2 Stockfish, a UCI chess playing engine derived from Glaurung 2.1
3 Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
4 Copyright (C) 2008-2009 Marco Costalba
6 Stockfish is free software: you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation, either version 3 of the License, or
9 (at your option) any later version.
11 Stockfish is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>.
43 #include "ucioption.h"
49 //// Local definitions
57 // ThreadsManager class is used to handle all the threads related stuff in search,
58 // init, starting, parking and, the most important, launching a slave thread at a
59 // split point are what this class does. All the access to shared thread data is
60 // done through this class, so that we avoid using global variables instead.
62 class ThreadsManager {
63 /* As long as the single ThreadsManager object is defined as a global we don't
64 need to explicitly initialize to zero its data members because variables with
65 static storage duration are automatically set to zero before enter main()
71 int active_threads() const { return ActiveThreads; }
72 void set_active_threads(int newActiveThreads) { ActiveThreads = newActiveThreads; }
73 void incrementNodeCounter(int threadID) { threads[threadID].nodes++; }
74 void incrementBetaCounter(Color us, Depth d, int threadID) { threads[threadID].betaCutOffs[us] += unsigned(d); }
75 void print_current_line(SearchStack ss[], int ply, int threadID);
77 void resetNodeCounters();
78 void resetBetaCounters();
79 int64_t nodes_searched() const;
80 void get_beta_counters(Color us, int64_t& our, int64_t& their) const;
81 bool available_thread_exists(int master) const;
82 bool thread_is_available(int slave, int master) const;
83 bool thread_should_stop(int threadID) const;
84 void wake_sleeping_threads();
85 void put_threads_to_sleep();
86 void idle_loop(int threadID, SplitPoint* waitSp);
87 bool split(const Position& pos, SearchStack* ss, int ply, Value* alpha, const Value beta, Value* bestValue,
88 const Value futilityValue, Depth depth, int* moves, MovePicker* mp, int master, bool pvNode);
94 volatile bool AllThreadsShouldExit, AllThreadsShouldSleep;
95 Thread threads[MAX_THREADS];
96 SplitPoint SplitPointStack[MAX_THREADS][ACTIVE_SPLIT_POINTS_MAX];
100 #if !defined(_MSC_VER)
101 pthread_cond_t WaitCond;
102 pthread_mutex_t WaitLock;
104 HANDLE SitIdleEvent[MAX_THREADS];
110 // RootMove struct is used for moves at the root at the tree. For each
111 // root move, we store a score, a node count, and a PV (really a refutation
112 // in the case of moves which fail low).
116 RootMove() { nodes = cumulativeNodes = ourBeta = theirBeta = 0ULL; }
118 // RootMove::operator<() is the comparison function used when
119 // sorting the moves. A move m1 is considered to be better
120 // than a move m2 if it has a higher score, or if the moves
121 // have equal score but m1 has the higher node count.
122 bool operator<(const RootMove& m) const {
124 return score != m.score ? score < m.score : theirBeta <= m.theirBeta;
129 int64_t nodes, cumulativeNodes, ourBeta, theirBeta;
130 Move pv[PLY_MAX_PLUS_2];
134 // The RootMoveList class is essentially an array of RootMove objects, with
135 // a handful of methods for accessing the data in the individual moves.
140 RootMoveList(Position& pos, Move searchMoves[]);
142 int move_count() const { return count; }
143 Move get_move(int moveNum) const { return moves[moveNum].move; }
144 Value get_move_score(int moveNum) const { return moves[moveNum].score; }
145 void set_move_score(int moveNum, Value score) { moves[moveNum].score = score; }
146 Move get_move_pv(int moveNum, int i) const { return moves[moveNum].pv[i]; }
147 int64_t get_move_cumulative_nodes(int moveNum) const { return moves[moveNum].cumulativeNodes; }
149 void set_move_nodes(int moveNum, int64_t nodes);
150 void set_beta_counters(int moveNum, int64_t our, int64_t their);
151 void set_move_pv(int moveNum, const Move pv[]);
153 void sort_multipv(int n);
156 static const int MaxRootMoves = 500;
157 RootMove moves[MaxRootMoves];
164 // Search depth at iteration 1
165 const Depth InitialDepth = OnePly;
167 // Use internal iterative deepening?
168 const bool UseIIDAtPVNodes = true;
169 const bool UseIIDAtNonPVNodes = true;
171 // Internal iterative deepening margin. At Non-PV moves, when
172 // UseIIDAtNonPVNodes is true, we do an internal iterative deepening
173 // search when the static evaluation is at most IIDMargin below beta.
174 const Value IIDMargin = Value(0x100);
176 // Easy move margin. An easy move candidate must be at least this much
177 // better than the second best move.
178 const Value EasyMoveMargin = Value(0x200);
180 // Null move margin. A null move search will not be done if the static
181 // evaluation of the position is more than NullMoveMargin below beta.
182 const Value NullMoveMargin = Value(0x200);
184 // If the TT move is at least SingleReplyMargin better then the
185 // remaining ones we will extend it.
186 const Value SingleReplyMargin = Value(0x20);
188 // Depth limit for razoring
189 const Depth RazorDepth = 4 * OnePly;
191 /// Lookup tables initialized at startup
193 // Reduction lookup tables and their getter functions
194 int8_t PVReductionMatrix[64][64]; // [depth][moveNumber]
195 int8_t NonPVReductionMatrix[64][64]; // [depth][moveNumber]
197 inline Depth pv_reduction(Depth d, int mn) { return (Depth) PVReductionMatrix[Min(d / 2, 63)][Min(mn, 63)]; }
198 inline Depth nonpv_reduction(Depth d, int mn) { return (Depth) NonPVReductionMatrix[Min(d / 2, 63)][Min(mn, 63)]; }
200 // Futility lookup tables and their getter functions
201 const Value FutilityMarginQS = Value(0x80);
202 int32_t FutilityMarginsMatrix[14][64]; // [depth][moveNumber]
203 int FutilityMoveCountArray[32]; // [depth]
205 inline Value futility_margin(Depth d, int mn) { return Value(d < 7*OnePly ? FutilityMarginsMatrix[Max(d, 0)][Min(mn, 63)] : 2 * VALUE_INFINITE); }
206 inline int futility_move_count(Depth d) { return d < 16*OnePly ? FutilityMoveCountArray[d] : 512; }
208 /// Variables initialized by UCI options
210 // Depth limit for use of dynamic threat detection
213 // Last seconds noise filtering (LSN)
214 const bool UseLSNFiltering = true;
215 const int LSNTime = 4000; // In milliseconds
216 const Value LSNValue = value_from_centipawns(200);
217 bool loseOnTime = false;
219 // Extensions. Array index 0 is used at non-PV nodes, index 1 at PV nodes.
220 Depth CheckExtension[2], SingleEvasionExtension[2], PawnPushTo7thExtension[2];
221 Depth PassedPawnExtension[2], PawnEndgameExtension[2], MateThreatExtension[2];
223 // Iteration counters
226 // Scores and number of times the best move changed for each iteration
227 Value ValueByIteration[PLY_MAX_PLUS_2];
228 int BestMoveChangesByIteration[PLY_MAX_PLUS_2];
230 // Search window management
236 // Time managment variables
239 int MaxNodes, MaxDepth;
240 int MaxSearchTime, AbsoluteMaxSearchTime, ExtraSearchTime, ExactMaxTime;
241 bool UseTimeManagement, InfiniteSearch, PonderSearch, StopOnPonderhit;
242 bool AbortSearch, Quit;
243 bool AspirationFailLow;
245 // Show current line?
246 bool ShowCurrentLine;
250 std::ofstream LogFile;
252 // MP related variables
253 Depth MinimumSplitDepth;
254 int MaxThreadsPerSplitPoint;
257 // Node counters, used only by thread[0] but try to keep in different
258 // cache lines (64 bytes each) from the heavy SMP read accessed variables.
260 int NodesBetweenPolls = 30000;
267 Value id_loop(const Position& pos, Move searchMoves[]);
268 Value root_search(Position& pos, SearchStack ss[], RootMoveList& rml, Value& oldAlpha, Value& beta);
269 Value search_pv(Position& pos, SearchStack ss[], Value alpha, Value beta, Depth depth, int ply, int threadID);
270 Value search(Position& pos, SearchStack ss[], Value beta, Depth depth, int ply, bool allowNullmove, int threadID, Move excludedMove = MOVE_NONE);
271 Value qsearch(Position& pos, SearchStack ss[], Value alpha, Value beta, Depth depth, int ply, int threadID);
272 void sp_search(SplitPoint* sp, int threadID);
273 void sp_search_pv(SplitPoint* sp, int threadID);
274 void init_node(SearchStack ss[], int ply, int threadID);
275 void update_pv(SearchStack ss[], int ply);
276 void sp_update_pv(SearchStack* pss, SearchStack ss[], int ply);
277 bool connected_moves(const Position& pos, Move m1, Move m2);
278 bool value_is_mate(Value value);
279 bool move_is_killer(Move m, const SearchStack& ss);
280 Depth extension(const Position&, Move, bool, bool, bool, bool, bool, bool*);
281 bool ok_to_do_nullmove(const Position& pos);
282 bool ok_to_prune(const Position& pos, Move m, Move threat);
283 bool ok_to_use_TT(const TTEntry* tte, Depth depth, Value beta, int ply);
284 Value refine_eval(const TTEntry* tte, Value defaultEval, int ply);
285 void update_history(const Position& pos, Move move, Depth depth, Move movesSearched[], int moveCount);
286 void update_killers(Move m, SearchStack& ss);
287 void update_gains(const Position& pos, Move move, Value before, Value after);
289 int current_search_time();
293 void wait_for_stop_or_ponderhit();
294 void init_ss_array(SearchStack ss[]);
296 #if !defined(_MSC_VER)
297 void *init_thread(void *threadID);
299 DWORD WINAPI init_thread(LPVOID threadID);
309 /// init_threads(), exit_threads() and nodes_searched() are helpers to
310 /// give accessibility to some TM methods from outside of current file.
312 void init_threads() { TM.init_threads(); }
313 void exit_threads() { TM.exit_threads(); }
314 int64_t nodes_searched() { return TM.nodes_searched(); }
317 /// perft() is our utility to verify move generation is bug free. All the legal
318 /// moves up to given depth are generated and counted and the sum returned.
320 int perft(Position& pos, Depth depth)
324 MovePicker mp = MovePicker(pos, MOVE_NONE, depth, H);
326 // If we are at the last ply we don't need to do and undo
327 // the moves, just to count them.
328 if (depth <= OnePly) // Replace with '<' to test also qsearch
330 while (mp.get_next_move()) sum++;
334 // Loop through all legal moves
336 while ((move = mp.get_next_move()) != MOVE_NONE)
339 pos.do_move(move, st, ci, pos.move_is_check(move, ci));
340 sum += perft(pos, depth - OnePly);
347 /// think() is the external interface to Stockfish's search, and is called when
348 /// the program receives the UCI 'go' command. It initializes various
349 /// search-related global variables, and calls root_search(). It returns false
350 /// when a quit command is received during the search.
352 bool think(const Position& pos, bool infinite, bool ponder, int side_to_move,
353 int time[], int increment[], int movesToGo, int maxDepth,
354 int maxNodes, int maxTime, Move searchMoves[]) {
356 // Initialize global search variables
357 StopOnPonderhit = AbortSearch = Quit = false;
358 AspirationFailLow = false;
360 SearchStartTime = get_system_time();
361 ExactMaxTime = maxTime;
364 InfiniteSearch = infinite;
365 PonderSearch = ponder;
366 UseTimeManagement = !ExactMaxTime && !MaxDepth && !MaxNodes && !InfiniteSearch;
368 // Look for a book move, only during games, not tests
369 if (UseTimeManagement && get_option_value_bool("OwnBook"))
372 if (get_option_value_string("Book File") != OpeningBook.file_name())
373 OpeningBook.open(get_option_value_string("Book File"));
375 bookMove = OpeningBook.get_move(pos);
376 if (bookMove != MOVE_NONE)
379 wait_for_stop_or_ponderhit();
381 cout << "bestmove " << bookMove << endl;
386 TM.resetNodeCounters();
388 if (button_was_pressed("New Game"))
389 loseOnTime = false; // Reset at the beginning of a new game
391 // Read UCI option values
392 TT.set_size(get_option_value_int("Hash"));
393 if (button_was_pressed("Clear Hash"))
396 bool PonderingEnabled = get_option_value_bool("Ponder");
397 MultiPV = get_option_value_int("MultiPV");
399 CheckExtension[1] = Depth(get_option_value_int("Check Extension (PV nodes)"));
400 CheckExtension[0] = Depth(get_option_value_int("Check Extension (non-PV nodes)"));
402 SingleEvasionExtension[1] = Depth(get_option_value_int("Single Evasion Extension (PV nodes)"));
403 SingleEvasionExtension[0] = Depth(get_option_value_int("Single Evasion Extension (non-PV nodes)"));
405 PawnPushTo7thExtension[1] = Depth(get_option_value_int("Pawn Push to 7th Extension (PV nodes)"));
406 PawnPushTo7thExtension[0] = Depth(get_option_value_int("Pawn Push to 7th Extension (non-PV nodes)"));
408 PassedPawnExtension[1] = Depth(get_option_value_int("Passed Pawn Extension (PV nodes)"));
409 PassedPawnExtension[0] = Depth(get_option_value_int("Passed Pawn Extension (non-PV nodes)"));
411 PawnEndgameExtension[1] = Depth(get_option_value_int("Pawn Endgame Extension (PV nodes)"));
412 PawnEndgameExtension[0] = Depth(get_option_value_int("Pawn Endgame Extension (non-PV nodes)"));
414 MateThreatExtension[1] = Depth(get_option_value_int("Mate Threat Extension (PV nodes)"));
415 MateThreatExtension[0] = Depth(get_option_value_int("Mate Threat Extension (non-PV nodes)"));
417 ThreatDepth = get_option_value_int("Threat Depth") * OnePly;
419 Chess960 = get_option_value_bool("UCI_Chess960");
420 ShowCurrentLine = get_option_value_bool("UCI_ShowCurrLine");
421 UseLogFile = get_option_value_bool("Use Search Log");
423 LogFile.open(get_option_value_string("Search Log Filename").c_str(), std::ios::out | std::ios::app);
425 MinimumSplitDepth = get_option_value_int("Minimum Split Depth") * OnePly;
426 MaxThreadsPerSplitPoint = get_option_value_int("Maximum Number of Threads per Split Point");
428 read_weights(pos.side_to_move());
430 // Set the number of active threads
431 int newActiveThreads = get_option_value_int("Threads");
432 if (newActiveThreads != TM.active_threads())
434 TM.set_active_threads(newActiveThreads);
435 init_eval(TM.active_threads());
436 // HACK: init_eval() destroys the static castleRightsMask[] array in the
437 // Position class. The below line repairs the damage.
438 Position p(pos.to_fen());
442 // Wake up sleeping threads
443 TM.wake_sleeping_threads();
446 int myTime = time[side_to_move];
447 int myIncrement = increment[side_to_move];
448 if (UseTimeManagement)
450 if (!movesToGo) // Sudden death time control
454 MaxSearchTime = myTime / 30 + myIncrement;
455 AbsoluteMaxSearchTime = Max(myTime / 4, myIncrement - 100);
457 else // Blitz game without increment
459 MaxSearchTime = myTime / 30;
460 AbsoluteMaxSearchTime = myTime / 8;
463 else // (x moves) / (y minutes)
467 MaxSearchTime = myTime / 2;
468 AbsoluteMaxSearchTime = (myTime > 3000)? (myTime - 500) : ((myTime * 3) / 4);
472 MaxSearchTime = myTime / Min(movesToGo, 20);
473 AbsoluteMaxSearchTime = Min((4 * myTime) / movesToGo, myTime / 3);
477 if (PonderingEnabled)
479 MaxSearchTime += MaxSearchTime / 4;
480 MaxSearchTime = Min(MaxSearchTime, AbsoluteMaxSearchTime);
484 // Set best NodesBetweenPolls interval
486 NodesBetweenPolls = Min(MaxNodes, 30000);
487 else if (myTime && myTime < 1000)
488 NodesBetweenPolls = 1000;
489 else if (myTime && myTime < 5000)
490 NodesBetweenPolls = 5000;
492 NodesBetweenPolls = 30000;
494 // Write information to search log file
496 LogFile << "Searching: " << pos.to_fen() << endl
497 << "infinite: " << infinite
498 << " ponder: " << ponder
499 << " time: " << myTime
500 << " increment: " << myIncrement
501 << " moves to go: " << movesToGo << endl;
503 // LSN filtering. Used only for developing purpose. Disabled by default.
507 // Step 2. If after last move we decided to lose on time, do it now!
508 while (SearchStartTime + myTime + 1000 > get_system_time())
512 // We're ready to start thinking. Call the iterative deepening loop function
513 Value v = id_loop(pos, searchMoves);
517 // Step 1. If this is sudden death game and our position is hopeless,
518 // decide to lose on time.
519 if ( !loseOnTime // If we already lost on time, go to step 3.
529 // Step 3. Now after stepping over the time limit, reset flag for next match.
537 TM.put_threads_to_sleep();
543 /// init_search() is called during startup. It initializes various lookup tables
547 // Init our reduction lookup tables
548 for (int i = 1; i < 64; i++) // i == depth (OnePly = 1)
549 for (int j = 1; j < 64; j++) // j == moveNumber
551 double pvRed = 0.5 + log(double(i)) * log(double(j)) / 6.0;
552 double nonPVRed = 0.5 + log(double(i)) * log(double(j)) / 3.0;
553 PVReductionMatrix[i][j] = (int8_t) ( pvRed >= 1.0 ? floor( pvRed * int(OnePly)) : 0);
554 NonPVReductionMatrix[i][j] = (int8_t) (nonPVRed >= 1.0 ? floor(nonPVRed * int(OnePly)) : 0);
557 // Init futility margins array
558 for (int i = 0; i < 14; i++) // i == depth (OnePly = 2)
559 for (int j = 0; j < 64; j++) // j == moveNumber
561 FutilityMarginsMatrix[i][j] = (i < 2 ? 0 : 112 * bitScanReverse32(i * i / 2)) - 8 * j; // FIXME: test using log instead of BSR
564 // Init futility move count array
565 for (int i = 0; i < 32; i++) // i == depth (OnePly = 2)
566 FutilityMoveCountArray[i] = 3 + (1 << (3 * i / 8));
570 // SearchStack::init() initializes a search stack. Used at the beginning of a
571 // new search from the root.
572 void SearchStack::init(int ply) {
574 pv[ply] = pv[ply + 1] = MOVE_NONE;
575 currentMove = threatMove = MOVE_NONE;
576 reduction = Depth(0);
580 void SearchStack::initKillers() {
582 mateKiller = MOVE_NONE;
583 for (int i = 0; i < KILLER_MAX; i++)
584 killers[i] = MOVE_NONE;
589 // id_loop() is the main iterative deepening loop. It calls root_search
590 // repeatedly with increasing depth until the allocated thinking time has
591 // been consumed, the user stops the search, or the maximum search depth is
594 Value id_loop(const Position& pos, Move searchMoves[]) {
597 SearchStack ss[PLY_MAX_PLUS_2];
599 // searchMoves are verified, copied, scored and sorted
600 RootMoveList rml(p, searchMoves);
602 // Handle special case of searching on a mate/stale position
603 if (rml.move_count() == 0)
606 wait_for_stop_or_ponderhit();
608 return pos.is_check()? -VALUE_MATE : VALUE_DRAW;
611 // Print RootMoveList c'tor startup scoring to the standard output,
612 // so that we print information also for iteration 1.
613 cout << "info depth " << 1 << "\ninfo depth " << 1
614 << " score " << value_to_string(rml.get_move_score(0))
615 << " time " << current_search_time()
616 << " nodes " << TM.nodes_searched()
618 << " pv " << rml.get_move(0) << "\n";
624 ValueByIteration[1] = rml.get_move_score(0);
627 // Is one move significantly better than others after initial scoring ?
628 Move EasyMove = MOVE_NONE;
629 if ( rml.move_count() == 1
630 || rml.get_move_score(0) > rml.get_move_score(1) + EasyMoveMargin)
631 EasyMove = rml.get_move(0);
633 // Iterative deepening loop
634 while (Iteration < PLY_MAX)
636 // Initialize iteration
639 BestMoveChangesByIteration[Iteration] = 0;
643 cout << "info depth " << Iteration << endl;
645 // Calculate dynamic search window based on previous iterations
648 if (MultiPV == 1 && Iteration >= 6 && abs(ValueByIteration[Iteration - 1]) < VALUE_KNOWN_WIN)
650 int prevDelta1 = ValueByIteration[Iteration - 1] - ValueByIteration[Iteration - 2];
651 int prevDelta2 = ValueByIteration[Iteration - 2] - ValueByIteration[Iteration - 3];
653 AspirationDelta = Max(abs(prevDelta1) + abs(prevDelta2) / 2, 16);
654 AspirationDelta = (AspirationDelta + 7) / 8 * 8; // Round to match grainSize
656 alpha = Max(ValueByIteration[Iteration - 1] - AspirationDelta, -VALUE_INFINITE);
657 beta = Min(ValueByIteration[Iteration - 1] + AspirationDelta, VALUE_INFINITE);
661 alpha = - VALUE_INFINITE;
662 beta = VALUE_INFINITE;
665 // Search to the current depth
666 Value value = root_search(p, ss, rml, alpha, beta);
668 // Write PV to transposition table, in case the relevant entries have
669 // been overwritten during the search.
670 TT.insert_pv(p, ss[0].pv);
673 break; // Value cannot be trusted. Break out immediately!
675 //Save info about search result
676 ValueByIteration[Iteration] = value;
678 // Drop the easy move if it differs from the new best move
679 if (ss[0].pv[0] != EasyMove)
680 EasyMove = MOVE_NONE;
682 if (UseTimeManagement)
685 bool stopSearch = false;
687 // Stop search early if there is only a single legal move,
688 // we search up to Iteration 6 anyway to get a proper score.
689 if (Iteration >= 6 && rml.move_count() == 1)
692 // Stop search early when the last two iterations returned a mate score
694 && abs(ValueByIteration[Iteration]) >= abs(VALUE_MATE) - 100
695 && abs(ValueByIteration[Iteration-1]) >= abs(VALUE_MATE) - 100)
698 // Stop search early if one move seems to be much better than the rest
699 int64_t nodes = TM.nodes_searched();
701 && EasyMove == ss[0].pv[0]
702 && ( ( rml.get_move_cumulative_nodes(0) > (nodes * 85) / 100
703 && current_search_time() > MaxSearchTime / 16)
704 ||( rml.get_move_cumulative_nodes(0) > (nodes * 98) / 100
705 && current_search_time() > MaxSearchTime / 32)))
708 // Add some extra time if the best move has changed during the last two iterations
709 if (Iteration > 5 && Iteration <= 50)
710 ExtraSearchTime = BestMoveChangesByIteration[Iteration] * (MaxSearchTime / 2)
711 + BestMoveChangesByIteration[Iteration-1] * (MaxSearchTime / 3);
713 // Stop search if most of MaxSearchTime is consumed at the end of the
714 // iteration. We probably don't have enough time to search the first
715 // move at the next iteration anyway.
716 if (current_search_time() > ((MaxSearchTime + ExtraSearchTime) * 80) / 128)
724 StopOnPonderhit = true;
728 if (MaxDepth && Iteration >= MaxDepth)
734 // If we are pondering or in infinite search, we shouldn't print the
735 // best move before we are told to do so.
736 if (!AbortSearch && (PonderSearch || InfiniteSearch))
737 wait_for_stop_or_ponderhit();
739 // Print final search statistics
740 cout << "info nodes " << TM.nodes_searched()
742 << " time " << current_search_time()
743 << " hashfull " << TT.full() << endl;
745 // Print the best move and the ponder move to the standard output
746 if (ss[0].pv[0] == MOVE_NONE)
748 ss[0].pv[0] = rml.get_move(0);
749 ss[0].pv[1] = MOVE_NONE;
751 cout << "bestmove " << ss[0].pv[0];
752 if (ss[0].pv[1] != MOVE_NONE)
753 cout << " ponder " << ss[0].pv[1];
760 dbg_print_mean(LogFile);
762 if (dbg_show_hit_rate)
763 dbg_print_hit_rate(LogFile);
765 LogFile << "\nNodes: " << TM.nodes_searched()
766 << "\nNodes/second: " << nps()
767 << "\nBest move: " << move_to_san(p, ss[0].pv[0]);
770 p.do_move(ss[0].pv[0], st);
771 LogFile << "\nPonder move: " << move_to_san(p, ss[0].pv[1]) << endl;
773 return rml.get_move_score(0);
777 // root_search() is the function which searches the root node. It is
778 // similar to search_pv except that it uses a different move ordering
779 // scheme and prints some information to the standard output.
781 Value root_search(Position& pos, SearchStack ss[], RootMoveList& rml, Value& oldAlpha, Value& beta) {
786 Depth depth, ext, newDepth;
789 int researchCount = 0;
790 bool moveIsCheck, captureOrPromotion, dangerous;
791 Value alpha = oldAlpha;
792 bool isCheck = pos.is_check();
794 // Evaluate the position statically
796 ss[0].eval = !isCheck ? evaluate(pos, ei, 0) : VALUE_NONE;
798 while (1) // Fail low loop
801 // Loop through all the moves in the root move list
802 for (int i = 0; i < rml.move_count() && !AbortSearch; i++)
806 // We failed high, invalidate and skip next moves, leave node-counters
807 // and beta-counters as they are and quickly return, we will try to do
808 // a research at the next iteration with a bigger aspiration window.
809 rml.set_move_score(i, -VALUE_INFINITE);
813 RootMoveNumber = i + 1;
815 // Save the current node count before the move is searched
816 nodes = TM.nodes_searched();
818 // Reset beta cut-off counters
819 TM.resetBetaCounters();
821 // Pick the next root move, and print the move and the move number to
822 // the standard output.
823 move = ss[0].currentMove = rml.get_move(i);
825 if (current_search_time() >= 1000)
826 cout << "info currmove " << move
827 << " currmovenumber " << RootMoveNumber << endl;
829 // Decide search depth for this move
830 moveIsCheck = pos.move_is_check(move);
831 captureOrPromotion = pos.move_is_capture_or_promotion(move);
832 depth = (Iteration - 2) * OnePly + InitialDepth;
833 ext = extension(pos, move, true, captureOrPromotion, moveIsCheck, false, false, &dangerous);
834 newDepth = depth + ext;
836 value = - VALUE_INFINITE;
838 while (1) // Fail high loop
841 // Make the move, and search it
842 pos.do_move(move, st, ci, moveIsCheck);
844 if (i < MultiPV || value > alpha)
846 // Aspiration window is disabled in multi-pv case
848 alpha = -VALUE_INFINITE;
850 value = -search_pv(pos, ss, -beta, -alpha, newDepth, 1, 0);
854 // Try to reduce non-pv search depth by one ply if move seems not problematic,
855 // if the move fails high will be re-searched at full depth.
856 bool doFullDepthSearch = true;
858 if ( depth >= 3*OnePly // FIXME was newDepth
860 && !captureOrPromotion
861 && !move_is_castle(move))
863 ss[0].reduction = pv_reduction(depth, RootMoveNumber - MultiPV + 1);
866 value = -search(pos, ss, -alpha, newDepth-ss[0].reduction, 1, true, 0);
867 doFullDepthSearch = (value > alpha);
871 if (doFullDepthSearch)
873 ss[0].reduction = Depth(0);
874 value = -search(pos, ss, -alpha, newDepth, 1, true, 0);
877 value = -search_pv(pos, ss, -beta, -alpha, newDepth, 1, 0);
883 // Can we exit fail high loop ?
884 if (AbortSearch || value < beta)
887 // We are failing high and going to do a research. It's important to update score
888 // before research in case we run out of time while researching.
889 rml.set_move_score(i, value);
891 TT.extract_pv(pos, ss[0].pv, PLY_MAX);
892 rml.set_move_pv(i, ss[0].pv);
894 // Print search information to the standard output
895 cout << "info depth " << Iteration
896 << " score " << value_to_string(value)
897 << ((value >= beta) ? " lowerbound" :
898 ((value <= alpha)? " upperbound" : ""))
899 << " time " << current_search_time()
900 << " nodes " << TM.nodes_searched()
904 for (int j = 0; ss[0].pv[j] != MOVE_NONE && j < PLY_MAX; j++)
905 cout << ss[0].pv[j] << " ";
911 ValueType type = (value >= beta ? VALUE_TYPE_LOWER
912 : (value <= alpha ? VALUE_TYPE_UPPER : VALUE_TYPE_EXACT));
914 LogFile << pretty_pv(pos, current_search_time(), Iteration,
915 TM.nodes_searched(), value, type, ss[0].pv) << endl;
918 // Prepare for a research after a fail high, each time with a wider window
920 beta = Min(beta + AspirationDelta * (1 << researchCount), VALUE_INFINITE);
922 } // End of fail high loop
924 // Finished searching the move. If AbortSearch is true, the search
925 // was aborted because the user interrupted the search or because we
926 // ran out of time. In this case, the return value of the search cannot
927 // be trusted, and we break out of the loop without updating the best
932 // Remember beta-cutoff and searched nodes counts for this move. The
933 // info is used to sort the root moves at the next iteration.
935 TM.get_beta_counters(pos.side_to_move(), our, their);
936 rml.set_beta_counters(i, our, their);
937 rml.set_move_nodes(i, TM.nodes_searched() - nodes);
939 assert(value >= -VALUE_INFINITE && value <= VALUE_INFINITE);
941 if (value <= alpha && i >= MultiPV)
942 rml.set_move_score(i, -VALUE_INFINITE);
945 // PV move or new best move!
948 rml.set_move_score(i, value);
950 TT.extract_pv(pos, ss[0].pv, PLY_MAX);
951 rml.set_move_pv(i, ss[0].pv);
955 // We record how often the best move has been changed in each
956 // iteration. This information is used for time managment: When
957 // the best move changes frequently, we allocate some more time.
959 BestMoveChangesByIteration[Iteration]++;
961 // Print search information to the standard output
962 cout << "info depth " << Iteration
963 << " score " << value_to_string(value)
964 << ((value >= beta) ? " lowerbound" :
965 ((value <= alpha)? " upperbound" : ""))
966 << " time " << current_search_time()
967 << " nodes " << TM.nodes_searched()
971 for (int j = 0; ss[0].pv[j] != MOVE_NONE && j < PLY_MAX; j++)
972 cout << ss[0].pv[j] << " ";
978 ValueType type = (value >= beta ? VALUE_TYPE_LOWER
979 : (value <= alpha ? VALUE_TYPE_UPPER : VALUE_TYPE_EXACT));
981 LogFile << pretty_pv(pos, current_search_time(), Iteration,
982 TM.nodes_searched(), value, type, ss[0].pv) << endl;
990 for (int j = 0; j < Min(MultiPV, rml.move_count()); j++)
992 cout << "info multipv " << j + 1
993 << " score " << value_to_string(rml.get_move_score(j))
994 << " depth " << ((j <= i)? Iteration : Iteration - 1)
995 << " time " << current_search_time()
996 << " nodes " << TM.nodes_searched()
1000 for (int k = 0; rml.get_move_pv(j, k) != MOVE_NONE && k < PLY_MAX; k++)
1001 cout << rml.get_move_pv(j, k) << " ";
1005 alpha = rml.get_move_score(Min(i, MultiPV-1));
1007 } // PV move or new best move
1009 assert(alpha >= oldAlpha);
1011 AspirationFailLow = (alpha == oldAlpha);
1013 if (AspirationFailLow && StopOnPonderhit)
1014 StopOnPonderhit = false;
1017 // Can we exit fail low loop ?
1018 if (AbortSearch || alpha > oldAlpha)
1021 // Prepare for a research after a fail low, each time with a wider window
1023 alpha = Max(alpha - AspirationDelta * (1 << researchCount), -VALUE_INFINITE);
1032 // search_pv() is the main search function for PV nodes.
1034 Value search_pv(Position& pos, SearchStack ss[], Value alpha, Value beta,
1035 Depth depth, int ply, int threadID) {
1037 assert(alpha >= -VALUE_INFINITE && alpha <= VALUE_INFINITE);
1038 assert(beta > alpha && beta <= VALUE_INFINITE);
1039 assert(ply >= 0 && ply < PLY_MAX);
1040 assert(threadID >= 0 && threadID < TM.active_threads());
1042 Move movesSearched[256];
1046 Depth ext, newDepth;
1047 Value oldAlpha, value;
1048 bool isCheck, mateThreat, singleEvasion, moveIsCheck, captureOrPromotion, dangerous;
1050 Value bestValue = value = -VALUE_INFINITE;
1053 return qsearch(pos, ss, alpha, beta, Depth(0), ply, threadID);
1055 // Initialize, and make an early exit in case of an aborted search,
1056 // an instant draw, maximum ply reached, etc.
1057 init_node(ss, ply, threadID);
1059 // After init_node() that calls poll()
1060 if (AbortSearch || TM.thread_should_stop(threadID))
1063 if (pos.is_draw() || ply >= PLY_MAX - 1)
1066 // Mate distance pruning
1068 alpha = Max(value_mated_in(ply), alpha);
1069 beta = Min(value_mate_in(ply+1), beta);
1073 // Transposition table lookup. At PV nodes, we don't use the TT for
1074 // pruning, but only for move ordering. This is to avoid problems in
1075 // the following areas:
1077 // * Repetition draw detection
1078 // * Fifty move rule detection
1079 // * Searching for a mate
1080 // * Printing of full PV line
1082 tte = TT.retrieve(pos.get_key());
1083 ttMove = (tte ? tte->move() : MOVE_NONE);
1085 // Go with internal iterative deepening if we don't have a TT move
1086 if ( UseIIDAtPVNodes
1087 && depth >= 5*OnePly
1088 && ttMove == MOVE_NONE)
1090 search_pv(pos, ss, alpha, beta, depth-2*OnePly, ply, threadID);
1091 ttMove = ss[ply].pv[ply];
1092 tte = TT.retrieve(pos.get_key());
1095 isCheck = pos.is_check();
1098 // Update gain statistics of the previous move that lead
1099 // us in this position.
1101 ss[ply].eval = evaluate(pos, ei, threadID);
1102 update_gains(pos, ss[ply - 1].currentMove, ss[ply - 1].eval, ss[ply].eval);
1105 // Initialize a MovePicker object for the current position, and prepare
1106 // to search all moves
1107 mateThreat = pos.has_mate_threat(opposite_color(pos.side_to_move()));
1109 MovePicker mp = MovePicker(pos, ttMove, depth, H, &ss[ply]);
1111 // Loop through all legal moves until no moves remain or a beta cutoff
1113 while ( alpha < beta
1114 && (move = mp.get_next_move()) != MOVE_NONE
1115 && !TM.thread_should_stop(threadID))
1117 assert(move_is_ok(move));
1119 singleEvasion = (isCheck && mp.number_of_evasions() == 1);
1120 moveIsCheck = pos.move_is_check(move, ci);
1121 captureOrPromotion = pos.move_is_capture_or_promotion(move);
1123 // Decide the new search depth
1124 ext = extension(pos, move, true, captureOrPromotion, moveIsCheck, singleEvasion, mateThreat, &dangerous);
1126 // Singular extension search. We extend the TT move if its value is much better than
1127 // its siblings. To verify this we do a reduced search on all the other moves but the
1128 // ttMove, if result is lower then ttValue minus a margin then we extend ttMove.
1129 if ( depth >= 6 * OnePly
1131 && move == tte->move()
1133 && is_lower_bound(tte->type())
1134 && tte->depth() >= depth - 3 * OnePly)
1136 Value ttValue = value_from_tt(tte->value(), ply);
1138 if (abs(ttValue) < VALUE_KNOWN_WIN)
1140 Value excValue = search(pos, ss, ttValue - SingleReplyMargin, depth / 2, ply, false, threadID, move);
1142 if (excValue < ttValue - SingleReplyMargin)
1147 newDepth = depth - OnePly + ext;
1149 // Update current move
1150 movesSearched[moveCount++] = ss[ply].currentMove = move;
1152 // Make and search the move
1153 pos.do_move(move, st, ci, moveIsCheck);
1155 if (moveCount == 1) // The first move in list is the PV
1156 value = -search_pv(pos, ss, -beta, -alpha, newDepth, ply+1, threadID);
1159 // Try to reduce non-pv search depth by one ply if move seems not problematic,
1160 // if the move fails high will be re-searched at full depth.
1161 bool doFullDepthSearch = true;
1163 if ( depth >= 3*OnePly
1165 && !captureOrPromotion
1166 && !move_is_castle(move)
1167 && !move_is_killer(move, ss[ply]))
1169 ss[ply].reduction = pv_reduction(depth, moveCount);
1170 if (ss[ply].reduction)
1172 value = -search(pos, ss, -alpha, newDepth-ss[ply].reduction, ply+1, true, threadID);
1173 doFullDepthSearch = (value > alpha);
1177 if (doFullDepthSearch) // Go with full depth non-pv search
1179 ss[ply].reduction = Depth(0);
1180 value = -search(pos, ss, -alpha, newDepth, ply+1, true, threadID);
1181 if (value > alpha && value < beta)
1182 value = -search_pv(pos, ss, -beta, -alpha, newDepth, ply+1, threadID);
1185 pos.undo_move(move);
1187 assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
1190 if (value > bestValue)
1197 if (value == value_mate_in(ply + 1))
1198 ss[ply].mateKiller = move;
1203 if ( TM.active_threads() > 1
1205 && depth >= MinimumSplitDepth
1207 && TM.available_thread_exists(threadID)
1209 && !TM.thread_should_stop(threadID)
1210 && TM.split(pos, ss, ply, &alpha, beta, &bestValue, VALUE_NONE,
1211 depth, &moveCount, &mp, threadID, true))
1215 // All legal moves have been searched. A special case: If there were
1216 // no legal moves, it must be mate or stalemate.
1218 return (isCheck ? value_mated_in(ply) : VALUE_DRAW);
1220 // If the search is not aborted, update the transposition table,
1221 // history counters, and killer moves.
1222 if (AbortSearch || TM.thread_should_stop(threadID))
1225 if (bestValue <= oldAlpha)
1226 TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_UPPER, depth, MOVE_NONE);
1228 else if (bestValue >= beta)
1230 TM.incrementBetaCounter(pos.side_to_move(), depth, threadID);
1231 move = ss[ply].pv[ply];
1232 if (!pos.move_is_capture_or_promotion(move))
1234 update_history(pos, move, depth, movesSearched, moveCount);
1235 update_killers(move, ss[ply]);
1237 TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_LOWER, depth, move);
1240 TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_EXACT, depth, ss[ply].pv[ply]);
1246 // search() is the search function for zero-width nodes.
1248 Value search(Position& pos, SearchStack ss[], Value beta, Depth depth,
1249 int ply, bool allowNullmove, int threadID, Move excludedMove) {
1251 assert(beta >= -VALUE_INFINITE && beta <= VALUE_INFINITE);
1252 assert(ply >= 0 && ply < PLY_MAX);
1253 assert(threadID >= 0 && threadID < TM.active_threads());
1255 Move movesSearched[256];
1260 Depth ext, newDepth;
1261 Value bestValue, staticValue, nullValue, value, futilityValue, futilityValueScaled;
1262 bool isCheck, singleEvasion, moveIsCheck, captureOrPromotion, dangerous;
1263 bool mateThreat = false;
1265 futilityValue = staticValue = bestValue = value = -VALUE_INFINITE;
1268 return qsearch(pos, ss, beta-1, beta, Depth(0), ply, threadID);
1270 // Step 1. Initialize node and poll
1271 // Polling can abort search.
1272 init_node(ss, ply, threadID);
1274 // Step 2. Check for aborted search and immediate draw
1275 if (AbortSearch || TM.thread_should_stop(threadID))
1278 if (pos.is_draw() || ply >= PLY_MAX - 1)
1281 // Step 3. Mate distance pruning
1282 if (value_mated_in(ply) >= beta)
1285 if (value_mate_in(ply + 1) < beta)
1288 // Step 4. Transposition table lookup
1290 // We don't want the score of a partial search to overwrite a previous full search
1291 // TT value, so we use a different position key in case of an excluded move exsists.
1292 Key posKey = excludedMove ? pos.get_exclusion_key() : pos.get_key();
1294 tte = TT.retrieve(posKey);
1295 ttMove = (tte ? tte->move() : MOVE_NONE);
1297 if (tte && ok_to_use_TT(tte, depth, beta, ply))
1299 ss[ply].currentMove = ttMove; // Can be MOVE_NONE
1300 return value_from_tt(tte->value(), ply);
1303 // Step 5. Evaluate the position statically
1304 isCheck = pos.is_check();
1308 if (tte && (tte->type() & VALUE_TYPE_EVAL))
1309 staticValue = value_from_tt(tte->value(), ply);
1311 staticValue = evaluate(pos, ei, threadID);
1313 ss[ply].eval = staticValue;
1314 futilityValue = staticValue + futility_margin(depth, 0); //FIXME: Remove me, only for split
1315 staticValue = refine_eval(tte, staticValue, ply); // Enhance accuracy with TT value if possible
1316 update_gains(pos, ss[ply - 1].currentMove, ss[ply - 1].eval, ss[ply].eval);
1320 if ( !value_is_mate(beta)
1322 && depth < RazorDepth
1323 && staticValue < beta - (0x200 + 16 * depth)
1324 && ss[ply - 1].currentMove != MOVE_NULL
1325 && ttMove == MOVE_NONE
1326 && !pos.has_pawn_on_7th(pos.side_to_move()))
1328 Value rbeta = beta - (0x200 + 16 * depth);
1329 Value v = qsearch(pos, ss, rbeta-1, rbeta, Depth(0), ply, threadID);
1331 return v; //FIXME: Logically should be: return (v + 0x200 + 16 * depth);
1334 // Step 7. Static null move pruning
1335 // We're betting that the opponent doesn't have a move that will reduce
1336 // the score by more than fuility_margin(depth) if we do a null move.
1339 && depth < RazorDepth
1340 && staticValue - futility_margin(depth, 0) >= beta)
1341 return staticValue - futility_margin(depth, 0);
1343 // Step 8. Null move search with verification search
1344 // When we jump directly to qsearch() we do a null move only if static value is
1345 // at least beta. Otherwise we do a null move if static value is not more than
1346 // NullMoveMargin under beta.
1350 && !value_is_mate(beta)
1351 && ok_to_do_nullmove(pos)
1352 && staticValue >= beta - (depth >= 4 * OnePly ? NullMoveMargin : 0))
1354 ss[ply].currentMove = MOVE_NULL;
1356 pos.do_null_move(st);
1358 // Null move dynamic reduction based on depth
1359 int R = 3 + (depth >= 5 * OnePly ? depth / 8 : 0);
1361 // Null move dynamic reduction based on value
1362 if (staticValue - beta > PawnValueMidgame)
1365 nullValue = -search(pos, ss, -(beta-1), depth-R*OnePly, ply+1, false, threadID);
1367 pos.undo_null_move();
1369 if (nullValue >= beta)
1371 if (depth < 6 * OnePly)
1374 // Do zugzwang verification search
1375 Value v = search(pos, ss, beta, depth-5*OnePly, ply, false, threadID);
1379 // The null move failed low, which means that we may be faced with
1380 // some kind of threat. If the previous move was reduced, check if
1381 // the move that refuted the null move was somehow connected to the
1382 // move which was reduced. If a connection is found, return a fail
1383 // low score (which will cause the reduced move to fail high in the
1384 // parent node, which will trigger a re-search with full depth).
1385 if (nullValue == value_mated_in(ply + 2))
1388 ss[ply].threatMove = ss[ply + 1].currentMove;
1389 if ( depth < ThreatDepth
1390 && ss[ply - 1].reduction
1391 && connected_moves(pos, ss[ply - 1].currentMove, ss[ply].threatMove))
1396 // Step 9. Internal iterative deepening
1397 if (UseIIDAtNonPVNodes && ttMove == MOVE_NONE && depth >= 8*OnePly &&
1398 !isCheck && ss[ply].eval >= beta - IIDMargin)
1400 search(pos, ss, beta, depth/2, ply, false, threadID);
1401 ttMove = ss[ply].pv[ply];
1402 tte = TT.retrieve(posKey);
1405 // Step 10. Loop through moves
1406 // Loop through all legal moves until no moves remain or a beta cutoff occurs
1408 // Initialize a MovePicker object for the current position
1409 MovePicker mp = MovePicker(pos, ttMove, depth, H, &ss[ply]);
1412 while ( bestValue < beta
1413 && (move = mp.get_next_move()) != MOVE_NONE
1414 && !TM.thread_should_stop(threadID))
1416 assert(move_is_ok(move));
1418 if (move == excludedMove)
1421 moveIsCheck = pos.move_is_check(move, ci);
1422 singleEvasion = (isCheck && mp.number_of_evasions() == 1);
1423 captureOrPromotion = pos.move_is_capture_or_promotion(move);
1425 // Step 11. Decide the new search depth
1426 ext = extension(pos, move, false, captureOrPromotion, moveIsCheck, singleEvasion, mateThreat, &dangerous);
1428 // Singular extension search. We extend the TT move if its value is much better than
1429 // its siblings. To verify this we do a reduced search on all the other moves but the
1430 // ttMove, if result is lower then ttValue minus a margin then we extend ttMove.
1431 if ( depth >= 8 * OnePly
1433 && move == tte->move()
1434 && !excludedMove // Do not allow recursive single-reply search
1436 && is_lower_bound(tte->type())
1437 && tte->depth() >= depth - 3 * OnePly)
1439 Value ttValue = value_from_tt(tte->value(), ply);
1441 if (abs(ttValue) < VALUE_KNOWN_WIN)
1443 Value excValue = search(pos, ss, ttValue - SingleReplyMargin, depth / 2, ply, false, threadID, move);
1445 if (excValue < ttValue - SingleReplyMargin)
1450 newDepth = depth - OnePly + ext;
1452 // Update current move (this must be done after singular extension search)
1453 movesSearched[moveCount++] = ss[ply].currentMove = move;
1455 // Step 12. Futility pruning
1458 && !captureOrPromotion
1459 && !move_is_castle(move)
1462 // Move count based pruning
1463 if ( moveCount >= futility_move_count(depth)
1464 && ok_to_prune(pos, move, ss[ply].threatMove)
1465 && bestValue > value_mated_in(PLY_MAX))
1468 // Value based pruning
1469 Depth predictedDepth = newDepth - nonpv_reduction(depth, moveCount); //FIXME: We are ignoring condition: depth >= 3*OnePly, BUG??
1470 futilityValueScaled = ss[ply].eval + futility_margin(predictedDepth, moveCount)
1471 + H.gain(pos.piece_on(move_from(move)), move_to(move)) + 45;
1473 if (futilityValueScaled < beta)
1475 if (futilityValueScaled > bestValue)
1476 bestValue = futilityValueScaled;
1481 // Step 13. Make the move
1482 pos.do_move(move, st, ci, moveIsCheck);
1484 // Step 14. Reduced search
1485 // if the move fails high will be re-searched at full depth.
1486 bool doFullDepthSearch = true;
1488 if ( depth >= 3*OnePly
1490 && !captureOrPromotion
1491 && !move_is_castle(move)
1492 && !move_is_killer(move, ss[ply]))
1494 ss[ply].reduction = nonpv_reduction(depth, moveCount);
1495 if (ss[ply].reduction)
1497 value = -search(pos, ss, -(beta-1), newDepth-ss[ply].reduction, ply+1, true, threadID);
1498 doFullDepthSearch = (value >= beta);
1502 // Step 15. Full depth search
1503 if (doFullDepthSearch)
1505 ss[ply].reduction = Depth(0);
1506 value = -search(pos, ss, -(beta-1), newDepth, ply+1, true, threadID);
1509 // Step 16. Undo move
1510 pos.undo_move(move);
1512 assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
1514 // Step 17. Check for new best move
1515 if (value > bestValue)
1521 if (value == value_mate_in(ply + 1))
1522 ss[ply].mateKiller = move;
1525 // Step 18. Check for split
1526 if ( TM.active_threads() > 1
1528 && depth >= MinimumSplitDepth
1530 && TM.available_thread_exists(threadID)
1532 && !TM.thread_should_stop(threadID)
1533 && TM.split(pos, ss, ply, NULL, beta, &bestValue, futilityValue, //FIXME: SMP & futilityValue
1534 depth, &moveCount, &mp, threadID, false))
1538 // Step 19. Check for mate and stalemate
1539 // All legal moves have been searched and if there were
1540 // no legal moves, it must be mate or stalemate.
1541 // If one move was excluded return fail low.
1543 return excludedMove ? beta - 1 : (pos.is_check() ? value_mated_in(ply) : VALUE_DRAW);
1545 // Step 20. Update tables
1546 // If the search is not aborted, update the transposition table,
1547 // history counters, and killer moves.
1548 if (AbortSearch || TM.thread_should_stop(threadID))
1551 if (bestValue < beta)
1552 TT.store(posKey, value_to_tt(bestValue, ply), VALUE_TYPE_UPPER, depth, MOVE_NONE);
1555 TM.incrementBetaCounter(pos.side_to_move(), depth, threadID);
1556 move = ss[ply].pv[ply];
1557 TT.store(posKey, value_to_tt(bestValue, ply), VALUE_TYPE_LOWER, depth, move);
1558 if (!pos.move_is_capture_or_promotion(move))
1560 update_history(pos, move, depth, movesSearched, moveCount);
1561 update_killers(move, ss[ply]);
1566 assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
1572 // qsearch() is the quiescence search function, which is called by the main
1573 // search function when the remaining depth is zero (or, to be more precise,
1574 // less than OnePly).
1576 Value qsearch(Position& pos, SearchStack ss[], Value alpha, Value beta,
1577 Depth depth, int ply, int threadID) {
1579 assert(alpha >= -VALUE_INFINITE && alpha <= VALUE_INFINITE);
1580 assert(beta >= -VALUE_INFINITE && beta <= VALUE_INFINITE);
1582 assert(ply >= 0 && ply < PLY_MAX);
1583 assert(threadID >= 0 && threadID < TM.active_threads());
1588 Value staticValue, bestValue, value, futilityBase, futilityValue;
1589 bool isCheck, enoughMaterial, moveIsCheck, evasionPrunable;
1590 const TTEntry* tte = NULL;
1592 bool pvNode = (beta - alpha != 1);
1593 Value oldAlpha = alpha;
1595 // Initialize, and make an early exit in case of an aborted search,
1596 // an instant draw, maximum ply reached, etc.
1597 init_node(ss, ply, threadID);
1599 // After init_node() that calls poll()
1600 if (AbortSearch || TM.thread_should_stop(threadID))
1603 if (pos.is_draw() || ply >= PLY_MAX - 1)
1606 // Transposition table lookup. At PV nodes, we don't use the TT for
1607 // pruning, but only for move ordering.
1608 tte = TT.retrieve(pos.get_key());
1609 ttMove = (tte ? tte->move() : MOVE_NONE);
1611 if (!pvNode && tte && ok_to_use_TT(tte, depth, beta, ply))
1613 assert(tte->type() != VALUE_TYPE_EVAL);
1615 ss[ply].currentMove = ttMove; // Can be MOVE_NONE
1616 return value_from_tt(tte->value(), ply);
1619 isCheck = pos.is_check();
1621 // Evaluate the position statically
1623 staticValue = -VALUE_INFINITE;
1624 else if (tte && (tte->type() & VALUE_TYPE_EVAL))
1625 staticValue = value_from_tt(tte->value(), ply);
1627 staticValue = evaluate(pos, ei, threadID);
1631 ss[ply].eval = staticValue;
1632 update_gains(pos, ss[ply - 1].currentMove, ss[ply - 1].eval, ss[ply].eval);
1635 // Initialize "stand pat score", and return it immediately if it is
1637 bestValue = staticValue;
1639 if (bestValue >= beta)
1641 // Store the score to avoid a future costly evaluation() call
1642 if (!isCheck && !tte && ei.futilityMargin[pos.side_to_move()] == 0)
1643 TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_EV_LO, Depth(-127*OnePly), MOVE_NONE);
1648 if (bestValue > alpha)
1651 // If we are near beta then try to get a cutoff pushing checks a bit further
1652 bool deepChecks = depth == -OnePly && staticValue >= beta - PawnValueMidgame / 8;
1654 // Initialize a MovePicker object for the current position, and prepare
1655 // to search the moves. Because the depth is <= 0 here, only captures,
1656 // queen promotions and checks (only if depth == 0 or depth == -OnePly
1657 // and we are near beta) will be generated.
1658 MovePicker mp = MovePicker(pos, ttMove, deepChecks ? Depth(0) : depth, H);
1660 enoughMaterial = pos.non_pawn_material(pos.side_to_move()) > RookValueMidgame;
1661 futilityBase = staticValue + FutilityMarginQS + ei.futilityMargin[pos.side_to_move()];
1663 // Loop through the moves until no moves remain or a beta cutoff
1665 while ( alpha < beta
1666 && (move = mp.get_next_move()) != MOVE_NONE)
1668 assert(move_is_ok(move));
1670 moveIsCheck = pos.move_is_check(move, ci);
1672 // Update current move
1674 ss[ply].currentMove = move;
1682 && !move_is_promotion(move)
1683 && !pos.move_is_passed_pawn_push(move))
1685 futilityValue = futilityBase
1686 + pos.endgame_value_of_piece_on(move_to(move))
1687 + (move_is_ep(move) ? PawnValueEndgame : Value(0));
1689 if (futilityValue < alpha)
1691 if (futilityValue > bestValue)
1692 bestValue = futilityValue;
1697 // Detect blocking evasions that are candidate to be pruned
1698 evasionPrunable = isCheck
1699 && bestValue != -VALUE_INFINITE
1700 && !pos.move_is_capture(move)
1701 && pos.type_of_piece_on(move_from(move)) != KING
1702 && !pos.can_castle(pos.side_to_move());
1704 // Don't search moves with negative SEE values
1705 if ( (!isCheck || evasionPrunable)
1708 && !move_is_promotion(move)
1709 && pos.see_sign(move) < 0)
1712 // Make and search the move
1713 pos.do_move(move, st, ci, moveIsCheck);
1714 value = -qsearch(pos, ss, -beta, -alpha, depth-OnePly, ply+1, threadID);
1715 pos.undo_move(move);
1717 assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
1720 if (value > bestValue)
1731 // All legal moves have been searched. A special case: If we're in check
1732 // and no legal moves were found, it is checkmate.
1733 if (!moveCount && pos.is_check()) // Mate!
1734 return value_mated_in(ply);
1736 // Update transposition table
1737 Depth d = (depth == Depth(0) ? Depth(0) : Depth(-1));
1738 if (bestValue <= oldAlpha)
1740 // If bestValue isn't changed it means it is still the static evaluation
1741 // of the node, so keep this info to avoid a future evaluation() call.
1742 ValueType type = (bestValue == staticValue && !ei.futilityMargin[pos.side_to_move()] ? VALUE_TYPE_EV_UP : VALUE_TYPE_UPPER);
1743 TT.store(pos.get_key(), value_to_tt(bestValue, ply), type, d, MOVE_NONE);
1745 else if (bestValue >= beta)
1747 move = ss[ply].pv[ply];
1748 TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_LOWER, d, move);
1750 // Update killers only for good checking moves
1751 if (!pos.move_is_capture_or_promotion(move))
1752 update_killers(move, ss[ply]);
1755 TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_EXACT, d, ss[ply].pv[ply]);
1757 assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
1763 // sp_search() is used to search from a split point. This function is called
1764 // by each thread working at the split point. It is similar to the normal
1765 // search() function, but simpler. Because we have already probed the hash
1766 // table, done a null move search, and searched the first move before
1767 // splitting, we don't have to repeat all this work in sp_search(). We
1768 // also don't need to store anything to the hash table here: This is taken
1769 // care of after we return from the split point.
1771 void sp_search(SplitPoint* sp, int threadID) {
1773 assert(threadID >= 0 && threadID < TM.active_threads());
1774 assert(TM.active_threads() > 1);
1776 Position pos(*sp->pos);
1778 SearchStack* ss = sp->sstack[threadID];
1779 Value value = -VALUE_INFINITE;
1782 bool isCheck = pos.is_check();
1783 bool useFutilityPruning = sp->depth < 7 * OnePly //FIXME: sync with search
1786 while ( lock_grab_bool(&(sp->lock))
1787 && sp->bestValue < sp->beta
1788 && !TM.thread_should_stop(threadID)
1789 && (move = sp->mp->get_next_move()) != MOVE_NONE)
1791 moveCount = ++sp->moves;
1792 lock_release(&(sp->lock));
1794 assert(move_is_ok(move));
1796 bool moveIsCheck = pos.move_is_check(move, ci);
1797 bool captureOrPromotion = pos.move_is_capture_or_promotion(move);
1799 ss[sp->ply].currentMove = move;
1801 // Decide the new search depth
1803 Depth ext = extension(pos, move, false, captureOrPromotion, moveIsCheck, false, false, &dangerous);
1804 Depth newDepth = sp->depth - OnePly + ext;
1807 if ( useFutilityPruning
1809 && !captureOrPromotion)
1811 // Move count based pruning
1812 if ( moveCount >= futility_move_count(sp->depth)
1813 && ok_to_prune(pos, move, ss[sp->ply].threatMove)
1814 && sp->bestValue > value_mated_in(PLY_MAX))
1817 // Value based pruning
1818 Value futilityValueScaled = sp->futilityValue - moveCount * 8; //FIXME: sync with search
1820 if (futilityValueScaled < sp->beta)
1822 if (futilityValueScaled > sp->bestValue) // Less then 1% of cases
1824 lock_grab(&(sp->lock));
1825 if (futilityValueScaled > sp->bestValue)
1826 sp->bestValue = futilityValueScaled;
1827 lock_release(&(sp->lock));
1833 // Make and search the move.
1835 pos.do_move(move, st, ci, moveIsCheck);
1837 // Try to reduce non-pv search depth by one ply if move seems not problematic,
1838 // if the move fails high will be re-searched at full depth.
1839 bool doFullDepthSearch = true;
1842 && !captureOrPromotion
1843 && !move_is_castle(move)
1844 && !move_is_killer(move, ss[sp->ply]))
1846 ss[sp->ply].reduction = nonpv_reduction(sp->depth, moveCount);
1847 if (ss[sp->ply].reduction)
1849 value = -search(pos, ss, -(sp->beta-1), newDepth-ss[sp->ply].reduction, sp->ply+1, true, threadID);
1850 doFullDepthSearch = (value >= sp->beta && !TM.thread_should_stop(threadID));
1854 if (doFullDepthSearch) // Go with full depth non-pv search
1856 ss[sp->ply].reduction = Depth(0);
1857 value = -search(pos, ss, -(sp->beta - 1), newDepth, sp->ply+1, true, threadID);
1859 pos.undo_move(move);
1861 assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
1864 if (value > sp->bestValue) // Less then 2% of cases
1866 lock_grab(&(sp->lock));
1867 if (value > sp->bestValue && !TM.thread_should_stop(threadID))
1869 sp->bestValue = value;
1870 if (sp->bestValue >= sp->beta)
1872 sp->stopRequest = true;
1873 sp_update_pv(sp->parentSstack, ss, sp->ply);
1876 lock_release(&(sp->lock));
1880 /* Here we have the lock still grabbed */
1883 sp->slaves[threadID] = 0;
1885 lock_release(&(sp->lock));
1889 // sp_search_pv() is used to search from a PV split point. This function
1890 // is called by each thread working at the split point. It is similar to
1891 // the normal search_pv() function, but simpler. Because we have already
1892 // probed the hash table and searched the first move before splitting, we
1893 // don't have to repeat all this work in sp_search_pv(). We also don't
1894 // need to store anything to the hash table here: This is taken care of
1895 // after we return from the split point.
1897 void sp_search_pv(SplitPoint* sp, int threadID) {
1899 assert(threadID >= 0 && threadID < TM.active_threads());
1900 assert(TM.active_threads() > 1);
1902 Position pos(*sp->pos);
1904 SearchStack* ss = sp->sstack[threadID];
1905 Value value = -VALUE_INFINITE;
1909 while ( lock_grab_bool(&(sp->lock))
1910 && sp->alpha < sp->beta
1911 && !TM.thread_should_stop(threadID)
1912 && (move = sp->mp->get_next_move()) != MOVE_NONE)
1914 moveCount = ++sp->moves;
1915 lock_release(&(sp->lock));
1917 assert(move_is_ok(move));
1919 bool moveIsCheck = pos.move_is_check(move, ci);
1920 bool captureOrPromotion = pos.move_is_capture_or_promotion(move);
1922 ss[sp->ply].currentMove = move;
1924 // Decide the new search depth
1926 Depth ext = extension(pos, move, true, captureOrPromotion, moveIsCheck, false, false, &dangerous);
1927 Depth newDepth = sp->depth - OnePly + ext;
1929 // Make and search the move.
1931 pos.do_move(move, st, ci, moveIsCheck);
1933 // Try to reduce non-pv search depth by one ply if move seems not problematic,
1934 // if the move fails high will be re-searched at full depth.
1935 bool doFullDepthSearch = true;
1938 && !captureOrPromotion
1939 && !move_is_castle(move)
1940 && !move_is_killer(move, ss[sp->ply]))
1942 ss[sp->ply].reduction = pv_reduction(sp->depth, moveCount);
1943 if (ss[sp->ply].reduction)
1945 Value localAlpha = sp->alpha;
1946 value = -search(pos, ss, -localAlpha, newDepth-ss[sp->ply].reduction, sp->ply+1, true, threadID);
1947 doFullDepthSearch = (value > localAlpha && !TM.thread_should_stop(threadID));
1951 if (doFullDepthSearch) // Go with full depth non-pv search
1953 Value localAlpha = sp->alpha;
1954 ss[sp->ply].reduction = Depth(0);
1955 value = -search(pos, ss, -localAlpha, newDepth, sp->ply+1, true, threadID);
1957 if (value > localAlpha && value < sp->beta && !TM.thread_should_stop(threadID))
1959 // If another thread has failed high then sp->alpha has been increased
1960 // to be higher or equal then beta, if so, avoid to start a PV search.
1961 localAlpha = sp->alpha;
1962 if (localAlpha < sp->beta)
1963 value = -search_pv(pos, ss, -sp->beta, -localAlpha, newDepth, sp->ply+1, threadID);
1966 pos.undo_move(move);
1968 assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
1971 if (value > sp->bestValue) // Less then 2% of cases
1973 lock_grab(&(sp->lock));
1974 if (value > sp->bestValue && !TM.thread_should_stop(threadID))
1976 sp->bestValue = value;
1977 if (value > sp->alpha)
1979 // Ask threads to stop before to modify sp->alpha
1980 if (value >= sp->beta)
1981 sp->stopRequest = true;
1985 sp_update_pv(sp->parentSstack, ss, sp->ply);
1986 if (value == value_mate_in(sp->ply + 1))
1987 ss[sp->ply].mateKiller = move;
1990 lock_release(&(sp->lock));
1994 /* Here we have the lock still grabbed */
1997 sp->slaves[threadID] = 0;
1999 lock_release(&(sp->lock));
2003 // init_node() is called at the beginning of all the search functions
2004 // (search(), search_pv(), qsearch(), and so on) and initializes the
2005 // search stack object corresponding to the current node. Once every
2006 // NodesBetweenPolls nodes, init_node() also calls poll(), which polls
2007 // for user input and checks whether it is time to stop the search.
2009 void init_node(SearchStack ss[], int ply, int threadID) {
2011 assert(ply >= 0 && ply < PLY_MAX);
2012 assert(threadID >= 0 && threadID < TM.active_threads());
2014 TM.incrementNodeCounter(threadID);
2019 if (NodesSincePoll >= NodesBetweenPolls)
2026 ss[ply + 2].initKillers();
2027 TM.print_current_line(ss, ply, threadID);
2031 // update_pv() is called whenever a search returns a value > alpha.
2032 // It updates the PV in the SearchStack object corresponding to the
2035 void update_pv(SearchStack ss[], int ply) {
2037 assert(ply >= 0 && ply < PLY_MAX);
2041 ss[ply].pv[ply] = ss[ply].currentMove;
2043 for (p = ply + 1; ss[ply + 1].pv[p] != MOVE_NONE; p++)
2044 ss[ply].pv[p] = ss[ply + 1].pv[p];
2046 ss[ply].pv[p] = MOVE_NONE;
2050 // sp_update_pv() is a variant of update_pv for use at split points. The
2051 // difference between the two functions is that sp_update_pv also updates
2052 // the PV at the parent node.
2054 void sp_update_pv(SearchStack* pss, SearchStack ss[], int ply) {
2056 assert(ply >= 0 && ply < PLY_MAX);
2060 ss[ply].pv[ply] = pss[ply].pv[ply] = ss[ply].currentMove;
2062 for (p = ply + 1; ss[ply + 1].pv[p] != MOVE_NONE; p++)
2063 ss[ply].pv[p] = pss[ply].pv[p] = ss[ply + 1].pv[p];
2065 ss[ply].pv[p] = pss[ply].pv[p] = MOVE_NONE;
2069 // connected_moves() tests whether two moves are 'connected' in the sense
2070 // that the first move somehow made the second move possible (for instance
2071 // if the moving piece is the same in both moves). The first move is assumed
2072 // to be the move that was made to reach the current position, while the
2073 // second move is assumed to be a move from the current position.
2075 bool connected_moves(const Position& pos, Move m1, Move m2) {
2077 Square f1, t1, f2, t2;
2080 assert(move_is_ok(m1));
2081 assert(move_is_ok(m2));
2083 if (m2 == MOVE_NONE)
2086 // Case 1: The moving piece is the same in both moves
2092 // Case 2: The destination square for m2 was vacated by m1
2098 // Case 3: Moving through the vacated square
2099 if ( piece_is_slider(pos.piece_on(f2))
2100 && bit_is_set(squares_between(f2, t2), f1))
2103 // Case 4: The destination square for m2 is defended by the moving piece in m1
2104 p = pos.piece_on(t1);
2105 if (bit_is_set(pos.attacks_from(p, t1), t2))
2108 // Case 5: Discovered check, checking piece is the piece moved in m1
2109 if ( piece_is_slider(p)
2110 && bit_is_set(squares_between(t1, pos.king_square(pos.side_to_move())), f2)
2111 && !bit_is_set(squares_between(t1, pos.king_square(pos.side_to_move())), t2))
2113 // discovered_check_candidates() works also if the Position's side to
2114 // move is the opposite of the checking piece.
2115 Color them = opposite_color(pos.side_to_move());
2116 Bitboard dcCandidates = pos.discovered_check_candidates(them);
2118 if (bit_is_set(dcCandidates, f2))
2125 // value_is_mate() checks if the given value is a mate one
2126 // eventually compensated for the ply.
2128 bool value_is_mate(Value value) {
2130 assert(abs(value) <= VALUE_INFINITE);
2132 return value <= value_mated_in(PLY_MAX)
2133 || value >= value_mate_in(PLY_MAX);
2137 // move_is_killer() checks if the given move is among the
2138 // killer moves of that ply.
2140 bool move_is_killer(Move m, const SearchStack& ss) {
2142 const Move* k = ss.killers;
2143 for (int i = 0; i < KILLER_MAX; i++, k++)
2151 // extension() decides whether a move should be searched with normal depth,
2152 // or with extended depth. Certain classes of moves (checking moves, in
2153 // particular) are searched with bigger depth than ordinary moves and in
2154 // any case are marked as 'dangerous'. Note that also if a move is not
2155 // extended, as example because the corresponding UCI option is set to zero,
2156 // the move is marked as 'dangerous' so, at least, we avoid to prune it.
2158 Depth extension(const Position& pos, Move m, bool pvNode, bool captureOrPromotion,
2159 bool moveIsCheck, bool singleEvasion, bool mateThreat, bool* dangerous) {
2161 assert(m != MOVE_NONE);
2163 Depth result = Depth(0);
2164 *dangerous = moveIsCheck | singleEvasion | mateThreat;
2169 result += CheckExtension[pvNode];
2172 result += SingleEvasionExtension[pvNode];
2175 result += MateThreatExtension[pvNode];
2178 if (pos.type_of_piece_on(move_from(m)) == PAWN)
2180 Color c = pos.side_to_move();
2181 if (relative_rank(c, move_to(m)) == RANK_7)
2183 result += PawnPushTo7thExtension[pvNode];
2186 if (pos.pawn_is_passed(c, move_to(m)))
2188 result += PassedPawnExtension[pvNode];
2193 if ( captureOrPromotion
2194 && pos.type_of_piece_on(move_to(m)) != PAWN
2195 && ( pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK)
2196 - pos.midgame_value_of_piece_on(move_to(m)) == Value(0))
2197 && !move_is_promotion(m)
2200 result += PawnEndgameExtension[pvNode];
2205 && captureOrPromotion
2206 && pos.type_of_piece_on(move_to(m)) != PAWN
2207 && pos.see_sign(m) >= 0)
2213 return Min(result, OnePly);
2217 // ok_to_do_nullmove() looks at the current position and decides whether
2218 // doing a 'null move' should be allowed. In order to avoid zugzwang
2219 // problems, null moves are not allowed when the side to move has very
2220 // little material left. Currently, the test is a bit too simple: Null
2221 // moves are avoided only when the side to move has only pawns left.
2222 // It's probably a good idea to avoid null moves in at least some more
2223 // complicated endgames, e.g. KQ vs KR. FIXME
2225 bool ok_to_do_nullmove(const Position& pos) {
2227 return pos.non_pawn_material(pos.side_to_move()) != Value(0);
2231 // ok_to_prune() tests whether it is safe to forward prune a move. Only
2232 // non-tactical moves late in the move list close to the leaves are
2233 // candidates for pruning.
2235 bool ok_to_prune(const Position& pos, Move m, Move threat) {
2237 assert(move_is_ok(m));
2238 assert(threat == MOVE_NONE || move_is_ok(threat));
2239 assert(!pos.move_is_check(m));
2240 assert(!pos.move_is_capture_or_promotion(m));
2241 assert(!pos.move_is_passed_pawn_push(m));
2243 Square mfrom, mto, tfrom, tto;
2245 // Prune if there isn't any threat move
2246 if (threat == MOVE_NONE)
2249 mfrom = move_from(m);
2251 tfrom = move_from(threat);
2252 tto = move_to(threat);
2254 // Case 1: Don't prune moves which move the threatened piece
2258 // Case 2: If the threatened piece has value less than or equal to the
2259 // value of the threatening piece, don't prune move which defend it.
2260 if ( pos.move_is_capture(threat)
2261 && ( pos.midgame_value_of_piece_on(tfrom) >= pos.midgame_value_of_piece_on(tto)
2262 || pos.type_of_piece_on(tfrom) == KING)
2263 && pos.move_attacks_square(m, tto))
2266 // Case 3: If the moving piece in the threatened move is a slider, don't
2267 // prune safe moves which block its ray.
2268 if ( piece_is_slider(pos.piece_on(tfrom))
2269 && bit_is_set(squares_between(tfrom, tto), mto)
2270 && pos.see_sign(m) >= 0)
2277 // ok_to_use_TT() returns true if a transposition table score
2278 // can be used at a given point in search.
2280 bool ok_to_use_TT(const TTEntry* tte, Depth depth, Value beta, int ply) {
2282 Value v = value_from_tt(tte->value(), ply);
2284 return ( tte->depth() >= depth
2285 || v >= Max(value_mate_in(PLY_MAX), beta)
2286 || v < Min(value_mated_in(PLY_MAX), beta))
2288 && ( (is_lower_bound(tte->type()) && v >= beta)
2289 || (is_upper_bound(tte->type()) && v < beta));
2293 // refine_eval() returns the transposition table score if
2294 // possible otherwise falls back on static position evaluation.
2296 Value refine_eval(const TTEntry* tte, Value defaultEval, int ply) {
2301 Value v = value_from_tt(tte->value(), ply);
2303 if ( (is_lower_bound(tte->type()) && v >= defaultEval)
2304 || (is_upper_bound(tte->type()) && v < defaultEval))
2311 // update_history() registers a good move that produced a beta-cutoff
2312 // in history and marks as failures all the other moves of that ply.
2314 void update_history(const Position& pos, Move move, Depth depth,
2315 Move movesSearched[], int moveCount) {
2319 H.success(pos.piece_on(move_from(move)), move_to(move), depth);
2321 for (int i = 0; i < moveCount - 1; i++)
2323 m = movesSearched[i];
2327 if (!pos.move_is_capture_or_promotion(m))
2328 H.failure(pos.piece_on(move_from(m)), move_to(m), depth);
2333 // update_killers() add a good move that produced a beta-cutoff
2334 // among the killer moves of that ply.
2336 void update_killers(Move m, SearchStack& ss) {
2338 if (m == ss.killers[0])
2341 for (int i = KILLER_MAX - 1; i > 0; i--)
2342 ss.killers[i] = ss.killers[i - 1];
2348 // update_gains() updates the gains table of a non-capture move given
2349 // the static position evaluation before and after the move.
2351 void update_gains(const Position& pos, Move m, Value before, Value after) {
2354 && before != VALUE_NONE
2355 && after != VALUE_NONE
2356 && pos.captured_piece() == NO_PIECE_TYPE
2357 && !move_is_castle(m)
2358 && !move_is_promotion(m))
2359 H.set_gain(pos.piece_on(move_to(m)), move_to(m), -(before + after));
2363 // current_search_time() returns the number of milliseconds which have passed
2364 // since the beginning of the current search.
2366 int current_search_time() {
2368 return get_system_time() - SearchStartTime;
2372 // nps() computes the current nodes/second count.
2376 int t = current_search_time();
2377 return (t > 0 ? int((TM.nodes_searched() * 1000) / t) : 0);
2381 // poll() performs two different functions: It polls for user input, and it
2382 // looks at the time consumed so far and decides if it's time to abort the
2387 static int lastInfoTime;
2388 int t = current_search_time();
2393 // We are line oriented, don't read single chars
2394 std::string command;
2396 if (!std::getline(std::cin, command))
2399 if (command == "quit")
2402 PonderSearch = false;
2406 else if (command == "stop")
2409 PonderSearch = false;
2411 else if (command == "ponderhit")
2415 // Print search information
2419 else if (lastInfoTime > t)
2420 // HACK: Must be a new search where we searched less than
2421 // NodesBetweenPolls nodes during the first second of search.
2424 else if (t - lastInfoTime >= 1000)
2427 lock_grab(&TM.IOLock);
2432 if (dbg_show_hit_rate)
2433 dbg_print_hit_rate();
2435 cout << "info nodes " << TM.nodes_searched() << " nps " << nps()
2436 << " time " << t << " hashfull " << TT.full() << endl;
2438 lock_release(&TM.IOLock);
2440 if (ShowCurrentLine)
2441 TM.threads[0].printCurrentLineRequest = true;
2444 // Should we stop the search?
2448 bool stillAtFirstMove = RootMoveNumber == 1
2449 && !AspirationFailLow
2450 && t > MaxSearchTime + ExtraSearchTime;
2452 bool noMoreTime = t > AbsoluteMaxSearchTime
2453 || stillAtFirstMove;
2455 if ( (Iteration >= 3 && UseTimeManagement && noMoreTime)
2456 || (ExactMaxTime && t >= ExactMaxTime)
2457 || (Iteration >= 3 && MaxNodes && TM.nodes_searched() >= MaxNodes))
2462 // ponderhit() is called when the program is pondering (i.e. thinking while
2463 // it's the opponent's turn to move) in order to let the engine know that
2464 // it correctly predicted the opponent's move.
2468 int t = current_search_time();
2469 PonderSearch = false;
2471 bool stillAtFirstMove = RootMoveNumber == 1
2472 && !AspirationFailLow
2473 && t > MaxSearchTime + ExtraSearchTime;
2475 bool noMoreTime = t > AbsoluteMaxSearchTime
2476 || stillAtFirstMove;
2478 if (Iteration >= 3 && UseTimeManagement && (noMoreTime || StopOnPonderhit))
2483 // init_ss_array() does a fast reset of the first entries of a SearchStack array
2485 void init_ss_array(SearchStack ss[]) {
2487 for (int i = 0; i < 3; i++)
2490 ss[i].initKillers();
2495 // wait_for_stop_or_ponderhit() is called when the maximum depth is reached
2496 // while the program is pondering. The point is to work around a wrinkle in
2497 // the UCI protocol: When pondering, the engine is not allowed to give a
2498 // "bestmove" before the GUI sends it a "stop" or "ponderhit" command.
2499 // We simply wait here until one of these commands is sent, and return,
2500 // after which the bestmove and pondermove will be printed (in id_loop()).
2502 void wait_for_stop_or_ponderhit() {
2504 std::string command;
2508 if (!std::getline(std::cin, command))
2511 if (command == "quit")
2516 else if (command == "ponderhit" || command == "stop")
2522 // init_thread() is the function which is called when a new thread is
2523 // launched. It simply calls the idle_loop() function with the supplied
2524 // threadID. There are two versions of this function; one for POSIX
2525 // threads and one for Windows threads.
2527 #if !defined(_MSC_VER)
2529 void* init_thread(void *threadID) {
2531 TM.idle_loop(*(int*)threadID, NULL);
2537 DWORD WINAPI init_thread(LPVOID threadID) {
2539 TM.idle_loop(*(int*)threadID, NULL);
2546 /// The ThreadsManager class
2548 // resetNodeCounters(), resetBetaCounters(), searched_nodes() and
2549 // get_beta_counters() are getters/setters for the per thread
2550 // counters used to sort the moves at root.
2552 void ThreadsManager::resetNodeCounters() {
2554 for (int i = 0; i < MAX_THREADS; i++)
2555 threads[i].nodes = 0ULL;
2558 void ThreadsManager::resetBetaCounters() {
2560 for (int i = 0; i < MAX_THREADS; i++)
2561 threads[i].betaCutOffs[WHITE] = threads[i].betaCutOffs[BLACK] = 0ULL;
2564 int64_t ThreadsManager::nodes_searched() const {
2566 int64_t result = 0ULL;
2567 for (int i = 0; i < ActiveThreads; i++)
2568 result += threads[i].nodes;
2573 void ThreadsManager::get_beta_counters(Color us, int64_t& our, int64_t& their) const {
2576 for (int i = 0; i < MAX_THREADS; i++)
2578 our += threads[i].betaCutOffs[us];
2579 their += threads[i].betaCutOffs[opposite_color(us)];
2584 // idle_loop() is where the threads are parked when they have no work to do.
2585 // The parameter "waitSp", if non-NULL, is a pointer to an active SplitPoint
2586 // object for which the current thread is the master.
2588 void ThreadsManager::idle_loop(int threadID, SplitPoint* waitSp) {
2590 assert(threadID >= 0 && threadID < MAX_THREADS);
2594 // Slave threads can exit as soon as AllThreadsShouldExit raises,
2595 // master should exit as last one.
2596 if (AllThreadsShouldExit)
2599 threads[threadID].state = THREAD_TERMINATED;
2603 // If we are not thinking, wait for a condition to be signaled
2604 // instead of wasting CPU time polling for work.
2605 while (AllThreadsShouldSleep || threadID >= ActiveThreads)
2608 assert(threadID != 0);
2609 threads[threadID].state = THREAD_SLEEPING;
2611 #if !defined(_MSC_VER)
2612 pthread_mutex_lock(&WaitLock);
2613 if (AllThreadsShouldSleep || threadID >= ActiveThreads)
2614 pthread_cond_wait(&WaitCond, &WaitLock);
2615 pthread_mutex_unlock(&WaitLock);
2617 WaitForSingleObject(SitIdleEvent[threadID], INFINITE);
2621 // If thread has just woken up, mark it as available
2622 if (threads[threadID].state == THREAD_SLEEPING)
2623 threads[threadID].state = THREAD_AVAILABLE;
2625 // If this thread has been assigned work, launch a search
2626 if (threads[threadID].state == THREAD_WORKISWAITING)
2628 assert(!AllThreadsShouldExit && !AllThreadsShouldSleep);
2630 threads[threadID].state = THREAD_SEARCHING;
2632 if (threads[threadID].splitPoint->pvNode)
2633 sp_search_pv(threads[threadID].splitPoint, threadID);
2635 sp_search(threads[threadID].splitPoint, threadID);
2637 assert(threads[threadID].state == THREAD_SEARCHING);
2639 threads[threadID].state = THREAD_AVAILABLE;
2642 // If this thread is the master of a split point and all threads have
2643 // finished their work at this split point, return from the idle loop.
2644 if (waitSp != NULL && waitSp->cpus == 0)
2646 assert(threads[threadID].state == THREAD_AVAILABLE);
2648 threads[threadID].state = THREAD_SEARCHING;
2655 // init_threads() is called during startup. It launches all helper threads,
2656 // and initializes the split point stack and the global locks and condition
2659 void ThreadsManager::init_threads() {
2664 #if !defined(_MSC_VER)
2665 pthread_t pthread[1];
2668 // Initialize global locks
2669 lock_init(&MPLock, NULL);
2670 lock_init(&IOLock, NULL);
2672 // Initialize SplitPointStack locks
2673 for (i = 0; i < MAX_THREADS; i++)
2674 for (int j = 0; j < ACTIVE_SPLIT_POINTS_MAX; j++)
2676 SplitPointStack[i][j].parent = NULL;
2677 lock_init(&(SplitPointStack[i][j].lock), NULL);
2680 #if !defined(_MSC_VER)
2681 pthread_mutex_init(&WaitLock, NULL);
2682 pthread_cond_init(&WaitCond, NULL);
2684 for (i = 0; i < MAX_THREADS; i++)
2685 SitIdleEvent[i] = CreateEvent(0, FALSE, FALSE, 0);
2688 // Will be set just before program exits to properly end the threads
2689 AllThreadsShouldExit = false;
2691 // Threads will be put to sleep as soon as created
2692 AllThreadsShouldSleep = true;
2694 // All threads except the main thread should be initialized to THREAD_AVAILABLE
2696 threads[0].state = THREAD_SEARCHING;
2697 for (i = 1; i < MAX_THREADS; i++)
2698 threads[i].state = THREAD_AVAILABLE;
2700 // Launch the helper threads
2701 for (i = 1; i < MAX_THREADS; i++)
2704 #if !defined(_MSC_VER)
2705 ok = (pthread_create(pthread, NULL, init_thread, (void*)(&i)) == 0);
2708 ok = (CreateThread(NULL, 0, init_thread, (LPVOID)(&i), 0, iID) != NULL);
2713 cout << "Failed to create thread number " << i << endl;
2714 Application::exit_with_failure();
2717 // Wait until the thread has finished launching and is gone to sleep
2718 while (threads[i].state != THREAD_SLEEPING);
2723 // exit_threads() is called when the program exits. It makes all the
2724 // helper threads exit cleanly.
2726 void ThreadsManager::exit_threads() {
2728 ActiveThreads = MAX_THREADS; // HACK
2729 AllThreadsShouldSleep = true; // HACK
2730 wake_sleeping_threads();
2732 // This makes the threads to exit idle_loop()
2733 AllThreadsShouldExit = true;
2735 // Wait for thread termination
2736 for (int i = 1; i < MAX_THREADS; i++)
2737 while (threads[i].state != THREAD_TERMINATED);
2739 // Now we can safely destroy the locks
2740 for (int i = 0; i < MAX_THREADS; i++)
2741 for (int j = 0; j < ACTIVE_SPLIT_POINTS_MAX; j++)
2742 lock_destroy(&(SplitPointStack[i][j].lock));
2746 // thread_should_stop() checks whether the thread should stop its search.
2747 // This can happen if a beta cutoff has occurred in the thread's currently
2748 // active split point, or in some ancestor of the current split point.
2750 bool ThreadsManager::thread_should_stop(int threadID) const {
2752 assert(threadID >= 0 && threadID < ActiveThreads);
2756 for (sp = threads[threadID].splitPoint; sp && !sp->stopRequest; sp = sp->parent);
2761 // thread_is_available() checks whether the thread with threadID "slave" is
2762 // available to help the thread with threadID "master" at a split point. An
2763 // obvious requirement is that "slave" must be idle. With more than two
2764 // threads, this is not by itself sufficient: If "slave" is the master of
2765 // some active split point, it is only available as a slave to the other
2766 // threads which are busy searching the split point at the top of "slave"'s
2767 // split point stack (the "helpful master concept" in YBWC terminology).
2769 bool ThreadsManager::thread_is_available(int slave, int master) const {
2771 assert(slave >= 0 && slave < ActiveThreads);
2772 assert(master >= 0 && master < ActiveThreads);
2773 assert(ActiveThreads > 1);
2775 if (threads[slave].state != THREAD_AVAILABLE || slave == master)
2778 // Make a local copy to be sure doesn't change under our feet
2779 int localActiveSplitPoints = threads[slave].activeSplitPoints;
2781 if (localActiveSplitPoints == 0)
2782 // No active split points means that the thread is available as
2783 // a slave for any other thread.
2786 if (ActiveThreads == 2)
2789 // Apply the "helpful master" concept if possible. Use localActiveSplitPoints
2790 // that is known to be > 0, instead of threads[slave].activeSplitPoints that
2791 // could have been set to 0 by another thread leading to an out of bound access.
2792 if (SplitPointStack[slave][localActiveSplitPoints - 1].slaves[master])
2799 // available_thread_exists() tries to find an idle thread which is available as
2800 // a slave for the thread with threadID "master".
2802 bool ThreadsManager::available_thread_exists(int master) const {
2804 assert(master >= 0 && master < ActiveThreads);
2805 assert(ActiveThreads > 1);
2807 for (int i = 0; i < ActiveThreads; i++)
2808 if (thread_is_available(i, master))
2815 // split() does the actual work of distributing the work at a node between
2816 // several threads at PV nodes. If it does not succeed in splitting the
2817 // node (because no idle threads are available, or because we have no unused
2818 // split point objects), the function immediately returns false. If
2819 // splitting is possible, a SplitPoint object is initialized with all the
2820 // data that must be copied to the helper threads (the current position and
2821 // search stack, alpha, beta, the search depth, etc.), and we tell our
2822 // helper threads that they have been assigned work. This will cause them
2823 // to instantly leave their idle loops and call sp_search_pv(). When all
2824 // threads have returned from sp_search_pv (or, equivalently, when
2825 // splitPoint->cpus becomes 0), split() returns true.
2827 bool ThreadsManager::split(const Position& p, SearchStack* sstck, int ply,
2828 Value* alpha, const Value beta, Value* bestValue, const Value futilityValue,
2829 Depth depth, int* moves, MovePicker* mp, int master, bool pvNode) {
2832 assert(sstck != NULL);
2833 assert(ply >= 0 && ply < PLY_MAX);
2834 assert(*bestValue >= -VALUE_INFINITE);
2835 assert( ( pvNode && *bestValue <= *alpha)
2836 || (!pvNode && *bestValue < beta ));
2837 assert(!pvNode || *alpha < beta);
2838 assert(beta <= VALUE_INFINITE);
2839 assert(depth > Depth(0));
2840 assert(master >= 0 && master < ActiveThreads);
2841 assert(ActiveThreads > 1);
2843 SplitPoint* splitPoint;
2847 // If no other thread is available to help us, or if we have too many
2848 // active split points, don't split.
2849 if ( !available_thread_exists(master)
2850 || threads[master].activeSplitPoints >= ACTIVE_SPLIT_POINTS_MAX)
2852 lock_release(&MPLock);
2856 // Pick the next available split point object from the split point stack
2857 splitPoint = &SplitPointStack[master][threads[master].activeSplitPoints];
2859 // Initialize the split point object
2860 splitPoint->parent = threads[master].splitPoint;
2861 splitPoint->stopRequest = false;
2862 splitPoint->ply = ply;
2863 splitPoint->depth = depth;
2864 splitPoint->alpha = pvNode ? *alpha : beta - 1;
2865 splitPoint->beta = beta;
2866 splitPoint->pvNode = pvNode;
2867 splitPoint->bestValue = *bestValue;
2868 splitPoint->futilityValue = futilityValue;
2869 splitPoint->master = master;
2870 splitPoint->mp = mp;
2871 splitPoint->moves = *moves;
2872 splitPoint->cpus = 1;
2873 splitPoint->pos = &p;
2874 splitPoint->parentSstack = sstck;
2875 for (int i = 0; i < ActiveThreads; i++)
2876 splitPoint->slaves[i] = 0;
2878 threads[master].splitPoint = splitPoint;
2879 threads[master].activeSplitPoints++;
2881 // If we are here it means we are not available
2882 assert(threads[master].state != THREAD_AVAILABLE);
2884 // Allocate available threads setting state to THREAD_BOOKED
2885 for (int i = 0; i < ActiveThreads && splitPoint->cpus < MaxThreadsPerSplitPoint; i++)
2886 if (thread_is_available(i, master))
2888 threads[i].state = THREAD_BOOKED;
2889 threads[i].splitPoint = splitPoint;
2890 splitPoint->slaves[i] = 1;
2894 assert(splitPoint->cpus > 1);
2896 // We can release the lock because slave threads are already booked and master is not available
2897 lock_release(&MPLock);
2899 // Tell the threads that they have work to do. This will make them leave
2900 // their idle loop. But before copy search stack tail for each thread.
2901 for (int i = 0; i < ActiveThreads; i++)
2902 if (i == master || splitPoint->slaves[i])
2904 memcpy(splitPoint->sstack[i] + ply - 1, sstck + ply - 1, 4 * sizeof(SearchStack));
2906 assert(i == master || threads[i].state == THREAD_BOOKED);
2908 threads[i].state = THREAD_WORKISWAITING; // This makes the slave to exit from idle_loop()
2911 // Everything is set up. The master thread enters the idle loop, from
2912 // which it will instantly launch a search, because its state is
2913 // THREAD_WORKISWAITING. We send the split point as a second parameter to the
2914 // idle loop, which means that the main thread will return from the idle
2915 // loop when all threads have finished their work at this split point
2916 // (i.e. when splitPoint->cpus == 0).
2917 idle_loop(master, splitPoint);
2919 // We have returned from the idle loop, which means that all threads are
2920 // finished. Update alpha, beta and bestValue, and return.
2924 *alpha = splitPoint->alpha;
2926 *bestValue = splitPoint->bestValue;
2927 threads[master].activeSplitPoints--;
2928 threads[master].splitPoint = splitPoint->parent;
2930 lock_release(&MPLock);
2935 // wake_sleeping_threads() wakes up all sleeping threads when it is time
2936 // to start a new search from the root.
2938 void ThreadsManager::wake_sleeping_threads() {
2940 assert(AllThreadsShouldSleep);
2941 assert(ActiveThreads > 0);
2943 AllThreadsShouldSleep = false;
2945 if (ActiveThreads == 1)
2948 for (int i = 1; i < ActiveThreads; i++)
2949 assert(threads[i].state == THREAD_SLEEPING);
2951 #if !defined(_MSC_VER)
2952 pthread_mutex_lock(&WaitLock);
2953 pthread_cond_broadcast(&WaitCond);
2954 pthread_mutex_unlock(&WaitLock);
2956 for (int i = 1; i < MAX_THREADS; i++)
2957 SetEvent(SitIdleEvent[i]);
2963 // put_threads_to_sleep() makes all the threads go to sleep just before
2964 // to leave think(), at the end of the search. Threads should have already
2965 // finished the job and should be idle.
2967 void ThreadsManager::put_threads_to_sleep() {
2969 assert(!AllThreadsShouldSleep);
2971 // This makes the threads to go to sleep
2972 AllThreadsShouldSleep = true;
2974 // Reset flags to a known state.
2975 for (int i = 1; i < ActiveThreads; i++)
2977 // This flag can be in a random state
2978 threads[i].printCurrentLineRequest = false;
2982 // print_current_line() prints _once_ the current line of search for a
2983 // given thread and then setup the print request for the next thread.
2984 // Called when the UCI option UCI_ShowCurrLine is 'true'.
2986 void ThreadsManager::print_current_line(SearchStack ss[], int ply, int threadID) {
2988 assert(ply >= 0 && ply < PLY_MAX);
2989 assert(threadID >= 0 && threadID < ActiveThreads);
2991 if (!threads[threadID].printCurrentLineRequest)
2995 threads[threadID].printCurrentLineRequest = false;
2997 if (threads[threadID].state == THREAD_SEARCHING)
3000 cout << "info currline " << (threadID + 1);
3001 for (int p = 0; p < ply; p++)
3002 cout << " " << ss[p].currentMove;
3005 lock_release(&IOLock);
3008 // Setup print request for the next thread ID
3009 if (threadID + 1 < ActiveThreads)
3010 threads[threadID + 1].printCurrentLineRequest = true;
3014 /// The RootMoveList class
3016 // RootMoveList c'tor
3018 RootMoveList::RootMoveList(Position& pos, Move searchMoves[]) : count(0) {
3020 SearchStack ss[PLY_MAX_PLUS_2];
3021 MoveStack mlist[MaxRootMoves];
3023 bool includeAllMoves = (searchMoves[0] == MOVE_NONE);
3025 // Generate all legal moves
3026 MoveStack* last = generate_moves(pos, mlist);
3028 // Add each move to the moves[] array
3029 for (MoveStack* cur = mlist; cur != last; cur++)
3031 bool includeMove = includeAllMoves;
3033 for (int k = 0; !includeMove && searchMoves[k] != MOVE_NONE; k++)
3034 includeMove = (searchMoves[k] == cur->move);
3039 // Find a quick score for the move
3041 pos.do_move(cur->move, st);
3042 moves[count].move = cur->move;
3043 moves[count].score = -qsearch(pos, ss, -VALUE_INFINITE, VALUE_INFINITE, Depth(0), 1, 0);
3044 moves[count].pv[0] = cur->move;
3045 moves[count].pv[1] = MOVE_NONE;
3046 pos.undo_move(cur->move);
3053 // RootMoveList simple methods definitions
3055 void RootMoveList::set_move_nodes(int moveNum, int64_t nodes) {
3057 moves[moveNum].nodes = nodes;
3058 moves[moveNum].cumulativeNodes += nodes;
3061 void RootMoveList::set_beta_counters(int moveNum, int64_t our, int64_t their) {
3063 moves[moveNum].ourBeta = our;
3064 moves[moveNum].theirBeta = their;
3067 void RootMoveList::set_move_pv(int moveNum, const Move pv[]) {
3071 for (j = 0; pv[j] != MOVE_NONE; j++)
3072 moves[moveNum].pv[j] = pv[j];
3074 moves[moveNum].pv[j] = MOVE_NONE;
3078 // RootMoveList::sort() sorts the root move list at the beginning of a new
3081 void RootMoveList::sort() {
3083 sort_multipv(count - 1); // Sort all items
3087 // RootMoveList::sort_multipv() sorts the first few moves in the root move
3088 // list by their scores and depths. It is used to order the different PVs
3089 // correctly in MultiPV mode.
3091 void RootMoveList::sort_multipv(int n) {
3095 for (i = 1; i <= n; i++)
3097 RootMove rm = moves[i];
3098 for (j = i; j > 0 && moves[j - 1] < rm; j--)
3099 moves[j] = moves[j - 1];