2 Stockfish, a UCI chess playing engine derived from Glaurung 2.1
3 Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
4 Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad
6 Stockfish is free software: you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation, either version 3 of the License, or
9 (at your option) any later version.
11 Stockfish is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>.
37 #include "ucioption.h"
41 volatile SignalsType Signals;
43 std::vector<RootMove> RootMoves;
44 Position RootPosition;
52 using namespace Search;
56 // Set to true to force running with one thread. Used for debugging
57 const bool FakeSplit = false;
59 // Different node types, used as template parameter
60 enum NodeType { Root, PV, NonPV, SplitPointRoot, SplitPointPV, SplitPointNonPV };
62 // Lookup table to check if a Piece is a slider and its access function
63 const bool Slidings[18] = { 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1 };
64 inline bool piece_is_slider(Piece p) { return Slidings[p]; }
66 // Maximum depth for razoring
67 const Depth RazorDepth = 4 * ONE_PLY;
69 // Dynamic razoring margin based on depth
70 inline Value razor_margin(Depth d) { return Value(512 + 16 * int(d)); }
72 // Maximum depth for use of dynamic threat detection when null move fails low
73 const Depth ThreatDepth = 5 * ONE_PLY;
75 // Minimum depth for use of internal iterative deepening
76 const Depth IIDDepth[] = { 8 * ONE_PLY, 5 * ONE_PLY };
78 // At Non-PV nodes we do an internal iterative deepening search
79 // when the static evaluation is bigger then beta - IIDMargin.
80 const Value IIDMargin = Value(256);
82 // Minimum depth for use of singular extension
83 const Depth SingularExtensionDepth[] = { 8 * ONE_PLY, 6 * ONE_PLY };
85 // Futility margin for quiescence search
86 const Value FutilityMarginQS = Value(128);
88 // Futility lookup tables (initialized at startup) and their access functions
89 Value FutilityMargins[16][64]; // [depth][moveNumber]
90 int FutilityMoveCounts[32]; // [depth]
92 inline Value futility_margin(Depth d, int mn) {
94 return d < 7 * ONE_PLY ? FutilityMargins[std::max(int(d), 1)][std::min(mn, 63)]
98 inline int futility_move_count(Depth d) {
100 return d < 16 * ONE_PLY ? FutilityMoveCounts[d] : MAX_MOVES;
103 // Reduction lookup tables (initialized at startup) and their access function
104 int8_t Reductions[2][64][64]; // [pv][depth][moveNumber]
106 template <bool PvNode> inline Depth reduction(Depth d, int mn) {
108 return (Depth) Reductions[PvNode][std::min(int(d) / ONE_PLY, 63)][std::min(mn, 63)];
111 // Easy move margin. An easy move candidate must be at least this much better
112 // than the second best move.
113 const Value EasyMoveMargin = Value(0x150);
115 // This is the minimum interval in msec between two check_time() calls
116 const int TimerResolution = 5;
119 size_t MultiPV, UCIMultiPV, PVIdx;
123 bool SkillLevelEnabled, Chess960;
127 template <NodeType NT>
128 Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth);
130 template <NodeType NT>
131 Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth);
133 void id_loop(Position& pos);
134 bool check_is_dangerous(Position &pos, Move move, Value futilityBase, Value beta);
135 bool connected_moves(const Position& pos, Move m1, Move m2);
136 Value value_to_tt(Value v, int ply);
137 Value value_from_tt(Value v, int ply);
138 bool can_return_tt(const TTEntry* tte, Depth depth, Value ttValue, Value beta);
139 bool connected_threat(const Position& pos, Move m, Move threat);
140 Value refine_eval(const TTEntry* tte, Value ttValue, Value defaultEval);
141 Move do_skill_level();
142 string uci_pv(const Position& pos, int depth, Value alpha, Value beta);
144 // is_dangerous() checks whether a move belongs to some classes of known
145 // 'dangerous' moves so that we avoid to prune it.
146 FORCE_INLINE bool is_dangerous(const Position& pos, Move m, bool captureOrPromotion) {
149 if (type_of(m) == CASTLE)
153 if ( type_of(pos.piece_moved(m)) == PAWN
154 && pos.pawn_is_passed(pos.side_to_move(), to_sq(m)))
157 // Entering a pawn endgame?
158 if ( captureOrPromotion
159 && type_of(pos.piece_on(to_sq(m))) != PAWN
160 && type_of(m) == NORMAL
161 && ( pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK)
162 - PieceValueMidgame[pos.piece_on(to_sq(m))] == VALUE_ZERO))
171 /// Search::init() is called during startup to initialize various lookup tables
173 void Search::init() {
175 int d; // depth (ONE_PLY == 2)
176 int hd; // half depth (ONE_PLY == 1)
179 // Init reductions array
180 for (hd = 1; hd < 64; hd++) for (mc = 1; mc < 64; mc++)
182 double pvRed = log(double(hd)) * log(double(mc)) / 3.0;
183 double nonPVRed = 0.33 + log(double(hd)) * log(double(mc)) / 2.25;
184 Reductions[1][hd][mc] = (int8_t) ( pvRed >= 1.0 ? floor( pvRed * int(ONE_PLY)) : 0);
185 Reductions[0][hd][mc] = (int8_t) (nonPVRed >= 1.0 ? floor(nonPVRed * int(ONE_PLY)) : 0);
188 // Init futility margins array
189 for (d = 1; d < 16; d++) for (mc = 0; mc < 64; mc++)
190 FutilityMargins[d][mc] = Value(112 * int(log(double(d * d) / 2) / log(2.0) + 1.001) - 8 * mc + 45);
192 // Init futility move count array
193 for (d = 0; d < 32; d++)
194 FutilityMoveCounts[d] = int(3.001 + 0.25 * pow(d, 2.0));
198 /// Search::perft() is our utility to verify move generation. All the leaf nodes
199 /// up to the given depth are generated and counted and the sum returned.
201 int64_t Search::perft(Position& pos, Depth depth) {
206 MoveList<LEGAL> ml(pos);
208 // At the last ply just return the number of moves (leaf nodes)
209 if (depth == ONE_PLY)
213 for ( ; !ml.end(); ++ml)
215 pos.do_move(ml.move(), st, ci, pos.move_gives_check(ml.move(), ci));
216 cnt += perft(pos, depth - ONE_PLY);
217 pos.undo_move(ml.move());
223 /// Search::think() is the external interface to Stockfish's search, and is
224 /// called by the main thread when the program receives the UCI 'go' command. It
225 /// searches from RootPosition and at the end prints the "bestmove" to output.
227 void Search::think() {
229 static Book book; // Defined static to initialize the PRNG only once
231 Position& pos = RootPosition;
232 Chess960 = pos.is_chess960();
233 Eval::RootColor = pos.side_to_move();
234 TimeMgr.init(Limits, pos.startpos_ply_counter(), pos.side_to_move());
238 if (RootMoves.empty())
240 cout << "info depth 0 score "
241 << score_to_uci(pos.in_check() ? -VALUE_MATE : VALUE_DRAW) << endl;
243 RootMoves.push_back(MOVE_NONE);
247 if (Options["OwnBook"] && !Limits.infinite)
249 Move bookMove = book.probe(pos, Options["Book File"], Options["Best Book Move"]);
251 if (bookMove && std::count(RootMoves.begin(), RootMoves.end(), bookMove))
253 std::swap(RootMoves[0], *std::find(RootMoves.begin(), RootMoves.end(), bookMove));
258 UCIMultiPV = Options["MultiPV"];
259 SkillLevel = Options["Skill Level"];
261 // Do we have to play with skill handicap? In this case enable MultiPV that
262 // we will use behind the scenes to retrieve a set of possible moves.
263 SkillLevelEnabled = (SkillLevel < 20);
264 MultiPV = (SkillLevelEnabled ? std::max(UCIMultiPV, (size_t)4) : UCIMultiPV);
266 if (Options["Use Search Log"])
268 Log log(Options["Search Log Filename"]);
269 log << "\nSearching: " << pos.to_fen()
270 << "\ninfinite: " << Limits.infinite
271 << " ponder: " << Limits.ponder
272 << " time: " << Limits.time[pos.side_to_move()]
273 << " increment: " << Limits.inc[pos.side_to_move()]
274 << " moves to go: " << Limits.movestogo
280 // Set best timer interval to avoid lagging under time pressure. Timer is
281 // used to check for remaining available thinking time.
282 if (Limits.use_time_management())
283 Threads.set_timer(std::min(100, std::max(TimeMgr.available_time() / 16, TimerResolution)));
285 Threads.set_timer(100);
287 // We're ready to start searching. Call the iterative deepening loop function
290 Threads.set_timer(0); // Stop timer
293 if (Options["Use Search Log"])
295 int e = SearchTime.elapsed();
297 Log log(Options["Search Log Filename"]);
298 log << "Nodes: " << pos.nodes_searched()
299 << "\nNodes/second: " << (e > 0 ? pos.nodes_searched() * 1000 / e : 0)
300 << "\nBest move: " << move_to_san(pos, RootMoves[0].pv[0]);
303 pos.do_move(RootMoves[0].pv[0], st);
304 log << "\nPonder move: " << move_to_san(pos, RootMoves[0].pv[1]) << endl;
305 pos.undo_move(RootMoves[0].pv[0]);
310 // When we reach max depth we arrive here even without Signals.stop is raised,
311 // but if we are pondering or in infinite search, we shouldn't print the best
312 // move before we are told to do so.
313 if (!Signals.stop && (Limits.ponder || Limits.infinite))
314 pos.this_thread()->wait_for_stop_or_ponderhit();
316 // Best move could be MOVE_NONE when searching on a stalemate position
317 cout << "bestmove " << move_to_uci(RootMoves[0].pv[0], Chess960)
318 << " ponder " << move_to_uci(RootMoves[0].pv[1], Chess960) << endl;
324 // id_loop() is the main iterative deepening loop. It calls search() repeatedly
325 // with increasing depth until the allocated thinking time has been consumed,
326 // user stops the search, or the maximum search depth is reached.
328 void id_loop(Position& pos) {
330 Stack ss[MAX_PLY_PLUS_2];
331 int depth, prevBestMoveChanges;
332 Value bestValue, alpha, beta, delta;
333 bool bestMoveNeverChanged = true;
334 Move skillBest = MOVE_NONE;
336 memset(ss, 0, 4 * sizeof(Stack));
337 depth = BestMoveChanges = 0;
338 bestValue = delta = -VALUE_INFINITE;
339 ss->currentMove = MOVE_NULL; // Hack to skip update gains
341 // Iterative deepening loop until requested to stop or target depth reached
342 while (!Signals.stop && ++depth <= MAX_PLY && (!Limits.depth || depth <= Limits.depth))
344 // Save last iteration's scores before first PV line is searched and all
345 // the move scores but the (new) PV are set to -VALUE_INFINITE.
346 for (size_t i = 0; i < RootMoves.size(); i++)
347 RootMoves[i].prevScore = RootMoves[i].score;
349 prevBestMoveChanges = BestMoveChanges;
352 // MultiPV loop. We perform a full root search for each PV line
353 for (PVIdx = 0; PVIdx < std::min(MultiPV, RootMoves.size()); PVIdx++)
355 // Set aspiration window default width
356 if (depth >= 5 && abs(RootMoves[PVIdx].prevScore) < VALUE_KNOWN_WIN)
359 alpha = RootMoves[PVIdx].prevScore - delta;
360 beta = RootMoves[PVIdx].prevScore + delta;
364 alpha = -VALUE_INFINITE;
365 beta = VALUE_INFINITE;
368 // Start with a small aspiration window and, in case of fail high/low,
369 // research with bigger window until not failing high/low anymore.
371 // Search starts from ss+1 to allow referencing (ss-1). This is
372 // needed by update gains and ss copy when splitting at Root.
373 bestValue = search<Root>(pos, ss+1, alpha, beta, depth * ONE_PLY);
375 // Bring to front the best move. It is critical that sorting is
376 // done with a stable algorithm because all the values but the first
377 // and eventually the new best one are set to -VALUE_INFINITE and
378 // we want to keep the same order for all the moves but the new
379 // PV that goes to the front. Note that in case of MultiPV search
380 // the already searched PV lines are preserved.
381 sort<RootMove>(RootMoves.begin() + PVIdx, RootMoves.end());
383 // In case we have found an exact score and we are going to leave
384 // the fail high/low loop then reorder the PV moves, otherwise
385 // leave the last PV move in its position so to be searched again.
386 // Of course this is needed only in MultiPV search.
387 if (PVIdx && bestValue > alpha && bestValue < beta)
388 sort<RootMove>(RootMoves.begin(), RootMoves.begin() + PVIdx);
390 // Write PV back to transposition table in case the relevant
391 // entries have been overwritten during the search.
392 for (size_t i = 0; i <= PVIdx; i++)
393 RootMoves[i].insert_pv_in_tt(pos);
395 // If search has been stopped exit the aspiration window loop.
396 // Sorting and writing PV back to TT is safe becuase RootMoves
397 // is still valid, although refers to previous iteration.
401 // Send full PV info to GUI if we are going to leave the loop or
402 // if we have a fail high/low and we are deep in the search.
403 if ((bestValue > alpha && bestValue < beta) || SearchTime.elapsed() > 2000)
404 cout << uci_pv(pos, depth, alpha, beta) << endl;
406 // In case of failing high/low increase aspiration window and
407 // research, otherwise exit the fail high/low loop.
408 if (bestValue >= beta)
413 else if (bestValue <= alpha)
415 Signals.failedLowAtRoot = true;
416 Signals.stopOnPonderhit = false;
424 assert(alpha >= -VALUE_INFINITE && beta <= VALUE_INFINITE);
426 } while (abs(bestValue) < VALUE_KNOWN_WIN);
429 // Skills: Do we need to pick now the best move ?
430 if (SkillLevelEnabled && depth == 1 + SkillLevel)
431 skillBest = do_skill_level();
433 if (!Signals.stop && Options["Use Search Log"])
435 Log log(Options["Search Log Filename"]);
436 log << pretty_pv(pos, depth, bestValue, SearchTime.elapsed(), &RootMoves[0].pv[0])
440 // Filter out startup noise when monitoring best move stability
441 if (depth > 2 && BestMoveChanges)
442 bestMoveNeverChanged = false;
444 // Do we have time for the next iteration? Can we stop searching now?
445 if (!Signals.stop && !Signals.stopOnPonderhit && Limits.use_time_management())
447 bool stop = false; // Local variable, not the volatile Signals.stop
449 // Take in account some extra time if the best move has changed
450 if (depth > 4 && depth < 50)
451 TimeMgr.pv_instability(BestMoveChanges, prevBestMoveChanges);
453 // Stop search if most of available time is already consumed. We
454 // probably don't have enough time to search the first move at the
455 // next iteration anyway.
456 if (SearchTime.elapsed() > (TimeMgr.available_time() * 62) / 100)
459 // Stop search early if one move seems to be much better than others
462 && ( (bestMoveNeverChanged && pos.captured_piece_type())
463 || SearchTime.elapsed() > (TimeMgr.available_time() * 40) / 100))
465 Value rBeta = bestValue - EasyMoveMargin;
466 (ss+1)->excludedMove = RootMoves[0].pv[0];
467 (ss+1)->skipNullMove = true;
468 Value v = search<NonPV>(pos, ss+1, rBeta - 1, rBeta, (depth - 3) * ONE_PLY);
469 (ss+1)->skipNullMove = false;
470 (ss+1)->excludedMove = MOVE_NONE;
478 // If we are allowed to ponder do not stop the search now but
479 // keep pondering until GUI sends "ponderhit" or "stop".
481 Signals.stopOnPonderhit = true;
488 // When using skills swap best PV line with the sub-optimal one
489 if (SkillLevelEnabled)
491 if (skillBest == MOVE_NONE) // Still unassigned ?
492 skillBest = do_skill_level();
494 std::swap(RootMoves[0], *std::find(RootMoves.begin(), RootMoves.end(), skillBest));
499 // search<>() is the main search function for both PV and non-PV nodes and for
500 // normal and SplitPoint nodes. When called just after a split point the search
501 // is simpler because we have already probed the hash table, done a null move
502 // search, and searched the first move before splitting, we don't have to repeat
503 // all this work again. We also don't need to store anything to the hash table
504 // here: This is taken care of after we return from the split point.
506 template <NodeType NT>
507 Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth) {
509 const bool PvNode = (NT == PV || NT == Root || NT == SplitPointPV || NT == SplitPointRoot);
510 const bool SpNode = (NT == SplitPointPV || NT == SplitPointNonPV || NT == SplitPointRoot);
511 const bool RootNode = (NT == Root || NT == SplitPointRoot);
513 assert(alpha >= -VALUE_INFINITE && alpha < beta && beta <= VALUE_INFINITE);
514 assert((alpha == beta - 1) || PvNode);
515 assert(depth > DEPTH_ZERO);
517 Move movesSearched[64];
521 Move ttMove, move, excludedMove, bestMove, threatMove;
524 Value bestValue, value, oldAlpha, ttValue;
525 Value refinedValue, nullValue, futilityBase, futilityValue;
526 bool isPvMove, inCheck, singularExtensionNode, givesCheck;
527 bool captureOrPromotion, dangerous, doFullDepthSearch;
528 int moveCount = 0, playedMoveCount = 0;
529 Thread* thisThread = pos.this_thread();
530 SplitPoint* sp = NULL;
532 refinedValue = bestValue = value = -VALUE_INFINITE;
534 inCheck = pos.in_check();
535 ss->ply = (ss-1)->ply + 1;
537 // Used to send selDepth info to GUI
538 if (PvNode && thisThread->maxPly < ss->ply)
539 thisThread->maxPly = ss->ply;
541 // Step 1. Initialize node
545 ttMove = excludedMove = MOVE_NONE;
546 ttValue = VALUE_ZERO;
548 bestMove = sp->bestMove;
549 threatMove = sp->threatMove;
550 bestValue = sp->bestValue;
551 moveCount = sp->moveCount; // Lock must be held here
553 assert(bestValue > -VALUE_INFINITE && moveCount > 0);
555 goto split_point_start;
559 ss->currentMove = threatMove = (ss+1)->excludedMove = bestMove = MOVE_NONE;
560 (ss+1)->skipNullMove = false; (ss+1)->reduction = DEPTH_ZERO;
561 (ss+2)->killers[0] = (ss+2)->killers[1] = MOVE_NONE;
565 // Step 2. Check for aborted search and immediate draw
566 // Enforce node limit here. FIXME: This only works with 1 search thread.
567 if (Limits.nodes && pos.nodes_searched() >= Limits.nodes)
571 || pos.is_draw<false>()
572 || ss->ply > MAX_PLY) && !RootNode)
575 // Step 3. Mate distance pruning. Even if we mate at the next move our score
576 // would be at best mate_in(ss->ply+1), but if alpha is already bigger because
577 // a shorter mate was found upward in the tree then there is no need to search
578 // further, we will never beat current alpha. Same logic but with reversed signs
579 // applies also in the opposite condition of being mated instead of giving mate,
580 // in this case return a fail-high score.
583 alpha = std::max(mated_in(ss->ply), alpha);
584 beta = std::min(mate_in(ss->ply+1), beta);
589 // Step 4. Transposition table lookup
590 // We don't want the score of a partial search to overwrite a previous full search
591 // TT value, so we use a different position key in case of an excluded move.
592 excludedMove = ss->excludedMove;
593 posKey = excludedMove ? pos.exclusion_key() : pos.key();
594 tte = TT.probe(posKey);
595 ttMove = RootNode ? RootMoves[PVIdx].pv[0] : tte ? tte->move() : MOVE_NONE;
596 ttValue = tte ? value_from_tt(tte->value(), ss->ply) : VALUE_ZERO;
598 // At PV nodes we check for exact scores, while at non-PV nodes we check for
599 // a fail high/low. Biggest advantage at probing at PV nodes is to have a
600 // smooth experience in analysis mode. We don't probe at Root nodes otherwise
601 // we should also update RootMoveList to avoid bogus output.
602 if (!RootNode && tte && (PvNode ? tte->depth() >= depth && tte->type() == BOUND_EXACT
603 : can_return_tt(tte, depth, ttValue, beta)))
606 ss->currentMove = ttMove; // Can be MOVE_NONE
610 && !pos.is_capture_or_promotion(ttMove)
611 && ttMove != ss->killers[0])
613 ss->killers[1] = ss->killers[0];
614 ss->killers[0] = ttMove;
619 // Step 5. Evaluate the position statically and update parent's gain statistics
621 ss->eval = ss->evalMargin = VALUE_NONE;
624 assert(tte->static_value() != VALUE_NONE);
626 ss->eval = tte->static_value();
627 ss->evalMargin = tte->static_value_margin();
628 refinedValue = refine_eval(tte, ttValue, ss->eval);
632 refinedValue = ss->eval = evaluate(pos, ss->evalMargin);
633 TT.store(posKey, VALUE_NONE, BOUND_NONE, DEPTH_NONE, MOVE_NONE, ss->eval, ss->evalMargin);
636 // Update gain for the parent non-capture move given the static position
637 // evaluation before and after the move.
638 if ( (move = (ss-1)->currentMove) != MOVE_NULL
639 && (ss-1)->eval != VALUE_NONE
640 && ss->eval != VALUE_NONE
641 && !pos.captured_piece_type()
642 && type_of(move) == NORMAL)
644 Square to = to_sq(move);
645 H.update_gain(pos.piece_on(to), to, -(ss-1)->eval - ss->eval);
648 // Step 6. Razoring (is omitted in PV nodes)
650 && depth < RazorDepth
652 && refinedValue + razor_margin(depth) < beta
653 && ttMove == MOVE_NONE
654 && abs(beta) < VALUE_MATE_IN_MAX_PLY
655 && !pos.pawn_on_7th(pos.side_to_move()))
657 Value rbeta = beta - razor_margin(depth);
658 Value v = qsearch<NonPV>(pos, ss, rbeta-1, rbeta, DEPTH_ZERO);
660 // Logically we should return (v + razor_margin(depth)), but
661 // surprisingly this did slightly weaker in tests.
665 // Step 7. Static null move pruning (is omitted in PV nodes)
666 // We're betting that the opponent doesn't have a move that will reduce
667 // the score by more than futility_margin(depth) if we do a null move.
670 && depth < RazorDepth
672 && refinedValue - futility_margin(depth, 0) >= beta
673 && abs(beta) < VALUE_MATE_IN_MAX_PLY
674 && pos.non_pawn_material(pos.side_to_move()))
675 return refinedValue - futility_margin(depth, 0);
677 // Step 8. Null move search with verification search (is omitted in PV nodes)
682 && refinedValue >= beta
683 && abs(beta) < VALUE_MATE_IN_MAX_PLY
684 && pos.non_pawn_material(pos.side_to_move()))
686 ss->currentMove = MOVE_NULL;
688 // Null move dynamic reduction based on depth
689 Depth R = 3 * ONE_PLY + depth / 4;
691 // Null move dynamic reduction based on value
692 if (refinedValue - PawnValueMidgame > beta)
695 pos.do_null_move<true>(st);
696 (ss+1)->skipNullMove = true;
697 nullValue = depth-R < ONE_PLY ? -qsearch<NonPV>(pos, ss+1, -beta, -alpha, DEPTH_ZERO)
698 : - search<NonPV>(pos, ss+1, -beta, -alpha, depth-R);
699 (ss+1)->skipNullMove = false;
700 pos.do_null_move<false>(st);
702 if (nullValue >= beta)
704 // Do not return unproven mate scores
705 if (nullValue >= VALUE_MATE_IN_MAX_PLY)
708 if (depth < 6 * ONE_PLY)
711 // Do verification search at high depths
712 ss->skipNullMove = true;
713 Value v = search<NonPV>(pos, ss, alpha, beta, depth-R);
714 ss->skipNullMove = false;
721 // The null move failed low, which means that we may be faced with
722 // some kind of threat. If the previous move was reduced, check if
723 // the move that refuted the null move was somehow connected to the
724 // move which was reduced. If a connection is found, return a fail
725 // low score (which will cause the reduced move to fail high in the
726 // parent node, which will trigger a re-search with full depth).
727 threatMove = (ss+1)->currentMove;
729 if ( depth < ThreatDepth
731 && threatMove != MOVE_NONE
732 && connected_moves(pos, (ss-1)->currentMove, threatMove))
737 // Step 9. ProbCut (is omitted in PV nodes)
738 // If we have a very good capture (i.e. SEE > seeValues[captured_piece_type])
739 // and a reduced search returns a value much above beta, we can (almost) safely
740 // prune the previous move.
742 && depth >= RazorDepth + ONE_PLY
745 && excludedMove == MOVE_NONE
746 && abs(beta) < VALUE_MATE_IN_MAX_PLY)
748 Value rbeta = beta + 200;
749 Depth rdepth = depth - ONE_PLY - 3 * ONE_PLY;
751 assert(rdepth >= ONE_PLY);
752 assert((ss-1)->currentMove != MOVE_NONE);
753 assert((ss-1)->currentMove != MOVE_NULL);
755 MovePicker mp(pos, ttMove, H, pos.captured_piece_type());
758 while ((move = mp.next_move<false>()) != MOVE_NONE)
759 if (pos.pl_move_is_legal(move, ci.pinned))
761 ss->currentMove = move;
762 pos.do_move(move, st, ci, pos.move_gives_check(move, ci));
763 value = -search<NonPV>(pos, ss+1, -rbeta, -rbeta+1, rdepth);
770 // Step 10. Internal iterative deepening
771 if ( depth >= IIDDepth[PvNode]
772 && ttMove == MOVE_NONE
773 && (PvNode || (!inCheck && ss->eval + IIDMargin >= beta)))
775 Depth d = (PvNode ? depth - 2 * ONE_PLY : depth / 2);
777 ss->skipNullMove = true;
778 search<PvNode ? PV : NonPV>(pos, ss, alpha, beta, d);
779 ss->skipNullMove = false;
781 tte = TT.probe(posKey);
782 ttMove = tte ? tte->move() : MOVE_NONE;
785 split_point_start: // At split points actual search starts from here
787 MovePicker mp(pos, ttMove, depth, H, ss, PvNode ? -VALUE_INFINITE : beta);
789 futilityBase = ss->eval + ss->evalMargin;
790 singularExtensionNode = !RootNode
792 && depth >= SingularExtensionDepth[PvNode]
793 && ttMove != MOVE_NONE
794 && !excludedMove // Recursive singular search is not allowed
795 && (tte->type() & BOUND_LOWER)
796 && tte->depth() >= depth - 3 * ONE_PLY;
798 // Step 11. Loop through moves
799 // Loop through all pseudo-legal moves until no moves remain or a beta cutoff occurs
800 while ( bestValue < beta
801 && (move = mp.next_move<SpNode>()) != MOVE_NONE
802 && !thisThread->cutoff_occurred()
807 if (move == excludedMove)
810 // At root obey the "searchmoves" option and skip moves not listed in Root
811 // Move List, as a consequence any illegal move is also skipped. In MultiPV
812 // mode we also skip PV moves which have been already searched.
813 if (RootNode && !std::count(RootMoves.begin() + PVIdx, RootMoves.end(), move))
816 // At PV and SpNode nodes we want all moves to be legal since the beginning
817 if ((PvNode || SpNode) && !pos.pl_move_is_legal(move, ci.pinned))
822 moveCount = ++sp->moveCount;
823 lock_release(sp->lock);
830 Signals.firstRootMove = (moveCount == 1);
832 if (thisThread == Threads.main_thread() && SearchTime.elapsed() > 2000)
833 cout << "info depth " << depth / ONE_PLY
834 << " currmove " << move_to_uci(move, Chess960)
835 << " currmovenumber " << moveCount + PVIdx << endl;
838 isPvMove = (PvNode && moveCount <= 1);
839 captureOrPromotion = pos.is_capture_or_promotion(move);
840 givesCheck = pos.move_gives_check(move, ci);
841 dangerous = givesCheck || is_dangerous(pos, move, captureOrPromotion);
844 // Step 12. Extend checks and, in PV nodes, also dangerous moves
845 if (PvNode && dangerous)
848 else if (givesCheck && pos.see_sign(move) >= 0)
851 // Singular extension search. If all moves but one fail low on a search of
852 // (alpha-s, beta-s), and just one fails high on (alpha, beta), then that move
853 // is singular and should be extended. To verify this we do a reduced search
854 // on all the other moves but the ttMove, if result is lower than ttValue minus
855 // a margin then we extend ttMove.
856 if ( singularExtensionNode
859 && pos.pl_move_is_legal(move, ci.pinned)
860 && abs(ttValue) < VALUE_KNOWN_WIN)
862 Value rBeta = ttValue - int(depth);
863 ss->excludedMove = move;
864 ss->skipNullMove = true;
865 value = search<NonPV>(pos, ss, rBeta - 1, rBeta, depth / 2);
866 ss->skipNullMove = false;
867 ss->excludedMove = MOVE_NONE;
873 // Update current move (this must be done after singular extension search)
874 newDepth = depth - ONE_PLY + ext;
876 // Step 13. Futility pruning (is omitted in PV nodes)
878 && !captureOrPromotion
882 && (bestValue > VALUE_MATED_IN_MAX_PLY || bestValue == -VALUE_INFINITE))
884 // Move count based pruning
885 if ( moveCount >= futility_move_count(depth)
886 && (!threatMove || !connected_threat(pos, move, threatMove)))
894 // Value based pruning
895 // We illogically ignore reduction condition depth >= 3*ONE_PLY for predicted depth,
896 // but fixing this made program slightly weaker.
897 Depth predictedDepth = newDepth - reduction<PvNode>(depth, moveCount);
898 futilityValue = futilityBase + futility_margin(predictedDepth, moveCount)
899 + H.gain(pos.piece_moved(move), to_sq(move));
901 if (futilityValue < beta)
909 // Prune moves with negative SEE at low depths
910 if ( predictedDepth < 2 * ONE_PLY
911 && pos.see_sign(move) < 0)
920 // Check for legality only before to do the move
921 if (!pos.pl_move_is_legal(move, ci.pinned))
927 ss->currentMove = move;
928 if (!SpNode && !captureOrPromotion && playedMoveCount < 64)
929 movesSearched[playedMoveCount++] = move;
931 // Step 14. Make the move
932 pos.do_move(move, st, ci, givesCheck);
934 // Step 15. Reduced depth search (LMR). If the move fails high will be
935 // re-searched at full depth.
936 if ( depth > 3 * ONE_PLY
938 && !captureOrPromotion
940 && ss->killers[0] != move
941 && ss->killers[1] != move)
943 ss->reduction = reduction<PvNode>(depth, moveCount);
944 Depth d = std::max(newDepth - ss->reduction, ONE_PLY);
945 alpha = SpNode ? sp->alpha : alpha;
947 value = -search<NonPV>(pos, ss+1, -(alpha+1), -alpha, d);
949 doFullDepthSearch = (value > alpha && ss->reduction != DEPTH_ZERO);
950 ss->reduction = DEPTH_ZERO;
953 doFullDepthSearch = !isPvMove;
955 // Step 16. Full depth search, when LMR is skipped or fails high
956 if (doFullDepthSearch)
958 alpha = SpNode ? sp->alpha : alpha;
959 value = newDepth < ONE_PLY ? -qsearch<NonPV>(pos, ss+1, -(alpha+1), -alpha, DEPTH_ZERO)
960 : - search<NonPV>(pos, ss+1, -(alpha+1), -alpha, newDepth);
963 // Only for PV nodes do a full PV search on the first move or after a fail
964 // high, in the latter case search only if value < beta, otherwise let the
965 // parent node to fail low with value <= alpha and to try another move.
966 if (PvNode && (isPvMove || (value > alpha && (RootNode || value < beta))))
967 value = newDepth < ONE_PLY ? -qsearch<PV>(pos, ss+1, -beta, -alpha, DEPTH_ZERO)
968 : - search<PV>(pos, ss+1, -beta, -alpha, newDepth);
970 // Step 17. Undo move
973 assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
975 // Step 18. Check for new best move
979 bestValue = sp->bestValue;
983 // Finished searching the move. If Signals.stop is true, the search
984 // was aborted because the user interrupted the search or because we
985 // ran out of time. In this case, the return value of the search cannot
986 // be trusted, and we don't update the best move and/or PV.
987 if (RootNode && !Signals.stop)
989 RootMove& rm = *std::find(RootMoves.begin(), RootMoves.end(), move);
991 // PV move or new best move ?
992 if (isPvMove || value > alpha)
995 rm.extract_pv_from_tt(pos);
997 // We record how often the best move has been changed in each
998 // iteration. This information is used for time management: When
999 // the best move changes frequently, we allocate some more time.
1000 if (!isPvMove && MultiPV == 1)
1004 // All other moves but the PV are set to the lowest value, this
1005 // is not a problem when sorting becuase sort is stable and move
1006 // position in the list is preserved, just the PV is pushed up.
1007 rm.score = -VALUE_INFINITE;
1011 if (value > bestValue)
1018 && value < beta) // We want always alpha < beta
1021 if (SpNode && !thisThread->cutoff_occurred())
1023 sp->bestValue = value;
1024 sp->bestMove = move;
1032 // Step 19. Check for split
1034 && depth >= Threads.min_split_depth()
1036 && Threads.available_slave_exists(thisThread)
1038 && !thisThread->cutoff_occurred())
1039 bestValue = Threads.split<FakeSplit>(pos, ss, alpha, beta, bestValue, &bestMove,
1040 depth, threatMove, moveCount, &mp, NT);
1043 // Step 20. Check for mate and stalemate
1044 // All legal moves have been searched and if there are no legal moves, it
1045 // must be mate or stalemate. Note that we can have a false positive in
1046 // case of Signals.stop or thread.cutoff_occurred() are set, but this is
1047 // harmless because return value is discarded anyhow in the parent nodes.
1048 // If we are in a singular extension search then return a fail low score.
1050 return excludedMove ? oldAlpha : inCheck ? mated_in(ss->ply) : VALUE_DRAW;
1052 // If we have pruned all the moves without searching return a fail-low score
1053 if (bestValue == -VALUE_INFINITE)
1055 assert(!playedMoveCount);
1057 bestValue = oldAlpha;
1060 // Step 21. Update tables
1061 // Update transposition table entry, killers and history
1062 if (!SpNode && !Signals.stop && !thisThread->cutoff_occurred())
1064 move = bestValue <= oldAlpha ? MOVE_NONE : bestMove;
1065 bt = bestValue <= oldAlpha ? BOUND_UPPER
1066 : bestValue >= beta ? BOUND_LOWER : BOUND_EXACT;
1068 TT.store(posKey, value_to_tt(bestValue, ss->ply), bt, depth, move, ss->eval, ss->evalMargin);
1070 // Update killers and history for non capture cut-off moves
1071 if ( bestValue >= beta
1072 && !pos.is_capture_or_promotion(move)
1075 if (move != ss->killers[0])
1077 ss->killers[1] = ss->killers[0];
1078 ss->killers[0] = move;
1081 // Increase history value of the cut-off move
1082 Value bonus = Value(int(depth) * int(depth));
1083 H.add(pos.piece_moved(move), to_sq(move), bonus);
1085 // Decrease history of all the other played non-capture moves
1086 for (int i = 0; i < playedMoveCount - 1; i++)
1088 Move m = movesSearched[i];
1089 H.add(pos.piece_moved(m), to_sq(m), -bonus);
1094 assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
1100 // qsearch() is the quiescence search function, which is called by the main
1101 // search function when the remaining depth is zero (or, to be more precise,
1102 // less than ONE_PLY).
1104 template <NodeType NT>
1105 Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth) {
1107 const bool PvNode = (NT == PV);
1109 assert(NT == PV || NT == NonPV);
1110 assert(alpha >= -VALUE_INFINITE && alpha < beta && beta <= VALUE_INFINITE);
1111 assert((alpha == beta - 1) || PvNode);
1112 assert(depth <= DEPTH_ZERO);
1115 Move ttMove, move, bestMove;
1116 Value ttValue, bestValue, value, evalMargin, futilityValue, futilityBase;
1117 bool inCheck, enoughMaterial, givesCheck, evasionPrunable;
1121 Value oldAlpha = alpha;
1123 ss->currentMove = bestMove = MOVE_NONE;
1124 ss->ply = (ss-1)->ply + 1;
1126 // Check for an instant draw or maximum ply reached
1127 if (pos.is_draw<true>() || ss->ply > MAX_PLY)
1130 // Decide whether or not to include checks, this fixes also the type of
1131 // TT entry depth that we are going to use. Note that in qsearch we use
1132 // only two types of depth in TT: DEPTH_QS_CHECKS or DEPTH_QS_NO_CHECKS.
1133 inCheck = pos.in_check();
1134 ttDepth = (inCheck || depth >= DEPTH_QS_CHECKS ? DEPTH_QS_CHECKS : DEPTH_QS_NO_CHECKS);
1136 // Transposition table lookup. At PV nodes, we don't use the TT for
1137 // pruning, but only for move ordering.
1138 tte = TT.probe(pos.key());
1139 ttMove = (tte ? tte->move() : MOVE_NONE);
1140 ttValue = tte ? value_from_tt(tte->value(),ss->ply) : VALUE_ZERO;
1142 if (!PvNode && tte && can_return_tt(tte, ttDepth, ttValue, beta))
1144 ss->currentMove = ttMove; // Can be MOVE_NONE
1148 // Evaluate the position statically
1151 bestValue = futilityBase = -VALUE_INFINITE;
1152 ss->eval = evalMargin = VALUE_NONE;
1153 enoughMaterial = false;
1159 assert(tte->static_value() != VALUE_NONE);
1161 evalMargin = tte->static_value_margin();
1162 ss->eval = bestValue = tte->static_value();
1165 ss->eval = bestValue = evaluate(pos, evalMargin);
1167 // Stand pat. Return immediately if static value is at least beta
1168 if (bestValue >= beta)
1171 TT.store(pos.key(), value_to_tt(bestValue, ss->ply), BOUND_LOWER, DEPTH_NONE, MOVE_NONE, ss->eval, evalMargin);
1176 if (PvNode && bestValue > alpha)
1179 futilityBase = ss->eval + evalMargin + FutilityMarginQS;
1180 enoughMaterial = pos.non_pawn_material(pos.side_to_move()) > RookValueMidgame;
1183 // Initialize a MovePicker object for the current position, and prepare
1184 // to search the moves. Because the depth is <= 0 here, only captures,
1185 // queen promotions and checks (only if depth >= DEPTH_QS_CHECKS) will
1187 MovePicker mp(pos, ttMove, depth, H, to_sq((ss-1)->currentMove));
1190 // Loop through the moves until no moves remain or a beta cutoff occurs
1191 while ( bestValue < beta
1192 && (move = mp.next_move<false>()) != MOVE_NONE)
1194 assert(is_ok(move));
1196 givesCheck = pos.move_gives_check(move, ci);
1204 && type_of(move) != PROMOTION
1205 && !pos.is_passed_pawn_push(move))
1207 futilityValue = futilityBase
1208 + PieceValueEndgame[pos.piece_on(to_sq(move))]
1209 + (type_of(move) == ENPASSANT ? PawnValueEndgame : VALUE_ZERO);
1211 if (futilityValue < beta)
1213 if (futilityValue > bestValue)
1214 bestValue = futilityValue;
1219 // Prune moves with negative or equal SEE
1220 if ( futilityBase < beta
1221 && depth < DEPTH_ZERO
1222 && pos.see(move) <= 0)
1226 // Detect non-capture evasions that are candidate to be pruned
1227 evasionPrunable = !PvNode
1229 && bestValue > VALUE_MATED_IN_MAX_PLY
1230 && !pos.is_capture(move)
1231 && !pos.can_castle(pos.side_to_move());
1233 // Don't search moves with negative SEE values
1235 && (!inCheck || evasionPrunable)
1237 && type_of(move) != PROMOTION
1238 && pos.see_sign(move) < 0)
1241 // Don't search useless checks
1246 && !pos.is_capture_or_promotion(move)
1247 && ss->eval + PawnValueMidgame / 4 < beta
1248 && !check_is_dangerous(pos, move, futilityBase, beta))
1251 // Check for legality only before to do the move
1252 if (!pos.pl_move_is_legal(move, ci.pinned))
1255 ss->currentMove = move;
1257 // Make and search the move
1258 pos.do_move(move, st, ci, givesCheck);
1259 value = -qsearch<NT>(pos, ss+1, -beta, -alpha, depth-ONE_PLY);
1260 pos.undo_move(move);
1262 assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
1265 if (value > bestValue)
1272 && value < beta) // We want always alpha < beta
1277 // All legal moves have been searched. A special case: If we're in check
1278 // and no legal moves were found, it is checkmate.
1279 if (inCheck && bestValue == -VALUE_INFINITE)
1280 return mated_in(ss->ply); // Plies to mate from the root
1282 // Update transposition table
1283 move = bestValue <= oldAlpha ? MOVE_NONE : bestMove;
1284 bt = bestValue <= oldAlpha ? BOUND_UPPER
1285 : bestValue >= beta ? BOUND_LOWER : BOUND_EXACT;
1287 TT.store(pos.key(), value_to_tt(bestValue, ss->ply), bt, ttDepth, move, ss->eval, evalMargin);
1289 assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
1295 // check_is_dangerous() tests if a checking move can be pruned in qsearch().
1296 // bestValue is updated only when returning false because in that case move
1299 bool check_is_dangerous(Position &pos, Move move, Value futilityBase, Value beta)
1301 Bitboard b, occ, oldAtt, newAtt, kingAtt;
1302 Square from, to, ksq;
1306 from = from_sq(move);
1308 them = ~pos.side_to_move();
1309 ksq = pos.king_square(them);
1310 kingAtt = pos.attacks_from<KING>(ksq);
1311 pc = pos.piece_moved(move);
1313 occ = pos.pieces() ^ from ^ ksq;
1314 oldAtt = pos.attacks_from(pc, from, occ);
1315 newAtt = pos.attacks_from(pc, to, occ);
1317 // Rule 1. Checks which give opponent's king at most one escape square are dangerous
1318 b = kingAtt & ~pos.pieces(them) & ~newAtt & ~(1ULL << to);
1320 if (!more_than_one(b))
1323 // Rule 2. Queen contact check is very dangerous
1324 if (type_of(pc) == QUEEN && (kingAtt & to))
1327 // Rule 3. Creating new double threats with checks
1328 b = pos.pieces(them) & newAtt & ~oldAtt & ~(1ULL << ksq);
1331 // Note that here we generate illegal "double move"!
1332 if (futilityBase + PieceValueEndgame[pos.piece_on(pop_lsb(&b))] >= beta)
1340 // connected_moves() tests whether two moves are 'connected' in the sense
1341 // that the first move somehow made the second move possible (for instance
1342 // if the moving piece is the same in both moves). The first move is assumed
1343 // to be the move that was made to reach the current position, while the
1344 // second move is assumed to be a move from the current position.
1346 bool connected_moves(const Position& pos, Move m1, Move m2) {
1348 Square f1, t1, f2, t2;
1355 // Case 1: The moving piece is the same in both moves
1361 // Case 2: The destination square for m2 was vacated by m1
1367 // Case 3: Moving through the vacated square
1368 p2 = pos.piece_on(f2);
1369 if (piece_is_slider(p2) && (between_bb(f2, t2) & f1))
1372 // Case 4: The destination square for m2 is defended by the moving piece in m1
1373 p1 = pos.piece_on(t1);
1374 if (pos.attacks_from(p1, t1) & t2)
1377 // Case 5: Discovered check, checking piece is the piece moved in m1
1378 ksq = pos.king_square(pos.side_to_move());
1379 if ( piece_is_slider(p1)
1380 && (between_bb(t1, ksq) & f2)
1381 && (pos.attacks_from(p1, t1, pos.pieces() ^ f2) & ksq))
1388 // value_to_tt() adjusts a mate score from "plies to mate from the root" to
1389 // "plies to mate from the current position". Non-mate scores are unchanged.
1390 // The function is called before storing a value to the transposition table.
1392 Value value_to_tt(Value v, int ply) {
1394 if (v >= VALUE_MATE_IN_MAX_PLY)
1397 if (v <= VALUE_MATED_IN_MAX_PLY)
1404 // value_from_tt() is the inverse of value_to_tt(): It adjusts a mate score
1405 // from the transposition table (where refers to the plies to mate/be mated
1406 // from current position) to "plies to mate/be mated from the root".
1408 Value value_from_tt(Value v, int ply) {
1410 if (v >= VALUE_MATE_IN_MAX_PLY)
1413 if (v <= VALUE_MATED_IN_MAX_PLY)
1420 // connected_threat() tests whether it is safe to forward prune a move or if
1421 // is somehow connected to the threat move returned by null search.
1423 bool connected_threat(const Position& pos, Move m, Move threat) {
1426 assert(is_ok(threat));
1427 assert(!pos.is_capture_or_promotion(m));
1428 assert(!pos.is_passed_pawn_push(m));
1430 Square mfrom, mto, tfrom, tto;
1434 tfrom = from_sq(threat);
1435 tto = to_sq(threat);
1437 // Case 1: Don't prune moves which move the threatened piece
1441 // Case 2: If the threatened piece has value less than or equal to the
1442 // value of the threatening piece, don't prune moves which defend it.
1443 if ( pos.is_capture(threat)
1444 && ( PieceValueMidgame[pos.piece_on(tfrom)] >= PieceValueMidgame[pos.piece_on(tto)]
1445 || type_of(pos.piece_on(tfrom)) == KING)
1446 && pos.move_attacks_square(m, tto))
1449 // Case 3: If the moving piece in the threatened move is a slider, don't
1450 // prune safe moves which block its ray.
1451 if ( piece_is_slider(pos.piece_on(tfrom))
1452 && (between_bb(tfrom, tto) & mto)
1453 && pos.see_sign(m) >= 0)
1460 // can_return_tt() returns true if a transposition table score can be used to
1461 // cut-off at a given point in search.
1463 bool can_return_tt(const TTEntry* tte, Depth depth, Value v, Value beta) {
1465 return ( tte->depth() >= depth
1466 || v >= std::max(VALUE_MATE_IN_MAX_PLY, beta)
1467 || v < std::min(VALUE_MATED_IN_MAX_PLY, beta))
1469 && ( ((tte->type() & BOUND_LOWER) && v >= beta)
1470 || ((tte->type() & BOUND_UPPER) && v < beta));
1474 // refine_eval() returns the transposition table score if possible, otherwise
1475 // falls back on static position evaluation.
1477 Value refine_eval(const TTEntry* tte, Value v, Value defaultEval) {
1481 if ( ((tte->type() & BOUND_LOWER) && v >= defaultEval)
1482 || ((tte->type() & BOUND_UPPER) && v < defaultEval))
1489 // When playing with strength handicap choose best move among the MultiPV set
1490 // using a statistical rule dependent on SkillLevel. Idea by Heinz van Saanen.
1492 Move do_skill_level() {
1494 assert(MultiPV > 1);
1498 // PRNG sequence should be not deterministic
1499 for (int i = Time::current_time().msec() % 50; i > 0; i--)
1500 rk.rand<unsigned>();
1502 // RootMoves are already sorted by score in descending order
1503 size_t size = std::min(MultiPV, RootMoves.size());
1504 int variance = std::min(RootMoves[0].score - RootMoves[size - 1].score, PawnValueMidgame);
1505 int weakness = 120 - 2 * SkillLevel;
1506 int max_s = -VALUE_INFINITE;
1507 Move best = MOVE_NONE;
1509 // Choose best move. For each move score we add two terms both dependent on
1510 // weakness, one deterministic and bigger for weaker moves, and one random,
1511 // then we choose the move with the resulting highest score.
1512 for (size_t i = 0; i < size; i++)
1514 int s = RootMoves[i].score;
1516 // Don't allow crazy blunders even at very low skills
1517 if (i > 0 && RootMoves[i-1].score > s + EasyMoveMargin)
1520 // This is our magic formula
1521 s += ( weakness * int(RootMoves[0].score - s)
1522 + variance * (rk.rand<unsigned>() % weakness)) / 128;
1527 best = RootMoves[i].pv[0];
1534 // uci_pv() formats PV information according to UCI protocol. UCI requires
1535 // to send all the PV lines also if are still to be searched and so refer to
1536 // the previous search score.
1538 string uci_pv(const Position& pos, int depth, Value alpha, Value beta) {
1540 std::stringstream s;
1541 int t = SearchTime.elapsed();
1544 for (int i = 0; i < Threads.size(); i++)
1545 if (Threads[i].maxPly > selDepth)
1546 selDepth = Threads[i].maxPly;
1548 for (size_t i = 0; i < std::min(UCIMultiPV, RootMoves.size()); i++)
1550 bool updated = (i <= PVIdx);
1552 if (depth == 1 && !updated)
1555 int d = (updated ? depth : depth - 1);
1556 Value v = (updated ? RootMoves[i].score : RootMoves[i].prevScore);
1558 if (s.rdbuf()->in_avail())
1561 s << "info depth " << d
1562 << " seldepth " << selDepth
1563 << " score " << (i == PVIdx ? score_to_uci(v, alpha, beta) : score_to_uci(v))
1564 << " nodes " << pos.nodes_searched()
1565 << " nps " << (t > 0 ? pos.nodes_searched() * 1000 / t : 0)
1567 << " multipv " << i + 1
1570 for (size_t j = 0; RootMoves[i].pv[j] != MOVE_NONE; j++)
1571 s << " " << move_to_uci(RootMoves[i].pv[j], Chess960);
1580 /// RootMove::extract_pv_from_tt() builds a PV by adding moves from the TT table.
1581 /// We consider also failing high nodes and not only BOUND_EXACT nodes so to
1582 /// allow to always have a ponder move even when we fail high at root, and a
1583 /// long PV to print that is important for position analysis.
1585 void RootMove::extract_pv_from_tt(Position& pos) {
1587 StateInfo state[MAX_PLY_PLUS_2], *st = state;
1592 assert(m != MOVE_NONE && pos.is_pseudo_legal(m));
1596 pos.do_move(m, *st++);
1598 while ( (tte = TT.probe(pos.key())) != NULL
1599 && (m = tte->move()) != MOVE_NONE // Local copy, TT entry could change
1600 && pos.is_pseudo_legal(m)
1601 && pos.pl_move_is_legal(m, pos.pinned_pieces())
1603 && (!pos.is_draw<false>() || ply < 2))
1606 pos.do_move(m, *st++);
1609 pv.push_back(MOVE_NONE);
1611 do pos.undo_move(pv[--ply]); while (ply);
1615 /// RootMove::insert_pv_in_tt() is called at the end of a search iteration, and
1616 /// inserts the PV back into the TT. This makes sure the old PV moves are searched
1617 /// first, even if the old TT entries have been overwritten.
1619 void RootMove::insert_pv_in_tt(Position& pos) {
1621 StateInfo state[MAX_PLY_PLUS_2], *st = state;
1624 Value v, m = VALUE_NONE;
1627 assert(pv[ply] != MOVE_NONE && pos.is_pseudo_legal(pv[ply]));
1633 // Don't overwrite existing correct entries
1634 if (!tte || tte->move() != pv[ply])
1636 v = (pos.in_check() ? VALUE_NONE : evaluate(pos, m));
1637 TT.store(k, VALUE_NONE, BOUND_NONE, DEPTH_NONE, pv[ply], v, m);
1639 pos.do_move(pv[ply], *st++);
1641 } while (pv[++ply] != MOVE_NONE);
1643 do pos.undo_move(pv[--ply]); while (ply);
1647 /// Thread::idle_loop() is where the thread is parked when it has no work to do.
1648 /// The parameter 'master_sp', if non-NULL, is a pointer to an active SplitPoint
1649 /// object for which the thread is the master.
1651 void Thread::idle_loop(SplitPoint* sp_master) {
1653 // If this thread is the master of a split point and all slaves have
1654 // finished their work at this split point, return from the idle loop.
1655 while (!sp_master || sp_master->slavesMask)
1657 // If we are not searching, wait for a condition to be signaled
1658 // instead of wasting CPU time polling for work.
1661 || (!is_searching && Threads.use_sleeping_threads()))
1669 // Grab the lock to avoid races with Thread::wake_up()
1670 lock_grab(sleepLock);
1672 // If we are master and all slaves have finished don't go to sleep
1673 if (sp_master && !sp_master->slavesMask)
1675 lock_release(sleepLock);
1679 // Do sleep after retesting sleep conditions under lock protection, in
1680 // particular we need to avoid a deadlock in case a master thread has,
1681 // in the meanwhile, allocated us and sent the wake_up() call before we
1682 // had the chance to grab the lock.
1683 if (do_sleep || !is_searching)
1684 cond_wait(sleepCond, sleepLock);
1686 lock_release(sleepLock);
1689 // If this thread has been assigned work, launch a search
1692 assert(!do_sleep && !do_exit);
1694 lock_grab(Threads.splitLock);
1696 assert(is_searching);
1697 SplitPoint* sp = curSplitPoint;
1699 lock_release(Threads.splitLock);
1701 Stack ss[MAX_PLY_PLUS_2];
1702 Position pos(*sp->pos, this);
1704 memcpy(ss, sp->ss - 1, 4 * sizeof(Stack));
1707 lock_grab(sp->lock);
1709 if (sp->nodeType == Root)
1710 search<SplitPointRoot>(pos, ss+1, sp->alpha, sp->beta, sp->depth);
1711 else if (sp->nodeType == PV)
1712 search<SplitPointPV>(pos, ss+1, sp->alpha, sp->beta, sp->depth);
1713 else if (sp->nodeType == NonPV)
1714 search<SplitPointNonPV>(pos, ss+1, sp->alpha, sp->beta, sp->depth);
1718 assert(is_searching);
1720 is_searching = false;
1721 sp->slavesMask &= ~(1ULL << idx);
1722 sp->nodes += pos.nodes_searched();
1724 // Wake up master thread so to allow it to return from the idle loop in
1725 // case we are the last slave of the split point.
1726 if ( Threads.use_sleeping_threads()
1727 && this != sp->master
1728 && !sp->master->is_searching)
1729 sp->master->wake_up();
1731 // After releasing the lock we cannot access anymore any SplitPoint
1732 // related data in a safe way becuase it could have been released under
1733 // our feet by the sp master. Also accessing other Thread objects is
1734 // unsafe because if we are exiting there is a chance are already freed.
1735 lock_release(sp->lock);
1741 /// check_time() is called by the timer thread when the timer triggers. It is
1742 /// used to print debug info and, more important, to detect when we are out of
1743 /// available time and so stop the search.
1747 static Time lastInfoTime = Time::current_time();
1749 if (lastInfoTime.elapsed() >= 1000)
1751 lastInfoTime.restart();
1758 int e = SearchTime.elapsed();
1759 bool stillAtFirstMove = Signals.firstRootMove
1760 && !Signals.failedLowAtRoot
1761 && e > TimeMgr.available_time();
1763 bool noMoreTime = e > TimeMgr.maximum_time() - 2 * TimerResolution
1764 || stillAtFirstMove;
1766 if ( (Limits.use_time_management() && noMoreTime)
1767 || (Limits.movetime && e >= Limits.movetime))
1768 Signals.stop = true;