2 Stockfish, a UCI chess playing engine derived from Glaurung 2.1
3 Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
4 Copyright (C) 2008-2014 Marco Costalba, Joona Kiiski, Tord Romstad
6 Stockfish is free software: you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation, either version 3 of the License, or
9 (at your option) any later version.
11 Stockfish is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>.
39 volatile SignalsType Signals;
41 std::vector<RootMove> RootMoves;
43 Time::point SearchTime;
44 StateStackPtr SetupStates;
49 using namespace Search;
53 // Different node types, used as template parameter
54 enum NodeType { Root, PV, NonPV };
56 // Dynamic razoring margin based on depth
57 inline Value razor_margin(Depth d) { return Value(512 + 32 * d); }
59 // Futility lookup tables (initialized at startup) and their access functions
60 int FutilityMoveCounts[2][32]; // [improving][depth]
62 inline Value futility_margin(Depth d) {
63 return Value(200 * d);
66 // Reduction lookup tables (initialized at startup) and their access function
67 int8_t Reductions[2][2][64][64]; // [pv][improving][depth][moveNumber]
69 template <bool PvNode> inline Depth reduction(bool i, Depth d, int mn) {
70 return (Depth) Reductions[PvNode][i][std::min(int(d), 63)][std::min(mn, 63)];
75 double BestMoveChanges;
76 Value DrawValue[COLOR_NB];
79 MovesStats Countermoves, Followupmoves;
81 template <NodeType NT, bool SpNode>
82 Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth, bool cutNode);
84 template <NodeType NT, bool InCheck>
85 Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth);
87 void id_loop(Position& pos);
88 Value value_to_tt(Value v, int ply);
89 Value value_from_tt(Value v, int ply);
90 void update_stats(const Position& pos, Stack* ss, Move move, Depth depth, Move* quiets, int quietsCnt);
91 string uci_pv(const Position& pos, int depth, Value alpha, Value beta);
94 Skill(int l, size_t rootSize) : level(l),
95 candidates(l < 20 ? std::min(4, (int)rootSize) : 0),
98 if (candidates) // Swap best PV line with the sub-optimal one
99 std::swap(RootMoves[0], *std::find(RootMoves.begin(),
100 RootMoves.end(), best ? best : pick_move()));
103 size_t candidates_size() const { return candidates; }
104 bool time_to_pick(int depth) const { return depth == 1 + level; }
115 /// Search::init() is called during startup to initialize various lookup tables
117 void Search::init() {
119 int d; // depth (ONE_PLY == 2)
120 int hd; // half depth (ONE_PLY == 1)
123 // Init reductions array
124 for (hd = 1; hd < 64; ++hd) for (mc = 1; mc < 64; ++mc)
126 double pvRed = 0.00 + log(double(hd)) * log(double(mc)) / 3.00;
127 double nonPVRed = 0.33 + log(double(hd)) * log(double(mc)) / 2.25;
129 Reductions[1][1][hd][mc] = int8_t( pvRed >= 1.0 ? pvRed + 0.5: 0);
130 Reductions[0][1][hd][mc] = int8_t(nonPVRed >= 1.0 ? nonPVRed + 0.5: 0);
132 Reductions[1][0][hd][mc] = Reductions[1][1][hd][mc];
133 Reductions[0][0][hd][mc] = Reductions[0][1][hd][mc];
135 if (Reductions[0][0][hd][mc] >= 2)
136 Reductions[0][0][hd][mc] += 1;
139 // Init futility move count array
140 for (d = 0; d < 32; ++d)
142 FutilityMoveCounts[0][d] = int(2.4 + 0.773 * pow(d + 0.00, 1.8));
143 FutilityMoveCounts[1][d] = int(2.9 + 1.045 * pow(d + 0.49, 1.8));
148 /// Search::perft() is our utility to verify move generation. All the leaf nodes
149 /// up to the given depth are generated and counted and the sum returned.
151 uint64_t Search::perft(Position& pos, Depth depth) {
154 uint64_t cnt, nodes = 0;
156 const bool leaf = (depth == 2 * ONE_PLY);
158 for (MoveList<LEGAL> it(pos); *it; ++it)
160 if (Root && depth <= ONE_PLY)
164 pos.do_move(*it, st, ci, pos.gives_check(*it, ci));
165 cnt = leaf ? MoveList<LEGAL>(pos).size() : perft<false>(pos, depth - ONE_PLY);
170 sync_cout << UCI::move_to_uci(*it, pos.is_chess960()) << ": " << cnt << sync_endl;
175 template uint64_t Search::perft<true>(Position& pos, Depth depth);
178 /// Search::think() is the external interface to Stockfish's search, and is
179 /// called by the main thread when the program receives the UCI 'go' command. It
180 /// searches from RootPos and at the end prints the "bestmove" to output.
182 void Search::think() {
184 TimeMgr.init(Limits, RootPos.game_ply(), RootPos.side_to_move());
186 int cf = Options["Contempt"] * PawnValueEg / 100; // From centipawns
187 DrawValue[ RootPos.side_to_move()] = VALUE_DRAW - Value(cf);
188 DrawValue[~RootPos.side_to_move()] = VALUE_DRAW + Value(cf);
190 if (RootMoves.empty())
192 RootMoves.push_back(MOVE_NONE);
193 sync_cout << "info depth 0 score "
194 << UCI::score_to_uci(RootPos.checkers() ? -VALUE_MATE : VALUE_DRAW)
200 // Reset the threads, still sleeping: will wake up at split time
201 for (size_t i = 0; i < Threads.size(); ++i)
202 Threads[i]->maxPly = 0;
204 Threads.timer->run = true;
205 Threads.timer->notify_one(); // Wake up the recurring timer
207 id_loop(RootPos); // Let's start searching !
209 Threads.timer->run = false; // Stop the timer
213 // When search is stopped this info is not printed
214 sync_cout << "info nodes " << RootPos.nodes_searched()
215 << " time " << Time::now() - SearchTime + 1 << sync_endl;
217 // When we reach the maximum depth, we can arrive here without a raise of
218 // Signals.stop. However, if we are pondering or in an infinite search,
219 // the UCI protocol states that we shouldn't print the best move before the
220 // GUI sends a "stop" or "ponderhit" command. We therefore simply wait here
221 // until the GUI sends one of those commands (which also raises Signals.stop).
222 if (!Signals.stop && (Limits.ponder || Limits.infinite))
224 Signals.stopOnPonderhit = true;
225 RootPos.this_thread()->wait_for(Signals.stop);
228 // Best move could be MOVE_NONE when searching on a stalemate position
229 sync_cout << "bestmove " << UCI::move_to_uci(RootMoves[0].pv[0], RootPos.is_chess960())
230 << " ponder " << UCI::move_to_uci(RootMoves[0].pv[1], RootPos.is_chess960())
237 // id_loop() is the main iterative deepening loop. It calls search() repeatedly
238 // with increasing depth until the allocated thinking time has been consumed,
239 // user stops the search, or the maximum search depth is reached.
241 void id_loop(Position& pos) {
243 Stack stack[MAX_PLY_PLUS_6], *ss = stack+2; // To allow referencing (ss-2)
245 Value bestValue, alpha, beta, delta;
247 std::memset(ss-2, 0, 5 * sizeof(Stack));
251 bestValue = delta = alpha = -VALUE_INFINITE;
252 beta = VALUE_INFINITE;
257 Countermoves.clear();
258 Followupmoves.clear();
260 size_t multiPV = Options["MultiPV"];
261 Skill skill(Options["Skill Level"], RootMoves.size());
263 // Do we have to play with skill handicap? In this case enable MultiPV search
264 // that we will use behind the scenes to retrieve a set of possible moves.
265 multiPV = std::max(multiPV, skill.candidates_size());
267 // Iterative deepening loop until requested to stop or target depth reached
268 while (++depth <= MAX_PLY && !Signals.stop && (!Limits.depth || depth <= Limits.depth))
270 // Age out PV variability metric
271 BestMoveChanges *= 0.5;
273 // Save the last iteration's scores before first PV line is searched and
274 // all the move scores except the (new) PV are set to -VALUE_INFINITE.
275 for (size_t i = 0; i < RootMoves.size(); ++i)
276 RootMoves[i].prevScore = RootMoves[i].score;
278 // MultiPV loop. We perform a full root search for each PV line
279 for (PVIdx = 0; PVIdx < std::min(multiPV, RootMoves.size()) && !Signals.stop; ++PVIdx)
281 // Reset aspiration window starting size
285 alpha = std::max(RootMoves[PVIdx].prevScore - delta,-VALUE_INFINITE);
286 beta = std::min(RootMoves[PVIdx].prevScore + delta, VALUE_INFINITE);
289 // Start with a small aspiration window and, in the case of a fail
290 // high/low, re-search with a bigger window until we're not failing
294 bestValue = search<Root, false>(pos, ss, alpha, beta, depth * ONE_PLY, false);
296 // Bring the best move to the front. It is critical that sorting
297 // is done with a stable algorithm because all the values but the
298 // first and eventually the new best one are set to -VALUE_INFINITE
299 // and we want to keep the same order for all the moves except the
300 // new PV that goes to the front. Note that in case of MultiPV
301 // search the already searched PV lines are preserved.
302 std::stable_sort(RootMoves.begin() + PVIdx, RootMoves.end());
304 // Write PV back to transposition table in case the relevant
305 // entries have been overwritten during the search.
306 for (size_t i = 0; i <= PVIdx; ++i)
307 RootMoves[i].insert_pv_in_tt(pos);
309 // If search has been stopped break immediately. Sorting and
310 // writing PV back to TT is safe because RootMoves is still
311 // valid, although it refers to previous iteration.
315 // When failing high/low give some update (without cluttering
316 // the UI) before a re-search.
317 if ( (bestValue <= alpha || bestValue >= beta)
318 && Time::now() - SearchTime > 3000)
319 sync_cout << uci_pv(pos, depth, alpha, beta) << sync_endl;
321 // In case of failing low/high increase aspiration window and
322 // re-search, otherwise exit the loop.
323 if (bestValue <= alpha)
325 alpha = std::max(bestValue - delta, -VALUE_INFINITE);
327 Signals.failedLowAtRoot = true;
328 Signals.stopOnPonderhit = false;
330 else if (bestValue >= beta)
331 beta = std::min(bestValue + delta, VALUE_INFINITE);
336 delta += 3 * delta / 8;
338 assert(alpha >= -VALUE_INFINITE && beta <= VALUE_INFINITE);
341 // Sort the PV lines searched so far and update the GUI
342 std::stable_sort(RootMoves.begin(), RootMoves.begin() + PVIdx + 1);
344 if (PVIdx + 1 == std::min(multiPV, RootMoves.size()) || Time::now() - SearchTime > 3000)
345 sync_cout << uci_pv(pos, depth, alpha, beta) << sync_endl;
348 // If skill levels are enabled and time is up, pick a sub-optimal best move
349 if (skill.candidates_size() && skill.time_to_pick(depth))
352 // Have we found a "mate in x"?
354 && bestValue >= VALUE_MATE_IN_MAX_PLY
355 && VALUE_MATE - bestValue <= 2 * Limits.mate)
358 // Do we have time for the next iteration? Can we stop searching now?
359 if (Limits.use_time_management() && !Signals.stop && !Signals.stopOnPonderhit)
361 // Take some extra time if the best move has changed
362 if (depth > 4 && multiPV == 1)
363 TimeMgr.pv_instability(BestMoveChanges);
365 // Stop the search if only one legal move is available or all
366 // of the available time has been used.
367 if ( RootMoves.size() == 1
368 || Time::now() - SearchTime > TimeMgr.available_time())
370 // If we are allowed to ponder do not stop the search now but
371 // keep pondering until the GUI sends "ponderhit" or "stop".
373 Signals.stopOnPonderhit = true;
382 // search<>() is the main search function for both PV and non-PV nodes and for
383 // normal and SplitPoint nodes. When called just after a split point the search
384 // is simpler because we have already probed the hash table, done a null move
385 // search, and searched the first move before splitting, so we don't have to
386 // repeat all this work again. We also don't need to store anything to the hash
387 // table here: This is taken care of after we return from the split point.
389 template <NodeType NT, bool SpNode>
390 Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth, bool cutNode) {
392 const bool RootNode = NT == Root;
393 const bool PvNode = NT == PV || NT == Root;
395 assert(-VALUE_INFINITE <= alpha && alpha < beta && beta <= VALUE_INFINITE);
396 assert(PvNode || (alpha == beta - 1));
397 assert(depth > DEPTH_ZERO);
399 Move quietsSearched[64];
402 SplitPoint* splitPoint;
404 Move ttMove, move, excludedMove, bestMove;
405 Depth ext, newDepth, predictedDepth;
406 Value bestValue, value, ttValue, eval, nullValue, futilityValue;
407 bool inCheck, givesCheck, pvMove, singularExtensionNode, improving;
408 bool captureOrPromotion, dangerous, doFullDepthSearch;
409 int moveCount, quietCount;
411 // Step 1. Initialize node
412 Thread* thisThread = pos.this_thread();
413 inCheck = pos.checkers();
417 splitPoint = ss->splitPoint;
418 bestMove = splitPoint->bestMove;
419 bestValue = splitPoint->bestValue;
421 ttMove = excludedMove = MOVE_NONE;
422 ttValue = VALUE_NONE;
424 assert(splitPoint->bestValue > -VALUE_INFINITE && splitPoint->moveCount > 0);
429 moveCount = quietCount = 0;
430 bestValue = -VALUE_INFINITE;
431 ss->currentMove = ss->ttMove = (ss+1)->excludedMove = bestMove = MOVE_NONE;
432 ss->ply = (ss-1)->ply + 1;
433 (ss+1)->skipNullMove = false; (ss+1)->reduction = DEPTH_ZERO;
434 (ss+2)->killers[0] = (ss+2)->killers[1] = MOVE_NONE;
436 // Used to send selDepth info to GUI
437 if (PvNode && thisThread->maxPly < ss->ply)
438 thisThread->maxPly = ss->ply;
442 // Step 2. Check for aborted search and immediate draw
443 if (Signals.stop || pos.is_draw() || ss->ply > MAX_PLY)
444 return ss->ply > MAX_PLY && !inCheck ? evaluate(pos) : DrawValue[pos.side_to_move()];
446 // Step 3. Mate distance pruning. Even if we mate at the next move our score
447 // would be at best mate_in(ss->ply+1), but if alpha is already bigger because
448 // a shorter mate was found upward in the tree then there is no need to search
449 // because we will never beat the current alpha. Same logic but with reversed
450 // signs applies also in the opposite condition of being mated instead of giving
451 // mate. In this case return a fail-high score.
452 alpha = std::max(mated_in(ss->ply), alpha);
453 beta = std::min(mate_in(ss->ply+1), beta);
458 // Step 4. Transposition table lookup
459 // We don't want the score of a partial search to overwrite a previous full search
460 // TT value, so we use a different position key in case of an excluded move.
461 excludedMove = ss->excludedMove;
462 posKey = excludedMove ? pos.exclusion_key() : pos.key();
463 tte = TT.probe(posKey);
464 ss->ttMove = ttMove = RootNode ? RootMoves[PVIdx].pv[0] : tte ? tte->move() : MOVE_NONE;
465 ttValue = tte ? value_from_tt(tte->value(), ss->ply) : VALUE_NONE;
467 // At PV nodes we check for exact scores, whilst at non-PV nodes we check for
468 // a fail high/low. The biggest advantage to probing at PV nodes is to have a
469 // smooth experience in analysis mode. We don't probe at Root nodes otherwise
470 // we should also update RootMoveList to avoid bogus output.
473 && tte->depth() >= depth
474 && ttValue != VALUE_NONE // Only in case of TT access race
475 && ( PvNode ? tte->bound() == BOUND_EXACT
476 : ttValue >= beta ? (tte->bound() & BOUND_LOWER)
477 : (tte->bound() & BOUND_UPPER)))
479 ss->currentMove = ttMove; // Can be MOVE_NONE
481 // If ttMove is quiet, update killers, history, counter move and followup move on TT hit
482 if (ttValue >= beta && ttMove && !pos.capture_or_promotion(ttMove) && !inCheck)
483 update_stats(pos, ss, ttMove, depth, NULL, 0);
488 // Step 5. Evaluate the position statically and update parent's gain statistics
491 ss->staticEval = eval = VALUE_NONE;
497 // Never assume anything on values stored in TT
498 if ((ss->staticEval = eval = tte->eval_value()) == VALUE_NONE)
499 eval = ss->staticEval = evaluate(pos);
501 // Can ttValue be used as a better position evaluation?
502 if (ttValue != VALUE_NONE)
503 if (tte->bound() & (ttValue > eval ? BOUND_LOWER : BOUND_UPPER))
508 eval = ss->staticEval =
509 (ss-1)->currentMove != MOVE_NULL ? evaluate(pos) : -(ss-1)->staticEval + 2 * Eval::Tempo;
511 TT.store(posKey, VALUE_NONE, BOUND_NONE, DEPTH_NONE, MOVE_NONE, ss->staticEval);
514 if ( !pos.captured_piece_type()
515 && ss->staticEval != VALUE_NONE
516 && (ss-1)->staticEval != VALUE_NONE
517 && (move = (ss-1)->currentMove) != MOVE_NULL
519 && type_of(move) == NORMAL)
521 Square to = to_sq(move);
522 Gains.update(pos.piece_on(to), to, -(ss-1)->staticEval - ss->staticEval);
525 // Step 6. Razoring (skipped when in check)
527 && depth < 4 * ONE_PLY
528 && eval + razor_margin(depth) <= alpha
529 && ttMove == MOVE_NONE
530 && !pos.pawn_on_7th(pos.side_to_move()))
532 if ( depth <= ONE_PLY
533 && eval + razor_margin(3 * ONE_PLY) <= alpha)
534 return qsearch<NonPV, false>(pos, ss, alpha, beta, DEPTH_ZERO);
536 Value ralpha = alpha - razor_margin(depth);
537 Value v = qsearch<NonPV, false>(pos, ss, ralpha, ralpha+1, DEPTH_ZERO);
542 // Step 7. Futility pruning: child node (skipped when in check)
545 && depth < 7 * ONE_PLY
546 && eval - futility_margin(depth) >= beta
547 && eval < VALUE_KNOWN_WIN // Do not return unproven wins
548 && pos.non_pawn_material(pos.side_to_move()))
549 return eval - futility_margin(depth);
551 // Step 8. Null move search with verification search (is omitted in PV nodes)
554 && depth >= 2 * ONE_PLY
556 && pos.non_pawn_material(pos.side_to_move()))
558 ss->currentMove = MOVE_NULL;
560 assert(eval - beta >= 0);
562 // Null move dynamic reduction based on depth and value
563 Depth R = (3 + depth / 4 + std::min(int(eval - beta) / PawnValueMg, 3)) * ONE_PLY;
565 pos.do_null_move(st);
566 (ss+1)->skipNullMove = true;
567 nullValue = depth-R < ONE_PLY ? -qsearch<NonPV, false>(pos, ss+1, -beta, -beta+1, DEPTH_ZERO)
568 : - search<NonPV, false>(pos, ss+1, -beta, -beta+1, depth-R, !cutNode);
569 (ss+1)->skipNullMove = false;
570 pos.undo_null_move();
572 if (nullValue >= beta)
574 // Do not return unproven mate scores
575 if (nullValue >= VALUE_MATE_IN_MAX_PLY)
578 if (depth < 12 * ONE_PLY && abs(beta) < VALUE_KNOWN_WIN)
581 // Do verification search at high depths
582 ss->skipNullMove = true;
583 Value v = depth-R < ONE_PLY ? qsearch<NonPV, false>(pos, ss, beta-1, beta, DEPTH_ZERO)
584 : search<NonPV, false>(pos, ss, beta-1, beta, depth-R, false);
585 ss->skipNullMove = false;
592 // Step 9. ProbCut (skipped when in check)
593 // If we have a very good capture (i.e. SEE > seeValues[captured_piece_type])
594 // and a reduced search returns a value much above beta, we can (almost) safely
595 // prune the previous move.
597 && depth >= 5 * ONE_PLY
599 && abs(beta) < VALUE_MATE_IN_MAX_PLY)
601 Value rbeta = std::min(beta + 200, VALUE_INFINITE);
602 Depth rdepth = depth - 4 * ONE_PLY;
604 assert(rdepth >= ONE_PLY);
605 assert((ss-1)->currentMove != MOVE_NONE);
606 assert((ss-1)->currentMove != MOVE_NULL);
608 MovePicker mp(pos, ttMove, History, pos.captured_piece_type());
611 while ((move = mp.next_move<false>()) != MOVE_NONE)
612 if (pos.legal(move, ci.pinned))
614 ss->currentMove = move;
615 pos.do_move(move, st, ci, pos.gives_check(move, ci));
616 value = -search<NonPV, false>(pos, ss+1, -rbeta, -rbeta+1, rdepth, !cutNode);
623 // Step 10. Internal iterative deepening (skipped when in check)
624 if ( depth >= (PvNode ? 5 * ONE_PLY : 8 * ONE_PLY)
626 && (PvNode || ss->staticEval + 256 >= beta))
628 Depth d = 2 * (depth - 2 * ONE_PLY) - (PvNode ? DEPTH_ZERO : depth / 2);
629 ss->skipNullMove = true;
630 search<PvNode ? PV : NonPV, false>(pos, ss, alpha, beta, d / 2, true);
631 ss->skipNullMove = false;
633 tte = TT.probe(posKey);
634 ttMove = tte ? tte->move() : MOVE_NONE;
637 moves_loop: // When in check and at SpNode search starts from here
639 Square prevMoveSq = to_sq((ss-1)->currentMove);
640 Move countermoves[] = { Countermoves[pos.piece_on(prevMoveSq)][prevMoveSq].first,
641 Countermoves[pos.piece_on(prevMoveSq)][prevMoveSq].second };
643 Square prevOwnMoveSq = to_sq((ss-2)->currentMove);
644 Move followupmoves[] = { Followupmoves[pos.piece_on(prevOwnMoveSq)][prevOwnMoveSq].first,
645 Followupmoves[pos.piece_on(prevOwnMoveSq)][prevOwnMoveSq].second };
647 MovePicker mp(pos, ttMove, depth, History, countermoves, followupmoves, ss);
649 value = bestValue; // Workaround a bogus 'uninitialized' warning under gcc
650 improving = ss->staticEval >= (ss-2)->staticEval
651 || ss->staticEval == VALUE_NONE
652 ||(ss-2)->staticEval == VALUE_NONE;
654 singularExtensionNode = !RootNode
656 && depth >= 8 * ONE_PLY
657 && ttMove != MOVE_NONE
658 /* && ttValue != VALUE_NONE Already implicit in the next condition */
659 && abs(ttValue) < VALUE_KNOWN_WIN
660 && !excludedMove // Recursive singular search is not allowed
661 && (tte->bound() & BOUND_LOWER)
662 && tte->depth() >= depth - 3 * ONE_PLY;
664 // Step 11. Loop through moves
665 // Loop through all pseudo-legal moves until no moves remain or a beta cutoff occurs
666 while ((move = mp.next_move<SpNode>()) != MOVE_NONE)
670 if (move == excludedMove)
673 // At root obey the "searchmoves" option and skip moves not listed in Root
674 // Move List. As a consequence any illegal move is also skipped. In MultiPV
675 // mode we also skip PV moves which have been already searched.
676 if (RootNode && !std::count(RootMoves.begin() + PVIdx, RootMoves.end(), move))
681 // Shared counter cannot be decremented later if the move turns out to be illegal
682 if (!pos.legal(move, ci.pinned))
685 moveCount = ++splitPoint->moveCount;
686 splitPoint->mutex.unlock();
693 Signals.firstRootMove = (moveCount == 1);
695 if (thisThread == Threads.main() && Time::now() - SearchTime > 3000)
696 sync_cout << "info depth " << depth
697 << " currmove " << UCI::move_to_uci(move, pos.is_chess960())
698 << " currmovenumber " << moveCount + PVIdx << sync_endl;
702 captureOrPromotion = pos.capture_or_promotion(move);
704 givesCheck = type_of(move) == NORMAL && !ci.dcCandidates
705 ? ci.checkSq[type_of(pos.piece_on(from_sq(move)))] & to_sq(move)
706 : pos.gives_check(move, ci);
708 dangerous = givesCheck
709 || type_of(move) != NORMAL
710 || pos.advanced_pawn_push(move);
712 // Step 12. Extend checks
713 if (givesCheck && pos.see_sign(move) >= VALUE_ZERO)
716 // Singular extension search. If all moves but one fail low on a search of
717 // (alpha-s, beta-s), and just one fails high on (alpha, beta), then that move
718 // is singular and should be extended. To verify this we do a reduced search
719 // on all the other moves but the ttMove and if the result is lower than
720 // ttValue minus a margin then we extend the ttMove.
721 if ( singularExtensionNode
724 && pos.legal(move, ci.pinned))
726 Value rBeta = ttValue - int(2 * depth);
727 ss->excludedMove = move;
728 ss->skipNullMove = true;
729 value = search<NonPV, false>(pos, ss, rBeta - 1, rBeta, depth / 2, cutNode);
730 ss->skipNullMove = false;
731 ss->excludedMove = MOVE_NONE;
737 // Update the current move (this must be done after singular extension search)
738 newDepth = depth - ONE_PLY + ext;
740 // Step 13. Pruning at shallow depth (exclude PV nodes)
742 && !captureOrPromotion
745 /* && move != ttMove Already implicit in the next condition */
746 && bestValue > VALUE_MATED_IN_MAX_PLY)
748 // Move count based pruning
749 if ( depth < 16 * ONE_PLY
750 && moveCount >= FutilityMoveCounts[improving][depth])
753 splitPoint->mutex.lock();
758 predictedDepth = newDepth - reduction<PvNode>(improving, depth, moveCount);
760 // Futility pruning: parent node
761 if (predictedDepth < 7 * ONE_PLY)
763 futilityValue = ss->staticEval + futility_margin(predictedDepth)
764 + 128 + Gains[pos.moved_piece(move)][to_sq(move)];
766 if (futilityValue <= alpha)
768 bestValue = std::max(bestValue, futilityValue);
772 splitPoint->mutex.lock();
773 if (bestValue > splitPoint->bestValue)
774 splitPoint->bestValue = bestValue;
780 // Prune moves with negative SEE at low depths
781 if (predictedDepth < 4 * ONE_PLY && pos.see_sign(move) < VALUE_ZERO)
784 splitPoint->mutex.lock();
790 // Speculative prefetch as early as possible
791 prefetch((char*)TT.first_entry(pos.key_after(move)));
793 // Check for legality just before making the move
794 if (!RootNode && !SpNode && !pos.legal(move, ci.pinned))
800 pvMove = PvNode && moveCount == 1;
801 ss->currentMove = move;
802 if (!SpNode && !captureOrPromotion && quietCount < 64)
803 quietsSearched[quietCount++] = move;
805 // Step 14. Make the move
806 pos.do_move(move, st, ci, givesCheck);
808 // Step 15. Reduced depth search (LMR). If the move fails high it will be
809 // re-searched at full depth.
810 if ( depth >= 3 * ONE_PLY
812 && !captureOrPromotion
814 && move != ss->killers[0]
815 && move != ss->killers[1])
817 ss->reduction = reduction<PvNode>(improving, depth, moveCount);
819 if ( (!PvNode && cutNode)
820 || History[pos.piece_on(to_sq(move))][to_sq(move)] < 0)
821 ss->reduction += ONE_PLY;
823 if (move == countermoves[0] || move == countermoves[1])
824 ss->reduction = std::max(DEPTH_ZERO, ss->reduction - ONE_PLY);
826 // Decrease reduction for moves that escape a capture
828 && type_of(move) == NORMAL
829 && type_of(pos.piece_on(to_sq(move))) != PAWN
830 && pos.see(make_move(to_sq(move), from_sq(move))) < 0)
831 ss->reduction = std::max(DEPTH_ZERO, ss->reduction - ONE_PLY);
833 Depth d = std::max(newDepth - ss->reduction, ONE_PLY);
835 alpha = splitPoint->alpha;
837 value = -search<NonPV, false>(pos, ss+1, -(alpha+1), -alpha, d, true);
839 // Re-search at intermediate depth if reduction is very high
840 if (value > alpha && ss->reduction >= 4 * ONE_PLY)
842 Depth d2 = std::max(newDepth - 2 * ONE_PLY, ONE_PLY);
843 value = -search<NonPV, false>(pos, ss+1, -(alpha+1), -alpha, d2, true);
846 doFullDepthSearch = (value > alpha && ss->reduction != DEPTH_ZERO);
847 ss->reduction = DEPTH_ZERO;
850 doFullDepthSearch = !pvMove;
852 // Step 16. Full depth search, when LMR is skipped or fails high
853 if (doFullDepthSearch)
856 alpha = splitPoint->alpha;
858 value = newDepth < ONE_PLY ?
859 givesCheck ? -qsearch<NonPV, true>(pos, ss+1, -(alpha+1), -alpha, DEPTH_ZERO)
860 : -qsearch<NonPV, false>(pos, ss+1, -(alpha+1), -alpha, DEPTH_ZERO)
861 : - search<NonPV, false>(pos, ss+1, -(alpha+1), -alpha, newDepth, !cutNode);
864 // For PV nodes only, do a full PV search on the first move or after a fail
865 // high (in the latter case search only if value < beta), otherwise let the
866 // parent node fail low with value <= alpha and to try another move.
867 if (PvNode && (pvMove || (value > alpha && (RootNode || value < beta))))
868 value = newDepth < ONE_PLY ?
869 givesCheck ? -qsearch<PV, true>(pos, ss+1, -beta, -alpha, DEPTH_ZERO)
870 : -qsearch<PV, false>(pos, ss+1, -beta, -alpha, DEPTH_ZERO)
871 : - search<PV, false>(pos, ss+1, -beta, -alpha, newDepth, false);
872 // Step 17. Undo move
875 assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
877 // Step 18. Check for new best move
880 splitPoint->mutex.lock();
881 bestValue = splitPoint->bestValue;
882 alpha = splitPoint->alpha;
885 // Finished searching the move. If a stop or a cutoff occurred, the return
886 // value of the search cannot be trusted, and we return immediately without
887 // updating best move, PV and TT.
888 if (Signals.stop || thisThread->cutoff_occurred())
893 RootMove& rm = *std::find(RootMoves.begin(), RootMoves.end(), move);
895 // PV move or new best move ?
896 if (pvMove || value > alpha)
899 rm.extract_pv_from_tt(pos);
901 // We record how often the best move has been changed in each
902 // iteration. This information is used for time management: When
903 // the best move changes frequently, we allocate some more time.
908 // All other moves but the PV are set to the lowest value: this is
909 // not a problem when sorting because the sort is stable and the
910 // move position in the list is preserved - just the PV is pushed up.
911 rm.score = -VALUE_INFINITE;
914 if (value > bestValue)
916 bestValue = SpNode ? splitPoint->bestValue = value : value;
920 bestMove = SpNode ? splitPoint->bestMove = move : move;
922 if (PvNode && value < beta) // Update alpha! Always alpha < beta
923 alpha = SpNode ? splitPoint->alpha = value : value;
926 assert(value >= beta); // Fail high
929 splitPoint->cutoff = true;
936 // Step 19. Check for splitting the search
938 && Threads.size() >= 2
939 && depth >= Threads.minimumSplitDepth
940 && ( !thisThread->activeSplitPoint
941 || !thisThread->activeSplitPoint->allSlavesSearching)
942 && thisThread->splitPointsSize < MAX_SPLITPOINTS_PER_THREAD)
944 assert(bestValue > -VALUE_INFINITE && bestValue < beta);
946 thisThread->split(pos, ss, alpha, beta, &bestValue, &bestMove,
947 depth, moveCount, &mp, NT, cutNode);
949 if (Signals.stop || thisThread->cutoff_occurred())
952 if (bestValue >= beta)
960 // Following condition would detect a stop or a cutoff set only after move
961 // loop has been completed. But in this case bestValue is valid because we
962 // have fully searched our subtree, and we can anyhow save the result in TT.
964 if (Signals.stop || thisThread->cutoff_occurred())
968 // Step 20. Check for mate and stalemate
969 // All legal moves have been searched and if there are no legal moves, it
970 // must be mate or stalemate. If we are in a singular extension search then
971 // return a fail low score.
973 bestValue = excludedMove ? alpha
974 : inCheck ? mated_in(ss->ply) : DrawValue[pos.side_to_move()];
976 // Quiet best move: update killers, history, countermoves and followupmoves
977 else if (bestValue >= beta && !pos.capture_or_promotion(bestMove) && !inCheck)
978 update_stats(pos, ss, bestMove, depth, quietsSearched, quietCount - 1);
980 TT.store(posKey, value_to_tt(bestValue, ss->ply),
981 bestValue >= beta ? BOUND_LOWER :
982 PvNode && bestMove ? BOUND_EXACT : BOUND_UPPER,
983 depth, bestMove, ss->staticEval);
985 assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
991 // qsearch() is the quiescence search function, which is called by the main
992 // search function when the remaining depth is zero (or, to be more precise,
993 // less than ONE_PLY).
995 template <NodeType NT, bool InCheck>
996 Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth) {
998 const bool PvNode = NT == PV;
1000 assert(NT == PV || NT == NonPV);
1001 assert(InCheck == !!pos.checkers());
1002 assert(alpha >= -VALUE_INFINITE && alpha < beta && beta <= VALUE_INFINITE);
1003 assert(PvNode || (alpha == beta - 1));
1004 assert(depth <= DEPTH_ZERO);
1009 Move ttMove, move, bestMove;
1010 Value bestValue, value, ttValue, futilityValue, futilityBase, oldAlpha;
1011 bool givesCheck, evasionPrunable;
1014 // To flag BOUND_EXACT a node with eval above alpha and no available moves
1018 ss->currentMove = bestMove = MOVE_NONE;
1019 ss->ply = (ss-1)->ply + 1;
1021 // Check for an instant draw or if the maximum ply has been reached
1022 if (pos.is_draw() || ss->ply > MAX_PLY)
1023 return ss->ply > MAX_PLY && !InCheck ? evaluate(pos) : DrawValue[pos.side_to_move()];
1025 // Decide whether or not to include checks: this fixes also the type of
1026 // TT entry depth that we are going to use. Note that in qsearch we use
1027 // only two types of depth in TT: DEPTH_QS_CHECKS or DEPTH_QS_NO_CHECKS.
1028 ttDepth = InCheck || depth >= DEPTH_QS_CHECKS ? DEPTH_QS_CHECKS
1029 : DEPTH_QS_NO_CHECKS;
1031 // Transposition table lookup
1033 tte = TT.probe(posKey);
1034 ttMove = tte ? tte->move() : MOVE_NONE;
1035 ttValue = tte ? value_from_tt(tte->value(),ss->ply) : VALUE_NONE;
1038 && tte->depth() >= ttDepth
1039 && ttValue != VALUE_NONE // Only in case of TT access race
1040 && ( PvNode ? tte->bound() == BOUND_EXACT
1041 : ttValue >= beta ? (tte->bound() & BOUND_LOWER)
1042 : (tte->bound() & BOUND_UPPER)))
1044 ss->currentMove = ttMove; // Can be MOVE_NONE
1048 // Evaluate the position statically
1051 ss->staticEval = VALUE_NONE;
1052 bestValue = futilityBase = -VALUE_INFINITE;
1058 // Never assume anything on values stored in TT
1059 if ((ss->staticEval = bestValue = tte->eval_value()) == VALUE_NONE)
1060 ss->staticEval = bestValue = evaluate(pos);
1062 // Can ttValue be used as a better position evaluation?
1063 if (ttValue != VALUE_NONE)
1064 if (tte->bound() & (ttValue > bestValue ? BOUND_LOWER : BOUND_UPPER))
1065 bestValue = ttValue;
1068 ss->staticEval = bestValue =
1069 (ss-1)->currentMove != MOVE_NULL ? evaluate(pos) : -(ss-1)->staticEval + 2 * Eval::Tempo;
1071 // Stand pat. Return immediately if static value is at least beta
1072 if (bestValue >= beta)
1075 TT.store(pos.key(), value_to_tt(bestValue, ss->ply), BOUND_LOWER,
1076 DEPTH_NONE, MOVE_NONE, ss->staticEval);
1081 if (PvNode && bestValue > alpha)
1084 futilityBase = bestValue + 128;
1087 // Initialize a MovePicker object for the current position, and prepare
1088 // to search the moves. Because the depth is <= 0 here, only captures,
1089 // queen promotions and checks (only if depth >= DEPTH_QS_CHECKS) will
1091 MovePicker mp(pos, ttMove, depth, History, to_sq((ss-1)->currentMove));
1094 // Loop through the moves until no moves remain or a beta cutoff occurs
1095 while ((move = mp.next_move<false>()) != MOVE_NONE)
1097 assert(is_ok(move));
1099 givesCheck = type_of(move) == NORMAL && !ci.dcCandidates
1100 ? ci.checkSq[type_of(pos.piece_on(from_sq(move)))] & to_sq(move)
1101 : pos.gives_check(move, ci);
1108 && futilityBase > -VALUE_KNOWN_WIN
1109 && !pos.advanced_pawn_push(move))
1111 assert(type_of(move) != ENPASSANT); // Due to !pos.advanced_pawn_push
1113 futilityValue = futilityBase + PieceValue[EG][pos.piece_on(to_sq(move))];
1115 if (futilityValue < beta)
1117 bestValue = std::max(bestValue, futilityValue);
1121 if (futilityBase < beta && pos.see(move) <= VALUE_ZERO)
1123 bestValue = std::max(bestValue, futilityBase);
1128 // Detect non-capture evasions that are candidates to be pruned
1129 evasionPrunable = InCheck
1130 && bestValue > VALUE_MATED_IN_MAX_PLY
1131 && !pos.capture(move)
1132 && !pos.can_castle(pos.side_to_move());
1134 // Don't search moves with negative SEE values
1136 && (!InCheck || evasionPrunable)
1138 && type_of(move) != PROMOTION
1139 && pos.see_sign(move) < VALUE_ZERO)
1142 // Speculative prefetch as early as possible
1143 prefetch((char*)TT.first_entry(pos.key_after(move)));
1145 // Check for legality just before making the move
1146 if (!pos.legal(move, ci.pinned))
1149 ss->currentMove = move;
1151 // Make and search the move
1152 pos.do_move(move, st, ci, givesCheck);
1153 value = givesCheck ? -qsearch<NT, true>(pos, ss+1, -beta, -alpha, depth - ONE_PLY)
1154 : -qsearch<NT, false>(pos, ss+1, -beta, -alpha, depth - ONE_PLY);
1155 pos.undo_move(move);
1157 assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
1159 // Check for new best move
1160 if (value > bestValue)
1166 if (PvNode && value < beta) // Update alpha here! Always alpha < beta
1173 TT.store(posKey, value_to_tt(value, ss->ply), BOUND_LOWER,
1174 ttDepth, move, ss->staticEval);
1182 // All legal moves have been searched. A special case: If we're in check
1183 // and no legal moves were found, it is checkmate.
1184 if (InCheck && bestValue == -VALUE_INFINITE)
1185 return mated_in(ss->ply); // Plies to mate from the root
1187 TT.store(posKey, value_to_tt(bestValue, ss->ply),
1188 PvNode && bestValue > oldAlpha ? BOUND_EXACT : BOUND_UPPER,
1189 ttDepth, bestMove, ss->staticEval);
1191 assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
1197 // value_to_tt() adjusts a mate score from "plies to mate from the root" to
1198 // "plies to mate from the current position". Non-mate scores are unchanged.
1199 // The function is called before storing a value in the transposition table.
1201 Value value_to_tt(Value v, int ply) {
1203 assert(v != VALUE_NONE);
1205 return v >= VALUE_MATE_IN_MAX_PLY ? v + ply
1206 : v <= VALUE_MATED_IN_MAX_PLY ? v - ply : v;
1210 // value_from_tt() is the inverse of value_to_tt(): It adjusts a mate score
1211 // from the transposition table (which refers to the plies to mate/be mated
1212 // from current position) to "plies to mate/be mated from the root".
1214 Value value_from_tt(Value v, int ply) {
1216 return v == VALUE_NONE ? VALUE_NONE
1217 : v >= VALUE_MATE_IN_MAX_PLY ? v - ply
1218 : v <= VALUE_MATED_IN_MAX_PLY ? v + ply : v;
1222 // update_stats() updates killers, history, countermoves and followupmoves stats after a fail-high
1225 void update_stats(const Position& pos, Stack* ss, Move move, Depth depth, Move* quiets, int quietsCnt) {
1227 if (ss->killers[0] != move)
1229 ss->killers[1] = ss->killers[0];
1230 ss->killers[0] = move;
1233 // Increase history value of the cut-off move and decrease all the other
1234 // played quiet moves.
1235 Value bonus = Value(4 * int(depth) * int(depth));
1236 History.update(pos.moved_piece(move), to_sq(move), bonus);
1237 for (int i = 0; i < quietsCnt; ++i)
1240 History.update(pos.moved_piece(m), to_sq(m), -bonus);
1243 if (is_ok((ss-1)->currentMove))
1245 Square prevMoveSq = to_sq((ss-1)->currentMove);
1246 Countermoves.update(pos.piece_on(prevMoveSq), prevMoveSq, move);
1249 if (is_ok((ss-2)->currentMove) && (ss-1)->currentMove == (ss-1)->ttMove)
1251 Square prevOwnMoveSq = to_sq((ss-2)->currentMove);
1252 Followupmoves.update(pos.piece_on(prevOwnMoveSq), prevOwnMoveSq, move);
1257 // When playing with a strength handicap, choose best move among the first 'candidates'
1258 // RootMoves using a statistical rule dependent on 'level'. Idea by Heinz van Saanen.
1260 Move Skill::pick_move() {
1264 // PRNG sequence should be not deterministic
1265 for (int i = Time::now() % 50; i > 0; --i)
1266 rk.rand<unsigned>();
1268 // RootMoves are already sorted by score in descending order
1269 int variance = std::min(RootMoves[0].score - RootMoves[candidates - 1].score, PawnValueMg);
1270 int weakness = 120 - 2 * level;
1271 int max_s = -VALUE_INFINITE;
1274 // Choose best move. For each move score we add two terms both dependent on
1275 // weakness. One deterministic and bigger for weaker moves, and one random,
1276 // then we choose the move with the resulting highest score.
1277 for (size_t i = 0; i < candidates; ++i)
1279 int s = RootMoves[i].score;
1281 // Don't allow crazy blunders even at very low skills
1282 if (i > 0 && RootMoves[i - 1].score > s + 2 * PawnValueMg)
1285 // This is our magic formula
1286 s += ( weakness * int(RootMoves[0].score - s)
1287 + variance * (rk.rand<unsigned>() % weakness)) / 128;
1292 best = RootMoves[i].pv[0];
1299 // uci_pv() formats PV information according to the UCI protocol. UCI
1300 // requires that all (if any) unsearched PV lines are sent using a previous
1303 string uci_pv(const Position& pos, int depth, Value alpha, Value beta) {
1305 std::stringstream ss;
1306 Time::point elapsed = Time::now() - SearchTime + 1;
1307 size_t uciPVSize = std::min((size_t)Options["MultiPV"], RootMoves.size());
1310 for (size_t i = 0; i < Threads.size(); ++i)
1311 if (Threads[i]->maxPly > selDepth)
1312 selDepth = Threads[i]->maxPly;
1314 for (size_t i = 0; i < uciPVSize; ++i)
1316 bool updated = (i <= PVIdx);
1318 if (depth == 1 && !updated)
1321 int d = updated ? depth : depth - 1;
1322 Value v = updated ? RootMoves[i].score : RootMoves[i].prevScore;
1324 if (ss.rdbuf()->in_avail()) // Not at first line
1327 ss << "info depth " << d
1328 << " seldepth " << selDepth
1329 << " score " << (i == PVIdx ? UCI::score_to_uci(v, alpha, beta) : UCI::score_to_uci(v))
1330 << " nodes " << pos.nodes_searched()
1331 << " nps " << pos.nodes_searched() * 1000 / elapsed
1332 << " time " << elapsed
1333 << " multipv " << i + 1
1336 for (size_t j = 0; RootMoves[i].pv[j] != MOVE_NONE; ++j)
1337 ss << " " << UCI::move_to_uci(RootMoves[i].pv[j], pos.is_chess960());
1346 /// RootMove::extract_pv_from_tt() builds a PV by adding moves from the TT table.
1347 /// We also consider both failing high nodes and BOUND_EXACT nodes here to
1348 /// ensure that we have a ponder move even when we fail high at root. This
1349 /// results in a long PV to print that is important for position analysis.
1351 void RootMove::extract_pv_from_tt(Position& pos) {
1353 StateInfo state[MAX_PLY_PLUS_6], *st = state;
1355 int ply = 1; // At root ply is 1...
1356 Move m = pv[0]; // ...instead pv[] array starts from 0
1357 Value expectedScore = score;
1364 assert(MoveList<LEGAL>(pos).contains(pv[ply - 1]));
1366 pos.do_move(pv[ply++ - 1], *st++);
1367 tte = TT.probe(pos.key());
1368 expectedScore = -expectedScore;
1371 && expectedScore == value_from_tt(tte->value(), ply)
1372 && pos.pseudo_legal(m = tte->move()) // Local copy, TT could change
1373 && pos.legal(m, pos.pinned_pieces(pos.side_to_move()))
1375 && (!pos.is_draw() || ply <= 2));
1377 pv.push_back(MOVE_NONE); // Must be zero-terminating
1379 while (--ply) pos.undo_move(pv[ply - 1]);
1383 /// RootMove::insert_pv_in_tt() is called at the end of a search iteration, and
1384 /// inserts the PV back into the TT. This makes sure the old PV moves are searched
1385 /// first, even if the old TT entries have been overwritten.
1387 void RootMove::insert_pv_in_tt(Position& pos) {
1389 StateInfo state[MAX_PLY_PLUS_6], *st = state;
1391 int idx = 0; // Ply starts from 1, we need to start from 0
1394 tte = TT.probe(pos.key());
1396 if (!tte || tte->move() != pv[idx]) // Don't overwrite correct entries
1397 TT.store(pos.key(), VALUE_NONE, BOUND_NONE, DEPTH_NONE, pv[idx], VALUE_NONE);
1399 assert(MoveList<LEGAL>(pos).contains(pv[idx]));
1401 pos.do_move(pv[idx++], *st++);
1403 } while (pv[idx] != MOVE_NONE);
1405 while (idx) pos.undo_move(pv[--idx]);
1409 /// Thread::idle_loop() is where the thread is parked when it has no work to do
1411 void Thread::idle_loop() {
1413 // Pointer 'this_sp' is not null only if we are called from split(), and not
1414 // at the thread creation. This means we are the split point's master.
1415 SplitPoint* this_sp = splitPointsSize ? activeSplitPoint : NULL;
1417 assert(!this_sp || (this_sp->masterThread == this && searching));
1421 // If this thread has been assigned work, launch a search
1424 Threads.mutex.lock();
1426 assert(activeSplitPoint);
1427 SplitPoint* sp = activeSplitPoint;
1429 Threads.mutex.unlock();
1431 Stack stack[MAX_PLY_PLUS_6], *ss = stack+2; // To allow referencing (ss-2)
1432 Position pos(*sp->pos, this);
1434 std::memcpy(ss-2, sp->ss-2, 5 * sizeof(Stack));
1435 ss->splitPoint = sp;
1439 assert(activePosition == NULL);
1441 activePosition = &pos;
1443 if (sp->nodeType == NonPV)
1444 search<NonPV, true>(pos, ss, sp->alpha, sp->beta, sp->depth, sp->cutNode);
1446 else if (sp->nodeType == PV)
1447 search<PV, true>(pos, ss, sp->alpha, sp->beta, sp->depth, sp->cutNode);
1449 else if (sp->nodeType == Root)
1450 search<Root, true>(pos, ss, sp->alpha, sp->beta, sp->depth, sp->cutNode);
1458 activePosition = NULL;
1459 sp->slavesMask.reset(idx);
1460 sp->allSlavesSearching = false;
1461 sp->nodes += pos.nodes_searched();
1463 // Wake up the master thread so to allow it to return from the idle
1464 // loop in case we are the last slave of the split point.
1465 if ( this != sp->masterThread
1466 && sp->slavesMask.none())
1468 assert(!sp->masterThread->searching);
1469 sp->masterThread->notify_one();
1472 // After releasing the lock we can't access any SplitPoint related data
1473 // in a safe way because it could have been released under our feet by
1477 // Try to late join to another split point if none of its slaves has
1478 // already finished.
1479 if (Threads.size() > 2)
1480 for (size_t i = 0; i < Threads.size(); ++i)
1482 const int size = Threads[i]->splitPointsSize; // Local copy
1483 sp = size ? &Threads[i]->splitPoints[size - 1] : NULL;
1486 && sp->allSlavesSearching
1487 && available_to(Threads[i]))
1489 // Recheck the conditions under lock protection
1490 Threads.mutex.lock();
1493 if ( sp->allSlavesSearching
1494 && available_to(Threads[i]))
1496 sp->slavesMask.set(idx);
1497 activeSplitPoint = sp;
1502 Threads.mutex.unlock();
1504 break; // Just a single attempt
1509 // Grab the lock to avoid races with Thread::notify_one()
1512 // If we are master and all slaves have finished then exit idle_loop
1513 if (this_sp && this_sp->slavesMask.none())
1520 // If we are not searching, wait for a condition to be signaled instead of
1521 // wasting CPU time polling for work.
1522 if (!searching && !exit)
1523 sleepCondition.wait(mutex);
1530 /// check_time() is called by the timer thread when the timer triggers. It is
1531 /// used to print debug info and, more importantly, to detect when we are out of
1532 /// available time and thus stop the search.
1536 static Time::point lastInfoTime = Time::now();
1537 int64_t nodes = 0; // Workaround silly 'uninitialized' gcc warning
1539 if (Time::now() - lastInfoTime >= 1000)
1541 lastInfoTime = Time::now();
1550 Threads.mutex.lock();
1552 nodes = RootPos.nodes_searched();
1554 // Loop across all split points and sum accumulated SplitPoint nodes plus
1555 // all the currently active positions nodes.
1556 for (size_t i = 0; i < Threads.size(); ++i)
1557 for (int j = 0; j < Threads[i]->splitPointsSize; ++j)
1559 SplitPoint& sp = Threads[i]->splitPoints[j];
1565 for (size_t idx = 0; idx < Threads.size(); ++idx)
1566 if (sp.slavesMask.test(idx) && Threads[idx]->activePosition)
1567 nodes += Threads[idx]->activePosition->nodes_searched();
1572 Threads.mutex.unlock();
1575 Time::point elapsed = Time::now() - SearchTime;
1576 bool stillAtFirstMove = Signals.firstRootMove
1577 && !Signals.failedLowAtRoot
1578 && elapsed > TimeMgr.available_time() * 75 / 100;
1580 bool noMoreTime = elapsed > TimeMgr.maximum_time() - 2 * TimerThread::Resolution
1581 || stillAtFirstMove;
1583 if ( (Limits.use_time_management() && noMoreTime)
1584 || (Limits.movetime && elapsed >= Limits.movetime)
1585 || (Limits.nodes && nodes >= Limits.nodes))
1586 Signals.stop = true;