY / 2;
951 if (move == countermoves[0] || move == countermoves[1])
952 ss->reduction = std::max(DEPTH_ZERO, ss->reduction - ONE_PLY);
954 Depth d = std::max(newDepth - ss->reduction, ONE_PLY);
956 alpha = splitPoint->alpha;
958 value = -search<NonPV>(pos, ss+1, -(alpha+1), -alpha, d, true);
960 doFullDepthSearch = (value > alpha && ss->reduction != DEPTH_ZERO);
961 ss->reduction = DEPTH_ZERO;
964 doFullDepthSearch = !pvMove;
966 // Step 16. Full depth search, when LMR is skipped or fails high
967 if (doFullDepthSearch)
970 alpha = splitPoint->alpha;
972 value = newDepth < ONE_PLY ?
973 givesCheck ? -qsearch<NonPV, true>(pos, ss+1, -(alpha+1), -alpha, DEPTH_ZERO)
974 : -qsearch<NonPV, false>(pos, ss+1, -(alpha+1), -alpha, DEPTH_ZERO)
975 : - search<NonPV>(pos, ss+1, -(alpha+1), -alpha, newDepth, !cutNode);
978 // Only for PV nodes do a full PV search on the first move or after a fail
979 // high, in the latter case search only if value < beta, otherwise let the
980 // parent node to fail low with value <= alpha and to try another move.
981 if (PvNode && (pvMove || (value > alpha && (RootNode || value < beta))))
982 value = newDepth < ONE_PLY ?
983 givesCheck ? -qsearch<PV, true>(pos, ss+1, -beta, -alpha, DEPTH_ZERO)
984 : -qsearch<PV, false>(pos, ss+1, -beta, -alpha, DEPTH_ZERO)
985 : - search<PV>(pos, ss+1, -beta, -alpha, newDepth, false);
986 // Step 17. Undo move
989 assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
991 // Step 18. Check for new best move
994 splitPoint->mutex.lock();
995 bestValue = splitPoint->bestValue;
996 alpha = splitPoint->alpha;
999 // Finished searching the move. If Signals.stop is true, the search
1000 // was aborted because the user interrupted the search or because we
1001 // ran out of time. In this case, the return value of the search cannot
1002 // be trusted, and we don't update the best move and/or PV.
1003 if (Signals.stop || thisThread->cutoff_occurred())
1004 return value; // To avoid returning VALUE_INFINITE
1008 RootMove& rm = *std::find(RootMoves.begin(), RootMoves.end(), move);
1010 // PV move or new best move ?
1011 if (pvMove || value > alpha)
1014 rm.extract_pv_from_tt(pos);
1016 // We record how often the best move has been changed in each
1017 // iteration. This information is used for time management: When
1018 // the best move changes frequently, we allocate some more time.
1023 // All other moves but the PV are set to the lowest value, this
1024 // is not a problem when sorting becuase sort is stable and move
1025 // position in the list is preserved, just the PV is pushed up.
1026 rm.score = -VALUE_INFINITE;
1029 if (value > bestValue)
1031 bestValue = SpNode ? splitPoint->bestValue = value : value;
1035 bestMove = SpNode ? splitPoint->bestMove = move : move;
1037 if (PvNode && value < beta) // Update alpha! Always alpha < beta
1038 alpha = SpNode ? splitPoint->alpha = value : value;
1041 assert(value >= beta); // Fail high
1044 splitPoint->cutoff = true;
1051 // Step 19. Check for splitting the search
1053 && depth >= Threads.minimumSplitDepth
1054 && Threads.available_slave(thisThread)
1055 && thisThread->splitPointsSize < MAX_SPLITPOINTS_PER_THREAD)
1057 assert(bestValue < beta);
1059 thisThread->split<FakeSplit>(pos, ss, alpha, beta, &bestValue, &bestMove,
1060 depth, threatMove, moveCount, &mp, NT, cutNode);
1061 if (bestValue >= beta)
1069 // Step 20. Check for mate and stalemate
1070 // All legal moves have been searched and if there are no legal moves, it
1071 // must be mate or stalemate. Note that we can have a false positive in
1072 // case of Signals.stop or thread.cutoff_occurred() are set, but this is
1073 // harmless because return value is discarded anyhow in the parent nodes.
1074 // If we are in a singular extension search then return a fail low score.
1075 // A split node has at least one move, the one tried before to be splitted.
1077 return excludedMove ? alpha
1078 : inCheck ? mated_in(ss->ply) : DrawValue[pos.side_to_move()];
1080 // If we have pruned all the moves without searching return a fail-low score
1081 if (bestValue == -VALUE_INFINITE)
1084 TT.store(posKey, value_to_tt(bestValue, ss->ply),
1085 bestValue >= beta ? BOUND_LOWER :
1086 PvNode && bestMove ? BOUND_EXACT : BOUND_UPPER,
1087 depth, bestMove, ss->staticEval, ss->evalMargin);
1089 // Quiet best move: update killers, history and countermoves
1090 if ( bestValue >= beta
1091 && !pos.capture_or_promotion(bestMove)
1094 if (ss->killers[0] != bestMove)
1096 ss->killers[1] = ss->killers[0];
1097 ss->killers[0] = bestMove;
1100 // Increase history value of the cut-off move and decrease all the other
1101 // played non-capture moves.
1102 Value bonus = Value(int(depth) * int(depth));
1103 History.update(pos.moved_piece(bestMove), to_sq(bestMove), bonus);
1104 for (int i = 0; i < quietCount - 1; ++i)
1106 Move m = quietsSearched[i];
1107 History.update(pos.moved_piece(m), to_sq(m), -bonus);
1110 if (is_ok((ss-1)->currentMove))
1111 Countermoves.update(pos.piece_on(prevMoveSq), prevMoveSq, bestMove);
1114 assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
1120 // qsearch() is the quiescence search function, which is called by the main
1121 // search function when the remaining depth is zero (or, to be more precise,
1122 // less than ONE_PLY).
1124 template <NodeType NT, bool InCheck>
1125 Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth) {
1127 const bool PvNode = (NT == PV);
1129 assert(NT == PV || NT == NonPV);
1130 assert(InCheck == !!pos.checkers());
1131 assert(alpha >= -VALUE_INFINITE && alpha < beta && beta <= VALUE_INFINITE);
1132 assert(PvNode || (alpha == beta - 1));
1133 assert(depth <= DEPTH_ZERO);
1138 Move ttMove, move, bestMove;
1139 Value bestValue, value, ttValue, futilityValue, futilityBase, oldAlpha;
1140 bool givesCheck, evasionPrunable;
1143 // To flag BOUND_EXACT a node with eval above alpha and no available moves
1147 ss->currentMove = bestMove = MOVE_NONE;
1148 ss->ply = (ss-1)->ply + 1;
1150 // Check for an instant draw or maximum ply reached
1151 if (pos.is_draw() || ss->ply > MAX_PLY)
1152 return DrawValue[pos.side_to_move()];
1154 // Decide whether or not to include checks, this fixes also the type of
1155 // TT entry depth that we are going to use. Note that in qsearch we use
1156 // only two types of depth in TT: DEPTH_QS_CHECKS or DEPTH_QS_NO_CHECKS.
1157 ttDepth = InCheck || depth >= DEPTH_QS_CHECKS ? DEPTH_QS_CHECKS
1158 : DEPTH_QS_NO_CHECKS;
1160 // Transposition table lookup
1162 tte = TT.probe(posKey);
1163 ttMove = tte ? tte->move() : MOVE_NONE;
1164 ttValue = tte ? value_from_tt(tte->value(),ss->ply) : VALUE_NONE;
1167 && tte->depth() >= ttDepth
1168 && ttValue != VALUE_NONE // Only in case of TT access race
1169 && ( PvNode ? tte->bound() == BOUND_EXACT
1170 : ttValue >= beta ? (tte->bound() & BOUND_LOWER)
1171 : (tte->bound() & BOUND_UPPER)))
1173 ss->currentMove = ttMove; // Can be MOVE_NONE
1177 // Evaluate the position statically
1180 ss->staticEval = ss->evalMargin = VALUE_NONE;
1181 bestValue = futilityBase = -VALUE_INFINITE;
1187 // Never assume anything on values stored in TT
1188 if ( (ss->staticEval = bestValue = tte->eval_value()) == VALUE_NONE
1189 ||(ss->evalMargin = tte->eval_margin()) == VALUE_NONE)
1190 ss->staticEval = bestValue = evaluate(pos, ss->evalMargin);
1193 ss->staticEval = bestValue = evaluate(pos, ss->evalMargin);
1195 // Stand pat. Return immediately if static value is at least beta
1196 if (bestValue >= beta)
1199 TT.store(pos.key(), value_to_tt(bestValue, ss->ply), BOUND_LOWER,
1200 DEPTH_NONE, MOVE_NONE, ss->staticEval, ss->evalMargin);
1205 if (PvNode && bestValue > alpha)
1208 futilityBase = ss->staticEval + ss->evalMargin + Value(128);
1211 // Initialize a MovePicker object for the current position, and prepare
1212 // to search the moves. Because the depth is <= 0 here, only captures,
1213 // queen promotions and checks (only if depth >= DEPTH_QS_CHECKS) will
1215 MovePicker mp(pos, ttMove, depth, History, to_sq((ss-1)->currentMove));
1218 // Loop through the moves until no moves remain or a beta cutoff occurs
1219 while ((move = mp.next_move<false>()) != MOVE_NONE)
1221 assert(is_ok(move));
1223 givesCheck = pos.gives_check(move, ci);
1230 && type_of(move) != PROMOTION
1231 && futilityBase > -VALUE_KNOWN_WIN
1232 && !pos.passed_pawn_push(move))
1234 futilityValue = futilityBase
1235 + PieceValue[EG][pos.piece_on(to_sq(move))]
1236 + (type_of(move) == ENPASSANT ? PawnValueEg : VALUE_ZERO);
1238 if (futilityValue < beta)
1240 bestValue = std::max(bestValue, futilityValue);
1244 // Prune moves with negative or equal SEE and also moves with positive
1245 // SEE where capturing piece loses a tempo and SEE < beta - futilityBase.
1246 if ( futilityBase < beta
1247 && pos.see(move, beta - futilityBase) <= 0)
1249 bestValue = std::max(bestValue, futilityBase);
1254 // Detect non-capture evasions that are candidate to be pruned
1255 evasionPrunable = InCheck
1256 && bestValue > VALUE_MATED_IN_MAX_PLY
1257 && !pos.capture(move)
1258 && !pos.can_castle(pos.side_to_move());
1260 // Don't search moves with negative SEE values
1262 && (!InCheck || evasionPrunable)
1264 && type_of(move) != PROMOTION
1265 && pos.see_sign(move) < 0)
1268 // Check for legality only before to do the move
1269 if (!pos.legal(move, ci.pinned))
1272 ss->currentMove = move;
1274 // Make and search the move
1275 pos.do_move(move, st, ci, givesCheck);
1276 value = givesCheck ? -qsearch<NT, true>(pos, ss+1, -beta, -alpha, depth - ONE_PLY)
1277 : -qsearch<NT, false>(pos, ss+1, -beta, -alpha, depth - ONE_PLY);
1278 pos.undo_move(move);
1280 assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
1282 // Check for new best move
1283 if (value > bestValue)
1289 if (PvNode && value < beta) // Update alpha here! Always alpha < beta
1296 TT.store(posKey, value_to_tt(value, ss->ply), BOUND_LOWER,
1297 ttDepth, move, ss->staticEval, ss->evalMargin);
1305 // All legal moves have been searched. A special case: If we're in check
1306 // and no legal moves were found, it is checkmate.
1307 if (InCheck && bestValue == -VALUE_INFINITE)
1308 return mated_in(ss->ply); // Plies to mate from the root
1310 TT.store(posKey, value_to_tt(bestValue, ss->ply),
1311 PvNode && bestValue > oldAlpha ? BOUND_EXACT : BOUND_UPPER,
1312 ttDepth, bestMove, ss->staticEval, ss->evalMargin);
1314 assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
1320 // value_to_tt() adjusts a mate score from "plies to mate from the root" to
1321 // "plies to mate from the current position". Non-mate scores are unchanged.
1322 // The function is called before storing a value to the transposition table.
1324 Value value_to_tt(Value v, int ply) {
1326 assert(v != VALUE_NONE);
1328 return v >= VALUE_MATE_IN_MAX_PLY ? v + ply
1329 : v <= VALUE_MATED_IN_MAX_PLY ? v - ply : v;
1333 // value_from_tt() is the inverse of value_to_tt(): It adjusts a mate score
1334 // from the transposition table (where refers to the plies to mate/be mated
1335 // from current position) to "plies to mate/be mated from the root".
1337 Value value_from_tt(Value v, int ply) {
1339 return v == VALUE_NONE ? VALUE_NONE
1340 : v >= VALUE_MATE_IN_MAX_PLY ? v - ply
1341 : v <= VALUE_MATED_IN_MAX_PLY ? v + ply : v;
1345 // allows() tests whether the 'first' move at previous ply somehow makes the
1346 // 'second' move possible, for instance if the moving piece is the same in
1347 // both moves. Normally the second move is the threat (the best move returned
1348 // from a null search that fails low).
1350 bool allows(const Position& pos, Move first, Move second) {
1352 assert(is_ok(first));
1353 assert(is_ok(second));
1354 assert(color_of(pos.piece_on(from_sq(second))) == ~pos.side_to_move());
1355 assert(type_of(first) == CASTLE || color_of(pos.piece_on(to_sq(first))) == ~pos.side_to_move());
1357 Square m1from = from_sq(first);
1358 Square m2from = from_sq(second);
1359 Square m1to = to_sq(first);
1360 Square m2to = to_sq(second);
1362 // The piece is the same or second's destination was vacated by the first move
1363 // We exclude the trivial case where a sliding piece does in two moves what
1364 // it could do in one move: eg. Ra1a2, Ra2a3.
1366 || (m1to == m2from && !squares_aligned(m1from, m2from, m2to)))
1369 // Second one moves through the square vacated by first one
1370 if (between_bb(m2from, m2to) & m1from)
1373 // Second's destination is defended by the first move's piece
1374 Bitboard m1att = pos.attacks_from(pos.piece_on(m1to), m1to, pos.pieces() ^ m2from);
1378 // Second move gives a discovered check through the first's checking piece
1379 if (m1att & pos.king_square(pos.side_to_move()))
1381 assert(between_bb(m1to, pos.king_square(pos.side_to_move())) & m2from);
1389 // refutes() tests whether a 'first' move is able to defend against a 'second'
1390 // opponent's move. In this case will not be pruned. Normally the second move
1391 // is the threat (the best move returned from a null search that fails low).
1393 bool refutes(const Position& pos, Move first, Move second) {
1395 assert(is_ok(first));
1396 assert(is_ok(second));
1398 Square m1from = from_sq(first);
1399 Square m2from = from_sq(second);
1400 Square m1to = to_sq(first);
1401 Square m2to = to_sq(second);
1403 // Don't prune moves of the threatened piece
1407 // If the threatened piece has value less than or equal to the value of the
1408 // threat piece, don't prune moves which defend it.
1409 if ( pos.capture(second)
1410 && ( PieceValue[MG][pos.piece_on(m2from)] >= PieceValue[MG][pos.piece_on(m2to)]
1411 || type_of(pos.piece_on(m2from)) == KING))
1413 // Update occupancy as if the piece and the threat are moving
1414 Bitboard occ = pos.pieces() ^ m1from ^ m1to ^ m2from;
1415 Piece pc = pos.piece_on(m1from);
1417 // The moved piece attacks the square 'tto' ?
1418 if (pos.attacks_from(pc, m1to, occ) & m2to)
1421 // Scan for possible X-ray attackers behind the moved piece
1422 Bitboard xray = (attacks_bb< ROOK>(m2to, occ) & pos.pieces(color_of(pc), QUEEN, ROOK))
1423 | (attacks_bb<BISHOP>(m2to, occ) & pos.pieces(color_of(pc), QUEEN, BISHOP));
1425 // Verify attackers are triggered by our move and not already existing
1426 if (unlikely(xray) && (xray & ~pos.attacks_from<QUEEN>(m2to)))
1430 // Don't prune safe moves which block the threat path
1431 if ((between_bb(m2from, m2to) & m1to) && pos.see_sign(first) >= 0)
1438 // When playing with strength handicap choose best move among the MultiPV set
1439 // using a statistical rule dependent on 'level'. Idea by Heinz van Saanen.
1441 Move Skill::pick_move() {
1445 // PRNG sequence should be not deterministic
1446 for (int i = Time::now() % 50; i > 0; i--)
1447 rk.rand<unsigned>();
1449 // RootMoves are already sorted by score in descending order
1450 int variance = std::min(RootMoves[0].score - RootMoves[PVSize - 1].score, PawnValueMg);
1451 int weakness = 120 - 2 * level;
1452 int max_s = -VALUE_INFINITE;
1455 // Choose best move. For each move score we add two terms both dependent on
1456 // weakness, one deterministic and bigger for weaker moves, and one random,
1457 // then we choose the move with the resulting highest score.
1458 for (size_t i = 0; i < PVSize; ++i)
1460 int s = RootMoves[i].score;
1462 // Don't allow crazy blunders even at very low skills
1463 if (i > 0 && RootMoves[i-1].score > s + 2 * PawnValueMg)
1466 // This is our magic formula
1467 s += ( weakness * int(RootMoves[0].score - s)
1468 + variance * (rk.rand<unsigned>() % weakness)) / 128;
1473 best = RootMoves[i].pv[0];
1480 // uci_pv() formats PV information according to UCI protocol. UCI requires
1481 // to send all the PV lines also if are still to be searched and so refer to
1482 // the previous search score.
1484 string uci_pv(const Position& pos, int depth, Value alpha, Value beta) {
1486 std::stringstream s;
1487 Time::point elapsed = Time::now() - SearchTime + 1;
1488 size_t uciPVSize = std::min((size_t)Options["MultiPV"], RootMoves.size());
1491 for (size_t i = 0; i < Threads.size(); ++i)
1492 if (Threads[i]->maxPly > selDepth)
1493 selDepth = Threads[i]->maxPly;
1495 for (size_t i = 0; i < uciPVSize; ++i)
1497 bool updated = (i <= PVIdx);
1499 if (depth == 1 && !updated)
1502 int d = updated ? depth : depth - 1;
1503 Value v = updated ? RootMoves[i].score : RootMoves[i].prevScore;
1505 if (s.rdbuf()->in_avail()) // Not at first line
1508 s << "info depth " << d
1509 << " seldepth " << selDepth
1510 << " score " << (i == PVIdx ? score_to_uci(v, alpha, beta) : score_to_uci(v))
1511 << " nodes " << pos.nodes_searched()
1512 << " nps " << pos.nodes_searched() * 1000 / elapsed
1513 << " time " << elapsed
1514 << " multipv " << i + 1
1517 for (size_t j = 0; RootMoves[i].pv[j] != MOVE_NONE; j++)
1518 s << " " << move_to_uci(RootMoves[i].pv[j], pos.is_chess960());
1527 /// RootMove::extract_pv_from_tt() builds a PV by adding moves from the TT table.
1528 /// We consider also failing high nodes and not only BOUND_EXACT nodes so to
1529 /// allow to always have a ponder move even when we fail high at root, and a
1530 /// long PV to print that is important for position analysis.
1532 void RootMove::extract_pv_from_tt(Position& pos) {
1534 StateInfo state[MAX_PLY_PLUS_6], *st = state;
1544 assert(MoveList<LEGAL>(pos).contains(pv[ply]));
1546 pos.do_move(pv[ply++], *st++);
1547 tte = TT.probe(pos.key());
1550 && pos.pseudo_legal(m = tte->move()) // Local copy, TT could change
1551 && pos.legal(m, pos.pinned_pieces())
1553 && (!pos.is_draw() || ply < 2));
1555 pv.push_back(MOVE_NONE); // Must be zero-terminating
1557 while (ply) pos.undo_move(pv[--ply]);
1561 /// RootMove::insert_pv_in_tt() is called at the end of a search iteration, and
1562 /// inserts the PV back into the TT. This makes sure the old PV moves are searched
1563 /// first, even if the old TT entries have been overwritten.
1565 void RootMove::insert_pv_in_tt(Position& pos) {
1567 StateInfo state[MAX_PLY_PLUS_6], *st = state;
1572 tte = TT.probe(pos.key());
1574 if (!tte || tte->move() != pv[ply]) // Don't overwrite correct entries
1575 TT.store(pos.key(), VALUE_NONE, BOUND_NONE, DEPTH_NONE, pv[ply], VALUE_NONE, VALUE_NONE);
1577 assert(MoveList<LEGAL>(pos).contains(pv[ply]));
1579 pos.do_move(pv[ply++], *st++);
1581 } while (pv[ply] != MOVE_NONE);
1583 while (ply) pos.undo_move(pv[--ply]);
1587 /// Thread::idle_loop() is where the thread is parked when it has no work to do
1589 void Thread::idle_loop() {
1591 // Pointer 'this_sp' is not null only if we are called from split(), and not
1592 // at the thread creation. So it means we are the split point's master.
1593 SplitPoint* this_sp = splitPointsSize ? activeSplitPoint : NULL;
1595 assert(!this_sp || (this_sp->masterThread == this && searching));
1599 // If we are not searching, wait for a condition to be signaled instead of
1600 // wasting CPU time polling for work.
1601 while ((!searching && Threads.sleepWhileIdle) || exit)
1609 // Grab the lock to avoid races with Thread::notify_one()
1612 // If we are master and all slaves have finished then exit idle_loop
1613 if (this_sp && !this_sp->slavesMask)
1619 // Do sleep after retesting sleep conditions under lock protection, in
1620 // particular we need to avoid a deadlock in case a master thread has,
1621 // in the meanwhile, allocated us and sent the notify_one() call before
1622 // we had the chance to grab the lock.
1623 if (!searching && !exit)
1624 sleepCondition.wait(mutex);
1629 // If this thread has been assigned work, launch a search
1634 Threads.mutex.lock();
1637 assert(activeSplitPoint);
1638 SplitPoint* sp = activeSplitPoint;
1640 Threads.mutex.unlock();
1642 Stack stack[MAX_PLY_PLUS_6], *ss = stack+2; // To allow referencing (ss-2)
1643 Position pos(*sp->pos, this);
1645 std::memcpy(ss-2, sp->ss-2, 5 * sizeof(Stack));
1646 ss->splitPoint = sp;
1650 assert(activePosition == NULL);
1652 activePosition = &pos;
1654 switch (sp->nodeType) {
1656 search<SplitPointRoot>(pos, ss, sp->alpha, sp->beta, sp->depth, sp->cutNode);
1659 search<SplitPointPV>(pos, ss, sp->alpha, sp->beta, sp->depth, sp->cutNode);
1662 search<SplitPointNonPV>(pos, ss, sp->alpha, sp->beta, sp->depth, sp->cutNode);
1671 activePosition = NULL;
1672 sp->slavesMask &= ~(1ULL << idx);
1673 sp->nodes += pos.nodes_searched();
1675 // Wake up master thread so to allow it to return from the idle loop
1676 // in case we are the last slave of the split point.
1677 if ( Threads.sleepWhileIdle
1678 && this != sp->masterThread
1681 assert(!sp->masterThread->searching);
1682 sp->masterThread->notify_one();
1685 // After releasing the lock we cannot access anymore any SplitPoint
1686 // related data in a safe way becuase it could have been released under
1687 // our feet by the sp master. Also accessing other Thread objects is
1688 // unsafe because if we are exiting there is a chance are already freed.
1692 // If this thread is the master of a split point and all slaves have finished
1693 // their work at this split point, return from the idle loop.
1694 if (this_sp && !this_sp->slavesMask)
1696 this_sp->mutex.lock();
1697 bool finished = !this_sp->slavesMask; // Retest under lock protection
1698 this_sp->mutex.unlock();
1706 /// check_time() is called by the timer thread when the timer triggers. It is
1707 /// used to print debug info and, more important, to detect when we are out of
1708 /// available time and so stop the search.
1712 static Time::point lastInfoTime = Time::now();
1713 int64_t nodes = 0; // Workaround silly 'uninitialized' gcc warning
1715 if (Time::now() - lastInfoTime >= 1000)
1717 lastInfoTime = Time::now();
1726 Threads.mutex.lock();
1728 nodes = RootPos.nodes_searched();
1730 // Loop across all split points and sum accumulated SplitPoint nodes plus
1731 // all the currently active positions nodes.
1732 for (size_t i = 0; i < Threads.size(); ++i)
1733 for (int j = 0; j < Threads[i]->splitPointsSize; j++)
1735 SplitPoint& sp = Threads[i]->splitPoints[j];
1740 Bitboard sm = sp.slavesMask;
1743 Position* pos = Threads[pop_lsb(&sm)]->activePosition;
1745 nodes += pos->nodes_searched();
1751 Threads.mutex.unlock();
1754 Time::point elapsed = Time::now() - SearchTime;
1755 bool stillAtFirstMove = Signals.firstRootMove
1756 && !Signals.failedLowAtRoot
1757 && elapsed > TimeMgr.available_time();
1759 bool noMoreTime = elapsed > TimeMgr.maximum_time() - 2 * TimerResolution
1760 || stillAtFirstMove;
1762 if ( (Limits.use_time_management() && noMoreTime)
1763 || (Limits.movetime && elapsed >= Limits.movetime)
1764 || (Limits.nodes && nodes >= Limits.nodes))
1765 Signals.stop = true;