2 Stockfish, a UCI chess playing engine derived from Glaurung 2.1
3 Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
4 Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad
6 Stockfish is free software: you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation, either version 3 of the License, or
9 (at your option) any later version.
11 Stockfish is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>.
43 #include "ucioption.h"
49 //// Local definitions
55 enum NodeType { NonPV, PV };
57 // Set to true to force running with one thread.
58 // Used for debugging SMP code.
59 const bool FakeSplit = false;
61 // ThreadsManager class is used to handle all the threads related stuff in search,
62 // init, starting, parking and, the most important, launching a slave thread at a
63 // split point are what this class does. All the access to shared thread data is
64 // done through this class, so that we avoid using global variables instead.
66 class ThreadsManager {
67 /* As long as the single ThreadsManager object is defined as a global we don't
68 need to explicitly initialize to zero its data members because variables with
69 static storage duration are automatically set to zero before enter main()
75 int active_threads() const { return ActiveThreads; }
76 void set_active_threads(int newActiveThreads) { ActiveThreads = newActiveThreads; }
77 void incrementNodeCounter(int threadID) { threads[threadID].nodes++; }
78 void incrementBetaCounter(Color us, Depth d, int threadID) { threads[threadID].betaCutOffs[us] += unsigned(d); }
80 void resetNodeCounters();
81 void resetBetaCounters();
82 int64_t nodes_searched() const;
83 void get_beta_counters(Color us, int64_t& our, int64_t& their) const;
84 bool available_thread_exists(int master) const;
85 bool thread_is_available(int slave, int master) const;
86 bool thread_should_stop(int threadID) const;
87 void wake_sleeping_threads();
88 void put_threads_to_sleep();
89 void idle_loop(int threadID, SplitPoint* sp);
92 void split(const Position& pos, SearchStack* ss, int ply, Value* alpha, const Value beta, Value* bestValue,
93 Depth depth, bool mateThreat, int* moveCount, MovePicker* mp, bool pvNode);
99 volatile bool AllThreadsShouldExit, AllThreadsShouldSleep;
100 Thread threads[MAX_THREADS];
102 Lock MPLock, WaitLock;
104 #if !defined(_MSC_VER)
105 pthread_cond_t WaitCond;
107 HANDLE SitIdleEvent[MAX_THREADS];
113 // RootMove struct is used for moves at the root at the tree. For each
114 // root move, we store a score, a node count, and a PV (really a refutation
115 // in the case of moves which fail low).
119 RootMove() { nodes = cumulativeNodes = ourBeta = theirBeta = 0ULL; }
121 // RootMove::operator<() is the comparison function used when
122 // sorting the moves. A move m1 is considered to be better
123 // than a move m2 if it has a higher score, or if the moves
124 // have equal score but m1 has the higher beta cut-off count.
125 bool operator<(const RootMove& m) const {
127 return score != m.score ? score < m.score : theirBeta <= m.theirBeta;
132 int64_t nodes, cumulativeNodes, ourBeta, theirBeta;
133 Move pv[PLY_MAX_PLUS_2];
137 // The RootMoveList class is essentially an array of RootMove objects, with
138 // a handful of methods for accessing the data in the individual moves.
143 RootMoveList(Position& pos, Move searchMoves[]);
145 int move_count() const { return count; }
146 Move get_move(int moveNum) const { return moves[moveNum].move; }
147 Value get_move_score(int moveNum) const { return moves[moveNum].score; }
148 void set_move_score(int moveNum, Value score) { moves[moveNum].score = score; }
149 Move get_move_pv(int moveNum, int i) const { return moves[moveNum].pv[i]; }
150 int64_t get_move_cumulative_nodes(int moveNum) const { return moves[moveNum].cumulativeNodes; }
152 void set_move_nodes(int moveNum, int64_t nodes);
153 void set_beta_counters(int moveNum, int64_t our, int64_t their);
154 void set_move_pv(int moveNum, const Move pv[]);
156 void sort_multipv(int n);
159 static const int MaxRootMoves = 500;
160 RootMove moves[MaxRootMoves];
169 // Maximum depth for razoring
170 const Depth RazorDepth = 4 * OnePly;
172 // Dynamic razoring margin based on depth
173 inline Value razor_margin(Depth d) { return Value(0x200 + 0x10 * int(d)); }
175 // Step 8. Null move search with verification search
177 // Null move margin. A null move search will not be done if the static
178 // evaluation of the position is more than NullMoveMargin below beta.
179 const Value NullMoveMargin = Value(0x200);
181 // Maximum depth for use of dynamic threat detection when null move fails low
182 const Depth ThreatDepth = 5 * OnePly;
184 // Step 9. Internal iterative deepening
186 // Minimum depth for use of internal iterative deepening
187 const Depth IIDDepth[2] = { 8 * OnePly /* non-PV */, 5 * OnePly /* PV */};
189 // At Non-PV nodes we do an internal iterative deepening search
190 // when the static evaluation is bigger then beta - IIDMargin.
191 const Value IIDMargin = Value(0x100);
193 // Step 11. Decide the new search depth
195 // Extensions. Configurable UCI options
196 // Array index 0 is used at non-PV nodes, index 1 at PV nodes.
197 Depth CheckExtension[2], SingleEvasionExtension[2], PawnPushTo7thExtension[2];
198 Depth PassedPawnExtension[2], PawnEndgameExtension[2], MateThreatExtension[2];
200 // Minimum depth for use of singular extension
201 const Depth SingularExtensionDepth[2] = { 8 * OnePly /* non-PV */, 6 * OnePly /* PV */};
203 // If the TT move is at least SingularExtensionMargin better then the
204 // remaining ones we will extend it.
205 const Value SingularExtensionMargin = Value(0x20);
207 // Step 12. Futility pruning
209 // Futility margin for quiescence search
210 const Value FutilityMarginQS = Value(0x80);
212 // Futility lookup tables (initialized at startup) and their getter functions
213 int32_t FutilityMarginsMatrix[16][64]; // [depth][moveNumber]
214 int FutilityMoveCountArray[32]; // [depth]
216 inline Value futility_margin(Depth d, int mn) { return Value(d < 7 * OnePly ? FutilityMarginsMatrix[Max(d, 1)][Min(mn, 63)] : 2 * VALUE_INFINITE); }
217 inline int futility_move_count(Depth d) { return d < 16 * OnePly ? FutilityMoveCountArray[d] : 512; }
219 // Step 14. Reduced search
221 // Reduction lookup tables (initialized at startup) and their getter functions
222 int8_t ReductionMatrix[2][64][64]; // [pv][depth][moveNumber]
224 template <NodeType PV>
225 inline Depth reduction(Depth d, int mn) { return (Depth) ReductionMatrix[PV][Min(d / 2, 63)][Min(mn, 63)]; }
227 // Common adjustments
229 // Search depth at iteration 1
230 const Depth InitialDepth = OnePly;
232 // Easy move margin. An easy move candidate must be at least this much
233 // better than the second best move.
234 const Value EasyMoveMargin = Value(0x200);
242 // Scores and number of times the best move changed for each iteration
243 Value ValueByIteration[PLY_MAX_PLUS_2];
244 int BestMoveChangesByIteration[PLY_MAX_PLUS_2];
246 // Search window management
252 // Time managment variables
253 int SearchStartTime, MaxNodes, MaxDepth, MaxSearchTime;
254 int AbsoluteMaxSearchTime, ExtraSearchTime, ExactMaxTime;
255 bool UseTimeManagement, InfiniteSearch, PonderSearch, StopOnPonderhit;
256 bool FirstRootMove, AbortSearch, Quit, AspirationFailLow;
260 std::ofstream LogFile;
262 // Multi-threads related variables
263 Depth MinimumSplitDepth;
264 int MaxThreadsPerSplitPoint;
267 // Node counters, used only by thread[0] but try to keep in different cache
268 // lines (64 bytes each) from the heavy multi-thread read accessed variables.
270 int NodesBetweenPolls = 30000;
277 Value id_loop(const Position& pos, Move searchMoves[]);
278 Value root_search(Position& pos, SearchStack* ss, Move* pv, RootMoveList& rml, Value* alphaPtr, Value* betaPtr);
280 template <NodeType PvNode>
281 Value search(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth, int ply);
283 template <NodeType PvNode>
284 Value qsearch(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth, int ply);
286 template <NodeType PvNode>
287 void sp_search(SplitPoint* sp, int threadID);
289 template <NodeType PvNode>
290 Depth extension(const Position& pos, Move m, bool captureOrPromotion, bool moveIsCheck, bool singleEvasion, bool mateThreat, bool* dangerous);
292 bool connected_moves(const Position& pos, Move m1, Move m2);
293 bool value_is_mate(Value value);
294 Value value_to_tt(Value v, int ply);
295 Value value_from_tt(Value v, int ply);
296 bool move_is_killer(Move m, SearchStack* ss);
297 bool ok_to_use_TT(const TTEntry* tte, Depth depth, Value beta, int ply);
298 bool connected_threat(const Position& pos, Move m, Move threat);
299 Value refine_eval(const TTEntry* tte, Value defaultEval, int ply);
300 void update_history(const Position& pos, Move move, Depth depth, Move movesSearched[], int moveCount);
301 void update_killers(Move m, SearchStack* ss);
302 void update_gains(const Position& pos, Move move, Value before, Value after);
304 int current_search_time();
305 std::string value_to_uci(Value v);
309 void wait_for_stop_or_ponderhit();
310 void init_ss_array(SearchStack* ss, int size);
311 void print_pv_info(const Position& pos, Move pv[], Value alpha, Value beta, Value value);
313 #if !defined(_MSC_VER)
314 void *init_thread(void *threadID);
316 DWORD WINAPI init_thread(LPVOID threadID);
326 /// init_threads(), exit_threads() and nodes_searched() are helpers to
327 /// give accessibility to some TM methods from outside of current file.
329 void init_threads() { TM.init_threads(); }
330 void exit_threads() { TM.exit_threads(); }
331 int64_t nodes_searched() { return TM.nodes_searched(); }
334 /// init_search() is called during startup. It initializes various lookup tables
338 int d; // depth (OnePly == 2)
339 int hd; // half depth (OnePly == 1)
342 // Init reductions array
343 for (hd = 1; hd < 64; hd++) for (mc = 1; mc < 64; mc++)
345 double pvRed = 0.33 + log(double(hd)) * log(double(mc)) / 4.5;
346 double nonPVRed = 0.33 + log(double(hd)) * log(double(mc)) / 2.25;
347 ReductionMatrix[PV][hd][mc] = (int8_t) ( pvRed >= 1.0 ? floor( pvRed * int(OnePly)) : 0);
348 ReductionMatrix[NonPV][hd][mc] = (int8_t) (nonPVRed >= 1.0 ? floor(nonPVRed * int(OnePly)) : 0);
351 // Init futility margins array
352 for (d = 1; d < 16; d++) for (mc = 0; mc < 64; mc++)
353 FutilityMarginsMatrix[d][mc] = 112 * int(log(double(d * d) / 2) / log(2.0) + 1.001) - 8 * mc + 45;
355 // Init futility move count array
356 for (d = 0; d < 32; d++)
357 FutilityMoveCountArray[d] = 3 + (1 << (3 * d / 8));
361 // SearchStack::init() initializes a search stack entry.
362 // Called at the beginning of search() when starting to examine a new node.
363 void SearchStack::init() {
365 currentMove = threatMove = bestMove = MOVE_NONE;
368 // SearchStack::initKillers() initializes killers for a search stack entry
369 void SearchStack::initKillers() {
371 killers[0] = killers[1] = mateKiller = MOVE_NONE;
375 /// perft() is our utility to verify move generation is bug free. All the legal
376 /// moves up to given depth are generated and counted and the sum returned.
378 int perft(Position& pos, Depth depth)
383 MovePicker mp(pos, MOVE_NONE, depth, H);
385 // If we are at the last ply we don't need to do and undo
386 // the moves, just to count them.
387 if (depth <= OnePly) // Replace with '<' to test also qsearch
389 while (mp.get_next_move()) sum++;
393 // Loop through all legal moves
395 while ((move = mp.get_next_move()) != MOVE_NONE)
397 pos.do_move(move, st, ci, pos.move_is_check(move, ci));
398 sum += perft(pos, depth - OnePly);
405 /// think() is the external interface to Stockfish's search, and is called when
406 /// the program receives the UCI 'go' command. It initializes various
407 /// search-related global variables, and calls root_search(). It returns false
408 /// when a quit command is received during the search.
410 bool think(const Position& pos, bool infinite, bool ponder, int time[], int increment[],
411 int movesToGo, int maxDepth, int maxNodes, int maxTime, Move searchMoves[]) {
413 // Initialize global search variables
414 StopOnPonderhit = AbortSearch = Quit = AspirationFailLow = false;
415 MaxSearchTime = AbsoluteMaxSearchTime = ExtraSearchTime = 0;
417 TM.resetNodeCounters();
418 SearchStartTime = get_system_time();
419 ExactMaxTime = maxTime;
422 InfiniteSearch = infinite;
423 PonderSearch = ponder;
424 UseTimeManagement = !ExactMaxTime && !MaxDepth && !MaxNodes && !InfiniteSearch;
426 // Look for a book move, only during games, not tests
427 if (UseTimeManagement && get_option_value_bool("OwnBook"))
429 if (get_option_value_string("Book File") != OpeningBook.file_name())
430 OpeningBook.open(get_option_value_string("Book File"));
432 Move bookMove = OpeningBook.get_move(pos, get_option_value_bool("Best Book Move"));
433 if (bookMove != MOVE_NONE)
436 wait_for_stop_or_ponderhit();
438 cout << "bestmove " << bookMove << endl;
443 // Read UCI option values
444 TT.set_size(get_option_value_int("Hash"));
445 if (button_was_pressed("Clear Hash"))
448 CheckExtension[1] = Depth(get_option_value_int("Check Extension (PV nodes)"));
449 CheckExtension[0] = Depth(get_option_value_int("Check Extension (non-PV nodes)"));
450 SingleEvasionExtension[1] = Depth(get_option_value_int("Single Evasion Extension (PV nodes)"));
451 SingleEvasionExtension[0] = Depth(get_option_value_int("Single Evasion Extension (non-PV nodes)"));
452 PawnPushTo7thExtension[1] = Depth(get_option_value_int("Pawn Push to 7th Extension (PV nodes)"));
453 PawnPushTo7thExtension[0] = Depth(get_option_value_int("Pawn Push to 7th Extension (non-PV nodes)"));
454 PassedPawnExtension[1] = Depth(get_option_value_int("Passed Pawn Extension (PV nodes)"));
455 PassedPawnExtension[0] = Depth(get_option_value_int("Passed Pawn Extension (non-PV nodes)"));
456 PawnEndgameExtension[1] = Depth(get_option_value_int("Pawn Endgame Extension (PV nodes)"));
457 PawnEndgameExtension[0] = Depth(get_option_value_int("Pawn Endgame Extension (non-PV nodes)"));
458 MateThreatExtension[1] = Depth(get_option_value_int("Mate Threat Extension (PV nodes)"));
459 MateThreatExtension[0] = Depth(get_option_value_int("Mate Threat Extension (non-PV nodes)"));
461 MinimumSplitDepth = get_option_value_int("Minimum Split Depth") * OnePly;
462 MaxThreadsPerSplitPoint = get_option_value_int("Maximum Number of Threads per Split Point");
463 MultiPV = get_option_value_int("MultiPV");
464 Chess960 = get_option_value_bool("UCI_Chess960");
465 UseLogFile = get_option_value_bool("Use Search Log");
468 LogFile.open(get_option_value_string("Search Log Filename").c_str(), std::ios::out | std::ios::app);
470 read_weights(pos.side_to_move());
472 // Set the number of active threads
473 int newActiveThreads = get_option_value_int("Threads");
474 if (newActiveThreads != TM.active_threads())
476 TM.set_active_threads(newActiveThreads);
477 init_eval(TM.active_threads());
480 // Wake up sleeping threads
481 TM.wake_sleeping_threads();
484 int myTime = time[pos.side_to_move()];
485 int myIncrement = increment[pos.side_to_move()];
486 if (UseTimeManagement)
488 if (!movesToGo) // Sudden death time control
492 MaxSearchTime = myTime / 30 + myIncrement;
493 AbsoluteMaxSearchTime = Max(myTime / 4, myIncrement - 100);
495 else // Blitz game without increment
497 MaxSearchTime = myTime / 30;
498 AbsoluteMaxSearchTime = myTime / 8;
501 else // (x moves) / (y minutes)
505 MaxSearchTime = myTime / 2;
506 AbsoluteMaxSearchTime = (myTime > 3000)? (myTime - 500) : ((myTime * 3) / 4);
510 MaxSearchTime = myTime / Min(movesToGo, 20);
511 AbsoluteMaxSearchTime = Min((4 * myTime) / movesToGo, myTime / 3);
515 if (get_option_value_bool("Ponder"))
517 MaxSearchTime += MaxSearchTime / 4;
518 MaxSearchTime = Min(MaxSearchTime, AbsoluteMaxSearchTime);
522 // Set best NodesBetweenPolls interval to avoid lagging under
523 // heavy time pressure.
525 NodesBetweenPolls = Min(MaxNodes, 30000);
526 else if (myTime && myTime < 1000)
527 NodesBetweenPolls = 1000;
528 else if (myTime && myTime < 5000)
529 NodesBetweenPolls = 5000;
531 NodesBetweenPolls = 30000;
533 // Write search information to log file
535 LogFile << "Searching: " << pos.to_fen() << endl
536 << "infinite: " << infinite
537 << " ponder: " << ponder
538 << " time: " << myTime
539 << " increment: " << myIncrement
540 << " moves to go: " << movesToGo << endl;
542 // We're ready to start thinking. Call the iterative deepening loop function
543 id_loop(pos, searchMoves);
548 TM.put_threads_to_sleep();
556 // id_loop() is the main iterative deepening loop. It calls root_search
557 // repeatedly with increasing depth until the allocated thinking time has
558 // been consumed, the user stops the search, or the maximum search depth is
561 Value id_loop(const Position& pos, Move searchMoves[]) {
563 Position p(pos, pos.thread());
564 SearchStack ss[PLY_MAX_PLUS_2];
565 Move pv[PLY_MAX_PLUS_2];
566 Move EasyMove = MOVE_NONE;
567 Value value, alpha = -VALUE_INFINITE, beta = VALUE_INFINITE;
569 // Moves to search are verified, copied, scored and sorted
570 RootMoveList rml(p, searchMoves);
572 // Handle special case of searching on a mate/stale position
573 if (rml.move_count() == 0)
576 wait_for_stop_or_ponderhit();
578 return pos.is_check() ? -VALUE_MATE : VALUE_DRAW;
581 // Print RootMoveList startup scoring to the standard output,
582 // so to output information also for iteration 1.
583 cout << "info depth " << 1
584 << "\ninfo depth " << 1
585 << " score " << value_to_uci(rml.get_move_score(0))
586 << " time " << current_search_time()
587 << " nodes " << TM.nodes_searched()
589 << " pv " << rml.get_move(0) << "\n";
594 init_ss_array(ss, PLY_MAX_PLUS_2);
595 pv[0] = pv[1] = MOVE_NONE;
596 ValueByIteration[1] = rml.get_move_score(0);
599 // Is one move significantly better than others after initial scoring ?
600 if ( rml.move_count() == 1
601 || rml.get_move_score(0) > rml.get_move_score(1) + EasyMoveMargin)
602 EasyMove = rml.get_move(0);
604 // Iterative deepening loop
605 while (Iteration < PLY_MAX)
607 // Initialize iteration
609 BestMoveChangesByIteration[Iteration] = 0;
611 cout << "info depth " << Iteration << endl;
613 // Calculate dynamic aspiration window based on previous iterations
614 if (MultiPV == 1 && Iteration >= 6 && abs(ValueByIteration[Iteration - 1]) < VALUE_KNOWN_WIN)
616 int prevDelta1 = ValueByIteration[Iteration - 1] - ValueByIteration[Iteration - 2];
617 int prevDelta2 = ValueByIteration[Iteration - 2] - ValueByIteration[Iteration - 3];
619 AspirationDelta = Max(abs(prevDelta1) + abs(prevDelta2) / 2, 16);
620 AspirationDelta = (AspirationDelta + 7) / 8 * 8; // Round to match grainSize
622 alpha = Max(ValueByIteration[Iteration - 1] - AspirationDelta, -VALUE_INFINITE);
623 beta = Min(ValueByIteration[Iteration - 1] + AspirationDelta, VALUE_INFINITE);
626 // Search to the current depth, rml is updated and sorted, alpha and beta could change
627 value = root_search(p, ss, pv, rml, &alpha, &beta);
629 // Write PV to transposition table, in case the relevant entries have
630 // been overwritten during the search.
634 break; // Value cannot be trusted. Break out immediately!
636 //Save info about search result
637 ValueByIteration[Iteration] = value;
639 // Drop the easy move if differs from the new best move
640 if (pv[0] != EasyMove)
641 EasyMove = MOVE_NONE;
643 if (UseTimeManagement)
646 bool stopSearch = false;
648 // Stop search early if there is only a single legal move,
649 // we search up to Iteration 6 anyway to get a proper score.
650 if (Iteration >= 6 && rml.move_count() == 1)
653 // Stop search early when the last two iterations returned a mate score
655 && abs(ValueByIteration[Iteration]) >= abs(VALUE_MATE) - 100
656 && abs(ValueByIteration[Iteration-1]) >= abs(VALUE_MATE) - 100)
659 // Stop search early if one move seems to be much better than the others
660 int64_t nodes = TM.nodes_searched();
663 && ( ( rml.get_move_cumulative_nodes(0) > (nodes * 85) / 100
664 && current_search_time() > MaxSearchTime / 16)
665 ||( rml.get_move_cumulative_nodes(0) > (nodes * 98) / 100
666 && current_search_time() > MaxSearchTime / 32)))
669 // Add some extra time if the best move has changed during the last two iterations
670 if (Iteration > 5 && Iteration <= 50)
671 ExtraSearchTime = BestMoveChangesByIteration[Iteration] * (MaxSearchTime / 2)
672 + BestMoveChangesByIteration[Iteration-1] * (MaxSearchTime / 3);
674 // Stop search if most of MaxSearchTime is consumed at the end of the
675 // iteration. We probably don't have enough time to search the first
676 // move at the next iteration anyway.
677 if (current_search_time() > ((MaxSearchTime + ExtraSearchTime) * 80) / 128)
683 StopOnPonderhit = true;
689 if (MaxDepth && Iteration >= MaxDepth)
693 // If we are pondering or in infinite search, we shouldn't print the
694 // best move before we are told to do so.
695 if (!AbortSearch && (PonderSearch || InfiniteSearch))
696 wait_for_stop_or_ponderhit();
698 // Print final search statistics
699 cout << "info nodes " << TM.nodes_searched()
701 << " time " << current_search_time() << endl;
703 // Print the best move and the ponder move to the standard output
704 if (pv[0] == MOVE_NONE)
706 pv[0] = rml.get_move(0);
710 assert(pv[0] != MOVE_NONE);
712 cout << "bestmove " << pv[0];
714 if (pv[1] != MOVE_NONE)
715 cout << " ponder " << pv[1];
722 dbg_print_mean(LogFile);
724 if (dbg_show_hit_rate)
725 dbg_print_hit_rate(LogFile);
727 LogFile << "\nNodes: " << TM.nodes_searched()
728 << "\nNodes/second: " << nps()
729 << "\nBest move: " << move_to_san(p, pv[0]);
732 p.do_move(pv[0], st);
733 LogFile << "\nPonder move: "
734 << move_to_san(p, pv[1]) // Works also with MOVE_NONE
737 return rml.get_move_score(0);
741 // root_search() is the function which searches the root node. It is
742 // similar to search_pv except that it uses a different move ordering
743 // scheme, prints some information to the standard output and handles
744 // the fail low/high loops.
746 Value root_search(Position& pos, SearchStack* ss, Move* pv, RootMoveList& rml, Value* alphaPtr, Value* betaPtr) {
753 Depth depth, ext, newDepth;
754 Value value, alpha, beta;
755 bool isCheck, moveIsCheck, captureOrPromotion, dangerous;
756 int researchCountFH, researchCountFL;
758 researchCountFH = researchCountFL = 0;
761 isCheck = pos.is_check();
763 // Step 1. Initialize node (polling is omitted at root)
766 // Step 2. Check for aborted search (omitted at root)
767 // Step 3. Mate distance pruning (omitted at root)
768 // Step 4. Transposition table lookup (omitted at root)
770 // Step 5. Evaluate the position statically
771 // At root we do this only to get reference value for child nodes
772 ss->eval = isCheck ? VALUE_NONE : evaluate(pos, ei);
774 // Step 6. Razoring (omitted at root)
775 // Step 7. Static null move pruning (omitted at root)
776 // Step 8. Null move search with verification search (omitted at root)
777 // Step 9. Internal iterative deepening (omitted at root)
779 // Step extra. Fail low loop
780 // We start with small aspiration window and in case of fail low, we research
781 // with bigger window until we are not failing low anymore.
784 // Sort the moves before to (re)search
787 // Step 10. Loop through all moves in the root move list
788 for (int i = 0; i < rml.move_count() && !AbortSearch; i++)
790 // This is used by time management
791 FirstRootMove = (i == 0);
793 // Save the current node count before the move is searched
794 nodes = TM.nodes_searched();
796 // Reset beta cut-off counters
797 TM.resetBetaCounters();
799 // Pick the next root move, and print the move and the move number to
800 // the standard output.
801 move = ss->currentMove = rml.get_move(i);
803 if (current_search_time() >= 1000)
804 cout << "info currmove " << move
805 << " currmovenumber " << i + 1 << endl;
807 moveIsCheck = pos.move_is_check(move);
808 captureOrPromotion = pos.move_is_capture_or_promotion(move);
810 // Step 11. Decide the new search depth
811 depth = (Iteration - 2) * OnePly + InitialDepth;
812 ext = extension<PV>(pos, move, captureOrPromotion, moveIsCheck, false, false, &dangerous);
813 newDepth = depth + ext;
815 // Step 12. Futility pruning (omitted at root)
817 // Step extra. Fail high loop
818 // If move fails high, we research with bigger window until we are not failing
820 value = - VALUE_INFINITE;
824 // Step 13. Make the move
825 pos.do_move(move, st, ci, moveIsCheck);
827 // Step extra. pv search
828 // We do pv search for first moves (i < MultiPV)
829 // and for fail high research (value > alpha)
830 if (i < MultiPV || value > alpha)
832 // Aspiration window is disabled in multi-pv case
834 alpha = -VALUE_INFINITE;
836 // Full depth PV search, done on first move or after a fail high
837 value = -search<PV>(pos, ss+1, -beta, -alpha, newDepth, 1);
841 // Step 14. Reduced search
842 // if the move fails high will be re-searched at full depth
843 bool doFullDepthSearch = true;
845 if ( depth >= 3 * OnePly
847 && !captureOrPromotion
848 && !move_is_castle(move))
850 ss->reduction = reduction<PV>(depth, i - MultiPV + 2);
853 assert(newDepth-ss->reduction >= OnePly);
855 // Reduced depth non-pv search using alpha as upperbound
856 value = -search<NonPV>(pos, ss+1, -(alpha+1), -alpha, newDepth-ss->reduction, 1);
857 doFullDepthSearch = (value > alpha);
860 // The move failed high, but if reduction is very big we could
861 // face a false positive, retry with a less aggressive reduction,
862 // if the move fails high again then go with full depth search.
863 if (doFullDepthSearch && ss->reduction > 2 * OnePly)
865 assert(newDepth - OnePly >= OnePly);
867 ss->reduction = OnePly;
868 value = -search<NonPV>(pos, ss+1, -(alpha+1), -alpha, newDepth-ss->reduction, 1);
869 doFullDepthSearch = (value > alpha);
871 ss->reduction = Depth(0); // Restore original reduction
874 // Step 15. Full depth search
875 if (doFullDepthSearch)
877 // Full depth non-pv search using alpha as upperbound
878 value = -search<NonPV>(pos, ss+1, -(alpha+1), -alpha, newDepth, 1);
880 // If we are above alpha then research at same depth but as PV
881 // to get a correct score or eventually a fail high above beta.
883 value = -search<PV>(pos, ss+1, -beta, -alpha, newDepth, 1);
887 // Step 16. Undo move
890 // Can we exit fail high loop ?
891 if (AbortSearch || value < beta)
894 // We are failing high and going to do a research. It's important to update
895 // the score before research in case we run out of time while researching.
896 rml.set_move_score(i, value);
898 TT.extract_pv(pos, move, pv, PLY_MAX);
899 rml.set_move_pv(i, pv);
901 // Print information to the standard output
902 print_pv_info(pos, pv, alpha, beta, value);
904 // Prepare for a research after a fail high, each time with a wider window
905 *betaPtr = beta = Min(beta + AspirationDelta * (1 << researchCountFH), VALUE_INFINITE);
908 } // End of fail high loop
910 // Finished searching the move. If AbortSearch is true, the search
911 // was aborted because the user interrupted the search or because we
912 // ran out of time. In this case, the return value of the search cannot
913 // be trusted, and we break out of the loop without updating the best
918 // Remember beta-cutoff and searched nodes counts for this move. The
919 // info is used to sort the root moves for the next iteration.
921 TM.get_beta_counters(pos.side_to_move(), our, their);
922 rml.set_beta_counters(i, our, their);
923 rml.set_move_nodes(i, TM.nodes_searched() - nodes);
925 assert(value >= -VALUE_INFINITE && value <= VALUE_INFINITE);
926 assert(value < beta);
928 // Step 17. Check for new best move
929 if (value <= alpha && i >= MultiPV)
930 rml.set_move_score(i, -VALUE_INFINITE);
933 // PV move or new best move!
936 rml.set_move_score(i, value);
938 TT.extract_pv(pos, move, pv, PLY_MAX);
939 rml.set_move_pv(i, pv);
943 // We record how often the best move has been changed in each
944 // iteration. This information is used for time managment: When
945 // the best move changes frequently, we allocate some more time.
947 BestMoveChangesByIteration[Iteration]++;
949 // Print information to the standard output
950 print_pv_info(pos, pv, alpha, beta, value);
952 // Raise alpha to setup proper non-pv search upper bound
959 for (int j = 0; j < Min(MultiPV, rml.move_count()); j++)
961 cout << "info multipv " << j + 1
962 << " score " << value_to_uci(rml.get_move_score(j))
963 << " depth " << (j <= i ? Iteration : Iteration - 1)
964 << " time " << current_search_time()
965 << " nodes " << TM.nodes_searched()
969 for (int k = 0; rml.get_move_pv(j, k) != MOVE_NONE && k < PLY_MAX; k++)
970 cout << rml.get_move_pv(j, k) << " ";
974 alpha = rml.get_move_score(Min(i, MultiPV - 1));
976 } // PV move or new best move
978 assert(alpha >= *alphaPtr);
980 AspirationFailLow = (alpha == *alphaPtr);
982 if (AspirationFailLow && StopOnPonderhit)
983 StopOnPonderhit = false;
986 // Can we exit fail low loop ?
987 if (AbortSearch || !AspirationFailLow)
990 // Prepare for a research after a fail low, each time with a wider window
991 *alphaPtr = alpha = Max(alpha - AspirationDelta * (1 << researchCountFL), -VALUE_INFINITE);
996 // Sort the moves before to return
1003 // search<>() is the main search function for both PV and non-PV nodes
1005 template <NodeType PvNode>
1006 Value search(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth, int ply) {
1008 assert(alpha >= -VALUE_INFINITE && alpha <= VALUE_INFINITE);
1009 assert(beta > alpha && beta <= VALUE_INFINITE);
1010 assert(PvNode || alpha == beta - 1);
1011 assert(ply > 0 && ply < PLY_MAX);
1012 assert(pos.thread() >= 0 && pos.thread() < TM.active_threads());
1014 Move movesSearched[256];
1019 Move ttMove, move, excludedMove;
1020 Depth ext, newDepth;
1021 Value bestValue, value, oldAlpha;
1022 Value refinedValue, nullValue, futilityValueScaled; // Non-PV specific
1023 bool isCheck, singleEvasion, singularExtensionNode, moveIsCheck, captureOrPromotion, dangerous;
1024 bool mateThreat = false;
1026 int threadID = pos.thread();
1027 refinedValue = bestValue = value = -VALUE_INFINITE;
1030 // Step 1. Initialize node and poll. Polling can abort search
1031 TM.incrementNodeCounter(threadID);
1033 (ss+2)->initKillers();
1035 if (threadID == 0 && ++NodesSincePoll > NodesBetweenPolls)
1041 // Step 2. Check for aborted search and immediate draw
1042 if (AbortSearch || TM.thread_should_stop(threadID))
1045 if (pos.is_draw() || ply >= PLY_MAX - 1)
1048 // Step 3. Mate distance pruning
1049 alpha = Max(value_mated_in(ply), alpha);
1050 beta = Min(value_mate_in(ply+1), beta);
1054 // Step 4. Transposition table lookup
1056 // We don't want the score of a partial search to overwrite a previous full search
1057 // TT value, so we use a different position key in case of an excluded move exists.
1058 excludedMove = ss->excludedMove;
1059 posKey = excludedMove ? pos.get_exclusion_key() : pos.get_key();
1061 tte = TT.retrieve(posKey);
1062 ttMove = (tte ? tte->move() : MOVE_NONE);
1064 // At PV nodes, we don't use the TT for pruning, but only for move ordering.
1065 // This is to avoid problems in the following areas:
1067 // * Repetition draw detection
1068 // * Fifty move rule detection
1069 // * Searching for a mate
1070 // * Printing of full PV line
1072 if (!PvNode && tte && ok_to_use_TT(tte, depth, beta, ply))
1074 // Refresh tte entry to avoid aging
1075 TT.store(posKey, tte->value(), tte->type(), tte->depth(), ttMove, tte->static_value(), tte->king_danger());
1077 ss->currentMove = ttMove; // Can be MOVE_NONE
1078 return value_from_tt(tte->value(), ply);
1081 // Step 5. Evaluate the position statically
1082 // At PV nodes we do this only to update gain statistics
1083 isCheck = pos.is_check();
1088 assert(tte->static_value() != VALUE_NONE);
1089 ss->eval = tte->static_value();
1090 ei.kingDanger[pos.side_to_move()] = tte->king_danger();
1093 ss->eval = evaluate(pos, ei);
1095 refinedValue = refine_eval(tte, ss->eval, ply); // Enhance accuracy with TT value if possible
1096 update_gains(pos, (ss-1)->currentMove, (ss-1)->eval, ss->eval);
1099 ss->eval = VALUE_NONE;
1101 // Step 6. Razoring (is omitted in PV nodes)
1103 && depth < RazorDepth
1105 && refinedValue < beta - razor_margin(depth)
1106 && ttMove == MOVE_NONE
1107 && (ss-1)->currentMove != MOVE_NULL
1108 && !value_is_mate(beta)
1109 && !pos.has_pawn_on_7th(pos.side_to_move()))
1111 // Pass ss->eval to qsearch() and avoid an evaluate call
1113 TT.store(posKey, VALUE_NONE, VALUE_TYPE_NONE, DEPTH_NONE, MOVE_NONE, ss->eval, ei.kingDanger[pos.side_to_move()]);
1115 Value rbeta = beta - razor_margin(depth);
1116 Value v = qsearch<NonPV>(pos, ss, rbeta-1, rbeta, Depth(0), ply);
1118 // Logically we should return (v + razor_margin(depth)), but
1119 // surprisingly this did slightly weaker in tests.
1123 // Step 7. Static null move pruning (is omitted in PV nodes)
1124 // We're betting that the opponent doesn't have a move that will reduce
1125 // the score by more than futility_margin(depth) if we do a null move.
1127 && !ss->skipNullMove
1128 && depth < RazorDepth
1129 && refinedValue >= beta + futility_margin(depth, 0)
1131 && !value_is_mate(beta)
1132 && pos.non_pawn_material(pos.side_to_move()))
1133 return refinedValue - futility_margin(depth, 0);
1135 // Step 8. Null move search with verification search (is omitted in PV nodes)
1136 // When we jump directly to qsearch() we do a null move only if static value is
1137 // at least beta. Otherwise we do a null move if static value is not more than
1138 // NullMoveMargin under beta.
1140 && !ss->skipNullMove
1142 && refinedValue >= beta - (depth >= 4 * OnePly ? NullMoveMargin : 0)
1144 && !value_is_mate(beta)
1145 && pos.non_pawn_material(pos.side_to_move()))
1147 ss->currentMove = MOVE_NULL;
1149 // Null move dynamic reduction based on depth
1150 int R = 3 + (depth >= 5 * OnePly ? depth / 8 : 0);
1152 // Null move dynamic reduction based on value
1153 if (refinedValue - beta > PawnValueMidgame)
1156 pos.do_null_move(st);
1157 (ss+1)->skipNullMove = true;
1159 nullValue = depth-R*OnePly < OnePly ? -qsearch<NonPV>(pos, ss+1, -beta, -alpha, Depth(0), ply+1)
1160 : - search<NonPV>(pos, ss+1, -beta, -alpha, depth-R*OnePly, ply+1);
1161 (ss+1)->skipNullMove = false;
1162 pos.undo_null_move();
1164 if (nullValue >= beta)
1166 // Do not return unproven mate scores
1167 if (nullValue >= value_mate_in(PLY_MAX))
1170 if (depth < 6 * OnePly)
1173 // Do verification search at high depths
1174 ss->skipNullMove = true;
1175 Value v = search<NonPV>(pos, ss, alpha, beta, depth-R*OnePly, ply);
1176 ss->skipNullMove = false;
1183 // The null move failed low, which means that we may be faced with
1184 // some kind of threat. If the previous move was reduced, check if
1185 // the move that refuted the null move was somehow connected to the
1186 // move which was reduced. If a connection is found, return a fail
1187 // low score (which will cause the reduced move to fail high in the
1188 // parent node, which will trigger a re-search with full depth).
1189 if (nullValue == value_mated_in(ply + 2))
1192 ss->threatMove = (ss+1)->currentMove;
1193 if ( depth < ThreatDepth
1194 && (ss-1)->reduction
1195 && connected_moves(pos, (ss-1)->currentMove, ss->threatMove))
1200 // Step 9. Internal iterative deepening
1201 if ( depth >= IIDDepth[PvNode]
1202 && ttMove == MOVE_NONE
1203 && (PvNode || (!isCheck && ss->eval >= beta - IIDMargin)))
1205 Depth d = (PvNode ? depth - 2 * OnePly : depth / 2);
1207 ss->skipNullMove = true;
1208 search<PvNode>(pos, ss, alpha, beta, d, ply);
1209 ss->skipNullMove = false;
1211 ttMove = ss->bestMove;
1212 tte = TT.retrieve(posKey);
1215 // Expensive mate threat detection (only for PV nodes)
1217 mateThreat = pos.has_mate_threat(opposite_color(pos.side_to_move()));
1219 // Initialize a MovePicker object for the current position
1220 MovePicker mp = MovePicker(pos, ttMove, depth, H, ss, (PvNode ? -VALUE_INFINITE : beta));
1222 singleEvasion = isCheck && mp.number_of_evasions() == 1;
1223 singularExtensionNode = depth >= SingularExtensionDepth[PvNode]
1224 && tte && tte->move()
1225 && !excludedMove // Do not allow recursive singular extension search
1226 && is_lower_bound(tte->type())
1227 && tte->depth() >= depth - 3 * OnePly;
1229 // Step 10. Loop through moves
1230 // Loop through all legal moves until no moves remain or a beta cutoff occurs
1231 while ( bestValue < beta
1232 && (move = mp.get_next_move()) != MOVE_NONE
1233 && !TM.thread_should_stop(threadID))
1235 assert(move_is_ok(move));
1237 if (move == excludedMove)
1240 moveIsCheck = pos.move_is_check(move, ci);
1241 captureOrPromotion = pos.move_is_capture_or_promotion(move);
1243 // Step 11. Decide the new search depth
1244 ext = extension<PvNode>(pos, move, captureOrPromotion, moveIsCheck, singleEvasion, mateThreat, &dangerous);
1246 // Singular extension search. If all moves but one fail low on a search of (alpha-s, beta-s),
1247 // and just one fails high on (alpha, beta), then that move is singular and should be extended.
1248 // To verify this we do a reduced search on all the other moves but the ttMove, if result is
1249 // lower then ttValue minus a margin then we extend ttMove.
1250 if ( singularExtensionNode
1251 && move == tte->move()
1254 Value ttValue = value_from_tt(tte->value(), ply);
1256 if (abs(ttValue) < VALUE_KNOWN_WIN)
1258 Value b = ttValue - SingularExtensionMargin;
1259 ss->excludedMove = move;
1260 ss->skipNullMove = true;
1261 Value v = search<NonPV>(pos, ss, b - 1, b, depth / 2, ply);
1262 ss->skipNullMove = false;
1263 ss->excludedMove = MOVE_NONE;
1269 newDepth = depth - OnePly + ext;
1271 // Update current move (this must be done after singular extension search)
1272 movesSearched[moveCount++] = ss->currentMove = move;
1274 // Step 12. Futility pruning (is omitted in PV nodes)
1276 && !captureOrPromotion
1280 && !move_is_castle(move))
1282 // Move count based pruning
1283 if ( moveCount >= futility_move_count(depth)
1284 && !(ss->threatMove && connected_threat(pos, move, ss->threatMove))
1285 && bestValue > value_mated_in(PLY_MAX))
1288 // Value based pruning
1289 // We illogically ignore reduction condition depth >= 3*OnePly for predicted depth,
1290 // but fixing this made program slightly weaker.
1291 Depth predictedDepth = newDepth - reduction<NonPV>(depth, moveCount);
1292 futilityValueScaled = ss->eval + futility_margin(predictedDepth, moveCount)
1293 + H.gain(pos.piece_on(move_from(move)), move_to(move));
1295 if (futilityValueScaled < beta)
1297 if (futilityValueScaled > bestValue)
1298 bestValue = futilityValueScaled;
1303 // Step 13. Make the move
1304 pos.do_move(move, st, ci, moveIsCheck);
1306 // Step extra. pv search (only in PV nodes)
1307 // The first move in list is the expected PV
1308 if (PvNode && moveCount == 1)
1309 value = newDepth < OnePly ? -qsearch<PV>(pos, ss+1, -beta, -alpha, Depth(0), ply+1)
1310 : - search<PV>(pos, ss+1, -beta, -alpha, newDepth, ply+1);
1313 // Step 14. Reduced depth search
1314 // If the move fails high will be re-searched at full depth.
1315 bool doFullDepthSearch = true;
1317 if ( depth >= 3 * OnePly
1318 && !captureOrPromotion
1320 && !move_is_castle(move)
1321 && !move_is_killer(move, ss))
1323 ss->reduction = reduction<PvNode>(depth, moveCount);
1326 Depth d = newDepth - ss->reduction;
1327 value = d < OnePly ? -qsearch<NonPV>(pos, ss+1, -(alpha+1), -alpha, Depth(0), ply+1)
1328 : - search<NonPV>(pos, ss+1, -(alpha+1), -alpha, d, ply+1);
1330 doFullDepthSearch = (value > alpha);
1333 // The move failed high, but if reduction is very big we could
1334 // face a false positive, retry with a less aggressive reduction,
1335 // if the move fails high again then go with full depth search.
1336 if (doFullDepthSearch && ss->reduction > 2 * OnePly)
1338 assert(newDepth - OnePly >= OnePly);
1340 ss->reduction = OnePly;
1341 value = -search<NonPV>(pos, ss+1, -(alpha+1), -alpha, newDepth-ss->reduction, ply+1);
1342 doFullDepthSearch = (value > alpha);
1344 ss->reduction = Depth(0); // Restore original reduction
1347 // Step 15. Full depth search
1348 if (doFullDepthSearch)
1350 value = newDepth < OnePly ? -qsearch<NonPV>(pos, ss+1, -(alpha+1), -alpha, Depth(0), ply+1)
1351 : - search<NonPV>(pos, ss+1, -(alpha+1), -alpha, newDepth, ply+1);
1353 // Step extra. pv search (only in PV nodes)
1354 // Search only for possible new PV nodes, if instead value >= beta then
1355 // parent node fails low with value <= alpha and tries another move.
1356 if (PvNode && value > alpha && value < beta)
1357 value = newDepth < OnePly ? -qsearch<PV>(pos, ss+1, -beta, -alpha, Depth(0), ply+1)
1358 : - search<PV>(pos, ss+1, -beta, -alpha, newDepth, ply+1);
1362 // Step 16. Undo move
1363 pos.undo_move(move);
1365 assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
1367 // Step 17. Check for new best move
1368 if (value > bestValue)
1373 if (PvNode && value < beta) // This guarantees that always: alpha < beta
1376 if (value == value_mate_in(ply + 1))
1377 ss->mateKiller = move;
1379 ss->bestMove = move;
1383 // Step 18. Check for split
1384 if ( depth >= MinimumSplitDepth
1385 && TM.active_threads() > 1
1387 && TM.available_thread_exists(threadID)
1389 && !TM.thread_should_stop(threadID)
1391 TM.split<FakeSplit>(pos, ss, ply, &alpha, beta, &bestValue, depth,
1392 mateThreat, &moveCount, &mp, PvNode);
1395 // Step 19. Check for mate and stalemate
1396 // All legal moves have been searched and if there are
1397 // no legal moves, it must be mate or stalemate.
1398 // If one move was excluded return fail low score.
1400 return excludedMove ? oldAlpha : (isCheck ? value_mated_in(ply) : VALUE_DRAW);
1402 // Step 20. Update tables
1403 // If the search is not aborted, update the transposition table,
1404 // history counters, and killer moves.
1405 if (AbortSearch || TM.thread_should_stop(threadID))
1408 ValueType f = (bestValue <= oldAlpha ? VALUE_TYPE_UPPER : bestValue >= beta ? VALUE_TYPE_LOWER : VALUE_TYPE_EXACT);
1409 move = (bestValue <= oldAlpha ? MOVE_NONE : ss->bestMove);
1410 TT.store(posKey, value_to_tt(bestValue, ply), f, depth, move, ss->eval, ei.kingDanger[pos.side_to_move()]);
1412 // Update killers and history only for non capture moves that fails high
1413 if (bestValue >= beta)
1415 TM.incrementBetaCounter(pos.side_to_move(), depth, threadID);
1416 if (!pos.move_is_capture_or_promotion(move))
1418 update_history(pos, move, depth, movesSearched, moveCount);
1419 update_killers(move, ss);
1423 assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
1429 // qsearch() is the quiescence search function, which is called by the main
1430 // search function when the remaining depth is zero (or, to be more precise,
1431 // less than OnePly).
1433 template <NodeType PvNode>
1434 Value qsearch(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth, int ply) {
1436 assert(alpha >= -VALUE_INFINITE && alpha <= VALUE_INFINITE);
1437 assert(beta >= -VALUE_INFINITE && beta <= VALUE_INFINITE);
1438 assert(PvNode || alpha == beta - 1);
1440 assert(ply > 0 && ply < PLY_MAX);
1441 assert(pos.thread() >= 0 && pos.thread() < TM.active_threads());
1446 Value bestValue, value, futilityValue, futilityBase;
1447 bool isCheck, deepChecks, enoughMaterial, moveIsCheck, evasionPrunable;
1449 Value oldAlpha = alpha;
1451 TM.incrementNodeCounter(pos.thread());
1452 ss->bestMove = ss->currentMove = MOVE_NONE;
1454 // Check for an instant draw or maximum ply reached
1455 if (pos.is_draw() || ply >= PLY_MAX - 1)
1458 // Transposition table lookup. At PV nodes, we don't use the TT for
1459 // pruning, but only for move ordering.
1460 tte = TT.retrieve(pos.get_key());
1461 ttMove = (tte ? tte->move() : MOVE_NONE);
1463 if (!PvNode && tte && ok_to_use_TT(tte, depth, beta, ply))
1465 ss->currentMove = ttMove; // Can be MOVE_NONE
1466 return value_from_tt(tte->value(), ply);
1469 isCheck = pos.is_check();
1471 // Evaluate the position statically
1474 bestValue = futilityBase = -VALUE_INFINITE;
1475 ss->eval = VALUE_NONE;
1476 deepChecks = enoughMaterial = false;
1482 assert(tte->static_value() != VALUE_NONE);
1483 ei.kingDanger[pos.side_to_move()] = tte->king_danger();
1484 bestValue = tte->static_value();
1487 bestValue = evaluate(pos, ei);
1489 ss->eval = bestValue;
1490 update_gains(pos, (ss-1)->currentMove, (ss-1)->eval, ss->eval);
1492 // Stand pat. Return immediately if static value is at least beta
1493 if (bestValue >= beta)
1496 TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_LOWER, DEPTH_NONE, MOVE_NONE, ss->eval, ei.kingDanger[pos.side_to_move()]);
1501 if (PvNode && bestValue > alpha)
1504 // If we are near beta then try to get a cutoff pushing checks a bit further
1505 deepChecks = (depth == -OnePly && bestValue >= beta - PawnValueMidgame / 8);
1507 // Futility pruning parameters, not needed when in check
1508 futilityBase = bestValue + FutilityMarginQS + ei.kingDanger[pos.side_to_move()];
1509 enoughMaterial = pos.non_pawn_material(pos.side_to_move()) > RookValueMidgame;
1512 // Initialize a MovePicker object for the current position, and prepare
1513 // to search the moves. Because the depth is <= 0 here, only captures,
1514 // queen promotions and checks (only if depth == 0 or depth == -OnePly
1515 // and we are near beta) will be generated.
1516 MovePicker mp = MovePicker(pos, ttMove, deepChecks ? Depth(0) : depth, H);
1519 // Loop through the moves until no moves remain or a beta cutoff occurs
1520 while ( alpha < beta
1521 && (move = mp.get_next_move()) != MOVE_NONE)
1523 assert(move_is_ok(move));
1525 moveIsCheck = pos.move_is_check(move, ci);
1533 && !move_is_promotion(move)
1534 && !pos.move_is_passed_pawn_push(move))
1536 futilityValue = futilityBase
1537 + pos.endgame_value_of_piece_on(move_to(move))
1538 + (move_is_ep(move) ? PawnValueEndgame : Value(0));
1540 if (futilityValue < alpha)
1542 if (futilityValue > bestValue)
1543 bestValue = futilityValue;
1548 // Detect blocking evasions that are candidate to be pruned
1549 evasionPrunable = isCheck
1550 && bestValue > value_mated_in(PLY_MAX)
1551 && !pos.move_is_capture(move)
1552 && pos.type_of_piece_on(move_from(move)) != KING
1553 && !pos.can_castle(pos.side_to_move());
1555 // Don't search moves with negative SEE values
1557 && (!isCheck || evasionPrunable)
1559 && !move_is_promotion(move)
1560 && pos.see_sign(move) < 0)
1563 // Update current move
1564 ss->currentMove = move;
1566 // Make and search the move
1567 pos.do_move(move, st, ci, moveIsCheck);
1568 value = -qsearch<PvNode>(pos, ss+1, -beta, -alpha, depth-OnePly, ply+1);
1569 pos.undo_move(move);
1571 assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
1574 if (value > bestValue)
1580 ss->bestMove = move;
1585 // All legal moves have been searched. A special case: If we're in check
1586 // and no legal moves were found, it is checkmate.
1587 if (isCheck && bestValue == -VALUE_INFINITE)
1588 return value_mated_in(ply);
1590 // Update transposition table
1591 Depth d = (depth == Depth(0) ? Depth(0) : Depth(-1));
1592 ValueType f = (bestValue <= oldAlpha ? VALUE_TYPE_UPPER : bestValue >= beta ? VALUE_TYPE_LOWER : VALUE_TYPE_EXACT);
1593 TT.store(pos.get_key(), value_to_tt(bestValue, ply), f, d, ss->bestMove, ss->eval, ei.kingDanger[pos.side_to_move()]);
1595 // Update killers only for checking moves that fails high
1596 if ( bestValue >= beta
1597 && !pos.move_is_capture_or_promotion(ss->bestMove))
1598 update_killers(ss->bestMove, ss);
1600 assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
1606 // sp_search() is used to search from a split point. This function is called
1607 // by each thread working at the split point. It is similar to the normal
1608 // search() function, but simpler. Because we have already probed the hash
1609 // table, done a null move search, and searched the first move before
1610 // splitting, we don't have to repeat all this work in sp_search(). We
1611 // also don't need to store anything to the hash table here: This is taken
1612 // care of after we return from the split point.
1614 template <NodeType PvNode>
1615 void sp_search(SplitPoint* sp, int threadID) {
1617 assert(threadID >= 0 && threadID < TM.active_threads());
1618 assert(TM.active_threads() > 1);
1622 Depth ext, newDepth;
1624 Value futilityValueScaled; // NonPV specific
1625 bool isCheck, moveIsCheck, captureOrPromotion, dangerous;
1627 value = -VALUE_INFINITE;
1629 Position pos(*sp->pos, threadID);
1631 SearchStack* ss = sp->sstack[threadID] + 1;
1632 isCheck = pos.is_check();
1634 // Step 10. Loop through moves
1635 // Loop through all legal moves until no moves remain or a beta cutoff occurs
1636 lock_grab(&(sp->lock));
1638 while ( sp->bestValue < sp->beta
1639 && (move = sp->mp->get_next_move()) != MOVE_NONE
1640 && !TM.thread_should_stop(threadID))
1642 moveCount = ++sp->moveCount;
1643 lock_release(&(sp->lock));
1645 assert(move_is_ok(move));
1647 moveIsCheck = pos.move_is_check(move, ci);
1648 captureOrPromotion = pos.move_is_capture_or_promotion(move);
1650 // Step 11. Decide the new search depth
1651 ext = extension<PvNode>(pos, move, captureOrPromotion, moveIsCheck, false, sp->mateThreat, &dangerous);
1652 newDepth = sp->depth - OnePly + ext;
1654 // Update current move
1655 ss->currentMove = move;
1657 // Step 12. Futility pruning (is omitted in PV nodes)
1659 && !captureOrPromotion
1662 && !move_is_castle(move))
1664 // Move count based pruning
1665 if ( moveCount >= futility_move_count(sp->depth)
1666 && !(ss->threatMove && connected_threat(pos, move, ss->threatMove))
1667 && sp->bestValue > value_mated_in(PLY_MAX))
1669 lock_grab(&(sp->lock));
1673 // Value based pruning
1674 Depth predictedDepth = newDepth - reduction<NonPV>(sp->depth, moveCount);
1675 futilityValueScaled = ss->eval + futility_margin(predictedDepth, moveCount)
1676 + H.gain(pos.piece_on(move_from(move)), move_to(move));
1678 if (futilityValueScaled < sp->beta)
1680 lock_grab(&(sp->lock));
1682 if (futilityValueScaled > sp->bestValue)
1683 sp->bestValue = futilityValueScaled;
1688 // Step 13. Make the move
1689 pos.do_move(move, st, ci, moveIsCheck);
1691 // Step 14. Reduced search
1692 // If the move fails high will be re-searched at full depth.
1693 bool doFullDepthSearch = true;
1695 if ( !captureOrPromotion
1697 && !move_is_castle(move)
1698 && !move_is_killer(move, ss))
1700 ss->reduction = reduction<PvNode>(sp->depth, moveCount);
1703 Value localAlpha = sp->alpha;
1704 Depth d = newDepth - ss->reduction;
1705 value = d < OnePly ? -qsearch<NonPV>(pos, ss+1, -(localAlpha+1), -localAlpha, Depth(0), sp->ply+1)
1706 : - search<NonPV>(pos, ss+1, -(localAlpha+1), -localAlpha, d, sp->ply+1);
1708 doFullDepthSearch = (value > localAlpha);
1711 // The move failed high, but if reduction is very big we could
1712 // face a false positive, retry with a less aggressive reduction,
1713 // if the move fails high again then go with full depth search.
1714 if (doFullDepthSearch && ss->reduction > 2 * OnePly)
1716 assert(newDepth - OnePly >= OnePly);
1718 ss->reduction = OnePly;
1719 Value localAlpha = sp->alpha;
1720 value = -search<NonPV>(pos, ss+1, -(localAlpha+1), -localAlpha, newDepth-ss->reduction, sp->ply+1);
1721 doFullDepthSearch = (value > localAlpha);
1723 ss->reduction = Depth(0); // Restore original reduction
1726 // Step 15. Full depth search
1727 if (doFullDepthSearch)
1729 Value localAlpha = sp->alpha;
1730 value = newDepth < OnePly ? -qsearch<NonPV>(pos, ss+1, -(localAlpha+1), -localAlpha, Depth(0), sp->ply+1)
1731 : - search<NonPV>(pos, ss+1, -(localAlpha+1), -localAlpha, newDepth, sp->ply+1);
1733 // Step extra. pv search (only in PV nodes)
1734 // Search only for possible new PV nodes, if instead value >= beta then
1735 // parent node fails low with value <= alpha and tries another move.
1736 if (PvNode && value > localAlpha && value < sp->beta)
1737 value = newDepth < OnePly ? -qsearch<PV>(pos, ss+1, -sp->beta, -sp->alpha, Depth(0), sp->ply+1)
1738 : - search<PV>(pos, ss+1, -sp->beta, -sp->alpha, newDepth, sp->ply+1);
1741 // Step 16. Undo move
1742 pos.undo_move(move);
1744 assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
1746 // Step 17. Check for new best move
1747 lock_grab(&(sp->lock));
1749 if (value > sp->bestValue && !TM.thread_should_stop(threadID))
1751 sp->bestValue = value;
1753 if (sp->bestValue > sp->alpha)
1755 if (!PvNode || value >= sp->beta)
1756 sp->stopRequest = true;
1758 if (PvNode && value < sp->beta) // This guarantees that always: sp->alpha < sp->beta
1761 sp->parentSstack->bestMove = ss->bestMove = move;
1766 /* Here we have the lock still grabbed */
1768 sp->slaves[threadID] = 0;
1770 lock_release(&(sp->lock));
1774 // connected_moves() tests whether two moves are 'connected' in the sense
1775 // that the first move somehow made the second move possible (for instance
1776 // if the moving piece is the same in both moves). The first move is assumed
1777 // to be the move that was made to reach the current position, while the
1778 // second move is assumed to be a move from the current position.
1780 bool connected_moves(const Position& pos, Move m1, Move m2) {
1782 Square f1, t1, f2, t2;
1785 assert(move_is_ok(m1));
1786 assert(move_is_ok(m2));
1788 if (m2 == MOVE_NONE)
1791 // Case 1: The moving piece is the same in both moves
1797 // Case 2: The destination square for m2 was vacated by m1
1803 // Case 3: Moving through the vacated square
1804 if ( piece_is_slider(pos.piece_on(f2))
1805 && bit_is_set(squares_between(f2, t2), f1))
1808 // Case 4: The destination square for m2 is defended by the moving piece in m1
1809 p = pos.piece_on(t1);
1810 if (bit_is_set(pos.attacks_from(p, t1), t2))
1813 // Case 5: Discovered check, checking piece is the piece moved in m1
1814 if ( piece_is_slider(p)
1815 && bit_is_set(squares_between(t1, pos.king_square(pos.side_to_move())), f2)
1816 && !bit_is_set(squares_between(t1, pos.king_square(pos.side_to_move())), t2))
1818 // discovered_check_candidates() works also if the Position's side to
1819 // move is the opposite of the checking piece.
1820 Color them = opposite_color(pos.side_to_move());
1821 Bitboard dcCandidates = pos.discovered_check_candidates(them);
1823 if (bit_is_set(dcCandidates, f2))
1830 // value_is_mate() checks if the given value is a mate one eventually
1831 // compensated for the ply.
1833 bool value_is_mate(Value value) {
1835 assert(abs(value) <= VALUE_INFINITE);
1837 return value <= value_mated_in(PLY_MAX)
1838 || value >= value_mate_in(PLY_MAX);
1842 // value_to_tt() adjusts a mate score from "plies to mate from the root" to
1843 // "plies to mate from the current ply". Non-mate scores are unchanged.
1844 // The function is called before storing a value to the transposition table.
1846 Value value_to_tt(Value v, int ply) {
1848 if (v >= value_mate_in(PLY_MAX))
1851 if (v <= value_mated_in(PLY_MAX))
1858 // value_from_tt() is the inverse of value_to_tt(): It adjusts a mate score from
1859 // the transposition table to a mate score corrected for the current ply.
1861 Value value_from_tt(Value v, int ply) {
1863 if (v >= value_mate_in(PLY_MAX))
1866 if (v <= value_mated_in(PLY_MAX))
1873 // move_is_killer() checks if the given move is among the killer moves
1875 bool move_is_killer(Move m, SearchStack* ss) {
1877 if (ss->killers[0] == m || ss->killers[1] == m)
1884 // extension() decides whether a move should be searched with normal depth,
1885 // or with extended depth. Certain classes of moves (checking moves, in
1886 // particular) are searched with bigger depth than ordinary moves and in
1887 // any case are marked as 'dangerous'. Note that also if a move is not
1888 // extended, as example because the corresponding UCI option is set to zero,
1889 // the move is marked as 'dangerous' so, at least, we avoid to prune it.
1890 template <NodeType PvNode>
1891 Depth extension(const Position& pos, Move m, bool captureOrPromotion, bool moveIsCheck,
1892 bool singleEvasion, bool mateThreat, bool* dangerous) {
1894 assert(m != MOVE_NONE);
1896 Depth result = Depth(0);
1897 *dangerous = moveIsCheck | singleEvasion | mateThreat;
1901 if (moveIsCheck && pos.see_sign(m) >= 0)
1902 result += CheckExtension[PvNode];
1905 result += SingleEvasionExtension[PvNode];
1908 result += MateThreatExtension[PvNode];
1911 if (pos.type_of_piece_on(move_from(m)) == PAWN)
1913 Color c = pos.side_to_move();
1914 if (relative_rank(c, move_to(m)) == RANK_7)
1916 result += PawnPushTo7thExtension[PvNode];
1919 if (pos.pawn_is_passed(c, move_to(m)))
1921 result += PassedPawnExtension[PvNode];
1926 if ( captureOrPromotion
1927 && pos.type_of_piece_on(move_to(m)) != PAWN
1928 && ( pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK)
1929 - pos.midgame_value_of_piece_on(move_to(m)) == Value(0))
1930 && !move_is_promotion(m)
1933 result += PawnEndgameExtension[PvNode];
1938 && captureOrPromotion
1939 && pos.type_of_piece_on(move_to(m)) != PAWN
1940 && pos.see_sign(m) >= 0)
1946 return Min(result, OnePly);
1950 // connected_threat() tests whether it is safe to forward prune a move or if
1951 // is somehow coonected to the threat move returned by null search.
1953 bool connected_threat(const Position& pos, Move m, Move threat) {
1955 assert(move_is_ok(m));
1956 assert(threat && move_is_ok(threat));
1957 assert(!pos.move_is_check(m));
1958 assert(!pos.move_is_capture_or_promotion(m));
1959 assert(!pos.move_is_passed_pawn_push(m));
1961 Square mfrom, mto, tfrom, tto;
1963 mfrom = move_from(m);
1965 tfrom = move_from(threat);
1966 tto = move_to(threat);
1968 // Case 1: Don't prune moves which move the threatened piece
1972 // Case 2: If the threatened piece has value less than or equal to the
1973 // value of the threatening piece, don't prune move which defend it.
1974 if ( pos.move_is_capture(threat)
1975 && ( pos.midgame_value_of_piece_on(tfrom) >= pos.midgame_value_of_piece_on(tto)
1976 || pos.type_of_piece_on(tfrom) == KING)
1977 && pos.move_attacks_square(m, tto))
1980 // Case 3: If the moving piece in the threatened move is a slider, don't
1981 // prune safe moves which block its ray.
1982 if ( piece_is_slider(pos.piece_on(tfrom))
1983 && bit_is_set(squares_between(tfrom, tto), mto)
1984 && pos.see_sign(m) >= 0)
1991 // ok_to_use_TT() returns true if a transposition table score
1992 // can be used at a given point in search.
1994 bool ok_to_use_TT(const TTEntry* tte, Depth depth, Value beta, int ply) {
1996 Value v = value_from_tt(tte->value(), ply);
1998 return ( tte->depth() >= depth
1999 || v >= Max(value_mate_in(PLY_MAX), beta)
2000 || v < Min(value_mated_in(PLY_MAX), beta))
2002 && ( (is_lower_bound(tte->type()) && v >= beta)
2003 || (is_upper_bound(tte->type()) && v < beta));
2007 // refine_eval() returns the transposition table score if
2008 // possible otherwise falls back on static position evaluation.
2010 Value refine_eval(const TTEntry* tte, Value defaultEval, int ply) {
2015 Value v = value_from_tt(tte->value(), ply);
2017 if ( (is_lower_bound(tte->type()) && v >= defaultEval)
2018 || (is_upper_bound(tte->type()) && v < defaultEval))
2025 // update_history() registers a good move that produced a beta-cutoff
2026 // in history and marks as failures all the other moves of that ply.
2028 void update_history(const Position& pos, Move move, Depth depth,
2029 Move movesSearched[], int moveCount) {
2033 H.success(pos.piece_on(move_from(move)), move_to(move), depth);
2035 for (int i = 0; i < moveCount - 1; i++)
2037 m = movesSearched[i];
2041 if (!pos.move_is_capture_or_promotion(m))
2042 H.failure(pos.piece_on(move_from(m)), move_to(m), depth);
2047 // update_killers() add a good move that produced a beta-cutoff
2048 // among the killer moves of that ply.
2050 void update_killers(Move m, SearchStack* ss) {
2052 if (m == ss->killers[0])
2055 ss->killers[1] = ss->killers[0];
2060 // update_gains() updates the gains table of a non-capture move given
2061 // the static position evaluation before and after the move.
2063 void update_gains(const Position& pos, Move m, Value before, Value after) {
2066 && before != VALUE_NONE
2067 && after != VALUE_NONE
2068 && pos.captured_piece() == NO_PIECE_TYPE
2069 && !move_is_castle(m)
2070 && !move_is_promotion(m))
2071 H.set_gain(pos.piece_on(move_to(m)), move_to(m), -(before + after));
2075 // current_search_time() returns the number of milliseconds which have passed
2076 // since the beginning of the current search.
2078 int current_search_time() {
2080 return get_system_time() - SearchStartTime;
2084 // value_to_uci() converts a value to a string suitable for use with the UCI protocol
2086 std::string value_to_uci(Value v) {
2088 std::stringstream s;
2090 if (abs(v) < VALUE_MATE - PLY_MAX * OnePly)
2091 s << "cp " << int(v) * 100 / int(PawnValueMidgame); // Scale to pawn = 100
2093 s << "mate " << (v > 0 ? (VALUE_MATE - v + 1) / 2 : -(VALUE_MATE + v) / 2 );
2098 // nps() computes the current nodes/second count.
2102 int t = current_search_time();
2103 return (t > 0 ? int((TM.nodes_searched() * 1000) / t) : 0);
2107 // poll() performs two different functions: It polls for user input, and it
2108 // looks at the time consumed so far and decides if it's time to abort the
2113 static int lastInfoTime;
2114 int t = current_search_time();
2119 // We are line oriented, don't read single chars
2120 std::string command;
2122 if (!std::getline(std::cin, command))
2125 if (command == "quit")
2128 PonderSearch = false;
2132 else if (command == "stop")
2135 PonderSearch = false;
2137 else if (command == "ponderhit")
2141 // Print search information
2145 else if (lastInfoTime > t)
2146 // HACK: Must be a new search where we searched less than
2147 // NodesBetweenPolls nodes during the first second of search.
2150 else if (t - lastInfoTime >= 1000)
2157 if (dbg_show_hit_rate)
2158 dbg_print_hit_rate();
2160 cout << "info nodes " << TM.nodes_searched() << " nps " << nps()
2161 << " time " << t << endl;
2164 // Should we stop the search?
2168 bool stillAtFirstMove = FirstRootMove
2169 && !AspirationFailLow
2170 && t > MaxSearchTime + ExtraSearchTime;
2172 bool noMoreTime = t > AbsoluteMaxSearchTime
2173 || stillAtFirstMove;
2175 if ( (Iteration >= 3 && UseTimeManagement && noMoreTime)
2176 || (ExactMaxTime && t >= ExactMaxTime)
2177 || (Iteration >= 3 && MaxNodes && TM.nodes_searched() >= MaxNodes))
2182 // ponderhit() is called when the program is pondering (i.e. thinking while
2183 // it's the opponent's turn to move) in order to let the engine know that
2184 // it correctly predicted the opponent's move.
2188 int t = current_search_time();
2189 PonderSearch = false;
2191 bool stillAtFirstMove = FirstRootMove
2192 && !AspirationFailLow
2193 && t > MaxSearchTime + ExtraSearchTime;
2195 bool noMoreTime = t > AbsoluteMaxSearchTime
2196 || stillAtFirstMove;
2198 if (Iteration >= 3 && UseTimeManagement && (noMoreTime || StopOnPonderhit))
2203 // init_ss_array() does a fast reset of the first entries of a SearchStack
2204 // array and of all the excludedMove and skipNullMove entries.
2206 void init_ss_array(SearchStack* ss, int size) {
2208 for (int i = 0; i < size; i++, ss++)
2210 ss->excludedMove = MOVE_NONE;
2211 ss->skipNullMove = false;
2212 ss->reduction = Depth(0);
2220 // wait_for_stop_or_ponderhit() is called when the maximum depth is reached
2221 // while the program is pondering. The point is to work around a wrinkle in
2222 // the UCI protocol: When pondering, the engine is not allowed to give a
2223 // "bestmove" before the GUI sends it a "stop" or "ponderhit" command.
2224 // We simply wait here until one of these commands is sent, and return,
2225 // after which the bestmove and pondermove will be printed (in id_loop()).
2227 void wait_for_stop_or_ponderhit() {
2229 std::string command;
2233 if (!std::getline(std::cin, command))
2236 if (command == "quit")
2241 else if (command == "ponderhit" || command == "stop")
2247 // print_pv_info() prints to standard output and eventually to log file information on
2248 // the current PV line. It is called at each iteration or after a new pv is found.
2250 void print_pv_info(const Position& pos, Move pv[], Value alpha, Value beta, Value value) {
2252 cout << "info depth " << Iteration
2253 << " score " << value_to_uci(value)
2254 << (value >= beta ? " lowerbound" : value <= alpha ? " upperbound" : "")
2255 << " time " << current_search_time()
2256 << " nodes " << TM.nodes_searched()
2260 for (Move* m = pv; *m != MOVE_NONE; m++)
2267 ValueType t = value >= beta ? VALUE_TYPE_LOWER :
2268 value <= alpha ? VALUE_TYPE_UPPER : VALUE_TYPE_EXACT;
2270 LogFile << pretty_pv(pos, current_search_time(), Iteration,
2271 TM.nodes_searched(), value, t, pv) << endl;
2276 // init_thread() is the function which is called when a new thread is
2277 // launched. It simply calls the idle_loop() function with the supplied
2278 // threadID. There are two versions of this function; one for POSIX
2279 // threads and one for Windows threads.
2281 #if !defined(_MSC_VER)
2283 void* init_thread(void *threadID) {
2285 TM.idle_loop(*(int*)threadID, NULL);
2291 DWORD WINAPI init_thread(LPVOID threadID) {
2293 TM.idle_loop(*(int*)threadID, NULL);
2300 /// The ThreadsManager class
2302 // resetNodeCounters(), resetBetaCounters(), searched_nodes() and
2303 // get_beta_counters() are getters/setters for the per thread
2304 // counters used to sort the moves at root.
2306 void ThreadsManager::resetNodeCounters() {
2308 for (int i = 0; i < MAX_THREADS; i++)
2309 threads[i].nodes = 0ULL;
2312 void ThreadsManager::resetBetaCounters() {
2314 for (int i = 0; i < MAX_THREADS; i++)
2315 threads[i].betaCutOffs[WHITE] = threads[i].betaCutOffs[BLACK] = 0ULL;
2318 int64_t ThreadsManager::nodes_searched() const {
2320 int64_t result = 0ULL;
2321 for (int i = 0; i < ActiveThreads; i++)
2322 result += threads[i].nodes;
2327 void ThreadsManager::get_beta_counters(Color us, int64_t& our, int64_t& their) const {
2330 for (int i = 0; i < MAX_THREADS; i++)
2332 our += threads[i].betaCutOffs[us];
2333 their += threads[i].betaCutOffs[opposite_color(us)];
2338 // idle_loop() is where the threads are parked when they have no work to do.
2339 // The parameter 'sp', if non-NULL, is a pointer to an active SplitPoint
2340 // object for which the current thread is the master.
2342 void ThreadsManager::idle_loop(int threadID, SplitPoint* sp) {
2344 assert(threadID >= 0 && threadID < MAX_THREADS);
2348 // Slave threads can exit as soon as AllThreadsShouldExit raises,
2349 // master should exit as last one.
2350 if (AllThreadsShouldExit)
2353 threads[threadID].state = THREAD_TERMINATED;
2357 // If we are not thinking, wait for a condition to be signaled
2358 // instead of wasting CPU time polling for work.
2359 while (AllThreadsShouldSleep || threadID >= ActiveThreads)
2362 assert(threadID != 0);
2363 threads[threadID].state = THREAD_SLEEPING;
2365 #if !defined(_MSC_VER)
2366 lock_grab(&WaitLock);
2367 if (AllThreadsShouldSleep || threadID >= ActiveThreads)
2368 pthread_cond_wait(&WaitCond, &WaitLock);
2369 lock_release(&WaitLock);
2371 WaitForSingleObject(SitIdleEvent[threadID], INFINITE);
2375 // If thread has just woken up, mark it as available
2376 if (threads[threadID].state == THREAD_SLEEPING)
2377 threads[threadID].state = THREAD_AVAILABLE;
2379 // If this thread has been assigned work, launch a search
2380 if (threads[threadID].state == THREAD_WORKISWAITING)
2382 assert(!AllThreadsShouldExit && !AllThreadsShouldSleep);
2384 threads[threadID].state = THREAD_SEARCHING;
2386 if (threads[threadID].splitPoint->pvNode)
2387 sp_search<PV>(threads[threadID].splitPoint, threadID);
2389 sp_search<NonPV>(threads[threadID].splitPoint, threadID);
2391 assert(threads[threadID].state == THREAD_SEARCHING);
2393 threads[threadID].state = THREAD_AVAILABLE;
2396 // If this thread is the master of a split point and all slaves have
2397 // finished their work at this split point, return from the idle loop.
2399 for ( ; sp && i < ActiveThreads && !sp->slaves[i]; i++) {}
2401 if (i == ActiveThreads)
2403 // Because sp->slaves[] is reset under lock protection,
2404 // be sure sp->lock has been released before to return.
2405 lock_grab(&(sp->lock));
2406 lock_release(&(sp->lock));
2408 assert(threads[threadID].state == THREAD_AVAILABLE);
2410 threads[threadID].state = THREAD_SEARCHING;
2417 // init_threads() is called during startup. It launches all helper threads,
2418 // and initializes the split point stack and the global locks and condition
2421 void ThreadsManager::init_threads() {
2426 #if !defined(_MSC_VER)
2427 pthread_t pthread[1];
2430 // Initialize global locks
2431 lock_init(&MPLock, NULL);
2432 lock_init(&WaitLock, NULL);
2434 #if !defined(_MSC_VER)
2435 pthread_cond_init(&WaitCond, NULL);
2437 for (i = 0; i < MAX_THREADS; i++)
2438 SitIdleEvent[i] = CreateEvent(0, FALSE, FALSE, 0);
2441 // Initialize splitPoints[] locks
2442 for (i = 0; i < MAX_THREADS; i++)
2443 for (int j = 0; j < MAX_ACTIVE_SPLIT_POINTS; j++)
2444 lock_init(&(threads[i].splitPoints[j].lock), NULL);
2446 // Will be set just before program exits to properly end the threads
2447 AllThreadsShouldExit = false;
2449 // Threads will be put to sleep as soon as created
2450 AllThreadsShouldSleep = true;
2452 // All threads except the main thread should be initialized to THREAD_AVAILABLE
2454 threads[0].state = THREAD_SEARCHING;
2455 for (i = 1; i < MAX_THREADS; i++)
2456 threads[i].state = THREAD_AVAILABLE;
2458 // Launch the helper threads
2459 for (i = 1; i < MAX_THREADS; i++)
2462 #if !defined(_MSC_VER)
2463 ok = (pthread_create(pthread, NULL, init_thread, (void*)(&i)) == 0);
2465 ok = (CreateThread(NULL, 0, init_thread, (LPVOID)(&i), 0, NULL) != NULL);
2470 cout << "Failed to create thread number " << i << endl;
2471 Application::exit_with_failure();
2474 // Wait until the thread has finished launching and is gone to sleep
2475 while (threads[i].state != THREAD_SLEEPING) {}
2480 // exit_threads() is called when the program exits. It makes all the
2481 // helper threads exit cleanly.
2483 void ThreadsManager::exit_threads() {
2485 ActiveThreads = MAX_THREADS; // HACK
2486 AllThreadsShouldSleep = true; // HACK
2487 wake_sleeping_threads();
2489 // This makes the threads to exit idle_loop()
2490 AllThreadsShouldExit = true;
2492 // Wait for thread termination
2493 for (int i = 1; i < MAX_THREADS; i++)
2494 while (threads[i].state != THREAD_TERMINATED) {}
2496 // Now we can safely destroy the locks
2497 for (int i = 0; i < MAX_THREADS; i++)
2498 for (int j = 0; j < MAX_ACTIVE_SPLIT_POINTS; j++)
2499 lock_destroy(&(threads[i].splitPoints[j].lock));
2501 lock_destroy(&WaitLock);
2502 lock_destroy(&MPLock);
2506 // thread_should_stop() checks whether the thread should stop its search.
2507 // This can happen if a beta cutoff has occurred in the thread's currently
2508 // active split point, or in some ancestor of the current split point.
2510 bool ThreadsManager::thread_should_stop(int threadID) const {
2512 assert(threadID >= 0 && threadID < ActiveThreads);
2516 for (sp = threads[threadID].splitPoint; sp && !sp->stopRequest; sp = sp->parent) {}
2521 // thread_is_available() checks whether the thread with threadID "slave" is
2522 // available to help the thread with threadID "master" at a split point. An
2523 // obvious requirement is that "slave" must be idle. With more than two
2524 // threads, this is not by itself sufficient: If "slave" is the master of
2525 // some active split point, it is only available as a slave to the other
2526 // threads which are busy searching the split point at the top of "slave"'s
2527 // split point stack (the "helpful master concept" in YBWC terminology).
2529 bool ThreadsManager::thread_is_available(int slave, int master) const {
2531 assert(slave >= 0 && slave < ActiveThreads);
2532 assert(master >= 0 && master < ActiveThreads);
2533 assert(ActiveThreads > 1);
2535 if (threads[slave].state != THREAD_AVAILABLE || slave == master)
2538 // Make a local copy to be sure doesn't change under our feet
2539 int localActiveSplitPoints = threads[slave].activeSplitPoints;
2541 if (localActiveSplitPoints == 0)
2542 // No active split points means that the thread is available as
2543 // a slave for any other thread.
2546 if (ActiveThreads == 2)
2549 // Apply the "helpful master" concept if possible. Use localActiveSplitPoints
2550 // that is known to be > 0, instead of threads[slave].activeSplitPoints that
2551 // could have been set to 0 by another thread leading to an out of bound access.
2552 if (threads[slave].splitPoints[localActiveSplitPoints - 1].slaves[master])
2559 // available_thread_exists() tries to find an idle thread which is available as
2560 // a slave for the thread with threadID "master".
2562 bool ThreadsManager::available_thread_exists(int master) const {
2564 assert(master >= 0 && master < ActiveThreads);
2565 assert(ActiveThreads > 1);
2567 for (int i = 0; i < ActiveThreads; i++)
2568 if (thread_is_available(i, master))
2575 // split() does the actual work of distributing the work at a node between
2576 // several available threads. If it does not succeed in splitting the
2577 // node (because no idle threads are available, or because we have no unused
2578 // split point objects), the function immediately returns. If splitting is
2579 // possible, a SplitPoint object is initialized with all the data that must be
2580 // copied to the helper threads and we tell our helper threads that they have
2581 // been assigned work. This will cause them to instantly leave their idle loops
2582 // and call sp_search(). When all threads have returned from sp_search() then
2585 template <bool Fake>
2586 void ThreadsManager::split(const Position& p, SearchStack* ss, int ply, Value* alpha,
2587 const Value beta, Value* bestValue, Depth depth, bool mateThreat,
2588 int* moveCount, MovePicker* mp, bool pvNode) {
2590 assert(ply > 0 && ply < PLY_MAX);
2591 assert(*bestValue >= -VALUE_INFINITE);
2592 assert(*bestValue <= *alpha);
2593 assert(*alpha < beta);
2594 assert(beta <= VALUE_INFINITE);
2595 assert(depth > Depth(0));
2596 assert(p.thread() >= 0 && p.thread() < ActiveThreads);
2597 assert(ActiveThreads > 1);
2599 int i, master = p.thread();
2600 Thread& masterThread = threads[master];
2604 // If no other thread is available to help us, or if we have too many
2605 // active split points, don't split.
2606 if ( !available_thread_exists(master)
2607 || masterThread.activeSplitPoints >= MAX_ACTIVE_SPLIT_POINTS)
2609 lock_release(&MPLock);
2613 // Pick the next available split point object from the split point stack
2614 SplitPoint& splitPoint = masterThread.splitPoints[masterThread.activeSplitPoints++];
2616 // Initialize the split point object
2617 splitPoint.parent = masterThread.splitPoint;
2618 splitPoint.stopRequest = false;
2619 splitPoint.ply = ply;
2620 splitPoint.depth = depth;
2621 splitPoint.mateThreat = mateThreat;
2622 splitPoint.alpha = *alpha;
2623 splitPoint.beta = beta;
2624 splitPoint.pvNode = pvNode;
2625 splitPoint.bestValue = *bestValue;
2627 splitPoint.moveCount = *moveCount;
2628 splitPoint.pos = &p;
2629 splitPoint.parentSstack = ss;
2630 for (i = 0; i < ActiveThreads; i++)
2631 splitPoint.slaves[i] = 0;
2633 masterThread.splitPoint = &splitPoint;
2635 // If we are here it means we are not available
2636 assert(masterThread.state != THREAD_AVAILABLE);
2638 int workersCnt = 1; // At least the master is included
2640 // Allocate available threads setting state to THREAD_BOOKED
2641 for (i = 0; !Fake && i < ActiveThreads && workersCnt < MaxThreadsPerSplitPoint; i++)
2642 if (thread_is_available(i, master))
2644 threads[i].state = THREAD_BOOKED;
2645 threads[i].splitPoint = &splitPoint;
2646 splitPoint.slaves[i] = 1;
2650 assert(Fake || workersCnt > 1);
2652 // We can release the lock because slave threads are already booked and master is not available
2653 lock_release(&MPLock);
2655 // Tell the threads that they have work to do. This will make them leave
2656 // their idle loop. But before copy search stack tail for each thread.
2657 for (i = 0; i < ActiveThreads; i++)
2658 if (i == master || splitPoint.slaves[i])
2660 memcpy(splitPoint.sstack[i], ss - 1, 4 * sizeof(SearchStack));
2662 assert(i == master || threads[i].state == THREAD_BOOKED);
2664 threads[i].state = THREAD_WORKISWAITING; // This makes the slave to exit from idle_loop()
2667 // Everything is set up. The master thread enters the idle loop, from
2668 // which it will instantly launch a search, because its state is
2669 // THREAD_WORKISWAITING. We send the split point as a second parameter to the
2670 // idle loop, which means that the main thread will return from the idle
2671 // loop when all threads have finished their work at this split point.
2672 idle_loop(master, &splitPoint);
2674 // We have returned from the idle loop, which means that all threads are
2675 // finished. Update alpha and bestValue, and return.
2678 *alpha = splitPoint.alpha;
2679 *bestValue = splitPoint.bestValue;
2680 masterThread.activeSplitPoints--;
2681 masterThread.splitPoint = splitPoint.parent;
2683 lock_release(&MPLock);
2687 // wake_sleeping_threads() wakes up all sleeping threads when it is time
2688 // to start a new search from the root.
2690 void ThreadsManager::wake_sleeping_threads() {
2692 assert(AllThreadsShouldSleep);
2693 assert(ActiveThreads > 0);
2695 AllThreadsShouldSleep = false;
2697 if (ActiveThreads == 1)
2700 #if !defined(_MSC_VER)
2701 pthread_mutex_lock(&WaitLock);
2702 pthread_cond_broadcast(&WaitCond);
2703 pthread_mutex_unlock(&WaitLock);
2705 for (int i = 1; i < MAX_THREADS; i++)
2706 SetEvent(SitIdleEvent[i]);
2712 // put_threads_to_sleep() makes all the threads go to sleep just before
2713 // to leave think(), at the end of the search. Threads should have already
2714 // finished the job and should be idle.
2716 void ThreadsManager::put_threads_to_sleep() {
2718 assert(!AllThreadsShouldSleep);
2720 // This makes the threads to go to sleep
2721 AllThreadsShouldSleep = true;
2724 /// The RootMoveList class
2726 // RootMoveList c'tor
2728 RootMoveList::RootMoveList(Position& pos, Move searchMoves[]) : count(0) {
2730 SearchStack ss[PLY_MAX_PLUS_2];
2731 MoveStack mlist[MaxRootMoves];
2733 bool includeAllMoves = (searchMoves[0] == MOVE_NONE);
2735 // Initialize search stack
2736 init_ss_array(ss, PLY_MAX_PLUS_2);
2738 ss[0].eval = VALUE_NONE;
2740 // Generate all legal moves
2741 MoveStack* last = generate_moves(pos, mlist);
2743 // Add each move to the moves[] array
2744 for (MoveStack* cur = mlist; cur != last; cur++)
2746 bool includeMove = includeAllMoves;
2748 for (int k = 0; !includeMove && searchMoves[k] != MOVE_NONE; k++)
2749 includeMove = (searchMoves[k] == cur->move);
2754 // Find a quick score for the move
2755 pos.do_move(cur->move, st);
2756 ss[0].currentMove = cur->move;
2757 moves[count].move = cur->move;
2758 moves[count].score = -qsearch<PV>(pos, ss+1, -VALUE_INFINITE, VALUE_INFINITE, Depth(0), 1);
2759 moves[count].pv[0] = cur->move;
2760 moves[count].pv[1] = MOVE_NONE;
2761 pos.undo_move(cur->move);
2768 // RootMoveList simple methods definitions
2770 void RootMoveList::set_move_nodes(int moveNum, int64_t nodes) {
2772 moves[moveNum].nodes = nodes;
2773 moves[moveNum].cumulativeNodes += nodes;
2776 void RootMoveList::set_beta_counters(int moveNum, int64_t our, int64_t their) {
2778 moves[moveNum].ourBeta = our;
2779 moves[moveNum].theirBeta = their;
2782 void RootMoveList::set_move_pv(int moveNum, const Move pv[]) {
2786 for (j = 0; pv[j] != MOVE_NONE; j++)
2787 moves[moveNum].pv[j] = pv[j];
2789 moves[moveNum].pv[j] = MOVE_NONE;
2793 // RootMoveList::sort() sorts the root move list at the beginning of a new
2796 void RootMoveList::sort() {
2798 sort_multipv(count - 1); // Sort all items
2802 // RootMoveList::sort_multipv() sorts the first few moves in the root move
2803 // list by their scores and depths. It is used to order the different PVs
2804 // correctly in MultiPV mode.
2806 void RootMoveList::sort_multipv(int n) {
2810 for (i = 1; i <= n; i++)
2812 RootMove rm = moves[i];
2813 for (j = i; j > 0 && moves[j - 1] < rm; j--)
2814 moves[j] = moves[j - 1];