2 Stockfish, a UCI chess playing engine derived from Glaurung 2.1
3 Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
4 Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad
6 Stockfish is free software: you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation, either version 3 of the License, or
9 (at your option) any later version.
11 Stockfish is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>.
37 #include "ucioption.h"
41 volatile SignalsType Signals;
43 std::vector<RootMove> RootMoves;
46 Time::point SearchTime;
47 StateStackPtr SetupStates;
52 using namespace Search;
56 // Set to true to force running with one thread. Used for debugging
57 const bool FakeSplit = false;
59 // This is the minimum interval in msec between two check_time() calls
60 const int TimerResolution = 5;
62 // Different node types, used as template parameter
63 enum NodeType { Root, PV, NonPV, SplitPointRoot, SplitPointPV, SplitPointNonPV };
65 // Dynamic razoring margin based on depth
66 inline Value razor_margin(Depth d) { return Value(512 + 16 * int(d)); }
68 // Futility lookup tables (initialized at startup) and their access functions
69 Value FutilityMargins[16][64]; // [depth][moveNumber]
70 int FutilityMoveCounts[32]; // [depth]
72 inline Value futility_margin(Depth d, int mn) {
74 return d < 7 * ONE_PLY ? FutilityMargins[std::max(int(d), 1)][std::min(mn, 63)]
78 // Reduction lookup tables (initialized at startup) and their access function
79 int8_t Reductions[2][64][64]; // [pv][depth][moveNumber]
81 template <bool PvNode> inline Depth reduction(Depth d, int mn) {
83 return (Depth) Reductions[PvNode][std::min(int(d) / ONE_PLY, 63)][std::min(mn, 63)];
89 Value DrawValue[COLOR_NB];
92 template <NodeType NT>
93 Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth);
95 template <NodeType NT, bool InCheck>
96 Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth);
98 void id_loop(Position& pos);
99 Value value_to_tt(Value v, int ply);
100 Value value_from_tt(Value v, int ply);
101 bool check_is_dangerous(Position& pos, Move move, Value futilityBase, Value beta);
102 bool prevents_move(const Position& pos, Move first, Move second);
103 string uci_pv(const Position& pos, int depth, Value alpha, Value beta);
106 Skill(int l) : level(l), best(MOVE_NONE) {}
108 if (enabled()) // Swap best PV line with the sub-optimal one
109 std::swap(RootMoves[0], *std::find(RootMoves.begin(),
110 RootMoves.end(), best ? best : pick_move()));
113 bool enabled() const { return level < 20; }
114 bool time_to_pick(int depth) const { return depth == 1 + level; }
124 /// Search::init() is called during startup to initialize various lookup tables
126 void Search::init() {
128 int d; // depth (ONE_PLY == 2)
129 int hd; // half depth (ONE_PLY == 1)
132 // Init reductions array
133 for (hd = 1; hd < 64; hd++) for (mc = 1; mc < 64; mc++)
135 double pvRed = log(double(hd)) * log(double(mc)) / 3.0;
136 double nonPVRed = 0.33 + log(double(hd)) * log(double(mc)) / 2.25;
137 Reductions[1][hd][mc] = (int8_t) ( pvRed >= 1.0 ? floor( pvRed * int(ONE_PLY)) : 0);
138 Reductions[0][hd][mc] = (int8_t) (nonPVRed >= 1.0 ? floor(nonPVRed * int(ONE_PLY)) : 0);
141 // Init futility margins array
142 for (d = 1; d < 16; d++) for (mc = 0; mc < 64; mc++)
143 FutilityMargins[d][mc] = Value(112 * int(log(double(d * d) / 2) / log(2.0) + 1.001) - 8 * mc + 45);
145 // Init futility move count array
146 for (d = 0; d < 32; d++)
147 FutilityMoveCounts[d] = int(3.001 + 0.25 * pow(double(d), 2.0));
151 /// Search::perft() is our utility to verify move generation. All the leaf nodes
152 /// up to the given depth are generated and counted and the sum returned.
154 size_t Search::perft(Position& pos, Depth depth) {
156 // At the last ply just return the number of legal moves (leaf nodes)
157 if (depth == ONE_PLY)
158 return MoveList<LEGAL>(pos).size();
164 for (MoveList<LEGAL> ml(pos); !ml.end(); ++ml)
166 pos.do_move(ml.move(), st, ci, pos.move_gives_check(ml.move(), ci));
167 cnt += perft(pos, depth - ONE_PLY);
168 pos.undo_move(ml.move());
175 /// Search::think() is the external interface to Stockfish's search, and is
176 /// called by the main thread when the program receives the UCI 'go' command. It
177 /// searches from RootPos and at the end prints the "bestmove" to output.
179 void Search::think() {
181 static PolyglotBook book; // Defined static to initialize the PRNG only once
183 RootColor = RootPos.side_to_move();
184 TimeMgr.init(Limits, RootPos.startpos_ply_counter(), RootColor);
186 if (RootMoves.empty())
188 RootMoves.push_back(MOVE_NONE);
189 sync_cout << "info depth 0 score "
190 << score_to_uci(RootPos.checkers() ? -VALUE_MATE : VALUE_DRAW)
196 if (Options["OwnBook"] && !Limits.infinite && !Limits.mate)
198 Move bookMove = book.probe(RootPos, Options["Book File"], Options["Best Book Move"]);
200 if (bookMove && std::count(RootMoves.begin(), RootMoves.end(), bookMove))
202 std::swap(RootMoves[0], *std::find(RootMoves.begin(), RootMoves.end(), bookMove));
207 if (Options["Contempt Factor"] && !Options["UCI_AnalyseMode"])
209 int cf = Options["Contempt Factor"] * PawnValueMg / 100; // From centipawns
210 cf = cf * Material::game_phase(RootPos) / PHASE_MIDGAME; // Scale down with phase
211 DrawValue[ RootColor] = VALUE_DRAW - Value(cf);
212 DrawValue[~RootColor] = VALUE_DRAW + Value(cf);
215 DrawValue[WHITE] = DrawValue[BLACK] = VALUE_DRAW;
217 if (Options["Use Search Log"])
219 Log log(Options["Search Log Filename"]);
220 log << "\nSearching: " << RootPos.fen()
221 << "\ninfinite: " << Limits.infinite
222 << " ponder: " << Limits.ponder
223 << " time: " << Limits.time[RootColor]
224 << " increment: " << Limits.inc[RootColor]
225 << " moves to go: " << Limits.movestogo
229 // Reset the threads, still sleeping: will be wake up at split time
230 for (size_t i = 0; i < Threads.size(); i++)
231 Threads[i].maxPly = 0;
233 Threads.sleepWhileIdle = Options["Use Sleeping Threads"];
235 // Set best timer interval to avoid lagging under time pressure. Timer is
236 // used to check for remaining available thinking time.
237 Threads.timer_thread()->msec =
238 Limits.use_time_management() ? std::min(100, std::max(TimeMgr.available_time() / 16, TimerResolution)) :
239 Limits.nodes ? 2 * TimerResolution
242 Threads.timer_thread()->notify_one(); // Wake up the recurring timer
244 id_loop(RootPos); // Let's start searching !
246 Threads.timer_thread()->msec = 0; // Stop the timer
247 Threads.sleepWhileIdle = true; // Send idle threads to sleep
249 if (Options["Use Search Log"])
251 Time::point elapsed = Time::now() - SearchTime + 1;
253 Log log(Options["Search Log Filename"]);
254 log << "Nodes: " << RootPos.nodes_searched()
255 << "\nNodes/second: " << RootPos.nodes_searched() * 1000 / elapsed
256 << "\nBest move: " << move_to_san(RootPos, RootMoves[0].pv[0]);
259 RootPos.do_move(RootMoves[0].pv[0], st);
260 log << "\nPonder move: " << move_to_san(RootPos, RootMoves[0].pv[1]) << std::endl;
261 RootPos.undo_move(RootMoves[0].pv[0]);
266 // When we reach max depth we arrive here even without Signals.stop is raised,
267 // but if we are pondering or in infinite search, according to UCI protocol,
268 // we shouldn't print the best move before the GUI sends a "stop" or "ponderhit"
269 // command. We simply wait here until GUI sends one of those commands (that
270 // raise Signals.stop).
271 if (!Signals.stop && (Limits.ponder || Limits.infinite))
273 Signals.stopOnPonderhit = true;
274 RootPos.this_thread()->wait_for(Signals.stop);
277 // Best move could be MOVE_NONE when searching on a stalemate position
278 sync_cout << "bestmove " << move_to_uci(RootMoves[0].pv[0], RootPos.is_chess960())
279 << " ponder " << move_to_uci(RootMoves[0].pv[1], RootPos.is_chess960())
286 // id_loop() is the main iterative deepening loop. It calls search() repeatedly
287 // with increasing depth until the allocated thinking time has been consumed,
288 // user stops the search, or the maximum search depth is reached.
290 void id_loop(Position& pos) {
292 Stack ss[MAX_PLY_PLUS_2];
293 int depth, prevBestMoveChanges;
294 Value bestValue, alpha, beta, delta;
295 bool bestMoveNeverChanged = true;
297 memset(ss, 0, 4 * sizeof(Stack));
298 depth = BestMoveChanges = 0;
299 bestValue = delta = -VALUE_INFINITE;
300 ss->currentMove = MOVE_NULL; // Hack to skip update gains
304 PVSize = Options["MultiPV"];
305 Skill skill(Options["Skill Level"]);
307 // Do we have to play with skill handicap? In this case enable MultiPV search
308 // that we will use behind the scenes to retrieve a set of possible moves.
309 if (skill.enabled() && PVSize < 4)
312 PVSize = std::min(PVSize, RootMoves.size());
314 // Iterative deepening loop until requested to stop or target depth reached
315 while (++depth <= MAX_PLY && !Signals.stop && (!Limits.depth || depth <= Limits.depth))
317 // Save last iteration's scores before first PV line is searched and all
318 // the move scores but the (new) PV are set to -VALUE_INFINITE.
319 for (size_t i = 0; i < RootMoves.size(); i++)
320 RootMoves[i].prevScore = RootMoves[i].score;
322 prevBestMoveChanges = BestMoveChanges; // Only sensible when PVSize == 1
325 // MultiPV loop. We perform a full root search for each PV line
326 for (PVIdx = 0; PVIdx < PVSize; PVIdx++)
328 // Set aspiration window default width
329 if (depth >= 5 && abs(RootMoves[PVIdx].prevScore) < VALUE_KNOWN_WIN)
332 alpha = RootMoves[PVIdx].prevScore - delta;
333 beta = RootMoves[PVIdx].prevScore + delta;
337 alpha = -VALUE_INFINITE;
338 beta = VALUE_INFINITE;
341 // Start with a small aspiration window and, in case of fail high/low,
342 // research with bigger window until not failing high/low anymore.
345 // Search starts from ss+1 to allow referencing (ss-1). This is
346 // needed by update gains and ss copy when splitting at Root.
347 bestValue = search<Root>(pos, ss+1, alpha, beta, depth * ONE_PLY);
349 // Bring to front the best move. It is critical that sorting is
350 // done with a stable algorithm because all the values but the first
351 // and eventually the new best one are set to -VALUE_INFINITE and
352 // we want to keep the same order for all the moves but the new
353 // PV that goes to the front. Note that in case of MultiPV search
354 // the already searched PV lines are preserved.
355 sort<RootMove>(RootMoves.begin() + PVIdx, RootMoves.end());
357 // Write PV back to transposition table in case the relevant
358 // entries have been overwritten during the search.
359 for (size_t i = 0; i <= PVIdx; i++)
360 RootMoves[i].insert_pv_in_tt(pos);
362 // If search has been stopped return immediately. Sorting and
363 // writing PV back to TT is safe becuase RootMoves is still
364 // valid, although refers to previous iteration.
368 // In case of failing high/low increase aspiration window and
369 // research, otherwise exit the loop.
370 if (bestValue > alpha && bestValue < beta)
373 // Give some update (without cluttering the UI) before to research
374 if (Time::now() - SearchTime > 3000)
375 sync_cout << uci_pv(pos, depth, alpha, beta) << sync_endl;
377 if (abs(bestValue) >= VALUE_KNOWN_WIN)
379 alpha = -VALUE_INFINITE;
380 beta = VALUE_INFINITE;
382 else if (bestValue >= beta)
389 Signals.failedLowAtRoot = true;
390 Signals.stopOnPonderhit = false;
396 assert(alpha >= -VALUE_INFINITE && beta <= VALUE_INFINITE);
399 // Sort the PV lines searched so far and update the GUI
400 sort<RootMove>(RootMoves.begin(), RootMoves.begin() + PVIdx + 1);
401 if (PVIdx + 1 == PVSize || Time::now() - SearchTime > 3000)
402 sync_cout << uci_pv(pos, depth, alpha, beta) << sync_endl;
405 // Do we need to pick now the sub-optimal best move ?
406 if (skill.enabled() && skill.time_to_pick(depth))
409 if (Options["Use Search Log"])
411 Log log(Options["Search Log Filename"]);
412 log << pretty_pv(pos, depth, bestValue, Time::now() - SearchTime, &RootMoves[0].pv[0])
416 // Filter out startup noise when monitoring best move stability
417 if (depth > 2 && BestMoveChanges)
418 bestMoveNeverChanged = false;
420 // Do we have found a "mate in x"?
422 && bestValue >= VALUE_MATE_IN_MAX_PLY
423 && VALUE_MATE - bestValue <= 2 * Limits.mate)
426 // Do we have time for the next iteration? Can we stop searching now?
427 if (Limits.use_time_management() && !Signals.stopOnPonderhit)
429 bool stop = false; // Local variable, not the volatile Signals.stop
431 // Take in account some extra time if the best move has changed
432 if (depth > 4 && depth < 50 && PVSize == 1)
433 TimeMgr.pv_instability(BestMoveChanges, prevBestMoveChanges);
435 // Stop search if most of available time is already consumed. We
436 // probably don't have enough time to search the first move at the
437 // next iteration anyway.
438 if (Time::now() - SearchTime > (TimeMgr.available_time() * 62) / 100)
441 // Stop search early if one move seems to be much better than others
445 && ( (bestMoveNeverChanged && pos.captured_piece_type())
446 || Time::now() - SearchTime > (TimeMgr.available_time() * 40) / 100))
448 Value rBeta = bestValue - 2 * PawnValueMg;
449 (ss+1)->excludedMove = RootMoves[0].pv[0];
450 (ss+1)->skipNullMove = true;
451 Value v = search<NonPV>(pos, ss+1, rBeta - 1, rBeta, (depth - 3) * ONE_PLY);
452 (ss+1)->skipNullMove = false;
453 (ss+1)->excludedMove = MOVE_NONE;
461 // If we are allowed to ponder do not stop the search now but
462 // keep pondering until GUI sends "ponderhit" or "stop".
464 Signals.stopOnPonderhit = true;
473 // search<>() is the main search function for both PV and non-PV nodes and for
474 // normal and SplitPoint nodes. When called just after a split point the search
475 // is simpler because we have already probed the hash table, done a null move
476 // search, and searched the first move before splitting, we don't have to repeat
477 // all this work again. We also don't need to store anything to the hash table
478 // here: This is taken care of after we return from the split point.
480 template <NodeType NT>
481 Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth) {
483 const bool PvNode = (NT == PV || NT == Root || NT == SplitPointPV || NT == SplitPointRoot);
484 const bool SpNode = (NT == SplitPointPV || NT == SplitPointNonPV || NT == SplitPointRoot);
485 const bool RootNode = (NT == Root || NT == SplitPointRoot);
487 assert(alpha >= -VALUE_INFINITE && alpha < beta && beta <= VALUE_INFINITE);
488 assert(PvNode || (alpha == beta - 1));
489 assert(depth > DEPTH_ZERO);
491 Move movesSearched[64];
496 Move ttMove, move, excludedMove, bestMove, threatMove;
498 Value bestValue, value, ttValue;
499 Value eval, nullValue, futilityValue;
500 bool inCheck, givesCheck, pvMove, singularExtensionNode;
501 bool captureOrPromotion, dangerous, doFullDepthSearch;
502 int moveCount, playedMoveCount;
504 // Step 1. Initialize node
505 Thread* thisThread = pos.this_thread();
506 moveCount = playedMoveCount = 0;
507 inCheck = pos.checkers();
512 bestMove = sp->bestMove;
513 threatMove = sp->threatMove;
514 bestValue = sp->bestValue;
516 ttMove = excludedMove = MOVE_NONE;
517 ttValue = VALUE_NONE;
519 assert(sp->bestValue > -VALUE_INFINITE && sp->moveCount > 0);
521 goto split_point_start;
524 bestValue = -VALUE_INFINITE;
525 ss->currentMove = threatMove = (ss+1)->excludedMove = bestMove = MOVE_NONE;
526 ss->ply = (ss-1)->ply + 1;
527 (ss+1)->skipNullMove = false; (ss+1)->reduction = DEPTH_ZERO;
528 (ss+2)->killers[0] = (ss+2)->killers[1] = MOVE_NONE;
530 // Used to send selDepth info to GUI
531 if (PvNode && thisThread->maxPly < ss->ply)
532 thisThread->maxPly = ss->ply;
536 // Step 2. Check for aborted search and immediate draw
537 if (Signals.stop || pos.is_draw<true, PvNode>() || ss->ply > MAX_PLY)
538 return DrawValue[pos.side_to_move()];
540 // Step 3. Mate distance pruning. Even if we mate at the next move our score
541 // would be at best mate_in(ss->ply+1), but if alpha is already bigger because
542 // a shorter mate was found upward in the tree then there is no need to search
543 // further, we will never beat current alpha. Same logic but with reversed signs
544 // applies also in the opposite condition of being mated instead of giving mate,
545 // in this case return a fail-high score.
546 alpha = std::max(mated_in(ss->ply), alpha);
547 beta = std::min(mate_in(ss->ply+1), beta);
552 // Step 4. Transposition table lookup
553 // We don't want the score of a partial search to overwrite a previous full search
554 // TT value, so we use a different position key in case of an excluded move.
555 excludedMove = ss->excludedMove;
556 posKey = excludedMove ? pos.exclusion_key() : pos.key();
557 tte = TT.probe(posKey);
558 ttMove = RootNode ? RootMoves[PVIdx].pv[0] : tte ? tte->move() : MOVE_NONE;
559 ttValue = tte ? value_from_tt(tte->value(), ss->ply) : VALUE_NONE;
561 // At PV nodes we check for exact scores, while at non-PV nodes we check for
562 // a fail high/low. Biggest advantage at probing at PV nodes is to have a
563 // smooth experience in analysis mode. We don't probe at Root nodes otherwise
564 // we should also update RootMoveList to avoid bogus output.
567 && tte->depth() >= depth
568 && ttValue != VALUE_NONE // Only in case of TT access race
569 && ( PvNode ? tte->type() == BOUND_EXACT
570 : ttValue >= beta ? (tte->type() & BOUND_LOWER)
571 : (tte->type() & BOUND_UPPER)))
574 ss->currentMove = ttMove; // Can be MOVE_NONE
578 && !pos.is_capture_or_promotion(ttMove)
579 && ttMove != ss->killers[0])
581 ss->killers[1] = ss->killers[0];
582 ss->killers[0] = ttMove;
587 // Step 5. Evaluate the position statically and update parent's gain statistics
589 ss->staticEval = ss->evalMargin = eval = VALUE_NONE;
593 // Never assume anything on values stored in TT
594 if ( (ss->staticEval = eval = tte->static_value()) == VALUE_NONE
595 ||(ss->evalMargin = tte->static_value_margin()) == VALUE_NONE)
596 eval = ss->staticEval = evaluate(pos, ss->evalMargin);
598 // Can ttValue be used as a better position evaluation?
599 if (ttValue != VALUE_NONE)
600 if ( ((tte->type() & BOUND_LOWER) && ttValue > eval)
601 || ((tte->type() & BOUND_UPPER) && ttValue < eval))
606 eval = ss->staticEval = evaluate(pos, ss->evalMargin);
607 TT.store(posKey, VALUE_NONE, BOUND_NONE, DEPTH_NONE, MOVE_NONE,
608 ss->staticEval, ss->evalMargin);
611 // Update gain for the parent non-capture move given the static position
612 // evaluation before and after the move.
613 if ( (move = (ss-1)->currentMove) != MOVE_NULL
614 && (ss-1)->staticEval != VALUE_NONE
615 && ss->staticEval != VALUE_NONE
616 && !pos.captured_piece_type()
617 && type_of(move) == NORMAL)
619 Square to = to_sq(move);
620 H.update_gain(pos.piece_on(to), to, -(ss-1)->staticEval - ss->staticEval);
623 // Step 6. Razoring (is omitted in PV nodes)
625 && depth < 4 * ONE_PLY
627 && eval + razor_margin(depth) < beta
628 && ttMove == MOVE_NONE
629 && abs(beta) < VALUE_MATE_IN_MAX_PLY
630 && !pos.pawn_on_7th(pos.side_to_move()))
632 Value rbeta = beta - razor_margin(depth);
633 Value v = qsearch<NonPV, false>(pos, ss, rbeta-1, rbeta, DEPTH_ZERO);
635 // Logically we should return (v + razor_margin(depth)), but
636 // surprisingly this did slightly weaker in tests.
640 // Step 7. Static null move pruning (is omitted in PV nodes)
641 // We're betting that the opponent doesn't have a move that will reduce
642 // the score by more than futility_margin(depth) if we do a null move.
645 && depth < 4 * ONE_PLY
647 && eval - FutilityMargins[depth][0] >= beta
648 && abs(beta) < VALUE_MATE_IN_MAX_PLY
649 && pos.non_pawn_material(pos.side_to_move()))
650 return eval - FutilityMargins[depth][0];
652 // Step 8. Null move search with verification search (is omitted in PV nodes)
658 && abs(beta) < VALUE_MATE_IN_MAX_PLY
659 && pos.non_pawn_material(pos.side_to_move()))
661 ss->currentMove = MOVE_NULL;
663 // Null move dynamic reduction based on depth
664 Depth R = 3 * ONE_PLY + depth / 4;
666 // Null move dynamic reduction based on value
667 if (eval - PawnValueMg > beta)
670 pos.do_null_move<true>(st);
671 (ss+1)->skipNullMove = true;
672 nullValue = depth-R < ONE_PLY ? -qsearch<NonPV, false>(pos, ss+1, -beta, -alpha, DEPTH_ZERO)
673 : - search<NonPV>(pos, ss+1, -beta, -alpha, depth-R);
674 (ss+1)->skipNullMove = false;
675 pos.do_null_move<false>(st);
677 if (nullValue >= beta)
679 // Do not return unproven mate scores
680 if (nullValue >= VALUE_MATE_IN_MAX_PLY)
683 if (depth < 6 * ONE_PLY)
686 // Do verification search at high depths
687 ss->skipNullMove = true;
688 Value v = search<NonPV>(pos, ss, alpha, beta, depth-R);
689 ss->skipNullMove = false;
695 // The null move failed low, which means that we may be faced with
696 // some kind of threat.
697 threatMove = (ss+1)->currentMove;
700 // Step 9. ProbCut (is omitted in PV nodes)
701 // If we have a very good capture (i.e. SEE > seeValues[captured_piece_type])
702 // and a reduced search returns a value much above beta, we can (almost) safely
703 // prune the previous move.
705 && depth >= 5 * ONE_PLY
708 && excludedMove == MOVE_NONE
709 && abs(beta) < VALUE_MATE_IN_MAX_PLY)
711 Value rbeta = beta + 200;
712 Depth rdepth = depth - ONE_PLY - 3 * ONE_PLY;
714 assert(rdepth >= ONE_PLY);
715 assert((ss-1)->currentMove != MOVE_NONE);
716 assert((ss-1)->currentMove != MOVE_NULL);
718 MovePicker mp(pos, ttMove, H, pos.captured_piece_type());
721 while ((move = mp.next_move<false>()) != MOVE_NONE)
722 if (pos.pl_move_is_legal(move, ci.pinned))
724 ss->currentMove = move;
725 pos.do_move(move, st, ci, pos.move_gives_check(move, ci));
726 value = -search<NonPV>(pos, ss+1, -rbeta, -rbeta+1, rdepth);
733 // Step 10. Internal iterative deepening
734 if ( depth >= (PvNode ? 5 * ONE_PLY : 8 * ONE_PLY)
735 && ttMove == MOVE_NONE
736 && (PvNode || (!inCheck && ss->staticEval + Value(256) >= beta)))
738 Depth d = (PvNode ? depth - 2 * ONE_PLY : depth / 2);
740 ss->skipNullMove = true;
741 search<PvNode ? PV : NonPV>(pos, ss, alpha, beta, d);
742 ss->skipNullMove = false;
744 tte = TT.probe(posKey);
745 ttMove = tte ? tte->move() : MOVE_NONE;
748 split_point_start: // At split points actual search starts from here
750 MovePicker mp(pos, ttMove, depth, H, ss, PvNode ? -VALUE_INFINITE : beta);
752 value = bestValue; // Workaround a bogus 'uninitialized' warning under gcc
753 singularExtensionNode = !RootNode
755 && depth >= (PvNode ? 6 * ONE_PLY : 8 * ONE_PLY)
756 && ttMove != MOVE_NONE
757 && !excludedMove // Recursive singular search is not allowed
758 && (tte->type() & BOUND_LOWER)
759 && tte->depth() >= depth - 3 * ONE_PLY;
761 // Step 11. Loop through moves
762 // Loop through all pseudo-legal moves until no moves remain or a beta cutoff occurs
763 while ((move = mp.next_move<SpNode>()) != MOVE_NONE)
767 if (move == excludedMove)
770 // At root obey the "searchmoves" option and skip moves not listed in Root
771 // Move List, as a consequence any illegal move is also skipped. In MultiPV
772 // mode we also skip PV moves which have been already searched.
773 if (RootNode && !std::count(RootMoves.begin() + PVIdx, RootMoves.end(), move))
778 // Shared counter cannot be decremented later if move turns out to be illegal
779 if (!pos.pl_move_is_legal(move, ci.pinned))
782 moveCount = ++sp->moveCount;
790 Signals.firstRootMove = (moveCount == 1);
792 if (thisThread == Threads.main_thread() && Time::now() - SearchTime > 3000)
793 sync_cout << "info depth " << depth / ONE_PLY
794 << " currmove " << move_to_uci(move, pos.is_chess960())
795 << " currmovenumber " << moveCount + PVIdx << sync_endl;
799 captureOrPromotion = pos.is_capture_or_promotion(move);
800 givesCheck = pos.move_gives_check(move, ci);
801 dangerous = givesCheck
802 || pos.is_passed_pawn_push(move)
803 || type_of(move) == CASTLE
804 || ( captureOrPromotion // Entering a pawn endgame?
805 && type_of(pos.piece_on(to_sq(move))) != PAWN
806 && type_of(move) == NORMAL
807 && ( pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK)
808 - PieceValue[MG][pos.piece_on(to_sq(move))] == VALUE_ZERO));
810 // Step 12. Extend checks and, in PV nodes, also dangerous moves
811 if (PvNode && dangerous)
814 else if (givesCheck && pos.see_sign(move) >= 0)
817 // Singular extension search. If all moves but one fail low on a search of
818 // (alpha-s, beta-s), and just one fails high on (alpha, beta), then that move
819 // is singular and should be extended. To verify this we do a reduced search
820 // on all the other moves but the ttMove, if result is lower than ttValue minus
821 // a margin then we extend ttMove.
822 if ( singularExtensionNode
825 && pos.pl_move_is_legal(move, ci.pinned)
826 && abs(ttValue) < VALUE_KNOWN_WIN)
828 assert(ttValue != VALUE_NONE);
830 Value rBeta = ttValue - int(depth);
831 ss->excludedMove = move;
832 ss->skipNullMove = true;
833 value = search<NonPV>(pos, ss, rBeta - 1, rBeta, depth / 2);
834 ss->skipNullMove = false;
835 ss->excludedMove = MOVE_NONE;
838 ext = rBeta >= beta ? ONE_PLY + ONE_PLY / 2 : ONE_PLY;
841 // Update current move (this must be done after singular extension search)
842 newDepth = depth - ONE_PLY + ext;
844 // Step 13. Futility pruning (is omitted in PV nodes)
846 && !captureOrPromotion
850 && (!threatMove || !prevents_move(pos, move, threatMove))
851 && (bestValue > VALUE_MATED_IN_MAX_PLY || ( bestValue == -VALUE_INFINITE
852 && alpha > VALUE_MATED_IN_MAX_PLY)))
854 // Move count based pruning
855 if (depth < 16 * ONE_PLY && moveCount >= FutilityMoveCounts[depth])
863 // Value based pruning
864 // We illogically ignore reduction condition depth >= 3*ONE_PLY for predicted depth,
865 // but fixing this made program slightly weaker.
866 Depth predictedDepth = newDepth - reduction<PvNode>(depth, moveCount);
867 futilityValue = ss->staticEval + ss->evalMargin + futility_margin(predictedDepth, moveCount)
868 + H.gain(pos.piece_moved(move), to_sq(move));
870 if (futilityValue < beta)
878 // Prune moves with negative SEE at low depths
879 if ( predictedDepth < 2 * ONE_PLY
880 && pos.see_sign(move) < 0)
889 // Check for legality only before to do the move
890 if (!RootNode && !SpNode && !pos.pl_move_is_legal(move, ci.pinned))
896 pvMove = PvNode && moveCount == 1;
897 ss->currentMove = move;
898 if (!SpNode && !captureOrPromotion && playedMoveCount < 64)
899 movesSearched[playedMoveCount++] = move;
901 // Step 14. Make the move
902 pos.do_move(move, st, ci, givesCheck);
904 // Step 15. Reduced depth search (LMR). If the move fails high will be
905 // re-searched at full depth.
906 if ( depth > 3 * ONE_PLY
908 && !captureOrPromotion
910 && ss->killers[0] != move
911 && ss->killers[1] != move)
913 ss->reduction = reduction<PvNode>(depth, moveCount);
914 Depth d = std::max(newDepth - ss->reduction, ONE_PLY);
915 alpha = SpNode ? sp->alpha : alpha;
917 value = -search<NonPV>(pos, ss+1, -(alpha+1), -alpha, d);
919 doFullDepthSearch = (value > alpha && ss->reduction != DEPTH_ZERO);
920 ss->reduction = DEPTH_ZERO;
923 doFullDepthSearch = !pvMove;
925 // Step 16. Full depth search, when LMR is skipped or fails high
926 if (doFullDepthSearch)
928 alpha = SpNode ? sp->alpha : alpha;
929 value = newDepth < ONE_PLY ?
930 givesCheck ? -qsearch<NonPV, true>(pos, ss+1, -(alpha+1), -alpha, DEPTH_ZERO)
931 : -qsearch<NonPV, false>(pos, ss+1, -(alpha+1), -alpha, DEPTH_ZERO)
932 : - search<NonPV>(pos, ss+1, -(alpha+1), -alpha, newDepth);
935 // Only for PV nodes do a full PV search on the first move or after a fail
936 // high, in the latter case search only if value < beta, otherwise let the
937 // parent node to fail low with value <= alpha and to try another move.
938 if (PvNode && (pvMove || (value > alpha && (RootNode || value < beta))))
939 value = newDepth < ONE_PLY ?
940 givesCheck ? -qsearch<PV, true>(pos, ss+1, -beta, -alpha, DEPTH_ZERO)
941 : -qsearch<PV, false>(pos, ss+1, -beta, -alpha, DEPTH_ZERO)
942 : - search<PV>(pos, ss+1, -beta, -alpha, newDepth);
943 // Step 17. Undo move
946 assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
948 // Step 18. Check for new best move
952 bestValue = sp->bestValue;
956 // Finished searching the move. If Signals.stop is true, the search
957 // was aborted because the user interrupted the search or because we
958 // ran out of time. In this case, the return value of the search cannot
959 // be trusted, and we don't update the best move and/or PV.
960 if (Signals.stop || thisThread->cutoff_occurred())
961 return value; // To avoid returning VALUE_INFINITE
965 RootMove& rm = *std::find(RootMoves.begin(), RootMoves.end(), move);
967 // PV move or new best move ?
968 if (pvMove || value > alpha)
971 rm.extract_pv_from_tt(pos);
973 // We record how often the best move has been changed in each
974 // iteration. This information is used for time management: When
975 // the best move changes frequently, we allocate some more time.
980 // All other moves but the PV are set to the lowest value, this
981 // is not a problem when sorting becuase sort is stable and move
982 // position in the list is preserved, just the PV is pushed up.
983 rm.score = -VALUE_INFINITE;
986 if (value > bestValue)
988 bestValue = SpNode ? sp->bestValue = value : value;
992 bestMove = SpNode ? sp->bestMove = move : move;
994 if (PvNode && value < beta) // Update alpha! Always alpha < beta
995 alpha = SpNode ? sp->alpha = value : value;
998 assert(value >= beta); // Fail high
1008 // Step 19. Check for splitting the search
1010 && depth >= Threads.minimumSplitDepth
1011 && Threads.slave_available(thisThread)
1012 && thisThread->splitPointsSize < MAX_SPLITPOINTS_PER_THREAD)
1014 assert(bestValue < beta);
1016 bestValue = Threads.split<FakeSplit>(pos, ss, alpha, beta, bestValue, &bestMove,
1017 depth, threatMove, moveCount, mp, NT);
1018 if (bestValue >= beta)
1026 // Step 20. Check for mate and stalemate
1027 // All legal moves have been searched and if there are no legal moves, it
1028 // must be mate or stalemate. Note that we can have a false positive in
1029 // case of Signals.stop or thread.cutoff_occurred() are set, but this is
1030 // harmless because return value is discarded anyhow in the parent nodes.
1031 // If we are in a singular extension search then return a fail low score.
1032 // A split node has at least one move, the one tried before to be splitted.
1034 return excludedMove ? alpha
1035 : inCheck ? mated_in(ss->ply) : DrawValue[pos.side_to_move()];
1037 // If we have pruned all the moves without searching return a fail-low score
1038 if (bestValue == -VALUE_INFINITE)
1040 assert(!playedMoveCount);
1045 if (bestValue >= beta) // Failed high
1047 TT.store(posKey, value_to_tt(bestValue, ss->ply), BOUND_LOWER, depth,
1048 bestMove, ss->staticEval, ss->evalMargin);
1050 if (!pos.is_capture_or_promotion(bestMove) && !inCheck)
1052 if (bestMove != ss->killers[0])
1054 ss->killers[1] = ss->killers[0];
1055 ss->killers[0] = bestMove;
1058 // Increase history value of the cut-off move
1059 Value bonus = Value(int(depth) * int(depth));
1060 H.add(pos.piece_moved(bestMove), to_sq(bestMove), bonus);
1062 // Decrease history of all the other played non-capture moves
1063 for (int i = 0; i < playedMoveCount - 1; i++)
1065 Move m = movesSearched[i];
1066 H.add(pos.piece_moved(m), to_sq(m), -bonus);
1070 else // Failed low or PV search
1071 TT.store(posKey, value_to_tt(bestValue, ss->ply),
1072 PvNode && bestMove != MOVE_NONE ? BOUND_EXACT : BOUND_UPPER,
1073 depth, bestMove, ss->staticEval, ss->evalMargin);
1075 assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
1081 // qsearch() is the quiescence search function, which is called by the main
1082 // search function when the remaining depth is zero (or, to be more precise,
1083 // less than ONE_PLY).
1085 template <NodeType NT, bool InCheck>
1086 Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth) {
1088 const bool PvNode = (NT == PV);
1090 assert(NT == PV || NT == NonPV);
1091 assert(InCheck == !!pos.checkers());
1092 assert(alpha >= -VALUE_INFINITE && alpha < beta && beta <= VALUE_INFINITE);
1093 assert(PvNode || (alpha == beta - 1));
1094 assert(depth <= DEPTH_ZERO);
1099 Move ttMove, move, bestMove;
1100 Value bestValue, value, ttValue, futilityValue, futilityBase, oldAlpha;
1101 bool givesCheck, enoughMaterial, evasionPrunable;
1104 // To flag BOUND_EXACT a node with eval above alpha and no available moves
1108 ss->currentMove = bestMove = MOVE_NONE;
1109 ss->ply = (ss-1)->ply + 1;
1111 // Check for an instant draw or maximum ply reached
1112 if (pos.is_draw<false, false>() || ss->ply > MAX_PLY)
1113 return DrawValue[pos.side_to_move()];
1115 // Transposition table lookup. At PV nodes, we don't use the TT for
1116 // pruning, but only for move ordering.
1118 tte = TT.probe(posKey);
1119 ttMove = tte ? tte->move() : MOVE_NONE;
1120 ttValue = tte ? value_from_tt(tte->value(),ss->ply) : VALUE_NONE;
1122 // Decide whether or not to include checks, this fixes also the type of
1123 // TT entry depth that we are going to use. Note that in qsearch we use
1124 // only two types of depth in TT: DEPTH_QS_CHECKS or DEPTH_QS_NO_CHECKS.
1125 ttDepth = InCheck || depth >= DEPTH_QS_CHECKS ? DEPTH_QS_CHECKS
1126 : DEPTH_QS_NO_CHECKS;
1128 && tte->depth() >= ttDepth
1129 && ttValue != VALUE_NONE // Only in case of TT access race
1130 && ( PvNode ? tte->type() == BOUND_EXACT
1131 : ttValue >= beta ? (tte->type() & BOUND_LOWER)
1132 : (tte->type() & BOUND_UPPER)))
1134 ss->currentMove = ttMove; // Can be MOVE_NONE
1138 // Evaluate the position statically
1141 ss->staticEval = ss->evalMargin = VALUE_NONE;
1142 bestValue = futilityBase = -VALUE_INFINITE;
1143 enoughMaterial = false;
1149 // Never assume anything on values stored in TT
1150 if ( (ss->staticEval = bestValue = tte->static_value()) == VALUE_NONE
1151 ||(ss->evalMargin = tte->static_value_margin()) == VALUE_NONE)
1152 ss->staticEval = bestValue = evaluate(pos, ss->evalMargin);
1155 ss->staticEval = bestValue = evaluate(pos, ss->evalMargin);
1157 // Stand pat. Return immediately if static value is at least beta
1158 if (bestValue >= beta)
1161 TT.store(pos.key(), value_to_tt(bestValue, ss->ply), BOUND_LOWER,
1162 DEPTH_NONE, MOVE_NONE, ss->staticEval, ss->evalMargin);
1167 if (PvNode && bestValue > alpha)
1170 futilityBase = ss->staticEval + ss->evalMargin + Value(128);
1171 enoughMaterial = pos.non_pawn_material(pos.side_to_move()) > RookValueMg;
1174 // Initialize a MovePicker object for the current position, and prepare
1175 // to search the moves. Because the depth is <= 0 here, only captures,
1176 // queen promotions and checks (only if depth >= DEPTH_QS_CHECKS) will
1178 MovePicker mp(pos, ttMove, depth, H, to_sq((ss-1)->currentMove));
1181 // Loop through the moves until no moves remain or a beta cutoff occurs
1182 while ((move = mp.next_move<false>()) != MOVE_NONE)
1184 assert(is_ok(move));
1186 givesCheck = pos.move_gives_check(move, ci);
1194 && type_of(move) != PROMOTION
1195 && !pos.is_passed_pawn_push(move))
1197 futilityValue = futilityBase
1198 + PieceValue[EG][pos.piece_on(to_sq(move))]
1199 + (type_of(move) == ENPASSANT ? PawnValueEg : VALUE_ZERO);
1201 if (futilityValue < beta)
1203 bestValue = std::max(bestValue, futilityValue);
1207 // Prune moves with negative or equal SEE
1208 if ( futilityBase < beta
1209 && depth < DEPTH_ZERO
1210 && pos.see(move) <= 0)
1212 bestValue = std::max(bestValue, futilityBase);
1217 // Detect non-capture evasions that are candidate to be pruned
1218 evasionPrunable = !PvNode
1220 && bestValue > VALUE_MATED_IN_MAX_PLY
1221 && !pos.is_capture(move)
1222 && !pos.can_castle(pos.side_to_move());
1224 // Don't search moves with negative SEE values
1226 && (!InCheck || evasionPrunable)
1228 && type_of(move) != PROMOTION
1229 && pos.see_sign(move) < 0)
1232 // Don't search useless checks
1237 && !pos.is_capture_or_promotion(move)
1238 && ss->staticEval + PawnValueMg / 4 < beta
1239 && !check_is_dangerous(pos, move, futilityBase, beta))
1242 // Check for legality only before to do the move
1243 if (!pos.pl_move_is_legal(move, ci.pinned))
1246 ss->currentMove = move;
1248 // Make and search the move
1249 pos.do_move(move, st, ci, givesCheck);
1250 value = givesCheck ? -qsearch<NT, true>(pos, ss+1, -beta, -alpha, depth - ONE_PLY)
1251 : -qsearch<NT, false>(pos, ss+1, -beta, -alpha, depth - ONE_PLY);
1252 pos.undo_move(move);
1254 assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
1256 // Check for new best move
1257 if (value > bestValue)
1263 if (PvNode && value < beta) // Update alpha here! Always alpha < beta
1270 TT.store(posKey, value_to_tt(value, ss->ply), BOUND_LOWER,
1271 ttDepth, move, ss->staticEval, ss->evalMargin);
1279 // All legal moves have been searched. A special case: If we're in check
1280 // and no legal moves were found, it is checkmate.
1281 if (InCheck && bestValue == -VALUE_INFINITE)
1282 return mated_in(ss->ply); // Plies to mate from the root
1284 TT.store(posKey, value_to_tt(bestValue, ss->ply),
1285 PvNode && bestValue > oldAlpha ? BOUND_EXACT : BOUND_UPPER,
1286 ttDepth, bestMove, ss->staticEval, ss->evalMargin);
1288 assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
1294 // value_to_tt() adjusts a mate score from "plies to mate from the root" to
1295 // "plies to mate from the current position". Non-mate scores are unchanged.
1296 // The function is called before storing a value to the transposition table.
1298 Value value_to_tt(Value v, int ply) {
1300 assert(v != VALUE_NONE);
1302 return v >= VALUE_MATE_IN_MAX_PLY ? v + ply
1303 : v <= VALUE_MATED_IN_MAX_PLY ? v - ply : v;
1307 // value_from_tt() is the inverse of value_to_tt(): It adjusts a mate score
1308 // from the transposition table (where refers to the plies to mate/be mated
1309 // from current position) to "plies to mate/be mated from the root".
1311 Value value_from_tt(Value v, int ply) {
1313 return v == VALUE_NONE ? VALUE_NONE
1314 : v >= VALUE_MATE_IN_MAX_PLY ? v - ply
1315 : v <= VALUE_MATED_IN_MAX_PLY ? v + ply : v;
1319 // check_is_dangerous() tests if a checking move can be pruned in qsearch()
1321 bool check_is_dangerous(Position& pos, Move move, Value futilityBase, Value beta)
1323 Piece pc = pos.piece_moved(move);
1324 Square from = from_sq(move);
1325 Square to = to_sq(move);
1326 Color them = ~pos.side_to_move();
1327 Square ksq = pos.king_square(them);
1328 Bitboard enemies = pos.pieces(them);
1329 Bitboard kingAtt = pos.attacks_from<KING>(ksq);
1330 Bitboard occ = pos.pieces() ^ from ^ ksq;
1331 Bitboard oldAtt = pos.attacks_from(pc, from, occ);
1332 Bitboard newAtt = pos.attacks_from(pc, to, occ);
1334 // Checks which give opponent's king at most one escape square are dangerous
1335 if (!more_than_one(kingAtt & ~(enemies | newAtt | to)))
1338 // Queen contact check is very dangerous
1339 if (type_of(pc) == QUEEN && (kingAtt & to))
1342 // Creating new double threats with checks is dangerous
1343 Bitboard b = (enemies ^ ksq) & newAtt & ~oldAtt;
1346 // Note that here we generate illegal "double move"!
1347 if (futilityBase + PieceValue[EG][pos.piece_on(pop_lsb(&b))] >= beta)
1355 // prevents_move() tests whether a move (first) is able to defend against an
1356 // opponent's move (second). In this case will not be pruned. Normally the
1357 // second move is the threat move (the best move returned from a null search
1360 bool prevents_move(const Position& pos, Move first, Move second) {
1362 assert(is_ok(first));
1363 assert(is_ok(second));
1365 Square m1from = from_sq(first);
1366 Square m2from = from_sq(second);
1367 Square m1to = to_sq(first);
1368 Square m2to = to_sq(second);
1370 // Don't prune moves of the threatened piece
1374 // If the threatened piece has value less than or equal to the value of the
1375 // threat piece, don't prune moves which defend it.
1376 if ( pos.is_capture(second)
1377 && ( PieceValue[MG][pos.piece_on(m2from)] >= PieceValue[MG][pos.piece_on(m2to)]
1378 || type_of(pos.piece_on(m2from)) == KING))
1380 // Update occupancy as if the piece and the threat are moving
1381 Bitboard occ = pos.pieces() ^ m1from ^ m1to ^ m2from;
1382 Piece piece = pos.piece_on(m1from);
1384 // The moved piece attacks the square 'tto' ?
1385 if (pos.attacks_from(piece, m1to, occ) & m2to)
1388 // Scan for possible X-ray attackers behind the moved piece
1389 Bitboard xray = (attacks_bb< ROOK>(m2to, occ) & pos.pieces(color_of(piece), QUEEN, ROOK))
1390 | (attacks_bb<BISHOP>(m2to, occ) & pos.pieces(color_of(piece), QUEEN, BISHOP));
1392 // Verify attackers are triggered by our move and not already existing
1393 if (xray && (xray ^ (xray & pos.attacks_from<QUEEN>(m2to))))
1397 // Don't prune safe moves which block the threat path
1398 if ((between_bb(m2from, m2to) & m1to) && pos.see_sign(first) >= 0)
1405 // When playing with strength handicap choose best move among the MultiPV set
1406 // using a statistical rule dependent on 'level'. Idea by Heinz van Saanen.
1408 Move Skill::pick_move() {
1412 // PRNG sequence should be not deterministic
1413 for (int i = Time::now() % 50; i > 0; i--)
1414 rk.rand<unsigned>();
1416 // RootMoves are already sorted by score in descending order
1417 int variance = std::min(RootMoves[0].score - RootMoves[PVSize - 1].score, PawnValueMg);
1418 int weakness = 120 - 2 * level;
1419 int max_s = -VALUE_INFINITE;
1422 // Choose best move. For each move score we add two terms both dependent on
1423 // weakness, one deterministic and bigger for weaker moves, and one random,
1424 // then we choose the move with the resulting highest score.
1425 for (size_t i = 0; i < PVSize; i++)
1427 int s = RootMoves[i].score;
1429 // Don't allow crazy blunders even at very low skills
1430 if (i > 0 && RootMoves[i-1].score > s + 2 * PawnValueMg)
1433 // This is our magic formula
1434 s += ( weakness * int(RootMoves[0].score - s)
1435 + variance * (rk.rand<unsigned>() % weakness)) / 128;
1440 best = RootMoves[i].pv[0];
1447 // uci_pv() formats PV information according to UCI protocol. UCI requires
1448 // to send all the PV lines also if are still to be searched and so refer to
1449 // the previous search score.
1451 string uci_pv(const Position& pos, int depth, Value alpha, Value beta) {
1453 std::stringstream s;
1454 Time::point elaspsed = Time::now() - SearchTime + 1;
1455 size_t uciPVSize = std::min((size_t)Options["MultiPV"], RootMoves.size());
1458 for (size_t i = 0; i < Threads.size(); i++)
1459 if (Threads[i].maxPly > selDepth)
1460 selDepth = Threads[i].maxPly;
1462 for (size_t i = 0; i < uciPVSize; i++)
1464 bool updated = (i <= PVIdx);
1466 if (depth == 1 && !updated)
1469 int d = updated ? depth : depth - 1;
1470 Value v = updated ? RootMoves[i].score : RootMoves[i].prevScore;
1472 if (s.rdbuf()->in_avail()) // Not at first line
1475 s << "info depth " << d
1476 << " seldepth " << selDepth
1477 << " score " << (i == PVIdx ? score_to_uci(v, alpha, beta) : score_to_uci(v))
1478 << " nodes " << pos.nodes_searched()
1479 << " nps " << pos.nodes_searched() * 1000 / elaspsed
1480 << " time " << elaspsed
1481 << " multipv " << i + 1
1484 for (size_t j = 0; RootMoves[i].pv[j] != MOVE_NONE; j++)
1485 s << " " << move_to_uci(RootMoves[i].pv[j], pos.is_chess960());
1494 /// RootMove::extract_pv_from_tt() builds a PV by adding moves from the TT table.
1495 /// We consider also failing high nodes and not only BOUND_EXACT nodes so to
1496 /// allow to always have a ponder move even when we fail high at root, and a
1497 /// long PV to print that is important for position analysis.
1499 void RootMove::extract_pv_from_tt(Position& pos) {
1501 StateInfo state[MAX_PLY_PLUS_2], *st = state;
1511 assert(MoveList<LEGAL>(pos).contains(pv[ply]));
1513 pos.do_move(pv[ply++], *st++);
1514 tte = TT.probe(pos.key());
1517 && pos.is_pseudo_legal(m = tte->move()) // Local copy, TT could change
1518 && pos.pl_move_is_legal(m, pos.pinned_pieces())
1520 && (!pos.is_draw<true, true>() || ply < 2));
1522 pv.push_back(MOVE_NONE); // Must be zero-terminating
1524 while (ply) pos.undo_move(pv[--ply]);
1528 /// RootMove::insert_pv_in_tt() is called at the end of a search iteration, and
1529 /// inserts the PV back into the TT. This makes sure the old PV moves are searched
1530 /// first, even if the old TT entries have been overwritten.
1532 void RootMove::insert_pv_in_tt(Position& pos) {
1534 StateInfo state[MAX_PLY_PLUS_2], *st = state;
1539 tte = TT.probe(pos.key());
1541 if (!tte || tte->move() != pv[ply]) // Don't overwrite correct entries
1542 TT.store(pos.key(), VALUE_NONE, BOUND_NONE, DEPTH_NONE, pv[ply], VALUE_NONE, VALUE_NONE);
1544 assert(MoveList<LEGAL>(pos).contains(pv[ply]));
1546 pos.do_move(pv[ply++], *st++);
1548 } while (pv[ply] != MOVE_NONE);
1550 while (ply) pos.undo_move(pv[--ply]);
1554 /// Thread::idle_loop() is where the thread is parked when it has no work to do
1556 void Thread::idle_loop() {
1558 // Pointer 'this_sp' is not null only if we are called from split(), and not
1559 // at the thread creation. So it means we are the split point's master.
1560 const SplitPoint* this_sp = splitPointsSize ? activeSplitPoint : NULL;
1562 assert(!this_sp || (this_sp->master == this && searching));
1564 // If this thread is the master of a split point and all slaves have finished
1565 // their work at this split point, return from the idle loop.
1566 while (!this_sp || this_sp->slavesMask)
1568 // If we are not searching, wait for a condition to be signaled instead of
1569 // wasting CPU time polling for work.
1570 while ((!searching && Threads.sleepWhileIdle) || exit)
1578 // Grab the lock to avoid races with Thread::notify_one()
1581 // If we are master and all slaves have finished then exit idle_loop
1582 if (this_sp && !this_sp->slavesMask)
1588 // Do sleep after retesting sleep conditions under lock protection, in
1589 // particular we need to avoid a deadlock in case a master thread has,
1590 // in the meanwhile, allocated us and sent the notify_one() call before
1591 // we had the chance to grab the lock.
1592 if (!searching && !exit)
1593 sleepCondition.wait(mutex);
1598 // If this thread has been assigned work, launch a search
1603 Threads.mutex.lock();
1606 SplitPoint* sp = activeSplitPoint;
1608 Threads.mutex.unlock();
1610 Stack ss[MAX_PLY_PLUS_2];
1611 Position pos(*sp->pos, this);
1613 memcpy(ss, sp->ss - 1, 4 * sizeof(Stack));
1618 assert(sp->slavesPositions[idx] == NULL);
1620 sp->slavesPositions[idx] = &pos;
1622 switch (sp->nodeType) {
1624 search<SplitPointRoot>(pos, ss+1, sp->alpha, sp->beta, sp->depth);
1627 search<SplitPointPV>(pos, ss+1, sp->alpha, sp->beta, sp->depth);
1630 search<SplitPointNonPV>(pos, ss+1, sp->alpha, sp->beta, sp->depth);
1639 sp->slavesPositions[idx] = NULL;
1640 sp->slavesMask &= ~(1ULL << idx);
1641 sp->nodes += pos.nodes_searched();
1643 // Wake up master thread so to allow it to return from the idle loop
1644 // in case we are the last slave of the split point.
1645 if ( Threads.sleepWhileIdle
1646 && this != sp->master
1649 assert(!sp->master->searching);
1650 sp->master->notify_one();
1653 // After releasing the lock we cannot access anymore any SplitPoint
1654 // related data in a safe way becuase it could have been released under
1655 // our feet by the sp master. Also accessing other Thread objects is
1656 // unsafe because if we are exiting there is a chance are already freed.
1663 /// check_time() is called by the timer thread when the timer triggers. It is
1664 /// used to print debug info and, more important, to detect when we are out of
1665 /// available time and so stop the search.
1669 static Time::point lastInfoTime = Time::now();
1670 int64_t nodes = 0; // Workaround silly 'uninitialized' gcc warning
1672 if (Time::now() - lastInfoTime >= 1000)
1674 lastInfoTime = Time::now();
1683 Threads.mutex.lock();
1685 nodes = RootPos.nodes_searched();
1687 // Loop across all split points and sum accumulated SplitPoint nodes plus
1688 // all the currently active slaves positions.
1689 for (size_t i = 0; i < Threads.size(); i++)
1690 for (int j = 0; j < Threads[i].splitPointsSize; j++)
1692 SplitPoint& sp = Threads[i].splitPoints[j];
1697 Bitboard sm = sp.slavesMask;
1700 Position* pos = sp.slavesPositions[pop_lsb(&sm)];
1701 nodes += pos ? pos->nodes_searched() : 0;
1707 Threads.mutex.unlock();
1710 Time::point elapsed = Time::now() - SearchTime;
1711 bool stillAtFirstMove = Signals.firstRootMove
1712 && !Signals.failedLowAtRoot
1713 && elapsed > TimeMgr.available_time();
1715 bool noMoreTime = elapsed > TimeMgr.maximum_time() - 2 * TimerResolution
1716 || stillAtFirstMove;
1718 if ( (Limits.use_time_management() && noMoreTime)
1719 || (Limits.movetime && elapsed >= Limits.movetime)
1720 || (Limits.nodes && nodes >= Limits.nodes))
1721 Signals.stop = true;