2 Stockfish, a UCI chess playing engine derived from Glaurung 2.1
3 Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
4 Copyright (C) 2008-2009 Marco Costalba
6 Stockfish is free software: you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation, either version 3 of the License, or
9 (at your option) any later version.
11 Stockfish is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>.
43 #include "ucioption.h"
49 //// Local definitions
56 // The BetaCounterType class is used to order moves at ply one.
57 // Apart for the first one that has its score, following moves
58 // normally have score -VALUE_INFINITE, so are ordered according
59 // to the number of beta cutoffs occurred under their subtree during
60 // the last iteration. The counters are per thread variables to avoid
61 // concurrent accessing under SMP case.
63 struct BetaCounterType {
67 void add(Color us, Depth d, int threadID);
68 void read(Color us, int64_t& our, int64_t& their);
72 // The RootMove class is used for moves at the root at the tree. For each
73 // root move, we store a score, a node count, and a PV (really a refutation
74 // in the case of moves which fail low).
78 RootMove() { nodes = cumulativeNodes = ourBeta = theirBeta = 0ULL; }
80 // RootMove::operator<() is the comparison function used when
81 // sorting the moves. A move m1 is considered to be better
82 // than a move m2 if it has a higher score, or if the moves
83 // have equal score but m1 has the higher node count.
84 bool operator<(const RootMove& m) const {
86 return score != m.score ? score < m.score : theirBeta <= m.theirBeta;
91 int64_t nodes, cumulativeNodes, ourBeta, theirBeta;
92 Move pv[PLY_MAX_PLUS_2];
96 // The RootMoveList class is essentially an array of RootMove objects, with
97 // a handful of methods for accessing the data in the individual moves.
102 RootMoveList(Position& pos, Move searchMoves[]);
104 int move_count() const { return count; }
105 Move get_move(int moveNum) const { return moves[moveNum].move; }
106 Value get_move_score(int moveNum) const { return moves[moveNum].score; }
107 void set_move_score(int moveNum, Value score) { moves[moveNum].score = score; }
108 Move get_move_pv(int moveNum, int i) const { return moves[moveNum].pv[i]; }
109 int64_t get_move_cumulative_nodes(int moveNum) const { return moves[moveNum].cumulativeNodes; }
111 void set_move_nodes(int moveNum, int64_t nodes);
112 void set_beta_counters(int moveNum, int64_t our, int64_t their);
113 void set_move_pv(int moveNum, const Move pv[]);
115 void sort_multipv(int n);
118 static const int MaxRootMoves = 500;
119 RootMove moves[MaxRootMoves];
126 // Search depth at iteration 1
127 const Depth InitialDepth = OnePly;
129 // Use internal iterative deepening?
130 const bool UseIIDAtPVNodes = true;
131 const bool UseIIDAtNonPVNodes = true;
133 // Internal iterative deepening margin. At Non-PV moves, when
134 // UseIIDAtNonPVNodes is true, we do an internal iterative deepening
135 // search when the static evaluation is at most IIDMargin below beta.
136 const Value IIDMargin = Value(0x100);
138 // Easy move margin. An easy move candidate must be at least this much
139 // better than the second best move.
140 const Value EasyMoveMargin = Value(0x200);
142 // Null move margin. A null move search will not be done if the static
143 // evaluation of the position is more than NullMoveMargin below beta.
144 const Value NullMoveMargin = Value(0x200);
146 // If the TT move is at least SingleReplyMargin better then the
147 // remaining ones we will extend it.
148 const Value SingleReplyMargin = Value(0x20);
150 // Depth limit for razoring
151 const Depth RazorDepth = 4 * OnePly;
153 /// Lookup tables initialized at startup
155 // Reduction lookup tables and their getter functions
156 int8_t PVReductionMatrix[64][64]; // [depth][moveNumber]
157 int8_t NonPVReductionMatrix[64][64]; // [depth][moveNumber]
159 inline Depth pv_reduction(Depth d, int mn) { return (Depth) PVReductionMatrix[Min(d / 2, 63)][Min(mn, 63)]; }
160 inline Depth nonpv_reduction(Depth d, int mn) { return (Depth) NonPVReductionMatrix[Min(d / 2, 63)][Min(mn, 63)]; }
162 // Futility lookup tables and their getter functions
163 const Value FutilityMarginQS = Value(0x80);
164 int32_t FutilityMarginsMatrix[14][64]; // [depth][moveNumber]
165 int FutilityMoveCountArray[32]; // [depth]
167 inline Value futility_margin(Depth d, int mn) { return (Value) (d < 14? FutilityMarginsMatrix[Max(d, 0)][Min(mn, 63)] : 2*VALUE_INFINITE); }
168 inline int futility_move_count(Depth d) { return (d < 32? FutilityMoveCountArray[d] : 512); }
170 /// Variables initialized by UCI options
172 // Depth limit for use of dynamic threat detection
175 // Last seconds noise filtering (LSN)
176 const bool UseLSNFiltering = true;
177 const int LSNTime = 4000; // In milliseconds
178 const Value LSNValue = value_from_centipawns(200);
179 bool loseOnTime = false;
181 // Extensions. Array index 0 is used at non-PV nodes, index 1 at PV nodes.
182 Depth CheckExtension[2], SingleEvasionExtension[2], PawnPushTo7thExtension[2];
183 Depth PassedPawnExtension[2], PawnEndgameExtension[2], MateThreatExtension[2];
185 // Iteration counters
187 BetaCounterType BetaCounter;
189 // Scores and number of times the best move changed for each iteration
190 Value ValueByIteration[PLY_MAX_PLUS_2];
191 int BestMoveChangesByIteration[PLY_MAX_PLUS_2];
193 // Search window management
199 // Time managment variables
202 int MaxNodes, MaxDepth;
203 int MaxSearchTime, AbsoluteMaxSearchTime, ExtraSearchTime, ExactMaxTime;
204 bool UseTimeManagement, InfiniteSearch, PonderSearch, StopOnPonderhit;
205 bool AbortSearch, Quit;
206 bool AspirationFailLow;
208 // Show current line?
209 bool ShowCurrentLine;
213 std::ofstream LogFile;
215 // MP related variables
216 int ActiveThreads = 1;
217 Depth MinimumSplitDepth;
218 int MaxThreadsPerSplitPoint;
219 Thread Threads[THREAD_MAX];
222 bool AllThreadsShouldExit = false;
223 SplitPoint SplitPointStack[THREAD_MAX][ACTIVE_SPLIT_POINTS_MAX];
226 #if !defined(_MSC_VER)
227 pthread_cond_t WaitCond;
228 pthread_mutex_t WaitLock;
230 HANDLE SitIdleEvent[THREAD_MAX];
233 // Node counters, used only by thread[0] but try to keep in different
234 // cache lines (64 bytes each) from the heavy SMP read accessed variables.
236 int NodesBetweenPolls = 30000;
243 Value id_loop(const Position& pos, Move searchMoves[]);
244 Value root_search(Position& pos, SearchStack ss[], RootMoveList& rml, Value& oldAlpha, Value& beta);
245 Value search_pv(Position& pos, SearchStack ss[], Value alpha, Value beta, Depth depth, int ply, int threadID);
246 Value search(Position& pos, SearchStack ss[], Value beta, Depth depth, int ply, bool allowNullmove, int threadID, Move excludedMove = MOVE_NONE);
247 Value qsearch(Position& pos, SearchStack ss[], Value alpha, Value beta, Depth depth, int ply, int threadID);
248 void sp_search(SplitPoint* sp, int threadID);
249 void sp_search_pv(SplitPoint* sp, int threadID);
250 void init_node(SearchStack ss[], int ply, int threadID);
251 void update_pv(SearchStack ss[], int ply);
252 void sp_update_pv(SearchStack* pss, SearchStack ss[], int ply);
253 bool connected_moves(const Position& pos, Move m1, Move m2);
254 bool value_is_mate(Value value);
255 bool move_is_killer(Move m, const SearchStack& ss);
256 Depth extension(const Position&, Move, bool, bool, bool, bool, bool, bool*);
257 bool ok_to_do_nullmove(const Position& pos);
258 bool ok_to_prune(const Position& pos, Move m, Move threat);
259 bool ok_to_use_TT(const TTEntry* tte, Depth depth, Value beta, int ply);
260 Value refine_eval(const TTEntry* tte, Value defaultEval, int ply);
261 void update_history(const Position& pos, Move move, Depth depth, Move movesSearched[], int moveCount);
262 void update_killers(Move m, SearchStack& ss);
263 void update_gains(const Position& pos, Move move, Value before, Value after);
265 int current_search_time();
269 void print_current_line(SearchStack ss[], int ply, int threadID);
270 void wait_for_stop_or_ponderhit();
271 void init_ss_array(SearchStack ss[]);
273 void idle_loop(int threadID, SplitPoint* waitSp);
274 void init_split_point_stack();
275 void destroy_split_point_stack();
276 bool thread_should_stop(int threadID);
277 bool thread_is_available(int slave, int master);
278 bool idle_thread_exists(int master);
279 bool split(const Position& pos, SearchStack* ss, int ply,
280 Value *alpha, Value *beta, Value *bestValue,
281 const Value futilityValue, Depth depth, int *moves,
282 MovePicker *mp, int master, bool pvNode);
283 void wake_sleeping_threads();
285 #if !defined(_MSC_VER)
286 void *init_thread(void *threadID);
288 DWORD WINAPI init_thread(LPVOID threadID);
299 /// perft() is our utility to verify move generation is bug free. All the legal
300 /// moves up to given depth are generated and counted and the sum returned.
302 int perft(Position& pos, Depth depth)
306 MovePicker mp = MovePicker(pos, MOVE_NONE, depth, H);
308 // If we are at the last ply we don't need to do and undo
309 // the moves, just to count them.
310 if (depth <= OnePly) // Replace with '<' to test also qsearch
312 while (mp.get_next_move()) sum++;
316 // Loop through all legal moves
318 while ((move = mp.get_next_move()) != MOVE_NONE)
321 pos.do_move(move, st, ci, pos.move_is_check(move, ci));
322 sum += perft(pos, depth - OnePly);
329 /// think() is the external interface to Stockfish's search, and is called when
330 /// the program receives the UCI 'go' command. It initializes various
331 /// search-related global variables, and calls root_search(). It returns false
332 /// when a quit command is received during the search.
334 bool think(const Position& pos, bool infinite, bool ponder, int side_to_move,
335 int time[], int increment[], int movesToGo, int maxDepth,
336 int maxNodes, int maxTime, Move searchMoves[]) {
338 // Initialize global search variables
339 Idle = StopOnPonderhit = AbortSearch = Quit = false;
340 AspirationFailLow = false;
342 SearchStartTime = get_system_time();
343 ExactMaxTime = maxTime;
346 InfiniteSearch = infinite;
347 PonderSearch = ponder;
348 UseTimeManagement = !ExactMaxTime && !MaxDepth && !MaxNodes && !InfiniteSearch;
350 // Look for a book move, only during games, not tests
351 if (UseTimeManagement && get_option_value_bool("OwnBook"))
354 if (get_option_value_string("Book File") != OpeningBook.file_name())
355 OpeningBook.open(get_option_value_string("Book File"));
357 bookMove = OpeningBook.get_move(pos);
358 if (bookMove != MOVE_NONE)
361 wait_for_stop_or_ponderhit();
363 cout << "bestmove " << bookMove << endl;
368 for (int i = 0; i < THREAD_MAX; i++)
370 Threads[i].nodes = 0ULL;
373 if (button_was_pressed("New Game"))
374 loseOnTime = false; // Reset at the beginning of a new game
376 // Read UCI option values
377 TT.set_size(get_option_value_int("Hash"));
378 if (button_was_pressed("Clear Hash"))
381 bool PonderingEnabled = get_option_value_bool("Ponder");
382 MultiPV = get_option_value_int("MultiPV");
384 CheckExtension[1] = Depth(get_option_value_int("Check Extension (PV nodes)"));
385 CheckExtension[0] = Depth(get_option_value_int("Check Extension (non-PV nodes)"));
387 SingleEvasionExtension[1] = Depth(get_option_value_int("Single Evasion Extension (PV nodes)"));
388 SingleEvasionExtension[0] = Depth(get_option_value_int("Single Evasion Extension (non-PV nodes)"));
390 PawnPushTo7thExtension[1] = Depth(get_option_value_int("Pawn Push to 7th Extension (PV nodes)"));
391 PawnPushTo7thExtension[0] = Depth(get_option_value_int("Pawn Push to 7th Extension (non-PV nodes)"));
393 PassedPawnExtension[1] = Depth(get_option_value_int("Passed Pawn Extension (PV nodes)"));
394 PassedPawnExtension[0] = Depth(get_option_value_int("Passed Pawn Extension (non-PV nodes)"));
396 PawnEndgameExtension[1] = Depth(get_option_value_int("Pawn Endgame Extension (PV nodes)"));
397 PawnEndgameExtension[0] = Depth(get_option_value_int("Pawn Endgame Extension (non-PV nodes)"));
399 MateThreatExtension[1] = Depth(get_option_value_int("Mate Threat Extension (PV nodes)"));
400 MateThreatExtension[0] = Depth(get_option_value_int("Mate Threat Extension (non-PV nodes)"));
402 ThreatDepth = get_option_value_int("Threat Depth") * OnePly;
404 Chess960 = get_option_value_bool("UCI_Chess960");
405 ShowCurrentLine = get_option_value_bool("UCI_ShowCurrLine");
406 UseLogFile = get_option_value_bool("Use Search Log");
408 LogFile.open(get_option_value_string("Search Log Filename").c_str(), std::ios::out | std::ios::app);
410 MinimumSplitDepth = get_option_value_int("Minimum Split Depth") * OnePly;
411 MaxThreadsPerSplitPoint = get_option_value_int("Maximum Number of Threads per Split Point");
413 read_weights(pos.side_to_move());
415 // Set the number of active threads
416 int newActiveThreads = get_option_value_int("Threads");
417 if (newActiveThreads != ActiveThreads)
419 ActiveThreads = newActiveThreads;
420 init_eval(ActiveThreads);
421 // HACK: init_eval() destroys the static castleRightsMask[] array in the
422 // Position class. The below line repairs the damage.
423 Position p(pos.to_fen());
427 // Wake up sleeping threads
428 wake_sleeping_threads();
430 for (int i = 1; i < ActiveThreads; i++)
431 assert(thread_is_available(i, 0));
434 int myTime = time[side_to_move];
435 int myIncrement = increment[side_to_move];
436 if (UseTimeManagement)
438 if (!movesToGo) // Sudden death time control
442 MaxSearchTime = myTime / 30 + myIncrement;
443 AbsoluteMaxSearchTime = Max(myTime / 4, myIncrement - 100);
445 else // Blitz game without increment
447 MaxSearchTime = myTime / 30;
448 AbsoluteMaxSearchTime = myTime / 8;
451 else // (x moves) / (y minutes)
455 MaxSearchTime = myTime / 2;
456 AbsoluteMaxSearchTime = (myTime > 3000)? (myTime - 500) : ((myTime * 3) / 4);
460 MaxSearchTime = myTime / Min(movesToGo, 20);
461 AbsoluteMaxSearchTime = Min((4 * myTime) / movesToGo, myTime / 3);
465 if (PonderingEnabled)
467 MaxSearchTime += MaxSearchTime / 4;
468 MaxSearchTime = Min(MaxSearchTime, AbsoluteMaxSearchTime);
472 // Set best NodesBetweenPolls interval
474 NodesBetweenPolls = Min(MaxNodes, 30000);
475 else if (myTime && myTime < 1000)
476 NodesBetweenPolls = 1000;
477 else if (myTime && myTime < 5000)
478 NodesBetweenPolls = 5000;
480 NodesBetweenPolls = 30000;
482 // Write information to search log file
484 LogFile << "Searching: " << pos.to_fen() << endl
485 << "infinite: " << infinite
486 << " ponder: " << ponder
487 << " time: " << myTime
488 << " increment: " << myIncrement
489 << " moves to go: " << movesToGo << endl;
491 // LSN filtering. Used only for developing purpose. Disabled by default.
495 // Step 2. If after last move we decided to lose on time, do it now!
496 while (SearchStartTime + myTime + 1000 > get_system_time())
500 // We're ready to start thinking. Call the iterative deepening loop function
501 Value v = id_loop(pos, searchMoves);
505 // Step 1. If this is sudden death game and our position is hopeless,
506 // decide to lose on time.
507 if ( !loseOnTime // If we already lost on time, go to step 3.
517 // Step 3. Now after stepping over the time limit, reset flag for next match.
530 /// init_search() is called during startup. It initializes various
535 // Init our reduction lookup tables
536 for (int i = 1; i < 64; i++) // i == depth (OnePly = 1)
537 for (int j = 1; j < 64; j++) // j == moveNumber
539 double pvRed = 0.5 + log(double(i)) * log(double(j)) / 6.0;
540 double nonPVRed = 0.5 + log(double(i)) * log(double(j)) / 3.0;
541 PVReductionMatrix[i][j] = (int8_t) ( pvRed >= 1.0 ? floor( pvRed * int(OnePly)) : 0);
542 NonPVReductionMatrix[i][j] = (int8_t) (nonPVRed >= 1.0 ? floor(nonPVRed * int(OnePly)) : 0);
545 // Init futility margins array
546 for (int i = 0; i < 14; i++) // i == depth (OnePly = 2)
547 for (int j = 0; j < 64; j++) // j == moveNumber
549 FutilityMarginsMatrix[i][j] = (i < 2 ? 0 : 112 * bitScanReverse32(i * i / 2)) - 8 * j; // FIXME: test using log instead of BSR
552 // Init futility move count array
553 for (int i = 0; i < 32; i++) // i == depth (OnePly = 2)
554 FutilityMoveCountArray[i] = 3 + (1 << (3 * i / 8));
558 /// init_threads() is called during startup. It launches all helper threads,
559 /// and initializes the split point stack and the global locks and condition
562 void init_threads() {
567 #if !defined(_MSC_VER)
568 pthread_t pthread[1];
571 for (i = 0; i < THREAD_MAX; i++)
572 Threads[i].activeSplitPoints = 0;
574 // Initialize global locks
575 lock_init(&MPLock, NULL);
576 lock_init(&IOLock, NULL);
578 init_split_point_stack();
580 #if !defined(_MSC_VER)
581 pthread_mutex_init(&WaitLock, NULL);
582 pthread_cond_init(&WaitCond, NULL);
584 for (i = 0; i < THREAD_MAX; i++)
585 SitIdleEvent[i] = CreateEvent(0, FALSE, FALSE, 0);
588 // All threads except the main thread should be initialized to idle state
589 for (i = 1; i < THREAD_MAX; i++)
591 Threads[i].stop = false;
592 Threads[i].workIsWaiting = false;
593 Threads[i].idle = true;
594 Threads[i].running = false;
597 // Launch the helper threads
598 for (i = 1; i < THREAD_MAX; i++)
600 #if !defined(_MSC_VER)
601 ok = (pthread_create(pthread, NULL, init_thread, (void*)(&i)) == 0);
604 ok = (CreateThread(NULL, 0, init_thread, (LPVOID)(&i), 0, iID) != NULL);
609 cout << "Failed to create thread number " << i << endl;
610 Application::exit_with_failure();
613 // Wait until the thread has finished launching
614 while (!Threads[i].running);
619 /// stop_threads() is called when the program exits. It makes all the
620 /// helper threads exit cleanly.
622 void stop_threads() {
624 ActiveThreads = THREAD_MAX; // HACK
625 Idle = false; // HACK
626 wake_sleeping_threads();
627 AllThreadsShouldExit = true;
628 for (int i = 1; i < THREAD_MAX; i++)
630 Threads[i].stop = true;
631 while (Threads[i].running);
633 destroy_split_point_stack();
637 /// nodes_searched() returns the total number of nodes searched so far in
638 /// the current search.
640 int64_t nodes_searched() {
642 int64_t result = 0ULL;
643 for (int i = 0; i < ActiveThreads; i++)
644 result += Threads[i].nodes;
649 // SearchStack::init() initializes a search stack. Used at the beginning of a
650 // new search from the root.
651 void SearchStack::init(int ply) {
653 pv[ply] = pv[ply + 1] = MOVE_NONE;
654 currentMove = threatMove = MOVE_NONE;
655 reduction = Depth(0);
660 void SearchStack::initKillers() {
662 mateKiller = MOVE_NONE;
663 for (int i = 0; i < KILLER_MAX; i++)
664 killers[i] = MOVE_NONE;
669 // id_loop() is the main iterative deepening loop. It calls root_search
670 // repeatedly with increasing depth until the allocated thinking time has
671 // been consumed, the user stops the search, or the maximum search depth is
674 Value id_loop(const Position& pos, Move searchMoves[]) {
677 SearchStack ss[PLY_MAX_PLUS_2];
679 // searchMoves are verified, copied, scored and sorted
680 RootMoveList rml(p, searchMoves);
682 // Handle special case of searching on a mate/stale position
683 if (rml.move_count() == 0)
686 wait_for_stop_or_ponderhit();
688 return pos.is_check()? -VALUE_MATE : VALUE_DRAW;
691 // Print RootMoveList c'tor startup scoring to the standard output,
692 // so that we print information also for iteration 1.
693 cout << "info depth " << 1 << "\ninfo depth " << 1
694 << " score " << value_to_string(rml.get_move_score(0))
695 << " time " << current_search_time()
696 << " nodes " << nodes_searched()
698 << " pv " << rml.get_move(0) << "\n";
704 ValueByIteration[1] = rml.get_move_score(0);
707 // Is one move significantly better than others after initial scoring ?
708 Move EasyMove = MOVE_NONE;
709 if ( rml.move_count() == 1
710 || rml.get_move_score(0) > rml.get_move_score(1) + EasyMoveMargin)
711 EasyMove = rml.get_move(0);
713 // Iterative deepening loop
714 while (Iteration < PLY_MAX)
716 // Initialize iteration
719 BestMoveChangesByIteration[Iteration] = 0;
723 cout << "info depth " << Iteration << endl;
725 // Calculate dynamic search window based on previous iterations
728 if (MultiPV == 1 && Iteration >= 6 && abs(ValueByIteration[Iteration - 1]) < VALUE_KNOWN_WIN)
730 int prevDelta1 = ValueByIteration[Iteration - 1] - ValueByIteration[Iteration - 2];
731 int prevDelta2 = ValueByIteration[Iteration - 2] - ValueByIteration[Iteration - 3];
733 AspirationDelta = Max(abs(prevDelta1) + abs(prevDelta2) / 2, 16);
734 AspirationDelta = (AspirationDelta + 7) / 8 * 8; // Round to match grainSize
736 alpha = Max(ValueByIteration[Iteration - 1] - AspirationDelta, -VALUE_INFINITE);
737 beta = Min(ValueByIteration[Iteration - 1] + AspirationDelta, VALUE_INFINITE);
741 alpha = - VALUE_INFINITE;
742 beta = VALUE_INFINITE;
745 // Search to the current depth
746 Value value = root_search(p, ss, rml, alpha, beta);
748 // Write PV to transposition table, in case the relevant entries have
749 // been overwritten during the search.
750 TT.insert_pv(p, ss[0].pv);
753 break; // Value cannot be trusted. Break out immediately!
755 //Save info about search result
756 ValueByIteration[Iteration] = value;
758 // Drop the easy move if it differs from the new best move
759 if (ss[0].pv[0] != EasyMove)
760 EasyMove = MOVE_NONE;
762 if (UseTimeManagement)
765 bool stopSearch = false;
767 // Stop search early if there is only a single legal move,
768 // we search up to Iteration 6 anyway to get a proper score.
769 if (Iteration >= 6 && rml.move_count() == 1)
772 // Stop search early when the last two iterations returned a mate score
774 && abs(ValueByIteration[Iteration]) >= abs(VALUE_MATE) - 100
775 && abs(ValueByIteration[Iteration-1]) >= abs(VALUE_MATE) - 100)
778 // Stop search early if one move seems to be much better than the rest
779 int64_t nodes = nodes_searched();
781 && EasyMove == ss[0].pv[0]
782 && ( ( rml.get_move_cumulative_nodes(0) > (nodes * 85) / 100
783 && current_search_time() > MaxSearchTime / 16)
784 ||( rml.get_move_cumulative_nodes(0) > (nodes * 98) / 100
785 && current_search_time() > MaxSearchTime / 32)))
788 // Add some extra time if the best move has changed during the last two iterations
789 if (Iteration > 5 && Iteration <= 50)
790 ExtraSearchTime = BestMoveChangesByIteration[Iteration] * (MaxSearchTime / 2)
791 + BestMoveChangesByIteration[Iteration-1] * (MaxSearchTime / 3);
793 // Stop search if most of MaxSearchTime is consumed at the end of the
794 // iteration. We probably don't have enough time to search the first
795 // move at the next iteration anyway.
796 if (current_search_time() > ((MaxSearchTime + ExtraSearchTime) * 80) / 128)
804 StopOnPonderhit = true;
808 if (MaxDepth && Iteration >= MaxDepth)
814 // If we are pondering or in infinite search, we shouldn't print the
815 // best move before we are told to do so.
816 if (!AbortSearch && (PonderSearch || InfiniteSearch))
817 wait_for_stop_or_ponderhit();
819 // Print final search statistics
820 cout << "info nodes " << nodes_searched()
822 << " time " << current_search_time()
823 << " hashfull " << TT.full() << endl;
825 // Print the best move and the ponder move to the standard output
826 if (ss[0].pv[0] == MOVE_NONE)
828 ss[0].pv[0] = rml.get_move(0);
829 ss[0].pv[1] = MOVE_NONE;
831 cout << "bestmove " << ss[0].pv[0];
832 if (ss[0].pv[1] != MOVE_NONE)
833 cout << " ponder " << ss[0].pv[1];
840 dbg_print_mean(LogFile);
842 if (dbg_show_hit_rate)
843 dbg_print_hit_rate(LogFile);
845 LogFile << "\nNodes: " << nodes_searched()
846 << "\nNodes/second: " << nps()
847 << "\nBest move: " << move_to_san(p, ss[0].pv[0]);
850 p.do_move(ss[0].pv[0], st);
851 LogFile << "\nPonder move: " << move_to_san(p, ss[0].pv[1]) << endl;
853 return rml.get_move_score(0);
857 // root_search() is the function which searches the root node. It is
858 // similar to search_pv except that it uses a different move ordering
859 // scheme and prints some information to the standard output.
861 Value root_search(Position& pos, SearchStack ss[], RootMoveList& rml, Value& oldAlpha, Value& beta) {
866 Depth depth, ext, newDepth;
869 int researchCount = 0;
870 bool moveIsCheck, captureOrPromotion, dangerous;
871 Value alpha = oldAlpha;
872 bool isCheck = pos.is_check();
874 // Evaluate the position statically
876 ss[0].eval = !isCheck ? evaluate(pos, ei, 0) : VALUE_NONE;
878 while (1) // Fail low loop
881 // Loop through all the moves in the root move list
882 for (int i = 0; i < rml.move_count() && !AbortSearch; i++)
886 // We failed high, invalidate and skip next moves, leave node-counters
887 // and beta-counters as they are and quickly return, we will try to do
888 // a research at the next iteration with a bigger aspiration window.
889 rml.set_move_score(i, -VALUE_INFINITE);
893 RootMoveNumber = i + 1;
895 // Save the current node count before the move is searched
896 nodes = nodes_searched();
898 // Reset beta cut-off counters
901 // Pick the next root move, and print the move and the move number to
902 // the standard output.
903 move = ss[0].currentMove = rml.get_move(i);
905 if (current_search_time() >= 1000)
906 cout << "info currmove " << move
907 << " currmovenumber " << RootMoveNumber << endl;
909 // Decide search depth for this move
910 moveIsCheck = pos.move_is_check(move);
911 captureOrPromotion = pos.move_is_capture_or_promotion(move);
912 depth = (Iteration - 2) * OnePly + InitialDepth;
913 ext = extension(pos, move, true, captureOrPromotion, moveIsCheck, false, false, &dangerous);
914 newDepth = depth + ext;
916 value = - VALUE_INFINITE;
918 while (1) // Fail high loop
921 // Make the move, and search it
922 pos.do_move(move, st, ci, moveIsCheck);
924 if (i < MultiPV || value > alpha)
926 // Aspiration window is disabled in multi-pv case
928 alpha = -VALUE_INFINITE;
930 value = -search_pv(pos, ss, -beta, -alpha, newDepth, 1, 0);
934 // Try to reduce non-pv search depth by one ply if move seems not problematic,
935 // if the move fails high will be re-searched at full depth.
936 bool doFullDepthSearch = true;
938 if ( depth >= 3*OnePly // FIXME was newDepth
940 && !captureOrPromotion
941 && !move_is_castle(move))
943 ss[0].reduction = pv_reduction(depth, RootMoveNumber - MultiPV + 1);
946 value = -search(pos, ss, -alpha, newDepth-ss[0].reduction, 1, true, 0);
947 doFullDepthSearch = (value > alpha);
951 if (doFullDepthSearch)
953 ss[0].reduction = Depth(0);
954 value = -search(pos, ss, -alpha, newDepth, 1, true, 0);
957 value = -search_pv(pos, ss, -beta, -alpha, newDepth, 1, 0);
963 // Can we exit fail high loop ?
964 if (AbortSearch || value < beta)
967 // We are failing high and going to do a research. It's important to update score
968 // before research in case we run out of time while researching.
969 rml.set_move_score(i, value);
971 TT.extract_pv(pos, ss[0].pv, PLY_MAX);
972 rml.set_move_pv(i, ss[0].pv);
974 // Print search information to the standard output
975 cout << "info depth " << Iteration
976 << " score " << value_to_string(value)
977 << ((value >= beta) ? " lowerbound" :
978 ((value <= alpha)? " upperbound" : ""))
979 << " time " << current_search_time()
980 << " nodes " << nodes_searched()
984 for (int j = 0; ss[0].pv[j] != MOVE_NONE && j < PLY_MAX; j++)
985 cout << ss[0].pv[j] << " ";
991 ValueType type = (value >= beta ? VALUE_TYPE_LOWER
992 : (value <= alpha ? VALUE_TYPE_UPPER : VALUE_TYPE_EXACT));
994 LogFile << pretty_pv(pos, current_search_time(), Iteration,
995 nodes_searched(), value, type, ss[0].pv) << endl;
998 // Prepare for a research after a fail high, each time with a wider window
1000 beta = Min(beta + AspirationDelta * (1 << researchCount), VALUE_INFINITE);
1002 } // End of fail high loop
1004 // Finished searching the move. If AbortSearch is true, the search
1005 // was aborted because the user interrupted the search or because we
1006 // ran out of time. In this case, the return value of the search cannot
1007 // be trusted, and we break out of the loop without updating the best
1012 // Remember beta-cutoff and searched nodes counts for this move. The
1013 // info is used to sort the root moves at the next iteration.
1015 BetaCounter.read(pos.side_to_move(), our, their);
1016 rml.set_beta_counters(i, our, their);
1017 rml.set_move_nodes(i, nodes_searched() - nodes);
1019 assert(value >= -VALUE_INFINITE && value <= VALUE_INFINITE);
1021 if (value <= alpha && i >= MultiPV)
1022 rml.set_move_score(i, -VALUE_INFINITE);
1025 // PV move or new best move!
1028 rml.set_move_score(i, value);
1030 TT.extract_pv(pos, ss[0].pv, PLY_MAX);
1031 rml.set_move_pv(i, ss[0].pv);
1035 // We record how often the best move has been changed in each
1036 // iteration. This information is used for time managment: When
1037 // the best move changes frequently, we allocate some more time.
1039 BestMoveChangesByIteration[Iteration]++;
1041 // Print search information to the standard output
1042 cout << "info depth " << Iteration
1043 << " score " << value_to_string(value)
1044 << ((value >= beta) ? " lowerbound" :
1045 ((value <= alpha)? " upperbound" : ""))
1046 << " time " << current_search_time()
1047 << " nodes " << nodes_searched()
1051 for (int j = 0; ss[0].pv[j] != MOVE_NONE && j < PLY_MAX; j++)
1052 cout << ss[0].pv[j] << " ";
1058 ValueType type = (value >= beta ? VALUE_TYPE_LOWER
1059 : (value <= alpha ? VALUE_TYPE_UPPER : VALUE_TYPE_EXACT));
1061 LogFile << pretty_pv(pos, current_search_time(), Iteration,
1062 nodes_searched(), value, type, ss[0].pv) << endl;
1069 rml.sort_multipv(i);
1070 for (int j = 0; j < Min(MultiPV, rml.move_count()); j++)
1072 cout << "info multipv " << j + 1
1073 << " score " << value_to_string(rml.get_move_score(j))
1074 << " depth " << ((j <= i)? Iteration : Iteration - 1)
1075 << " time " << current_search_time()
1076 << " nodes " << nodes_searched()
1080 for (int k = 0; rml.get_move_pv(j, k) != MOVE_NONE && k < PLY_MAX; k++)
1081 cout << rml.get_move_pv(j, k) << " ";
1085 alpha = rml.get_move_score(Min(i, MultiPV-1));
1087 } // PV move or new best move
1089 assert(alpha >= oldAlpha);
1091 AspirationFailLow = (alpha == oldAlpha);
1093 if (AspirationFailLow && StopOnPonderhit)
1094 StopOnPonderhit = false;
1097 // Can we exit fail low loop ?
1098 if (AbortSearch || alpha > oldAlpha)
1101 // Prepare for a research after a fail low, each time with a wider window
1103 alpha = Max(alpha - AspirationDelta * (1 << researchCount), -VALUE_INFINITE);
1112 // search_pv() is the main search function for PV nodes.
1114 Value search_pv(Position& pos, SearchStack ss[], Value alpha, Value beta,
1115 Depth depth, int ply, int threadID) {
1117 assert(alpha >= -VALUE_INFINITE && alpha <= VALUE_INFINITE);
1118 assert(beta > alpha && beta <= VALUE_INFINITE);
1119 assert(ply >= 0 && ply < PLY_MAX);
1120 assert(threadID >= 0 && threadID < ActiveThreads);
1122 Move movesSearched[256];
1126 Depth ext, newDepth;
1127 Value oldAlpha, value;
1128 bool isCheck, mateThreat, singleEvasion, moveIsCheck, captureOrPromotion, dangerous;
1130 Value bestValue = value = -VALUE_INFINITE;
1133 return qsearch(pos, ss, alpha, beta, Depth(0), ply, threadID);
1135 // Initialize, and make an early exit in case of an aborted search,
1136 // an instant draw, maximum ply reached, etc.
1137 init_node(ss, ply, threadID);
1139 // After init_node() that calls poll()
1140 if (AbortSearch || thread_should_stop(threadID))
1143 if (pos.is_draw() || ply >= PLY_MAX - 1)
1146 // Mate distance pruning
1148 alpha = Max(value_mated_in(ply), alpha);
1149 beta = Min(value_mate_in(ply+1), beta);
1153 // Transposition table lookup. At PV nodes, we don't use the TT for
1154 // pruning, but only for move ordering. This is to avoid problems in
1155 // the following areas:
1157 // * Repetition draw detection
1158 // * Fifty move rule detection
1159 // * Searching for a mate
1160 // * Printing of full PV line
1162 tte = TT.retrieve(pos.get_key());
1163 ttMove = (tte ? tte->move() : MOVE_NONE);
1165 // Go with internal iterative deepening if we don't have a TT move
1166 if ( UseIIDAtPVNodes
1167 && depth >= 5*OnePly
1168 && ttMove == MOVE_NONE)
1170 search_pv(pos, ss, alpha, beta, depth-2*OnePly, ply, threadID);
1171 ttMove = ss[ply].pv[ply];
1172 tte = TT.retrieve(pos.get_key());
1175 isCheck = pos.is_check();
1178 // Update gain statistics of the previous move that lead
1179 // us in this position.
1181 ss[ply].eval = evaluate(pos, ei, threadID);
1182 update_gains(pos, ss[ply - 1].currentMove, ss[ply - 1].eval, ss[ply].eval);
1185 // Initialize a MovePicker object for the current position, and prepare
1186 // to search all moves
1187 mateThreat = pos.has_mate_threat(opposite_color(pos.side_to_move()));
1189 MovePicker mp = MovePicker(pos, ttMove, depth, H, &ss[ply]);
1191 // Loop through all legal moves until no moves remain or a beta cutoff
1193 while ( alpha < beta
1194 && (move = mp.get_next_move()) != MOVE_NONE
1195 && !thread_should_stop(threadID))
1197 assert(move_is_ok(move));
1199 singleEvasion = (isCheck && mp.number_of_evasions() == 1);
1200 moveIsCheck = pos.move_is_check(move, ci);
1201 captureOrPromotion = pos.move_is_capture_or_promotion(move);
1203 // Decide the new search depth
1204 ext = extension(pos, move, true, captureOrPromotion, moveIsCheck, singleEvasion, mateThreat, &dangerous);
1206 // Singular extension search. We extend the TT move if its value is much better than
1207 // its siblings. To verify this we do a reduced search on all the other moves but the
1208 // ttMove, if result is lower then ttValue minus a margin then we extend ttMove.
1209 if ( depth >= 6 * OnePly
1211 && move == tte->move()
1213 && is_lower_bound(tte->type())
1214 && tte->depth() >= depth - 3 * OnePly)
1216 Value ttValue = value_from_tt(tte->value(), ply);
1218 if (abs(ttValue) < VALUE_KNOWN_WIN)
1220 Value excValue = search(pos, ss, ttValue - SingleReplyMargin, depth / 2, ply, false, threadID, move);
1222 if (excValue < ttValue - SingleReplyMargin)
1227 newDepth = depth - OnePly + ext;
1229 // Update current move
1230 movesSearched[moveCount++] = ss[ply].currentMove = move;
1232 // Make and search the move
1233 pos.do_move(move, st, ci, moveIsCheck);
1235 if (moveCount == 1) // The first move in list is the PV
1236 value = -search_pv(pos, ss, -beta, -alpha, newDepth, ply+1, threadID);
1239 // Try to reduce non-pv search depth by one ply if move seems not problematic,
1240 // if the move fails high will be re-searched at full depth.
1241 bool doFullDepthSearch = true;
1243 if ( depth >= 3*OnePly
1245 && !captureOrPromotion
1246 && !move_is_castle(move)
1247 && !move_is_killer(move, ss[ply]))
1249 ss[ply].reduction = pv_reduction(depth, moveCount);
1250 if (ss[ply].reduction)
1252 value = -search(pos, ss, -alpha, newDepth-ss[ply].reduction, ply+1, true, threadID);
1253 doFullDepthSearch = (value > alpha);
1257 if (doFullDepthSearch) // Go with full depth non-pv search
1259 ss[ply].reduction = Depth(0);
1260 value = -search(pos, ss, -alpha, newDepth, ply+1, true, threadID);
1261 if (value > alpha && value < beta)
1262 value = -search_pv(pos, ss, -beta, -alpha, newDepth, ply+1, threadID);
1265 pos.undo_move(move);
1267 assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
1270 if (value > bestValue)
1277 if (value == value_mate_in(ply + 1))
1278 ss[ply].mateKiller = move;
1283 if ( ActiveThreads > 1
1285 && depth >= MinimumSplitDepth
1287 && idle_thread_exists(threadID)
1289 && !thread_should_stop(threadID)
1290 && split(pos, ss, ply, &alpha, &beta, &bestValue, VALUE_NONE,
1291 depth, &moveCount, &mp, threadID, true))
1295 // All legal moves have been searched. A special case: If there were
1296 // no legal moves, it must be mate or stalemate.
1298 return (isCheck ? value_mated_in(ply) : VALUE_DRAW);
1300 // If the search is not aborted, update the transposition table,
1301 // history counters, and killer moves.
1302 if (AbortSearch || thread_should_stop(threadID))
1305 if (bestValue <= oldAlpha)
1306 TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_UPPER, depth, MOVE_NONE);
1308 else if (bestValue >= beta)
1310 BetaCounter.add(pos.side_to_move(), depth, threadID);
1311 move = ss[ply].pv[ply];
1312 if (!pos.move_is_capture_or_promotion(move))
1314 update_history(pos, move, depth, movesSearched, moveCount);
1315 update_killers(move, ss[ply]);
1317 TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_LOWER, depth, move);
1320 TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_EXACT, depth, ss[ply].pv[ply]);
1326 // search() is the search function for zero-width nodes.
1328 Value search(Position& pos, SearchStack ss[], Value beta, Depth depth,
1329 int ply, bool allowNullmove, int threadID, Move excludedMove) {
1331 assert(beta >= -VALUE_INFINITE && beta <= VALUE_INFINITE);
1332 assert(ply >= 0 && ply < PLY_MAX);
1333 assert(threadID >= 0 && threadID < ActiveThreads);
1335 Move movesSearched[256];
1340 Depth ext, newDepth;
1341 Value bestValue, staticValue, nullValue, value, futilityValue, futilityValueScaled;
1342 bool isCheck, singleEvasion, moveIsCheck, captureOrPromotion, dangerous;
1343 bool mateThreat = false;
1345 futilityValue = staticValue = bestValue = value = -VALUE_INFINITE;
1348 return qsearch(pos, ss, beta-1, beta, Depth(0), ply, threadID);
1350 // Initialize, and make an early exit in case of an aborted search,
1351 // an instant draw, maximum ply reached, etc.
1352 init_node(ss, ply, threadID);
1354 // After init_node() that calls poll()
1355 if (AbortSearch || thread_should_stop(threadID))
1358 if (pos.is_draw() || ply >= PLY_MAX - 1)
1361 // Mate distance pruning
1362 if (value_mated_in(ply) >= beta)
1365 if (value_mate_in(ply + 1) < beta)
1368 // We don't want the score of a partial search to overwrite a previous full search
1369 // TT value, so we use a different position key in case of an excluded move exsists.
1370 Key posKey = excludedMove ? pos.get_exclusion_key() : pos.get_key();
1372 // Transposition table lookup
1373 tte = TT.retrieve(posKey);
1374 ttMove = (tte ? tte->move() : MOVE_NONE);
1376 if (tte && ok_to_use_TT(tte, depth, beta, ply))
1378 ss[ply].currentMove = ttMove; // Can be MOVE_NONE
1379 return value_from_tt(tte->value(), ply);
1382 isCheck = pos.is_check();
1384 // Evaluate the position statically
1387 if (tte && (tte->type() & VALUE_TYPE_EVAL))
1388 staticValue = value_from_tt(tte->value(), ply);
1391 staticValue = evaluate(pos, ei, threadID);
1392 ss[ply].evalInfo = &ei;
1395 ss[ply].eval = staticValue;
1396 futilityValue = staticValue + futility_margin(depth, 0); //FIXME: Remove me, only for split
1397 staticValue = refine_eval(tte, staticValue, ply); // Enhance accuracy with TT value if possible
1398 update_gains(pos, ss[ply - 1].currentMove, ss[ply - 1].eval, ss[ply].eval);
1401 // Static null move pruning. We're betting that the opponent doesn't have
1402 // a move that will reduce the score by more than FutilityMargins[int(depth)]
1403 // if we do a null move.
1406 && depth < RazorDepth
1407 && staticValue - futility_margin(depth, 0) >= beta)
1408 return staticValue - futility_margin(depth, 0);
1414 && !value_is_mate(beta)
1415 && ok_to_do_nullmove(pos)
1416 && staticValue >= beta - NullMoveMargin)
1418 ss[ply].currentMove = MOVE_NULL;
1420 pos.do_null_move(st);
1422 // Null move dynamic reduction based on depth
1423 int R = 3 + (depth >= 5 * OnePly ? depth / 8 : 0);
1425 // Null move dynamic reduction based on value
1426 if (staticValue - beta > PawnValueMidgame)
1429 nullValue = -search(pos, ss, -(beta-1), depth-R*OnePly, ply+1, false, threadID);
1431 pos.undo_null_move();
1433 if (nullValue >= beta)
1435 if (depth < 6 * OnePly)
1438 // Do zugzwang verification search
1439 Value v = search(pos, ss, beta, depth-5*OnePly, ply, false, threadID);
1443 // The null move failed low, which means that we may be faced with
1444 // some kind of threat. If the previous move was reduced, check if
1445 // the move that refuted the null move was somehow connected to the
1446 // move which was reduced. If a connection is found, return a fail
1447 // low score (which will cause the reduced move to fail high in the
1448 // parent node, which will trigger a re-search with full depth).
1449 if (nullValue == value_mated_in(ply + 2))
1452 ss[ply].threatMove = ss[ply + 1].currentMove;
1453 if ( depth < ThreatDepth
1454 && ss[ply - 1].reduction
1455 && connected_moves(pos, ss[ply - 1].currentMove, ss[ply].threatMove))
1459 // Null move search not allowed, try razoring
1460 else if ( !value_is_mate(beta)
1462 && depth < RazorDepth
1463 && staticValue < beta - (NullMoveMargin + 16 * depth)
1464 && ss[ply - 1].currentMove != MOVE_NULL
1465 && ttMove == MOVE_NONE
1466 && !pos.has_pawn_on_7th(pos.side_to_move()))
1468 Value rbeta = beta - (NullMoveMargin + 16 * depth);
1469 Value v = qsearch(pos, ss, rbeta-1, rbeta, Depth(0), ply, threadID);
1474 // Go with internal iterative deepening if we don't have a TT move
1475 if (UseIIDAtNonPVNodes && ttMove == MOVE_NONE && depth >= 8*OnePly &&
1476 !isCheck && ss[ply].eval >= beta - IIDMargin)
1478 search(pos, ss, beta, Min(depth/2, depth-2*OnePly), ply, false, threadID);
1479 ttMove = ss[ply].pv[ply];
1480 tte = TT.retrieve(posKey);
1483 // Initialize a MovePicker object for the current position, and prepare
1484 // to search all moves.
1485 MovePicker mp = MovePicker(pos, ttMove, depth, H, &ss[ply]);
1488 // Loop through all legal moves until no moves remain or a beta cutoff occurs
1489 while ( bestValue < beta
1490 && (move = mp.get_next_move()) != MOVE_NONE
1491 && !thread_should_stop(threadID))
1493 assert(move_is_ok(move));
1495 if (move == excludedMove)
1498 moveIsCheck = pos.move_is_check(move, ci);
1499 singleEvasion = (isCheck && mp.number_of_evasions() == 1);
1500 captureOrPromotion = pos.move_is_capture_or_promotion(move);
1502 // Decide the new search depth
1503 ext = extension(pos, move, false, captureOrPromotion, moveIsCheck, singleEvasion, mateThreat, &dangerous);
1505 // Singular extension search. We extend the TT move if its value is much better than
1506 // its siblings. To verify this we do a reduced search on all the other moves but the
1507 // ttMove, if result is lower then ttValue minus a margin then we extend ttMove.
1508 if ( depth >= 8 * OnePly
1510 && move == tte->move()
1511 && !excludedMove // Do not allow recursive single-reply search
1513 && is_lower_bound(tte->type())
1514 && tte->depth() >= depth - 3 * OnePly)
1516 Value ttValue = value_from_tt(tte->value(), ply);
1518 if (abs(ttValue) < VALUE_KNOWN_WIN)
1520 Value excValue = search(pos, ss, ttValue - SingleReplyMargin, depth / 2, ply, false, threadID, move);
1522 if (excValue < ttValue - SingleReplyMargin)
1527 newDepth = depth - OnePly + ext;
1529 // Update current move
1530 movesSearched[moveCount++] = ss[ply].currentMove = move;
1535 && !captureOrPromotion
1536 && !move_is_castle(move)
1539 // Move count based pruning
1540 if ( moveCount >= futility_move_count(depth)
1541 && ok_to_prune(pos, move, ss[ply].threatMove)
1542 && bestValue > value_mated_in(PLY_MAX))
1545 // Value based pruning
1546 Depth predictedDepth = newDepth - nonpv_reduction(depth, moveCount); //FIXME: We are ignoring condition: depth >= 3*OnePly, BUG??
1547 futilityValueScaled = ss[ply].eval + futility_margin(predictedDepth, moveCount) + H.gain(pos.piece_on(move_from(move)), move_to(move)) + 45;
1549 if (futilityValueScaled < beta)
1551 if (futilityValueScaled > bestValue)
1552 bestValue = futilityValueScaled;
1557 // Make and search the move
1558 pos.do_move(move, st, ci, moveIsCheck);
1560 // Try to reduce non-pv search depth by one ply if move seems not problematic,
1561 // if the move fails high will be re-searched at full depth.
1562 bool doFullDepthSearch = true;
1564 if ( depth >= 3*OnePly
1566 && !captureOrPromotion
1567 && !move_is_castle(move)
1568 && !move_is_killer(move, ss[ply]))
1570 ss[ply].reduction = nonpv_reduction(depth, moveCount);
1571 if (ss[ply].reduction)
1573 value = -search(pos, ss, -(beta-1), newDepth-ss[ply].reduction, ply+1, true, threadID);
1574 doFullDepthSearch = (value >= beta);
1578 if (doFullDepthSearch) // Go with full depth non-pv search
1580 ss[ply].reduction = Depth(0);
1581 value = -search(pos, ss, -(beta-1), newDepth, ply+1, true, threadID);
1583 pos.undo_move(move);
1585 assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
1588 if (value > bestValue)
1594 if (value == value_mate_in(ply + 1))
1595 ss[ply].mateKiller = move;
1599 if ( ActiveThreads > 1
1601 && depth >= MinimumSplitDepth
1603 && idle_thread_exists(threadID)
1605 && !thread_should_stop(threadID)
1606 && split(pos, ss, ply, &beta, &beta, &bestValue, futilityValue, //FIXME: SMP & futilityValue
1607 depth, &moveCount, &mp, threadID, false))
1611 // All legal moves have been searched. A special case: If there were
1612 // no legal moves, it must be mate or stalemate.
1614 return excludedMove ? beta - 1 : (pos.is_check() ? value_mated_in(ply) : VALUE_DRAW);
1616 // If the search is not aborted, update the transposition table,
1617 // history counters, and killer moves.
1618 if (AbortSearch || thread_should_stop(threadID))
1621 if (bestValue < beta)
1622 TT.store(posKey, value_to_tt(bestValue, ply), VALUE_TYPE_UPPER, depth, MOVE_NONE);
1625 BetaCounter.add(pos.side_to_move(), depth, threadID);
1626 move = ss[ply].pv[ply];
1627 TT.store(posKey, value_to_tt(bestValue, ply), VALUE_TYPE_LOWER, depth, move);
1628 if (!pos.move_is_capture_or_promotion(move))
1630 update_history(pos, move, depth, movesSearched, moveCount);
1631 update_killers(move, ss[ply]);
1636 assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
1642 // qsearch() is the quiescence search function, which is called by the main
1643 // search function when the remaining depth is zero (or, to be more precise,
1644 // less than OnePly).
1646 Value qsearch(Position& pos, SearchStack ss[], Value alpha, Value beta,
1647 Depth depth, int ply, int threadID) {
1649 assert(alpha >= -VALUE_INFINITE && alpha <= VALUE_INFINITE);
1650 assert(beta >= -VALUE_INFINITE && beta <= VALUE_INFINITE);
1652 assert(ply >= 0 && ply < PLY_MAX);
1653 assert(threadID >= 0 && threadID < ActiveThreads);
1658 Value staticValue, bestValue, value, futilityBase, futilityValue;
1659 bool isCheck, enoughMaterial, moveIsCheck, evasionPrunable;
1660 const TTEntry* tte = NULL;
1662 bool pvNode = (beta - alpha != 1);
1663 Value oldAlpha = alpha;
1665 // Initialize, and make an early exit in case of an aborted search,
1666 // an instant draw, maximum ply reached, etc.
1667 init_node(ss, ply, threadID);
1669 // After init_node() that calls poll()
1670 if (AbortSearch || thread_should_stop(threadID))
1673 if (pos.is_draw() || ply >= PLY_MAX - 1)
1676 // Transposition table lookup. At PV nodes, we don't use the TT for
1677 // pruning, but only for move ordering.
1678 tte = TT.retrieve(pos.get_key());
1679 ttMove = (tte ? tte->move() : MOVE_NONE);
1681 if (!pvNode && tte && ok_to_use_TT(tte, depth, beta, ply))
1683 assert(tte->type() != VALUE_TYPE_EVAL);
1685 ss[ply].currentMove = ttMove; // Can be MOVE_NONE
1686 return value_from_tt(tte->value(), ply);
1689 isCheck = pos.is_check();
1691 // Evaluate the position statically
1693 staticValue = -VALUE_INFINITE;
1694 else if (tte && (tte->type() & VALUE_TYPE_EVAL))
1695 staticValue = value_from_tt(tte->value(), ply);
1697 staticValue = evaluate(pos, ei, threadID);
1701 ss[ply].eval = staticValue;
1702 update_gains(pos, ss[ply - 1].currentMove, ss[ply - 1].eval, ss[ply].eval);
1705 // Initialize "stand pat score", and return it immediately if it is
1707 bestValue = staticValue;
1709 if (bestValue >= beta)
1711 // Store the score to avoid a future costly evaluation() call
1712 if (!isCheck && !tte && ei.futilityMargin[pos.side_to_move()] == 0)
1713 TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_EV_LO, Depth(-127*OnePly), MOVE_NONE);
1718 if (bestValue > alpha)
1721 // If we are near beta then try to get a cutoff pushing checks a bit further
1722 bool deepChecks = depth == -OnePly && staticValue >= beta - PawnValueMidgame / 8;
1724 // Initialize a MovePicker object for the current position, and prepare
1725 // to search the moves. Because the depth is <= 0 here, only captures,
1726 // queen promotions and checks (only if depth == 0 or depth == -OnePly
1727 // and we are near beta) will be generated.
1728 MovePicker mp = MovePicker(pos, ttMove, deepChecks ? Depth(0) : depth, H);
1730 enoughMaterial = pos.non_pawn_material(pos.side_to_move()) > RookValueMidgame;
1731 futilityBase = staticValue + FutilityMarginQS + ei.futilityMargin[pos.side_to_move()];
1733 // Loop through the moves until no moves remain or a beta cutoff
1735 while ( alpha < beta
1736 && (move = mp.get_next_move()) != MOVE_NONE)
1738 assert(move_is_ok(move));
1740 moveIsCheck = pos.move_is_check(move, ci);
1742 // Update current move
1744 ss[ply].currentMove = move;
1752 && !move_is_promotion(move)
1753 && !pos.move_is_passed_pawn_push(move))
1755 futilityValue = futilityBase
1756 + pos.endgame_value_of_piece_on(move_to(move))
1757 + (move_is_ep(move) ? PawnValueEndgame : Value(0));
1759 if (futilityValue < alpha)
1761 if (futilityValue > bestValue)
1762 bestValue = futilityValue;
1767 // Detect blocking evasions that are candidate to be pruned
1768 evasionPrunable = isCheck
1769 && bestValue != -VALUE_INFINITE
1770 && !pos.move_is_capture(move)
1771 && pos.type_of_piece_on(move_from(move)) != KING
1772 && !pos.can_castle(pos.side_to_move());
1774 // Don't search moves with negative SEE values
1775 if ( (!isCheck || evasionPrunable)
1777 && !move_is_promotion(move)
1778 && pos.see_sign(move) < 0)
1781 // Make and search the move
1782 pos.do_move(move, st, ci, moveIsCheck);
1783 value = -qsearch(pos, ss, -beta, -alpha, depth-OnePly, ply+1, threadID);
1784 pos.undo_move(move);
1786 assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
1789 if (value > bestValue)
1800 // All legal moves have been searched. A special case: If we're in check
1801 // and no legal moves were found, it is checkmate.
1802 if (!moveCount && pos.is_check()) // Mate!
1803 return value_mated_in(ply);
1805 // Update transposition table
1806 Depth d = (depth == Depth(0) ? Depth(0) : Depth(-1));
1807 if (bestValue <= oldAlpha)
1809 // If bestValue isn't changed it means it is still the static evaluation
1810 // of the node, so keep this info to avoid a future evaluation() call.
1811 ValueType type = (bestValue == staticValue && !ei.futilityMargin[pos.side_to_move()] ? VALUE_TYPE_EV_UP : VALUE_TYPE_UPPER);
1812 TT.store(pos.get_key(), value_to_tt(bestValue, ply), type, d, MOVE_NONE);
1814 else if (bestValue >= beta)
1816 move = ss[ply].pv[ply];
1817 TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_LOWER, d, move);
1819 // Update killers only for good checking moves
1820 if (!pos.move_is_capture_or_promotion(move))
1821 update_killers(move, ss[ply]);
1824 TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_EXACT, d, ss[ply].pv[ply]);
1826 assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
1832 // sp_search() is used to search from a split point. This function is called
1833 // by each thread working at the split point. It is similar to the normal
1834 // search() function, but simpler. Because we have already probed the hash
1835 // table, done a null move search, and searched the first move before
1836 // splitting, we don't have to repeat all this work in sp_search(). We
1837 // also don't need to store anything to the hash table here: This is taken
1838 // care of after we return from the split point.
1840 void sp_search(SplitPoint* sp, int threadID) {
1842 assert(threadID >= 0 && threadID < ActiveThreads);
1843 assert(ActiveThreads > 1);
1845 Position pos(*sp->pos);
1847 SearchStack* ss = sp->sstack[threadID];
1848 Value value = -VALUE_INFINITE;
1851 bool isCheck = pos.is_check();
1852 bool useFutilityPruning = sp->depth < 7 * OnePly //FIXME: sync with search
1855 while ( lock_grab_bool(&(sp->lock))
1856 && sp->bestValue < sp->beta
1857 && !thread_should_stop(threadID)
1858 && (move = sp->mp->get_next_move()) != MOVE_NONE)
1860 moveCount = ++sp->moves;
1861 lock_release(&(sp->lock));
1863 assert(move_is_ok(move));
1865 bool moveIsCheck = pos.move_is_check(move, ci);
1866 bool captureOrPromotion = pos.move_is_capture_or_promotion(move);
1868 ss[sp->ply].currentMove = move;
1870 // Decide the new search depth
1872 Depth ext = extension(pos, move, false, captureOrPromotion, moveIsCheck, false, false, &dangerous);
1873 Depth newDepth = sp->depth - OnePly + ext;
1876 if ( useFutilityPruning
1878 && !captureOrPromotion)
1880 // Move count based pruning
1881 if ( moveCount >= futility_move_count(sp->depth)
1882 && ok_to_prune(pos, move, ss[sp->ply].threatMove)
1883 && sp->bestValue > value_mated_in(PLY_MAX))
1886 // Value based pruning
1887 Value futilityValueScaled = sp->futilityValue - moveCount * 8; //FIXME: sync with search
1889 if (futilityValueScaled < sp->beta)
1891 if (futilityValueScaled > sp->bestValue) // Less then 1% of cases
1893 lock_grab(&(sp->lock));
1894 if (futilityValueScaled > sp->bestValue)
1895 sp->bestValue = futilityValueScaled;
1896 lock_release(&(sp->lock));
1902 // Make and search the move.
1904 pos.do_move(move, st, ci, moveIsCheck);
1906 // Try to reduce non-pv search depth by one ply if move seems not problematic,
1907 // if the move fails high will be re-searched at full depth.
1908 bool doFullDepthSearch = true;
1911 && !captureOrPromotion
1912 && !move_is_castle(move)
1913 && !move_is_killer(move, ss[sp->ply]))
1915 ss[sp->ply].reduction = nonpv_reduction(sp->depth, moveCount);
1916 if (ss[sp->ply].reduction)
1918 value = -search(pos, ss, -(sp->beta-1), newDepth-ss[sp->ply].reduction, sp->ply+1, true, threadID);
1919 doFullDepthSearch = (value >= sp->beta);
1923 if (doFullDepthSearch) // Go with full depth non-pv search
1925 ss[sp->ply].reduction = Depth(0);
1926 value = -search(pos, ss, -(sp->beta - 1), newDepth, sp->ply+1, true, threadID);
1928 pos.undo_move(move);
1930 assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
1932 if (thread_should_stop(threadID))
1934 lock_grab(&(sp->lock));
1939 if (value > sp->bestValue) // Less then 2% of cases
1941 lock_grab(&(sp->lock));
1942 if (value > sp->bestValue && !thread_should_stop(threadID))
1944 sp->bestValue = value;
1945 if (sp->bestValue >= sp->beta)
1947 sp_update_pv(sp->parentSstack, ss, sp->ply);
1948 for (int i = 0; i < ActiveThreads; i++)
1949 if (i != threadID && (i == sp->master || sp->slaves[i]))
1950 Threads[i].stop = true;
1952 sp->finished = true;
1955 lock_release(&(sp->lock));
1959 /* Here we have the lock still grabbed */
1961 // If this is the master thread and we have been asked to stop because of
1962 // a beta cutoff higher up in the tree, stop all slave threads.
1963 if (sp->master == threadID && thread_should_stop(threadID))
1964 for (int i = 0; i < ActiveThreads; i++)
1966 Threads[i].stop = true;
1969 sp->slaves[threadID] = 0;
1971 lock_release(&(sp->lock));
1975 // sp_search_pv() is used to search from a PV split point. This function
1976 // is called by each thread working at the split point. It is similar to
1977 // the normal search_pv() function, but simpler. Because we have already
1978 // probed the hash table and searched the first move before splitting, we
1979 // don't have to repeat all this work in sp_search_pv(). We also don't
1980 // need to store anything to the hash table here: This is taken care of
1981 // after we return from the split point.
1983 void sp_search_pv(SplitPoint* sp, int threadID) {
1985 assert(threadID >= 0 && threadID < ActiveThreads);
1986 assert(ActiveThreads > 1);
1988 Position pos(*sp->pos);
1990 SearchStack* ss = sp->sstack[threadID];
1991 Value value = -VALUE_INFINITE;
1995 while ( lock_grab_bool(&(sp->lock))
1996 && sp->alpha < sp->beta
1997 && !thread_should_stop(threadID)
1998 && (move = sp->mp->get_next_move()) != MOVE_NONE)
2000 moveCount = ++sp->moves;
2001 lock_release(&(sp->lock));
2003 assert(move_is_ok(move));
2005 bool moveIsCheck = pos.move_is_check(move, ci);
2006 bool captureOrPromotion = pos.move_is_capture_or_promotion(move);
2008 ss[sp->ply].currentMove = move;
2010 // Decide the new search depth
2012 Depth ext = extension(pos, move, true, captureOrPromotion, moveIsCheck, false, false, &dangerous);
2013 Depth newDepth = sp->depth - OnePly + ext;
2015 // Make and search the move.
2017 pos.do_move(move, st, ci, moveIsCheck);
2019 // Try to reduce non-pv search depth by one ply if move seems not problematic,
2020 // if the move fails high will be re-searched at full depth.
2021 bool doFullDepthSearch = true;
2024 && !captureOrPromotion
2025 && !move_is_castle(move)
2026 && !move_is_killer(move, ss[sp->ply]))
2028 ss[sp->ply].reduction = pv_reduction(sp->depth, moveCount);
2029 if (ss[sp->ply].reduction)
2031 Value localAlpha = sp->alpha;
2032 value = -search(pos, ss, -localAlpha, newDepth-ss[sp->ply].reduction, sp->ply+1, true, threadID);
2033 doFullDepthSearch = (value > localAlpha);
2037 if (doFullDepthSearch) // Go with full depth non-pv search
2039 Value localAlpha = sp->alpha;
2040 ss[sp->ply].reduction = Depth(0);
2041 value = -search(pos, ss, -localAlpha, newDepth, sp->ply+1, true, threadID);
2043 if (value > localAlpha && value < sp->beta)
2045 // If another thread has failed high then sp->alpha has been increased
2046 // to be higher or equal then beta, if so, avoid to start a PV search.
2047 localAlpha = sp->alpha;
2048 if (localAlpha < sp->beta)
2049 value = -search_pv(pos, ss, -sp->beta, -localAlpha, newDepth, sp->ply+1, threadID);
2051 assert(thread_should_stop(threadID));
2054 pos.undo_move(move);
2056 assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
2058 if (thread_should_stop(threadID))
2060 lock_grab(&(sp->lock));
2065 if (value > sp->bestValue) // Less then 2% of cases
2067 lock_grab(&(sp->lock));
2068 if (value > sp->bestValue && !thread_should_stop(threadID))
2070 sp->bestValue = value;
2071 if (value > sp->alpha)
2073 // Ask threads to stop before to modify sp->alpha
2074 if (value >= sp->beta)
2076 for (int i = 0; i < ActiveThreads; i++)
2077 if (i != threadID && (i == sp->master || sp->slaves[i]))
2078 Threads[i].stop = true;
2080 sp->finished = true;
2085 sp_update_pv(sp->parentSstack, ss, sp->ply);
2086 if (value == value_mate_in(sp->ply + 1))
2087 ss[sp->ply].mateKiller = move;
2090 lock_release(&(sp->lock));
2094 /* Here we have the lock still grabbed */
2096 // If this is the master thread and we have been asked to stop because of
2097 // a beta cutoff higher up in the tree, stop all slave threads.
2098 if (sp->master == threadID && thread_should_stop(threadID))
2099 for (int i = 0; i < ActiveThreads; i++)
2101 Threads[i].stop = true;
2104 sp->slaves[threadID] = 0;
2106 lock_release(&(sp->lock));
2109 /// The BetaCounterType class
2111 BetaCounterType::BetaCounterType() { clear(); }
2113 void BetaCounterType::clear() {
2115 for (int i = 0; i < THREAD_MAX; i++)
2116 Threads[i].betaCutOffs[WHITE] = Threads[i].betaCutOffs[BLACK] = 0ULL;
2119 void BetaCounterType::add(Color us, Depth d, int threadID) {
2121 // Weighted count based on depth
2122 Threads[threadID].betaCutOffs[us] += unsigned(d);
2125 void BetaCounterType::read(Color us, int64_t& our, int64_t& their) {
2128 for (int i = 0; i < THREAD_MAX; i++)
2130 our += Threads[i].betaCutOffs[us];
2131 their += Threads[i].betaCutOffs[opposite_color(us)];
2136 /// The RootMoveList class
2138 // RootMoveList c'tor
2140 RootMoveList::RootMoveList(Position& pos, Move searchMoves[]) : count(0) {
2142 SearchStack ss[PLY_MAX_PLUS_2];
2143 MoveStack mlist[MaxRootMoves];
2145 bool includeAllMoves = (searchMoves[0] == MOVE_NONE);
2147 // Generate all legal moves
2148 MoveStack* last = generate_moves(pos, mlist);
2150 // Add each move to the moves[] array
2151 for (MoveStack* cur = mlist; cur != last; cur++)
2153 bool includeMove = includeAllMoves;
2155 for (int k = 0; !includeMove && searchMoves[k] != MOVE_NONE; k++)
2156 includeMove = (searchMoves[k] == cur->move);
2161 // Find a quick score for the move
2163 pos.do_move(cur->move, st);
2164 moves[count].move = cur->move;
2165 moves[count].score = -qsearch(pos, ss, -VALUE_INFINITE, VALUE_INFINITE, Depth(0), 1, 0);
2166 moves[count].pv[0] = cur->move;
2167 moves[count].pv[1] = MOVE_NONE;
2168 pos.undo_move(cur->move);
2175 // RootMoveList simple methods definitions
2177 void RootMoveList::set_move_nodes(int moveNum, int64_t nodes) {
2179 moves[moveNum].nodes = nodes;
2180 moves[moveNum].cumulativeNodes += nodes;
2183 void RootMoveList::set_beta_counters(int moveNum, int64_t our, int64_t their) {
2185 moves[moveNum].ourBeta = our;
2186 moves[moveNum].theirBeta = their;
2189 void RootMoveList::set_move_pv(int moveNum, const Move pv[]) {
2193 for (j = 0; pv[j] != MOVE_NONE; j++)
2194 moves[moveNum].pv[j] = pv[j];
2196 moves[moveNum].pv[j] = MOVE_NONE;
2200 // RootMoveList::sort() sorts the root move list at the beginning of a new
2203 void RootMoveList::sort() {
2205 sort_multipv(count - 1); // Sort all items
2209 // RootMoveList::sort_multipv() sorts the first few moves in the root move
2210 // list by their scores and depths. It is used to order the different PVs
2211 // correctly in MultiPV mode.
2213 void RootMoveList::sort_multipv(int n) {
2217 for (i = 1; i <= n; i++)
2219 RootMove rm = moves[i];
2220 for (j = i; j > 0 && moves[j - 1] < rm; j--)
2221 moves[j] = moves[j - 1];
2228 // init_node() is called at the beginning of all the search functions
2229 // (search(), search_pv(), qsearch(), and so on) and initializes the
2230 // search stack object corresponding to the current node. Once every
2231 // NodesBetweenPolls nodes, init_node() also calls poll(), which polls
2232 // for user input and checks whether it is time to stop the search.
2234 void init_node(SearchStack ss[], int ply, int threadID) {
2236 assert(ply >= 0 && ply < PLY_MAX);
2237 assert(threadID >= 0 && threadID < ActiveThreads);
2239 Threads[threadID].nodes++;
2244 if (NodesSincePoll >= NodesBetweenPolls)
2251 ss[ply + 2].initKillers();
2253 if (Threads[threadID].printCurrentLine)
2254 print_current_line(ss, ply, threadID);
2258 // update_pv() is called whenever a search returns a value > alpha.
2259 // It updates the PV in the SearchStack object corresponding to the
2262 void update_pv(SearchStack ss[], int ply) {
2264 assert(ply >= 0 && ply < PLY_MAX);
2268 ss[ply].pv[ply] = ss[ply].currentMove;
2270 for (p = ply + 1; ss[ply + 1].pv[p] != MOVE_NONE; p++)
2271 ss[ply].pv[p] = ss[ply + 1].pv[p];
2273 ss[ply].pv[p] = MOVE_NONE;
2277 // sp_update_pv() is a variant of update_pv for use at split points. The
2278 // difference between the two functions is that sp_update_pv also updates
2279 // the PV at the parent node.
2281 void sp_update_pv(SearchStack* pss, SearchStack ss[], int ply) {
2283 assert(ply >= 0 && ply < PLY_MAX);
2287 ss[ply].pv[ply] = pss[ply].pv[ply] = ss[ply].currentMove;
2289 for (p = ply + 1; ss[ply + 1].pv[p] != MOVE_NONE; p++)
2290 ss[ply].pv[p] = pss[ply].pv[p] = ss[ply + 1].pv[p];
2292 ss[ply].pv[p] = pss[ply].pv[p] = MOVE_NONE;
2296 // connected_moves() tests whether two moves are 'connected' in the sense
2297 // that the first move somehow made the second move possible (for instance
2298 // if the moving piece is the same in both moves). The first move is assumed
2299 // to be the move that was made to reach the current position, while the
2300 // second move is assumed to be a move from the current position.
2302 bool connected_moves(const Position& pos, Move m1, Move m2) {
2304 Square f1, t1, f2, t2;
2307 assert(move_is_ok(m1));
2308 assert(move_is_ok(m2));
2310 if (m2 == MOVE_NONE)
2313 // Case 1: The moving piece is the same in both moves
2319 // Case 2: The destination square for m2 was vacated by m1
2325 // Case 3: Moving through the vacated square
2326 if ( piece_is_slider(pos.piece_on(f2))
2327 && bit_is_set(squares_between(f2, t2), f1))
2330 // Case 4: The destination square for m2 is defended by the moving piece in m1
2331 p = pos.piece_on(t1);
2332 if (bit_is_set(pos.attacks_from(p, t1), t2))
2335 // Case 5: Discovered check, checking piece is the piece moved in m1
2336 if ( piece_is_slider(p)
2337 && bit_is_set(squares_between(t1, pos.king_square(pos.side_to_move())), f2)
2338 && !bit_is_set(squares_between(t1, pos.king_square(pos.side_to_move())), t2))
2340 // discovered_check_candidates() works also if the Position's side to
2341 // move is the opposite of the checking piece.
2342 Color them = opposite_color(pos.side_to_move());
2343 Bitboard dcCandidates = pos.discovered_check_candidates(them);
2345 if (bit_is_set(dcCandidates, f2))
2352 // value_is_mate() checks if the given value is a mate one
2353 // eventually compensated for the ply.
2355 bool value_is_mate(Value value) {
2357 assert(abs(value) <= VALUE_INFINITE);
2359 return value <= value_mated_in(PLY_MAX)
2360 || value >= value_mate_in(PLY_MAX);
2364 // move_is_killer() checks if the given move is among the
2365 // killer moves of that ply.
2367 bool move_is_killer(Move m, const SearchStack& ss) {
2369 const Move* k = ss.killers;
2370 for (int i = 0; i < KILLER_MAX; i++, k++)
2378 // extension() decides whether a move should be searched with normal depth,
2379 // or with extended depth. Certain classes of moves (checking moves, in
2380 // particular) are searched with bigger depth than ordinary moves and in
2381 // any case are marked as 'dangerous'. Note that also if a move is not
2382 // extended, as example because the corresponding UCI option is set to zero,
2383 // the move is marked as 'dangerous' so, at least, we avoid to prune it.
2385 Depth extension(const Position& pos, Move m, bool pvNode, bool captureOrPromotion,
2386 bool moveIsCheck, bool singleEvasion, bool mateThreat, bool* dangerous) {
2388 assert(m != MOVE_NONE);
2390 Depth result = Depth(0);
2391 *dangerous = moveIsCheck | singleEvasion | mateThreat;
2396 result += CheckExtension[pvNode];
2399 result += SingleEvasionExtension[pvNode];
2402 result += MateThreatExtension[pvNode];
2405 if (pos.type_of_piece_on(move_from(m)) == PAWN)
2407 Color c = pos.side_to_move();
2408 if (relative_rank(c, move_to(m)) == RANK_7)
2410 result += PawnPushTo7thExtension[pvNode];
2413 if (pos.pawn_is_passed(c, move_to(m)))
2415 result += PassedPawnExtension[pvNode];
2420 if ( captureOrPromotion
2421 && pos.type_of_piece_on(move_to(m)) != PAWN
2422 && ( pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK)
2423 - pos.midgame_value_of_piece_on(move_to(m)) == Value(0))
2424 && !move_is_promotion(m)
2427 result += PawnEndgameExtension[pvNode];
2432 && captureOrPromotion
2433 && pos.type_of_piece_on(move_to(m)) != PAWN
2434 && pos.see_sign(m) >= 0)
2440 return Min(result, OnePly);
2444 // ok_to_do_nullmove() looks at the current position and decides whether
2445 // doing a 'null move' should be allowed. In order to avoid zugzwang
2446 // problems, null moves are not allowed when the side to move has very
2447 // little material left. Currently, the test is a bit too simple: Null
2448 // moves are avoided only when the side to move has only pawns left.
2449 // It's probably a good idea to avoid null moves in at least some more
2450 // complicated endgames, e.g. KQ vs KR. FIXME
2452 bool ok_to_do_nullmove(const Position& pos) {
2454 return pos.non_pawn_material(pos.side_to_move()) != Value(0);
2458 // ok_to_prune() tests whether it is safe to forward prune a move. Only
2459 // non-tactical moves late in the move list close to the leaves are
2460 // candidates for pruning.
2462 bool ok_to_prune(const Position& pos, Move m, Move threat) {
2464 assert(move_is_ok(m));
2465 assert(threat == MOVE_NONE || move_is_ok(threat));
2466 assert(!pos.move_is_check(m));
2467 assert(!pos.move_is_capture_or_promotion(m));
2468 assert(!pos.move_is_passed_pawn_push(m));
2470 Square mfrom, mto, tfrom, tto;
2472 // Prune if there isn't any threat move
2473 if (threat == MOVE_NONE)
2476 mfrom = move_from(m);
2478 tfrom = move_from(threat);
2479 tto = move_to(threat);
2481 // Case 1: Don't prune moves which move the threatened piece
2485 // Case 2: If the threatened piece has value less than or equal to the
2486 // value of the threatening piece, don't prune move which defend it.
2487 if ( pos.move_is_capture(threat)
2488 && ( pos.midgame_value_of_piece_on(tfrom) >= pos.midgame_value_of_piece_on(tto)
2489 || pos.type_of_piece_on(tfrom) == KING)
2490 && pos.move_attacks_square(m, tto))
2493 // Case 3: If the moving piece in the threatened move is a slider, don't
2494 // prune safe moves which block its ray.
2495 if ( piece_is_slider(pos.piece_on(tfrom))
2496 && bit_is_set(squares_between(tfrom, tto), mto)
2497 && pos.see_sign(m) >= 0)
2504 // ok_to_use_TT() returns true if a transposition table score
2505 // can be used at a given point in search.
2507 bool ok_to_use_TT(const TTEntry* tte, Depth depth, Value beta, int ply) {
2509 Value v = value_from_tt(tte->value(), ply);
2511 return ( tte->depth() >= depth
2512 || v >= Max(value_mate_in(PLY_MAX), beta)
2513 || v < Min(value_mated_in(PLY_MAX), beta))
2515 && ( (is_lower_bound(tte->type()) && v >= beta)
2516 || (is_upper_bound(tte->type()) && v < beta));
2520 // refine_eval() returns the transposition table score if
2521 // possible otherwise falls back on static position evaluation.
2523 Value refine_eval(const TTEntry* tte, Value defaultEval, int ply) {
2528 Value v = value_from_tt(tte->value(), ply);
2530 if ( (is_lower_bound(tte->type()) && v >= defaultEval)
2531 || (is_upper_bound(tte->type()) && v < defaultEval))
2538 // update_history() registers a good move that produced a beta-cutoff
2539 // in history and marks as failures all the other moves of that ply.
2541 void update_history(const Position& pos, Move move, Depth depth,
2542 Move movesSearched[], int moveCount) {
2546 H.success(pos.piece_on(move_from(move)), move_to(move), depth);
2548 for (int i = 0; i < moveCount - 1; i++)
2550 m = movesSearched[i];
2554 if (!pos.move_is_capture_or_promotion(m))
2555 H.failure(pos.piece_on(move_from(m)), move_to(m), depth);
2560 // update_killers() add a good move that produced a beta-cutoff
2561 // among the killer moves of that ply.
2563 void update_killers(Move m, SearchStack& ss) {
2565 if (m == ss.killers[0])
2568 for (int i = KILLER_MAX - 1; i > 0; i--)
2569 ss.killers[i] = ss.killers[i - 1];
2575 // update_gains() updates the gains table of a non-capture move given
2576 // the static position evaluation before and after the move.
2578 void update_gains(const Position& pos, Move m, Value before, Value after) {
2581 && before != VALUE_NONE
2582 && after != VALUE_NONE
2583 && pos.captured_piece() == NO_PIECE_TYPE
2584 && !move_is_castle(m)
2585 && !move_is_promotion(m))
2586 H.set_gain(pos.piece_on(move_to(m)), move_to(m), -(before + after));
2590 // current_search_time() returns the number of milliseconds which have passed
2591 // since the beginning of the current search.
2593 int current_search_time() {
2595 return get_system_time() - SearchStartTime;
2599 // nps() computes the current nodes/second count.
2603 int t = current_search_time();
2604 return (t > 0 ? int((nodes_searched() * 1000) / t) : 0);
2608 // poll() performs two different functions: It polls for user input, and it
2609 // looks at the time consumed so far and decides if it's time to abort the
2614 static int lastInfoTime;
2615 int t = current_search_time();
2620 // We are line oriented, don't read single chars
2621 std::string command;
2623 if (!std::getline(std::cin, command))
2626 if (command == "quit")
2629 PonderSearch = false;
2633 else if (command == "stop")
2636 PonderSearch = false;
2638 else if (command == "ponderhit")
2642 // Print search information
2646 else if (lastInfoTime > t)
2647 // HACK: Must be a new search where we searched less than
2648 // NodesBetweenPolls nodes during the first second of search.
2651 else if (t - lastInfoTime >= 1000)
2659 if (dbg_show_hit_rate)
2660 dbg_print_hit_rate();
2662 cout << "info nodes " << nodes_searched() << " nps " << nps()
2663 << " time " << t << " hashfull " << TT.full() << endl;
2665 lock_release(&IOLock);
2667 if (ShowCurrentLine)
2668 Threads[0].printCurrentLine = true;
2671 // Should we stop the search?
2675 bool stillAtFirstMove = RootMoveNumber == 1
2676 && !AspirationFailLow
2677 && t > MaxSearchTime + ExtraSearchTime;
2679 bool noMoreTime = t > AbsoluteMaxSearchTime
2680 || stillAtFirstMove;
2682 if ( (Iteration >= 3 && UseTimeManagement && noMoreTime)
2683 || (ExactMaxTime && t >= ExactMaxTime)
2684 || (Iteration >= 3 && MaxNodes && nodes_searched() >= MaxNodes))
2689 // ponderhit() is called when the program is pondering (i.e. thinking while
2690 // it's the opponent's turn to move) in order to let the engine know that
2691 // it correctly predicted the opponent's move.
2695 int t = current_search_time();
2696 PonderSearch = false;
2698 bool stillAtFirstMove = RootMoveNumber == 1
2699 && !AspirationFailLow
2700 && t > MaxSearchTime + ExtraSearchTime;
2702 bool noMoreTime = t > AbsoluteMaxSearchTime
2703 || stillAtFirstMove;
2705 if (Iteration >= 3 && UseTimeManagement && (noMoreTime || StopOnPonderhit))
2710 // print_current_line() prints the current line of search for a given
2711 // thread. Called when the UCI option UCI_ShowCurrLine is 'true'.
2713 void print_current_line(SearchStack ss[], int ply, int threadID) {
2715 assert(ply >= 0 && ply < PLY_MAX);
2716 assert(threadID >= 0 && threadID < ActiveThreads);
2718 if (!Threads[threadID].idle)
2721 cout << "info currline " << (threadID + 1);
2722 for (int p = 0; p < ply; p++)
2723 cout << " " << ss[p].currentMove;
2726 lock_release(&IOLock);
2728 Threads[threadID].printCurrentLine = false;
2729 if (threadID + 1 < ActiveThreads)
2730 Threads[threadID + 1].printCurrentLine = true;
2734 // init_ss_array() does a fast reset of the first entries of a SearchStack array
2736 void init_ss_array(SearchStack ss[]) {
2738 for (int i = 0; i < 3; i++)
2741 ss[i].initKillers();
2746 // wait_for_stop_or_ponderhit() is called when the maximum depth is reached
2747 // while the program is pondering. The point is to work around a wrinkle in
2748 // the UCI protocol: When pondering, the engine is not allowed to give a
2749 // "bestmove" before the GUI sends it a "stop" or "ponderhit" command.
2750 // We simply wait here until one of these commands is sent, and return,
2751 // after which the bestmove and pondermove will be printed (in id_loop()).
2753 void wait_for_stop_or_ponderhit() {
2755 std::string command;
2759 if (!std::getline(std::cin, command))
2762 if (command == "quit")
2767 else if (command == "ponderhit" || command == "stop")
2773 // idle_loop() is where the threads are parked when they have no work to do.
2774 // The parameter "waitSp", if non-NULL, is a pointer to an active SplitPoint
2775 // object for which the current thread is the master.
2777 void idle_loop(int threadID, SplitPoint* waitSp) {
2779 assert(threadID >= 0 && threadID < THREAD_MAX);
2781 Threads[threadID].running = true;
2785 if (AllThreadsShouldExit && threadID != 0)
2788 // If we are not thinking, wait for a condition to be signaled
2789 // instead of wasting CPU time polling for work.
2790 while (threadID != 0 && (Idle || threadID >= ActiveThreads))
2793 #if !defined(_MSC_VER)
2794 pthread_mutex_lock(&WaitLock);
2795 if (Idle || threadID >= ActiveThreads)
2796 pthread_cond_wait(&WaitCond, &WaitLock);
2798 pthread_mutex_unlock(&WaitLock);
2800 WaitForSingleObject(SitIdleEvent[threadID], INFINITE);
2804 // If this thread has been assigned work, launch a search
2805 if (Threads[threadID].workIsWaiting)
2807 assert(!Threads[threadID].idle);
2809 Threads[threadID].workIsWaiting = false;
2810 if (Threads[threadID].splitPoint->pvNode)
2811 sp_search_pv(Threads[threadID].splitPoint, threadID);
2813 sp_search(Threads[threadID].splitPoint, threadID);
2815 Threads[threadID].idle = true;
2818 // If this thread is the master of a split point and all threads have
2819 // finished their work at this split point, return from the idle loop.
2820 if (waitSp != NULL && waitSp->cpus == 0)
2824 Threads[threadID].running = false;
2828 // init_split_point_stack() is called during program initialization, and
2829 // initializes all split point objects.
2831 void init_split_point_stack() {
2833 for (int i = 0; i < THREAD_MAX; i++)
2834 for (int j = 0; j < ACTIVE_SPLIT_POINTS_MAX; j++)
2836 SplitPointStack[i][j].parent = NULL;
2837 lock_init(&(SplitPointStack[i][j].lock), NULL);
2842 // destroy_split_point_stack() is called when the program exits, and
2843 // destroys all locks in the precomputed split point objects.
2845 void destroy_split_point_stack() {
2847 for (int i = 0; i < THREAD_MAX; i++)
2848 for (int j = 0; j < ACTIVE_SPLIT_POINTS_MAX; j++)
2849 lock_destroy(&(SplitPointStack[i][j].lock));
2853 // thread_should_stop() checks whether the thread with a given threadID has
2854 // been asked to stop, directly or indirectly. This can happen if a beta
2855 // cutoff has occurred in the thread's currently active split point, or in
2856 // some ancestor of the current split point.
2858 bool thread_should_stop(int threadID) {
2860 assert(threadID >= 0 && threadID < ActiveThreads);
2864 if (Threads[threadID].stop)
2866 if (ActiveThreads <= 2)
2868 for (sp = Threads[threadID].splitPoint; sp != NULL; sp = sp->parent)
2871 Threads[threadID].stop = true;
2878 // thread_is_available() checks whether the thread with threadID "slave" is
2879 // available to help the thread with threadID "master" at a split point. An
2880 // obvious requirement is that "slave" must be idle. With more than two
2881 // threads, this is not by itself sufficient: If "slave" is the master of
2882 // some active split point, it is only available as a slave to the other
2883 // threads which are busy searching the split point at the top of "slave"'s
2884 // split point stack (the "helpful master concept" in YBWC terminology).
2886 bool thread_is_available(int slave, int master) {
2888 assert(slave >= 0 && slave < ActiveThreads);
2889 assert(master >= 0 && master < ActiveThreads);
2890 assert(ActiveThreads > 1);
2892 if (!Threads[slave].idle || slave == master)
2895 // Make a local copy to be sure doesn't change under our feet
2896 int localActiveSplitPoints = Threads[slave].activeSplitPoints;
2898 if (localActiveSplitPoints == 0)
2899 // No active split points means that the thread is available as
2900 // a slave for any other thread.
2903 if (ActiveThreads == 2)
2906 // Apply the "helpful master" concept if possible. Use localActiveSplitPoints
2907 // that is known to be > 0, instead of Threads[slave].activeSplitPoints that
2908 // could have been set to 0 by another thread leading to an out of bound access.
2909 if (SplitPointStack[slave][localActiveSplitPoints - 1].slaves[master])
2916 // idle_thread_exists() tries to find an idle thread which is available as
2917 // a slave for the thread with threadID "master".
2919 bool idle_thread_exists(int master) {
2921 assert(master >= 0 && master < ActiveThreads);
2922 assert(ActiveThreads > 1);
2924 for (int i = 0; i < ActiveThreads; i++)
2925 if (thread_is_available(i, master))
2932 // split() does the actual work of distributing the work at a node between
2933 // several threads at PV nodes. If it does not succeed in splitting the
2934 // node (because no idle threads are available, or because we have no unused
2935 // split point objects), the function immediately returns false. If
2936 // splitting is possible, a SplitPoint object is initialized with all the
2937 // data that must be copied to the helper threads (the current position and
2938 // search stack, alpha, beta, the search depth, etc.), and we tell our
2939 // helper threads that they have been assigned work. This will cause them
2940 // to instantly leave their idle loops and call sp_search_pv(). When all
2941 // threads have returned from sp_search_pv (or, equivalently, when
2942 // splitPoint->cpus becomes 0), split() returns true.
2944 bool split(const Position& p, SearchStack* sstck, int ply,
2945 Value* alpha, Value* beta, Value* bestValue, const Value futilityValue,
2946 Depth depth, int* moves, MovePicker* mp, int master, bool pvNode) {
2949 assert(sstck != NULL);
2950 assert(ply >= 0 && ply < PLY_MAX);
2951 assert(*bestValue >= -VALUE_INFINITE && *bestValue <= *alpha);
2952 assert(!pvNode || *alpha < *beta);
2953 assert(*beta <= VALUE_INFINITE);
2954 assert(depth > Depth(0));
2955 assert(master >= 0 && master < ActiveThreads);
2956 assert(ActiveThreads > 1);
2958 SplitPoint* splitPoint;
2962 // If no other thread is available to help us, or if we have too many
2963 // active split points, don't split.
2964 if ( !idle_thread_exists(master)
2965 || Threads[master].activeSplitPoints >= ACTIVE_SPLIT_POINTS_MAX)
2967 lock_release(&MPLock);
2971 // Pick the next available split point object from the split point stack
2972 splitPoint = SplitPointStack[master] + Threads[master].activeSplitPoints;
2973 Threads[master].activeSplitPoints++;
2975 // Initialize the split point object
2976 splitPoint->parent = Threads[master].splitPoint;
2977 splitPoint->finished = false;
2978 splitPoint->ply = ply;
2979 splitPoint->depth = depth;
2980 splitPoint->alpha = pvNode ? *alpha : (*beta - 1);
2981 splitPoint->beta = *beta;
2982 splitPoint->pvNode = pvNode;
2983 splitPoint->bestValue = *bestValue;
2984 splitPoint->futilityValue = futilityValue;
2985 splitPoint->master = master;
2986 splitPoint->mp = mp;
2987 splitPoint->moves = *moves;
2988 splitPoint->cpus = 1;
2989 splitPoint->pos = &p;
2990 splitPoint->parentSstack = sstck;
2991 for (int i = 0; i < ActiveThreads; i++)
2992 splitPoint->slaves[i] = 0;
2994 Threads[master].idle = false;
2995 Threads[master].stop = false;
2996 Threads[master].splitPoint = splitPoint;
2998 // Allocate available threads setting idle flag to false
2999 for (int i = 0; i < ActiveThreads && splitPoint->cpus < MaxThreadsPerSplitPoint; i++)
3000 if (thread_is_available(i, master))
3002 Threads[i].idle = false;
3003 Threads[i].stop = false;
3004 Threads[i].splitPoint = splitPoint;
3005 splitPoint->slaves[i] = 1;
3009 assert(splitPoint->cpus > 1);
3011 // We can release the lock because master and slave threads are already booked
3012 lock_release(&MPLock);
3014 // Tell the threads that they have work to do. This will make them leave
3015 // their idle loop. But before copy search stack tail for each thread.
3016 for (int i = 0; i < ActiveThreads; i++)
3017 if (i == master || splitPoint->slaves[i])
3019 memcpy(splitPoint->sstack[i] + ply - 1, sstck + ply - 1, 4 * sizeof(SearchStack));
3020 Threads[i].workIsWaiting = true; // This makes the slave to exit from idle_loop()
3023 // Everything is set up. The master thread enters the idle loop, from
3024 // which it will instantly launch a search, because its workIsWaiting
3025 // slot is 'true'. We send the split point as a second parameter to the
3026 // idle loop, which means that the main thread will return from the idle
3027 // loop when all threads have finished their work at this split point
3028 // (i.e. when splitPoint->cpus == 0).
3029 idle_loop(master, splitPoint);
3031 // We have returned from the idle loop, which means that all threads are
3032 // finished. Update alpha, beta and bestValue, and return.
3036 *alpha = splitPoint->alpha;
3038 *beta = splitPoint->beta;
3039 *bestValue = splitPoint->bestValue;
3040 Threads[master].stop = false;
3041 Threads[master].idle = false;
3042 Threads[master].activeSplitPoints--;
3043 Threads[master].splitPoint = splitPoint->parent;
3045 lock_release(&MPLock);
3050 // wake_sleeping_threads() wakes up all sleeping threads when it is time
3051 // to start a new search from the root.
3053 void wake_sleeping_threads() {
3055 if (ActiveThreads > 1)
3057 for (int i = 1; i < ActiveThreads; i++)
3059 Threads[i].idle = true;
3060 Threads[i].workIsWaiting = false;
3063 #if !defined(_MSC_VER)
3064 pthread_mutex_lock(&WaitLock);
3065 pthread_cond_broadcast(&WaitCond);
3066 pthread_mutex_unlock(&WaitLock);
3068 for (int i = 1; i < THREAD_MAX; i++)
3069 SetEvent(SitIdleEvent[i]);
3075 // init_thread() is the function which is called when a new thread is
3076 // launched. It simply calls the idle_loop() function with the supplied
3077 // threadID. There are two versions of this function; one for POSIX
3078 // threads and one for Windows threads.
3080 #if !defined(_MSC_VER)
3082 void* init_thread(void *threadID) {
3084 idle_loop(*(int*)threadID, NULL);
3090 DWORD WINAPI init_thread(LPVOID threadID) {
3092 idle_loop(*(int*)threadID, NULL);