2 Stockfish, a UCI chess playing engine derived from Glaurung 2.1
3 Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
4 Copyright (C) 2008-2009 Marco Costalba
6 Stockfish is free software: you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation, either version 3 of the License, or
9 (at your option) any later version.
11 Stockfish is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>.
43 #include "ucioption.h"
49 //// Local definitions
57 // ThreadsManager class is used to handle all the threads related stuff in search,
58 // init, starting, parking and, the most important, launching a slave thread at a
59 // split point are what this class does. All the access to shared thread data is
60 // done through this class, so that we avoid using global variables instead.
62 class ThreadsManager {
63 /* As long as the single ThreadsManager object is defined as a global we don't
64 need to explicitly initialize to zero its data members because variables with
65 static storage duration are automatically set to zero before enter main()
71 int active_threads() const { return ActiveThreads; }
72 void set_active_threads(int newActiveThreads) { ActiveThreads = newActiveThreads; }
73 void incrementNodeCounter(int threadID) { threads[threadID].nodes++; }
74 void incrementBetaCounter(Color us, Depth d, int threadID) { threads[threadID].betaCutOffs[us] += unsigned(d); }
76 void resetNodeCounters();
77 void resetBetaCounters();
78 int64_t nodes_searched() const;
79 void get_beta_counters(Color us, int64_t& our, int64_t& their) const;
80 bool available_thread_exists(int master) const;
81 bool thread_is_available(int slave, int master) const;
82 bool thread_should_stop(int threadID) const;
83 void wake_sleeping_threads();
84 void put_threads_to_sleep();
85 void idle_loop(int threadID, SplitPoint* waitSp);
86 bool split(const Position& pos, SearchStack* ss, int ply, Value* alpha, const Value beta, Value* bestValue,
87 Depth depth, int* moves, MovePicker* mp, int master, bool pvNode);
90 friend void poll(SearchStack ss[], int ply);
93 volatile bool AllThreadsShouldExit, AllThreadsShouldSleep;
94 Thread threads[MAX_THREADS];
95 SplitPoint SplitPointStack[MAX_THREADS][ACTIVE_SPLIT_POINTS_MAX];
97 Lock MPLock, WaitLock;
99 #if !defined(_MSC_VER)
100 pthread_cond_t WaitCond;
102 HANDLE SitIdleEvent[MAX_THREADS];
108 // RootMove struct is used for moves at the root at the tree. For each
109 // root move, we store a score, a node count, and a PV (really a refutation
110 // in the case of moves which fail low).
114 RootMove() { nodes = cumulativeNodes = ourBeta = theirBeta = 0ULL; }
116 // RootMove::operator<() is the comparison function used when
117 // sorting the moves. A move m1 is considered to be better
118 // than a move m2 if it has a higher score, or if the moves
119 // have equal score but m1 has the higher node count.
120 bool operator<(const RootMove& m) const {
122 return score != m.score ? score < m.score : theirBeta <= m.theirBeta;
127 int64_t nodes, cumulativeNodes, ourBeta, theirBeta;
128 Move pv[PLY_MAX_PLUS_2];
132 // The RootMoveList class is essentially an array of RootMove objects, with
133 // a handful of methods for accessing the data in the individual moves.
138 RootMoveList(Position& pos, Move searchMoves[]);
140 int move_count() const { return count; }
141 Move get_move(int moveNum) const { return moves[moveNum].move; }
142 Value get_move_score(int moveNum) const { return moves[moveNum].score; }
143 void set_move_score(int moveNum, Value score) { moves[moveNum].score = score; }
144 Move get_move_pv(int moveNum, int i) const { return moves[moveNum].pv[i]; }
145 int64_t get_move_cumulative_nodes(int moveNum) const { return moves[moveNum].cumulativeNodes; }
147 void set_move_nodes(int moveNum, int64_t nodes);
148 void set_beta_counters(int moveNum, int64_t our, int64_t their);
149 void set_move_pv(int moveNum, const Move pv[]);
151 void sort_multipv(int n);
154 static const int MaxRootMoves = 500;
155 RootMove moves[MaxRootMoves];
164 // Maximum depth for razoring
165 const Depth RazorDepth = 4 * OnePly;
167 // Dynamic razoring margin based on depth
168 inline Value razor_margin(Depth d) { return Value(0x200 + 0x10 * int(d)); }
170 // Step 8. Null move search with verification search
172 // Null move margin. A null move search will not be done if the static
173 // evaluation of the position is more than NullMoveMargin below beta.
174 const Value NullMoveMargin = Value(0x200);
176 // Maximum depth for use of dynamic threat detection when null move fails low
177 const Depth ThreatDepth = 5 * OnePly;
179 // Step 9. Internal iterative deepening
181 // Minimum depth for use of internal iterative deepening
182 const Depth IIDDepthAtPVNodes = 5 * OnePly;
183 const Depth IIDDepthAtNonPVNodes = 8 * OnePly;
185 // At Non-PV nodes we do an internal iterative deepening search
186 // when the static evaluation is at most IIDMargin below beta.
187 const Value IIDMargin = Value(0x100);
189 // Step 11. Decide the new search depth
191 // Extensions. Configurable UCI options
192 // Array index 0 is used at non-PV nodes, index 1 at PV nodes.
193 Depth CheckExtension[2], SingleEvasionExtension[2], PawnPushTo7thExtension[2];
194 Depth PassedPawnExtension[2], PawnEndgameExtension[2], MateThreatExtension[2];
196 // Minimum depth for use of singular extension
197 const Depth SingularExtensionDepthAtPVNodes = 6 * OnePly;
198 const Depth SingularExtensionDepthAtNonPVNodes = 8 * OnePly;
200 // If the TT move is at least SingularExtensionMargin better then the
201 // remaining ones we will extend it.
202 const Value SingularExtensionMargin = Value(0x20);
204 // Step 12. Futility pruning
206 // Futility margin for quiescence search
207 const Value FutilityMarginQS = Value(0x80);
209 // Futility lookup tables (initialized at startup) and their getter functions
210 int32_t FutilityMarginsMatrix[16][64]; // [depth][moveNumber]
211 int FutilityMoveCountArray[32]; // [depth]
213 inline Value futility_margin(Depth d, int mn) { return Value(d < 7 * OnePly ? FutilityMarginsMatrix[Max(d, 0)][Min(mn, 63)] : 2 * VALUE_INFINITE); }
214 inline int futility_move_count(Depth d) { return d < 16 * OnePly ? FutilityMoveCountArray[d] : 512; }
216 // Step 14. Reduced search
218 // Reduction lookup tables (initialized at startup) and their getter functions
219 int8_t PVReductionMatrix[64][64]; // [depth][moveNumber]
220 int8_t NonPVReductionMatrix[64][64]; // [depth][moveNumber]
222 inline Depth pv_reduction(Depth d, int mn) { return (Depth) PVReductionMatrix[Min(d / 2, 63)][Min(mn, 63)]; }
223 inline Depth nonpv_reduction(Depth d, int mn) { return (Depth) NonPVReductionMatrix[Min(d / 2, 63)][Min(mn, 63)]; }
225 // Common adjustments
227 // Search depth at iteration 1
228 const Depth InitialDepth = OnePly;
230 // Easy move margin. An easy move candidate must be at least this much
231 // better than the second best move.
232 const Value EasyMoveMargin = Value(0x200);
234 // Last seconds noise filtering (LSN)
235 const bool UseLSNFiltering = true;
236 const int LSNTime = 4000; // In milliseconds
237 const Value LSNValue = value_from_centipawns(200);
238 bool loseOnTime = false;
246 // Scores and number of times the best move changed for each iteration
247 Value ValueByIteration[PLY_MAX_PLUS_2];
248 int BestMoveChangesByIteration[PLY_MAX_PLUS_2];
250 // Search window management
256 // Time managment variables
257 int RootMoveNumber, SearchStartTime, MaxNodes, MaxDepth;
258 int MaxSearchTime, AbsoluteMaxSearchTime, ExtraSearchTime, ExactMaxTime;
259 bool UseTimeManagement, InfiniteSearch, PonderSearch, StopOnPonderhit;
260 bool AbortSearch, Quit, AspirationFailLow;
262 // Show current line?
263 bool ShowCurrentLine;
267 std::ofstream LogFile;
269 // Multi-threads related variables
270 Depth MinimumSplitDepth;
271 int MaxThreadsPerSplitPoint;
274 // Node counters, used only by thread[0] but try to keep in different cache
275 // lines (64 bytes each) from the heavy multi-thread read accessed variables.
277 int NodesBetweenPolls = 30000;
284 Value id_loop(const Position& pos, Move searchMoves[]);
285 Value root_search(Position& pos, SearchStack ss[], RootMoveList& rml, Value& oldAlpha, Value& beta);
286 Value search_pv(Position& pos, SearchStack ss[], Value alpha, Value beta, Depth depth, int ply, int threadID);
287 Value search(Position& pos, SearchStack ss[], Value beta, Depth depth, int ply, bool allowNullmove, int threadID, Move excludedMove = MOVE_NONE);
288 Value qsearch(Position& pos, SearchStack ss[], Value alpha, Value beta, Depth depth, int ply, int threadID);
289 void sp_search(SplitPoint* sp, int threadID);
290 void sp_search_pv(SplitPoint* sp, int threadID);
291 void init_node(SearchStack ss[], int ply, int threadID);
292 void update_pv(SearchStack ss[], int ply);
293 void sp_update_pv(SearchStack* pss, SearchStack ss[], int ply);
294 bool connected_moves(const Position& pos, Move m1, Move m2);
295 bool value_is_mate(Value value);
296 bool move_is_killer(Move m, const SearchStack& ss);
297 Depth extension(const Position&, Move, bool, bool, bool, bool, bool, bool*);
298 bool ok_to_do_nullmove(const Position& pos);
299 bool ok_to_prune(const Position& pos, Move m, Move threat);
300 bool ok_to_use_TT(const TTEntry* tte, Depth depth, Value beta, int ply);
301 Value refine_eval(const TTEntry* tte, Value defaultEval, int ply);
302 void update_history(const Position& pos, Move move, Depth depth, Move movesSearched[], int moveCount);
303 void update_killers(Move m, SearchStack& ss);
304 void update_gains(const Position& pos, Move move, Value before, Value after);
306 int current_search_time();
308 void poll(SearchStack ss[], int ply);
310 void wait_for_stop_or_ponderhit();
311 void init_ss_array(SearchStack ss[]);
312 void print_pv_info(const Position& pos, SearchStack ss[], Value alpha, Value beta, Value value);
314 #if !defined(_MSC_VER)
315 void *init_thread(void *threadID);
317 DWORD WINAPI init_thread(LPVOID threadID);
327 /// init_threads(), exit_threads() and nodes_searched() are helpers to
328 /// give accessibility to some TM methods from outside of current file.
330 void init_threads() { TM.init_threads(); }
331 void exit_threads() { TM.exit_threads(); }
332 int64_t nodes_searched() { return TM.nodes_searched(); }
335 /// perft() is our utility to verify move generation is bug free. All the legal
336 /// moves up to given depth are generated and counted and the sum returned.
338 int perft(Position& pos, Depth depth)
343 MovePicker mp(pos, MOVE_NONE, depth, H);
345 // If we are at the last ply we don't need to do and undo
346 // the moves, just to count them.
347 if (depth <= OnePly) // Replace with '<' to test also qsearch
349 while (mp.get_next_move()) sum++;
353 // Loop through all legal moves
355 while ((move = mp.get_next_move()) != MOVE_NONE)
357 pos.do_move(move, st, ci, pos.move_is_check(move, ci));
358 sum += perft(pos, depth - OnePly);
365 /// think() is the external interface to Stockfish's search, and is called when
366 /// the program receives the UCI 'go' command. It initializes various
367 /// search-related global variables, and calls root_search(). It returns false
368 /// when a quit command is received during the search.
370 bool think(const Position& pos, bool infinite, bool ponder, int side_to_move,
371 int time[], int increment[], int movesToGo, int maxDepth,
372 int maxNodes, int maxTime, Move searchMoves[]) {
374 // Initialize global search variables
375 StopOnPonderhit = AbortSearch = Quit = AspirationFailLow = false;
377 TM.resetNodeCounters();
378 SearchStartTime = get_system_time();
379 ExactMaxTime = maxTime;
382 InfiniteSearch = infinite;
383 PonderSearch = ponder;
384 UseTimeManagement = !ExactMaxTime && !MaxDepth && !MaxNodes && !InfiniteSearch;
386 // Look for a book move, only during games, not tests
387 if (UseTimeManagement && get_option_value_bool("OwnBook"))
389 if (get_option_value_string("Book File") != OpeningBook.file_name())
390 OpeningBook.open(get_option_value_string("Book File"));
392 Move bookMove = OpeningBook.get_move(pos);
393 if (bookMove != MOVE_NONE)
396 wait_for_stop_or_ponderhit();
398 cout << "bestmove " << bookMove << endl;
403 // Reset loseOnTime flag at the beginning of a new game
404 if (button_was_pressed("New Game"))
407 // Read UCI option values
408 TT.set_size(get_option_value_int("Hash"));
409 if (button_was_pressed("Clear Hash"))
412 CheckExtension[1] = Depth(get_option_value_int("Check Extension (PV nodes)"));
413 CheckExtension[0] = Depth(get_option_value_int("Check Extension (non-PV nodes)"));
414 SingleEvasionExtension[1] = Depth(get_option_value_int("Single Evasion Extension (PV nodes)"));
415 SingleEvasionExtension[0] = Depth(get_option_value_int("Single Evasion Extension (non-PV nodes)"));
416 PawnPushTo7thExtension[1] = Depth(get_option_value_int("Pawn Push to 7th Extension (PV nodes)"));
417 PawnPushTo7thExtension[0] = Depth(get_option_value_int("Pawn Push to 7th Extension (non-PV nodes)"));
418 PassedPawnExtension[1] = Depth(get_option_value_int("Passed Pawn Extension (PV nodes)"));
419 PassedPawnExtension[0] = Depth(get_option_value_int("Passed Pawn Extension (non-PV nodes)"));
420 PawnEndgameExtension[1] = Depth(get_option_value_int("Pawn Endgame Extension (PV nodes)"));
421 PawnEndgameExtension[0] = Depth(get_option_value_int("Pawn Endgame Extension (non-PV nodes)"));
422 MateThreatExtension[1] = Depth(get_option_value_int("Mate Threat Extension (PV nodes)"));
423 MateThreatExtension[0] = Depth(get_option_value_int("Mate Threat Extension (non-PV nodes)"));
425 MinimumSplitDepth = get_option_value_int("Minimum Split Depth") * OnePly;
426 MaxThreadsPerSplitPoint = get_option_value_int("Maximum Number of Threads per Split Point");
427 ShowCurrentLine = get_option_value_bool("UCI_ShowCurrLine");
428 MultiPV = get_option_value_int("MultiPV");
429 Chess960 = get_option_value_bool("UCI_Chess960");
430 UseLogFile = get_option_value_bool("Use Search Log");
433 LogFile.open(get_option_value_string("Search Log Filename").c_str(), std::ios::out | std::ios::app);
435 read_weights(pos.side_to_move());
437 // Set the number of active threads
438 int newActiveThreads = get_option_value_int("Threads");
439 if (newActiveThreads != TM.active_threads())
441 TM.set_active_threads(newActiveThreads);
442 init_eval(TM.active_threads());
443 // HACK: init_eval() destroys the static castleRightsMask[] array in the
444 // Position class. The below line repairs the damage.
445 Position p(pos.to_fen());
449 // Wake up sleeping threads
450 TM.wake_sleeping_threads();
453 int myTime = time[side_to_move];
454 int myIncrement = increment[side_to_move];
455 if (UseTimeManagement)
457 if (!movesToGo) // Sudden death time control
461 MaxSearchTime = myTime / 30 + myIncrement;
462 AbsoluteMaxSearchTime = Max(myTime / 4, myIncrement - 100);
464 else // Blitz game without increment
466 MaxSearchTime = myTime / 30;
467 AbsoluteMaxSearchTime = myTime / 8;
470 else // (x moves) / (y minutes)
474 MaxSearchTime = myTime / 2;
475 AbsoluteMaxSearchTime = (myTime > 3000)? (myTime - 500) : ((myTime * 3) / 4);
479 MaxSearchTime = myTime / Min(movesToGo, 20);
480 AbsoluteMaxSearchTime = Min((4 * myTime) / movesToGo, myTime / 3);
484 if (get_option_value_bool("Ponder"))
486 MaxSearchTime += MaxSearchTime / 4;
487 MaxSearchTime = Min(MaxSearchTime, AbsoluteMaxSearchTime);
491 // Set best NodesBetweenPolls interval to avoid lagging under
492 // heavy time pressure.
494 NodesBetweenPolls = Min(MaxNodes, 30000);
495 else if (myTime && myTime < 1000)
496 NodesBetweenPolls = 1000;
497 else if (myTime && myTime < 5000)
498 NodesBetweenPolls = 5000;
500 NodesBetweenPolls = 30000;
502 // Write search information to log file
504 LogFile << "Searching: " << pos.to_fen() << endl
505 << "infinite: " << infinite
506 << " ponder: " << ponder
507 << " time: " << myTime
508 << " increment: " << myIncrement
509 << " moves to go: " << movesToGo << endl;
511 // LSN filtering. Used only for developing purposes, disabled by default
515 // Step 2. If after last move we decided to lose on time, do it now!
516 while (SearchStartTime + myTime + 1000 > get_system_time())
520 // We're ready to start thinking. Call the iterative deepening loop function
521 Value v = id_loop(pos, searchMoves);
525 // Step 1. If this is sudden death game and our position is hopeless,
526 // decide to lose on time.
527 if ( !loseOnTime // If we already lost on time, go to step 3.
537 // Step 3. Now after stepping over the time limit, reset flag for next match.
545 TM.put_threads_to_sleep();
551 /// init_search() is called during startup. It initializes various lookup tables
555 // Init our reduction lookup tables
556 for (int i = 1; i < 64; i++) // i == depth (OnePly = 1)
557 for (int j = 1; j < 64; j++) // j == moveNumber
559 double pvRed = 0.5 + log(double(i)) * log(double(j)) / 6.0;
560 double nonPVRed = 0.5 + log(double(i)) * log(double(j)) / 3.0;
561 PVReductionMatrix[i][j] = (int8_t) ( pvRed >= 1.0 ? floor( pvRed * int(OnePly)) : 0);
562 NonPVReductionMatrix[i][j] = (int8_t) (nonPVRed >= 1.0 ? floor(nonPVRed * int(OnePly)) : 0);
565 // Init futility margins array
566 for (int i = 0; i < 16; i++) // i == depth (OnePly = 2)
567 for (int j = 0; j < 64; j++) // j == moveNumber
569 // FIXME: test using log instead of BSR
570 FutilityMarginsMatrix[i][j] = (i < 2 ? 0 : 112 * bitScanReverse32(i * i / 2)) - 8 * j;
573 // Init futility move count array
574 for (int i = 0; i < 32; i++) // i == depth (OnePly = 2)
575 FutilityMoveCountArray[i] = 3 + (1 << (3 * i / 8));
579 // SearchStack::init() initializes a search stack. Used at the beginning of a
580 // new search from the root.
581 void SearchStack::init(int ply) {
583 pv[ply] = pv[ply + 1] = MOVE_NONE;
584 currentMove = threatMove = MOVE_NONE;
585 reduction = Depth(0);
589 void SearchStack::initKillers() {
591 mateKiller = MOVE_NONE;
592 for (int i = 0; i < KILLER_MAX; i++)
593 killers[i] = MOVE_NONE;
598 // id_loop() is the main iterative deepening loop. It calls root_search
599 // repeatedly with increasing depth until the allocated thinking time has
600 // been consumed, the user stops the search, or the maximum search depth is
603 Value id_loop(const Position& pos, Move searchMoves[]) {
606 SearchStack ss[PLY_MAX_PLUS_2];
607 Move EasyMove = MOVE_NONE;
608 Value value, alpha = -VALUE_INFINITE, beta = VALUE_INFINITE;
610 // Moves to search are verified, copied, scored and sorted
611 RootMoveList rml(p, searchMoves);
613 // Handle special case of searching on a mate/stale position
614 if (rml.move_count() == 0)
617 wait_for_stop_or_ponderhit();
619 return pos.is_check() ? -VALUE_MATE : VALUE_DRAW;
622 // Print RootMoveList startup scoring to the standard output,
623 // so to output information also for iteration 1.
624 cout << "info depth " << 1
625 << "\ninfo depth " << 1
626 << " score " << value_to_string(rml.get_move_score(0))
627 << " time " << current_search_time()
628 << " nodes " << TM.nodes_searched()
630 << " pv " << rml.get_move(0) << "\n";
636 ValueByIteration[1] = rml.get_move_score(0);
639 // Is one move significantly better than others after initial scoring ?
640 if ( rml.move_count() == 1
641 || rml.get_move_score(0) > rml.get_move_score(1) + EasyMoveMargin)
642 EasyMove = rml.get_move(0);
644 // Iterative deepening loop
645 while (Iteration < PLY_MAX)
647 // Initialize iteration
649 BestMoveChangesByIteration[Iteration] = 0;
653 cout << "info depth " << Iteration << endl;
655 // Calculate dynamic aspiration window based on previous iterations
656 if (MultiPV == 1 && Iteration >= 6 && abs(ValueByIteration[Iteration - 1]) < VALUE_KNOWN_WIN)
658 int prevDelta1 = ValueByIteration[Iteration - 1] - ValueByIteration[Iteration - 2];
659 int prevDelta2 = ValueByIteration[Iteration - 2] - ValueByIteration[Iteration - 3];
661 AspirationDelta = Max(abs(prevDelta1) + abs(prevDelta2) / 2, 16);
662 AspirationDelta = (AspirationDelta + 7) / 8 * 8; // Round to match grainSize
664 alpha = Max(ValueByIteration[Iteration - 1] - AspirationDelta, -VALUE_INFINITE);
665 beta = Min(ValueByIteration[Iteration - 1] + AspirationDelta, VALUE_INFINITE);
668 // Search to the current depth, rml is updated and sorted
669 value = root_search(p, ss, rml, alpha, beta);
671 // Write PV to transposition table, in case the relevant entries have
672 // been overwritten during the search.
673 TT.insert_pv(p, ss[0].pv);
676 break; // Value cannot be trusted. Break out immediately!
678 //Save info about search result
679 ValueByIteration[Iteration] = value;
681 // Drop the easy move if differs from the new best move
682 if (ss[0].pv[0] != EasyMove)
683 EasyMove = MOVE_NONE;
685 if (UseTimeManagement)
688 bool stopSearch = false;
690 // Stop search early if there is only a single legal move,
691 // we search up to Iteration 6 anyway to get a proper score.
692 if (Iteration >= 6 && rml.move_count() == 1)
695 // Stop search early when the last two iterations returned a mate score
697 && abs(ValueByIteration[Iteration]) >= abs(VALUE_MATE) - 100
698 && abs(ValueByIteration[Iteration-1]) >= abs(VALUE_MATE) - 100)
701 // Stop search early if one move seems to be much better than the others
702 int64_t nodes = TM.nodes_searched();
704 && EasyMove == ss[0].pv[0]
705 && ( ( rml.get_move_cumulative_nodes(0) > (nodes * 85) / 100
706 && current_search_time() > MaxSearchTime / 16)
707 ||( rml.get_move_cumulative_nodes(0) > (nodes * 98) / 100
708 && current_search_time() > MaxSearchTime / 32)))
711 // Add some extra time if the best move has changed during the last two iterations
712 if (Iteration > 5 && Iteration <= 50)
713 ExtraSearchTime = BestMoveChangesByIteration[Iteration] * (MaxSearchTime / 2)
714 + BestMoveChangesByIteration[Iteration-1] * (MaxSearchTime / 3);
716 // Stop search if most of MaxSearchTime is consumed at the end of the
717 // iteration. We probably don't have enough time to search the first
718 // move at the next iteration anyway.
719 if (current_search_time() > ((MaxSearchTime + ExtraSearchTime) * 80) / 128)
725 StopOnPonderhit = true;
731 if (MaxDepth && Iteration >= MaxDepth)
735 // If we are pondering or in infinite search, we shouldn't print the
736 // best move before we are told to do so.
737 if (!AbortSearch && (PonderSearch || InfiniteSearch))
738 wait_for_stop_or_ponderhit();
740 // Print final search statistics
741 cout << "info nodes " << TM.nodes_searched()
743 << " time " << current_search_time()
744 << " hashfull " << TT.full() << endl;
746 // Print the best move and the ponder move to the standard output
747 if (ss[0].pv[0] == MOVE_NONE)
749 ss[0].pv[0] = rml.get_move(0);
750 ss[0].pv[1] = MOVE_NONE;
753 assert(ss[0].pv[0] != MOVE_NONE);
755 cout << "bestmove " << ss[0].pv[0];
757 if (ss[0].pv[1] != MOVE_NONE)
758 cout << " ponder " << ss[0].pv[1];
765 dbg_print_mean(LogFile);
767 if (dbg_show_hit_rate)
768 dbg_print_hit_rate(LogFile);
770 LogFile << "\nNodes: " << TM.nodes_searched()
771 << "\nNodes/second: " << nps()
772 << "\nBest move: " << move_to_san(p, ss[0].pv[0]);
775 p.do_move(ss[0].pv[0], st);
776 LogFile << "\nPonder move: "
777 << move_to_san(p, ss[0].pv[1]) // Works also with MOVE_NONE
780 return rml.get_move_score(0);
784 // root_search() is the function which searches the root node. It is
785 // similar to search_pv except that it uses a different move ordering
786 // scheme, prints some information to the standard output and handles
787 // the fail low/high loops.
789 Value root_search(Position& pos, SearchStack ss[], RootMoveList& rml, Value& oldAlpha, Value& beta) {
795 Depth depth, ext, newDepth;
797 bool isCheck, moveIsCheck, captureOrPromotion, dangerous;
798 int researchCount = 0;
801 isCheck = pos.is_check();
803 // Step 1. Initialize node and poll (omitted at root, but I can see no good reason for this, FIXME)
804 // Step 2. Check for aborted search (omitted at root, because we do not initialize root node)
805 // Step 3. Mate distance pruning (omitted at root)
806 // Step 4. Transposition table lookup (omitted at root)
808 // Step 5. Evaluate the position statically
809 // At root we do this only to get reference value for child nodes
811 ss[0].eval = evaluate(pos, ei, 0);
813 ss[0].eval = VALUE_NONE; // HACK because we do not initialize root node
815 // Step 6. Razoring (omitted at root)
816 // Step 7. Static null move pruning (omitted at root)
817 // Step 8. Null move search with verification search (omitted at root)
818 // Step 9. Internal iterative deepening (omitted at root)
820 // Step extra. Fail low loop
821 // We start with small aspiration window and in case of fail low, we research
822 // with bigger window until we are not failing low anymore.
825 // Sort the moves before to (re)search
828 // Step 10. Loop through all moves in the root move list
829 for (int i = 0; i < rml.move_count() && !AbortSearch; i++)
831 // This is used by time management and starts from 1
832 RootMoveNumber = i + 1;
834 // Save the current node count before the move is searched
835 nodes = TM.nodes_searched();
837 // Reset beta cut-off counters
838 TM.resetBetaCounters();
840 // Pick the next root move, and print the move and the move number to
841 // the standard output.
842 move = ss[0].currentMove = rml.get_move(i);
844 if (current_search_time() >= 1000)
845 cout << "info currmove " << move
846 << " currmovenumber " << RootMoveNumber << endl;
848 moveIsCheck = pos.move_is_check(move);
849 captureOrPromotion = pos.move_is_capture_or_promotion(move);
851 // Step 11. Decide the new search depth
852 depth = (Iteration - 2) * OnePly + InitialDepth;
853 ext = extension(pos, move, true, captureOrPromotion, moveIsCheck, false, false, &dangerous);
854 newDepth = depth + ext;
856 // Step 12. Futility pruning (omitted at root)
858 // Step extra. Fail high loop
859 // If move fails high, we research with bigger window until we are not failing
861 value = - VALUE_INFINITE;
865 // Step 13. Make the move
866 pos.do_move(move, st, ci, moveIsCheck);
868 // Step extra. pv search
869 // We do pv search for first moves (i < MultiPV)
870 // and for fail high research (value > alpha)
871 if (i < MultiPV || value > alpha)
873 // Aspiration window is disabled in multi-pv case
875 alpha = -VALUE_INFINITE;
877 // Full depth PV search, done on first move or after a fail high
878 value = -search_pv(pos, ss, -beta, -alpha, newDepth, 1, 0);
882 // Step 14. Reduced search
883 // if the move fails high will be re-searched at full depth
884 bool doFullDepthSearch = true;
886 if ( depth >= 3 * OnePly
888 && !captureOrPromotion
889 && !move_is_castle(move))
891 ss[0].reduction = pv_reduction(depth, i - MultiPV + 2);
894 // Reduced depth non-pv search using alpha as upperbound
895 value = -search(pos, ss, -alpha, newDepth-ss[0].reduction, 1, true, 0);
896 doFullDepthSearch = (value > alpha);
900 // Step 15. Full depth search
901 if (doFullDepthSearch)
903 // Full depth non-pv search using alpha as upperbound
904 ss[0].reduction = Depth(0);
905 value = -search(pos, ss, -alpha, newDepth, 1, true, 0);
907 // If we are above alpha then research at same depth but as PV
908 // to get a correct score or eventually a fail high above beta.
910 value = -search_pv(pos, ss, -beta, -alpha, newDepth, 1, 0);
914 // Step 16. Undo move
917 // Can we exit fail high loop ?
918 if (AbortSearch || value < beta)
921 // We are failing high and going to do a research. It's important to update
922 // the score before research in case we run out of time while researching.
923 rml.set_move_score(i, value);
925 TT.extract_pv(pos, ss[0].pv, PLY_MAX);
926 rml.set_move_pv(i, ss[0].pv);
928 // Print information to the standard output
929 print_pv_info(pos, ss, alpha, beta, value);
931 // Prepare for a research after a fail high, each time with a wider window
933 beta = Min(beta + AspirationDelta * (1 << researchCount), VALUE_INFINITE);
935 } // End of fail high loop
937 // Finished searching the move. If AbortSearch is true, the search
938 // was aborted because the user interrupted the search or because we
939 // ran out of time. In this case, the return value of the search cannot
940 // be trusted, and we break out of the loop without updating the best
945 // Remember beta-cutoff and searched nodes counts for this move. The
946 // info is used to sort the root moves for the next iteration.
948 TM.get_beta_counters(pos.side_to_move(), our, their);
949 rml.set_beta_counters(i, our, their);
950 rml.set_move_nodes(i, TM.nodes_searched() - nodes);
952 assert(value >= -VALUE_INFINITE && value <= VALUE_INFINITE);
954 // Step 17. Check for new best move
955 if (value <= alpha && i >= MultiPV)
956 rml.set_move_score(i, -VALUE_INFINITE);
959 // PV move or new best move!
962 rml.set_move_score(i, value);
964 TT.extract_pv(pos, ss[0].pv, PLY_MAX);
965 rml.set_move_pv(i, ss[0].pv);
969 // We record how often the best move has been changed in each
970 // iteration. This information is used for time managment: When
971 // the best move changes frequently, we allocate some more time.
973 BestMoveChangesByIteration[Iteration]++;
975 // Print information to the standard output
976 print_pv_info(pos, ss, alpha, beta, value);
978 // Raise alpha to setup proper non-pv search upper bound, note
979 // that we can end up with alpha >= beta and so get a fail high.
986 for (int j = 0; j < Min(MultiPV, rml.move_count()); j++)
988 cout << "info multipv " << j + 1
989 << " score " << value_to_string(rml.get_move_score(j))
990 << " depth " << (j <= i ? Iteration : Iteration - 1)
991 << " time " << current_search_time()
992 << " nodes " << TM.nodes_searched()
996 for (int k = 0; rml.get_move_pv(j, k) != MOVE_NONE && k < PLY_MAX; k++)
997 cout << rml.get_move_pv(j, k) << " ";
1001 alpha = rml.get_move_score(Min(i, MultiPV - 1));
1003 } // PV move or new best move
1005 assert(alpha >= oldAlpha);
1007 AspirationFailLow = (alpha == oldAlpha);
1009 if (AspirationFailLow && StopOnPonderhit)
1010 StopOnPonderhit = false;
1013 // Can we exit fail low loop ?
1014 if (AbortSearch || alpha > oldAlpha)
1017 // Prepare for a research after a fail low, each time with a wider window
1019 alpha = Max(alpha - AspirationDelta * (1 << researchCount), -VALUE_INFINITE);
1024 // Sort the moves before to return
1031 // search_pv() is the main search function for PV nodes.
1033 Value search_pv(Position& pos, SearchStack ss[], Value alpha, Value beta,
1034 Depth depth, int ply, int threadID) {
1036 assert(alpha >= -VALUE_INFINITE && alpha <= VALUE_INFINITE);
1037 assert(beta > alpha && beta <= VALUE_INFINITE);
1038 assert(ply >= 0 && ply < PLY_MAX);
1039 assert(threadID >= 0 && threadID < TM.active_threads());
1041 Move movesSearched[256];
1046 Depth ext, newDepth;
1047 Value bestValue, value, oldAlpha;
1048 bool isCheck, singleEvasion, moveIsCheck, captureOrPromotion, dangerous;
1049 bool mateThreat = false;
1051 bestValue = value = -VALUE_INFINITE;
1054 return qsearch(pos, ss, alpha, beta, Depth(0), ply, threadID);
1056 // Step 1. Initialize node and poll
1057 // Polling can abort search.
1058 init_node(ss, ply, threadID);
1060 // Step 2. Check for aborted search and immediate draw
1061 if (AbortSearch || TM.thread_should_stop(threadID))
1064 if (pos.is_draw() || ply >= PLY_MAX - 1)
1067 // Step 3. Mate distance pruning
1069 alpha = Max(value_mated_in(ply), alpha);
1070 beta = Min(value_mate_in(ply+1), beta);
1074 // Step 4. Transposition table lookup
1075 // At PV nodes, we don't use the TT for pruning, but only for move ordering.
1076 // This is to avoid problems in the following areas:
1078 // * Repetition draw detection
1079 // * Fifty move rule detection
1080 // * Searching for a mate
1081 // * Printing of full PV line
1082 tte = TT.retrieve(pos.get_key());
1083 ttMove = (tte ? tte->move() : MOVE_NONE);
1085 // Step 5. Evaluate the position statically
1086 // At PV nodes we do this only to update gain statistics
1087 isCheck = pos.is_check();
1090 ss[ply].eval = evaluate(pos, ei, threadID);
1091 update_gains(pos, ss[ply - 1].currentMove, ss[ply - 1].eval, ss[ply].eval);
1094 // Step 6. Razoring (is omitted in PV nodes)
1095 // Step 7. Static null move pruning (is omitted in PV nodes)
1096 // Step 8. Null move search with verification search (is omitted in PV nodes)
1098 // Step 9. Internal iterative deepening
1099 if ( depth >= IIDDepthAtPVNodes
1100 && ttMove == MOVE_NONE)
1102 search_pv(pos, ss, alpha, beta, depth-2*OnePly, ply, threadID);
1103 ttMove = ss[ply].pv[ply];
1104 tte = TT.retrieve(pos.get_key());
1107 // Step 10. Loop through moves
1108 // Loop through all legal moves until no moves remain or a beta cutoff occurs
1110 // Initialize a MovePicker object for the current position
1111 mateThreat = pos.has_mate_threat(opposite_color(pos.side_to_move()));
1112 MovePicker mp = MovePicker(pos, ttMove, depth, H, &ss[ply]);
1115 while ( alpha < beta
1116 && (move = mp.get_next_move()) != MOVE_NONE
1117 && !TM.thread_should_stop(threadID))
1119 assert(move_is_ok(move));
1121 singleEvasion = (isCheck && mp.number_of_evasions() == 1);
1122 moveIsCheck = pos.move_is_check(move, ci);
1123 captureOrPromotion = pos.move_is_capture_or_promotion(move);
1125 // Step 11. Decide the new search depth
1126 ext = extension(pos, move, true, captureOrPromotion, moveIsCheck, singleEvasion, mateThreat, &dangerous);
1128 // Singular extension search. We extend the TT move if its value is much better than
1129 // its siblings. To verify this we do a reduced search on all the other moves but the
1130 // ttMove, if result is lower then ttValue minus a margin then we extend ttMove.
1131 if ( depth >= SingularExtensionDepthAtPVNodes
1133 && move == tte->move()
1135 && is_lower_bound(tte->type())
1136 && tte->depth() >= depth - 3 * OnePly)
1138 Value ttValue = value_from_tt(tte->value(), ply);
1140 if (abs(ttValue) < VALUE_KNOWN_WIN)
1142 Value excValue = search(pos, ss, ttValue - SingularExtensionMargin, depth / 2, ply, false, threadID, move);
1144 if (excValue < ttValue - SingularExtensionMargin)
1149 newDepth = depth - OnePly + ext;
1151 // Update current move (this must be done after singular extension search)
1152 movesSearched[moveCount++] = ss[ply].currentMove = move;
1154 // Step 12. Futility pruning (is omitted in PV nodes)
1156 // Step 13. Make the move
1157 pos.do_move(move, st, ci, moveIsCheck);
1159 // Step extra. pv search (only in PV nodes)
1160 // The first move in list is the expected PV
1162 value = -search_pv(pos, ss, -beta, -alpha, newDepth, ply+1, threadID);
1165 // Step 14. Reduced search
1166 // if the move fails high will be re-searched at full depth.
1167 bool doFullDepthSearch = true;
1169 if ( depth >= 3 * OnePly
1171 && !captureOrPromotion
1172 && !move_is_castle(move)
1173 && !move_is_killer(move, ss[ply]))
1175 ss[ply].reduction = pv_reduction(depth, moveCount);
1176 if (ss[ply].reduction)
1178 value = -search(pos, ss, -alpha, newDepth-ss[ply].reduction, ply+1, true, threadID);
1179 doFullDepthSearch = (value > alpha);
1183 // Step 15. Full depth search
1184 if (doFullDepthSearch)
1186 ss[ply].reduction = Depth(0);
1187 value = -search(pos, ss, -alpha, newDepth, ply+1, true, threadID);
1189 // Step extra. pv search (only in PV nodes)
1190 if (value > alpha && value < beta)
1191 value = -search_pv(pos, ss, -beta, -alpha, newDepth, ply+1, threadID);
1195 // Step 16. Undo move
1196 pos.undo_move(move);
1198 assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
1200 // Step 17. Check for new best move
1201 if (value > bestValue)
1208 if (value == value_mate_in(ply + 1))
1209 ss[ply].mateKiller = move;
1213 // Step 18. Check for split
1214 if ( TM.active_threads() > 1
1216 && depth >= MinimumSplitDepth
1218 && TM.available_thread_exists(threadID)
1220 && !TM.thread_should_stop(threadID)
1221 && TM.split(pos, ss, ply, &alpha, beta, &bestValue,
1222 depth, &moveCount, &mp, threadID, true))
1226 // Step 19. Check for mate and stalemate
1227 // All legal moves have been searched and if there were
1228 // no legal moves, it must be mate or stalemate.
1230 return (isCheck ? value_mated_in(ply) : VALUE_DRAW);
1232 // Step 20. Update tables
1233 // If the search is not aborted, update the transposition table,
1234 // history counters, and killer moves.
1235 if (AbortSearch || TM.thread_should_stop(threadID))
1238 if (bestValue <= oldAlpha)
1239 TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_UPPER, depth, MOVE_NONE);
1241 else if (bestValue >= beta)
1243 TM.incrementBetaCounter(pos.side_to_move(), depth, threadID);
1244 move = ss[ply].pv[ply];
1245 if (!pos.move_is_capture_or_promotion(move))
1247 update_history(pos, move, depth, movesSearched, moveCount);
1248 update_killers(move, ss[ply]);
1250 TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_LOWER, depth, move);
1253 TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_EXACT, depth, ss[ply].pv[ply]);
1259 // search() is the search function for zero-width nodes.
1261 Value search(Position& pos, SearchStack ss[], Value beta, Depth depth,
1262 int ply, bool allowNullmove, int threadID, Move excludedMove) {
1264 assert(beta >= -VALUE_INFINITE && beta <= VALUE_INFINITE);
1265 assert(ply >= 0 && ply < PLY_MAX);
1266 assert(threadID >= 0 && threadID < TM.active_threads());
1268 Move movesSearched[256];
1273 Depth ext, newDepth;
1274 Value bestValue, refinedValue, nullValue, value, futilityValueScaled;
1275 bool isCheck, singleEvasion, moveIsCheck, captureOrPromotion, dangerous;
1276 bool mateThreat = false;
1278 refinedValue = bestValue = value = -VALUE_INFINITE;
1281 return qsearch(pos, ss, beta-1, beta, Depth(0), ply, threadID);
1283 // Step 1. Initialize node and poll
1284 // Polling can abort search.
1285 init_node(ss, ply, threadID);
1287 // Step 2. Check for aborted search and immediate draw
1288 if (AbortSearch || TM.thread_should_stop(threadID))
1291 if (pos.is_draw() || ply >= PLY_MAX - 1)
1294 // Step 3. Mate distance pruning
1295 if (value_mated_in(ply) >= beta)
1298 if (value_mate_in(ply + 1) < beta)
1301 // Step 4. Transposition table lookup
1303 // We don't want the score of a partial search to overwrite a previous full search
1304 // TT value, so we use a different position key in case of an excluded move exists.
1305 Key posKey = excludedMove ? pos.get_exclusion_key() : pos.get_key();
1307 tte = TT.retrieve(posKey);
1308 ttMove = (tte ? tte->move() : MOVE_NONE);
1310 if (tte && ok_to_use_TT(tte, depth, beta, ply))
1312 ss[ply].currentMove = ttMove; // Can be MOVE_NONE
1313 return value_from_tt(tte->value(), ply);
1316 // Step 5. Evaluate the position statically
1317 isCheck = pos.is_check();
1321 if (tte && (tte->type() & VALUE_TYPE_EVAL))
1322 ss[ply].eval = value_from_tt(tte->value(), ply);
1324 ss[ply].eval = evaluate(pos, ei, threadID);
1326 refinedValue = refine_eval(tte, ss[ply].eval, ply); // Enhance accuracy with TT value if possible
1327 update_gains(pos, ss[ply - 1].currentMove, ss[ply - 1].eval, ss[ply].eval);
1331 if ( !value_is_mate(beta)
1333 && depth < RazorDepth
1334 && refinedValue < beta - razor_margin(depth)
1335 && ss[ply - 1].currentMove != MOVE_NULL
1336 && ttMove == MOVE_NONE
1337 && !pos.has_pawn_on_7th(pos.side_to_move()))
1339 Value rbeta = beta - razor_margin(depth);
1340 Value v = qsearch(pos, ss, rbeta-1, rbeta, Depth(0), ply, threadID);
1342 // Logically we should return (v + razor_margin(depth)), but
1343 // surprisingly this did slightly weaker in tests.
1347 // Step 7. Static null move pruning
1348 // We're betting that the opponent doesn't have a move that will reduce
1349 // the score by more than fuility_margin(depth) if we do a null move.
1352 && depth < RazorDepth
1353 && refinedValue - futility_margin(depth, 0) >= beta)
1354 return refinedValue - futility_margin(depth, 0);
1356 // Step 8. Null move search with verification search
1357 // When we jump directly to qsearch() we do a null move only if static value is
1358 // at least beta. Otherwise we do a null move if static value is not more than
1359 // NullMoveMargin under beta.
1363 && !value_is_mate(beta)
1364 && ok_to_do_nullmove(pos)
1365 && refinedValue >= beta - (depth >= 4 * OnePly ? NullMoveMargin : 0))
1367 ss[ply].currentMove = MOVE_NULL;
1369 pos.do_null_move(st);
1371 // Null move dynamic reduction based on depth
1372 int R = 3 + (depth >= 5 * OnePly ? depth / 8 : 0);
1374 // Null move dynamic reduction based on value
1375 if (refinedValue - beta > PawnValueMidgame)
1378 nullValue = -search(pos, ss, -(beta-1), depth-R*OnePly, ply+1, false, threadID);
1380 pos.undo_null_move();
1382 if (nullValue >= beta)
1384 if (depth < 6 * OnePly)
1387 // Do zugzwang verification search
1388 Value v = search(pos, ss, beta, depth-5*OnePly, ply, false, threadID);
1392 // The null move failed low, which means that we may be faced with
1393 // some kind of threat. If the previous move was reduced, check if
1394 // the move that refuted the null move was somehow connected to the
1395 // move which was reduced. If a connection is found, return a fail
1396 // low score (which will cause the reduced move to fail high in the
1397 // parent node, which will trigger a re-search with full depth).
1398 if (nullValue == value_mated_in(ply + 2))
1401 ss[ply].threatMove = ss[ply + 1].currentMove;
1402 if ( depth < ThreatDepth
1403 && ss[ply - 1].reduction
1404 && connected_moves(pos, ss[ply - 1].currentMove, ss[ply].threatMove))
1409 // Step 9. Internal iterative deepening
1410 if ( depth >= IIDDepthAtNonPVNodes
1411 && ttMove == MOVE_NONE
1413 && ss[ply].eval >= beta - IIDMargin)
1415 search(pos, ss, beta, depth/2, ply, false, threadID);
1416 ttMove = ss[ply].pv[ply];
1417 tte = TT.retrieve(posKey);
1420 // Step 10. Loop through moves
1421 // Loop through all legal moves until no moves remain or a beta cutoff occurs
1423 // Initialize a MovePicker object for the current position
1424 MovePicker mp = MovePicker(pos, ttMove, depth, H, &ss[ply], beta);
1427 while ( bestValue < beta
1428 && (move = mp.get_next_move()) != MOVE_NONE
1429 && !TM.thread_should_stop(threadID))
1431 assert(move_is_ok(move));
1433 if (move == excludedMove)
1436 moveIsCheck = pos.move_is_check(move, ci);
1437 singleEvasion = (isCheck && mp.number_of_evasions() == 1);
1438 captureOrPromotion = pos.move_is_capture_or_promotion(move);
1440 // Step 11. Decide the new search depth
1441 ext = extension(pos, move, false, captureOrPromotion, moveIsCheck, singleEvasion, mateThreat, &dangerous);
1443 // Singular extension search. We extend the TT move if its value is much better than
1444 // its siblings. To verify this we do a reduced search on all the other moves but the
1445 // ttMove, if result is lower then ttValue minus a margin then we extend ttMove.
1446 if ( depth >= SingularExtensionDepthAtNonPVNodes
1448 && move == tte->move()
1449 && !excludedMove // Do not allow recursive single-reply search
1451 && is_lower_bound(tte->type())
1452 && tte->depth() >= depth - 3 * OnePly)
1454 Value ttValue = value_from_tt(tte->value(), ply);
1456 if (abs(ttValue) < VALUE_KNOWN_WIN)
1458 Value excValue = search(pos, ss, ttValue - SingularExtensionMargin, depth / 2, ply, false, threadID, move);
1460 if (excValue < ttValue - SingularExtensionMargin)
1465 newDepth = depth - OnePly + ext;
1467 // Update current move (this must be done after singular extension search)
1468 movesSearched[moveCount++] = ss[ply].currentMove = move;
1470 // Step 12. Futility pruning
1473 && !captureOrPromotion
1474 && !move_is_castle(move)
1477 // Move count based pruning
1478 if ( moveCount >= futility_move_count(depth)
1479 && ok_to_prune(pos, move, ss[ply].threatMove)
1480 && bestValue > value_mated_in(PLY_MAX))
1483 // Value based pruning
1484 Depth predictedDepth = newDepth - nonpv_reduction(depth, moveCount); // We illogically ignore reduction condition depth >= 3*OnePly
1485 futilityValueScaled = ss[ply].eval + futility_margin(predictedDepth, moveCount)
1486 + H.gain(pos.piece_on(move_from(move)), move_to(move)) + 45;
1488 if (futilityValueScaled < beta)
1490 if (futilityValueScaled > bestValue)
1491 bestValue = futilityValueScaled;
1496 // Step 13. Make the move
1497 pos.do_move(move, st, ci, moveIsCheck);
1499 // Step 14. Reduced search
1500 // if the move fails high will be re-searched at full depth.
1501 bool doFullDepthSearch = true;
1503 if ( depth >= 3*OnePly
1505 && !captureOrPromotion
1506 && !move_is_castle(move)
1507 && !move_is_killer(move, ss[ply]))
1509 ss[ply].reduction = nonpv_reduction(depth, moveCount);
1510 if (ss[ply].reduction)
1512 value = -search(pos, ss, -(beta-1), newDepth-ss[ply].reduction, ply+1, true, threadID);
1513 doFullDepthSearch = (value >= beta);
1517 // Step 15. Full depth search
1518 if (doFullDepthSearch)
1520 ss[ply].reduction = Depth(0);
1521 value = -search(pos, ss, -(beta-1), newDepth, ply+1, true, threadID);
1524 // Step 16. Undo move
1525 pos.undo_move(move);
1527 assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
1529 // Step 17. Check for new best move
1530 if (value > bestValue)
1536 if (value == value_mate_in(ply + 1))
1537 ss[ply].mateKiller = move;
1540 // Step 18. Check for split
1541 if ( TM.active_threads() > 1
1543 && depth >= MinimumSplitDepth
1545 && TM.available_thread_exists(threadID)
1547 && !TM.thread_should_stop(threadID)
1548 && TM.split(pos, ss, ply, NULL, beta, &bestValue,
1549 depth, &moveCount, &mp, threadID, false))
1553 // Step 19. Check for mate and stalemate
1554 // All legal moves have been searched and if there were
1555 // no legal moves, it must be mate or stalemate.
1556 // If one move was excluded return fail low.
1558 return excludedMove ? beta - 1 : (pos.is_check() ? value_mated_in(ply) : VALUE_DRAW);
1560 // Step 20. Update tables
1561 // If the search is not aborted, update the transposition table,
1562 // history counters, and killer moves.
1563 if (AbortSearch || TM.thread_should_stop(threadID))
1566 if (bestValue < beta)
1567 TT.store(posKey, value_to_tt(bestValue, ply), VALUE_TYPE_UPPER, depth, MOVE_NONE);
1570 TM.incrementBetaCounter(pos.side_to_move(), depth, threadID);
1571 move = ss[ply].pv[ply];
1572 TT.store(posKey, value_to_tt(bestValue, ply), VALUE_TYPE_LOWER, depth, move);
1573 if (!pos.move_is_capture_or_promotion(move))
1575 update_history(pos, move, depth, movesSearched, moveCount);
1576 update_killers(move, ss[ply]);
1581 assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
1587 // qsearch() is the quiescence search function, which is called by the main
1588 // search function when the remaining depth is zero (or, to be more precise,
1589 // less than OnePly).
1591 Value qsearch(Position& pos, SearchStack ss[], Value alpha, Value beta,
1592 Depth depth, int ply, int threadID) {
1594 assert(alpha >= -VALUE_INFINITE && alpha <= VALUE_INFINITE);
1595 assert(beta >= -VALUE_INFINITE && beta <= VALUE_INFINITE);
1597 assert(ply >= 0 && ply < PLY_MAX);
1598 assert(threadID >= 0 && threadID < TM.active_threads());
1603 Value staticValue, bestValue, value, futilityBase, futilityValue;
1604 bool isCheck, enoughMaterial, moveIsCheck, evasionPrunable;
1605 const TTEntry* tte = NULL;
1607 bool pvNode = (beta - alpha != 1);
1608 Value oldAlpha = alpha;
1610 // Initialize, and make an early exit in case of an aborted search,
1611 // an instant draw, maximum ply reached, etc.
1612 init_node(ss, ply, threadID);
1614 // After init_node() that calls poll()
1615 if (AbortSearch || TM.thread_should_stop(threadID))
1618 if (pos.is_draw() || ply >= PLY_MAX - 1)
1621 // Transposition table lookup. At PV nodes, we don't use the TT for
1622 // pruning, but only for move ordering.
1623 tte = TT.retrieve(pos.get_key());
1624 ttMove = (tte ? tte->move() : MOVE_NONE);
1626 if (!pvNode && tte && ok_to_use_TT(tte, depth, beta, ply))
1628 assert(tte->type() != VALUE_TYPE_EVAL);
1630 ss[ply].currentMove = ttMove; // Can be MOVE_NONE
1631 return value_from_tt(tte->value(), ply);
1634 isCheck = pos.is_check();
1636 // Evaluate the position statically
1638 staticValue = -VALUE_INFINITE;
1639 else if (tte && (tte->type() & VALUE_TYPE_EVAL))
1640 staticValue = value_from_tt(tte->value(), ply);
1642 staticValue = evaluate(pos, ei, threadID);
1646 ss[ply].eval = staticValue;
1647 update_gains(pos, ss[ply - 1].currentMove, ss[ply - 1].eval, ss[ply].eval);
1650 // Initialize "stand pat score", and return it immediately if it is
1652 bestValue = staticValue;
1654 if (bestValue >= beta)
1656 // Store the score to avoid a future costly evaluation() call
1657 if (!isCheck && !tte && ei.futilityMargin[pos.side_to_move()] == 0)
1658 TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_EV_LO, Depth(-127*OnePly), MOVE_NONE);
1663 if (bestValue > alpha)
1666 // If we are near beta then try to get a cutoff pushing checks a bit further
1667 bool deepChecks = depth == -OnePly && staticValue >= beta - PawnValueMidgame / 8;
1669 // Initialize a MovePicker object for the current position, and prepare
1670 // to search the moves. Because the depth is <= 0 here, only captures,
1671 // queen promotions and checks (only if depth == 0 or depth == -OnePly
1672 // and we are near beta) will be generated.
1673 MovePicker mp = MovePicker(pos, ttMove, deepChecks ? Depth(0) : depth, H);
1675 enoughMaterial = pos.non_pawn_material(pos.side_to_move()) > RookValueMidgame;
1676 futilityBase = staticValue + FutilityMarginQS + ei.futilityMargin[pos.side_to_move()];
1678 // Loop through the moves until no moves remain or a beta cutoff
1680 while ( alpha < beta
1681 && (move = mp.get_next_move()) != MOVE_NONE)
1683 assert(move_is_ok(move));
1685 moveIsCheck = pos.move_is_check(move, ci);
1687 // Update current move
1689 ss[ply].currentMove = move;
1697 && !move_is_promotion(move)
1698 && !pos.move_is_passed_pawn_push(move))
1700 futilityValue = futilityBase
1701 + pos.endgame_value_of_piece_on(move_to(move))
1702 + (move_is_ep(move) ? PawnValueEndgame : Value(0));
1704 if (futilityValue < alpha)
1706 if (futilityValue > bestValue)
1707 bestValue = futilityValue;
1712 // Detect blocking evasions that are candidate to be pruned
1713 evasionPrunable = isCheck
1714 && bestValue != -VALUE_INFINITE
1715 && !pos.move_is_capture(move)
1716 && pos.type_of_piece_on(move_from(move)) != KING
1717 && !pos.can_castle(pos.side_to_move());
1719 // Don't search moves with negative SEE values
1720 if ( (!isCheck || evasionPrunable)
1723 && !move_is_promotion(move)
1724 && pos.see_sign(move) < 0)
1727 // Make and search the move
1728 pos.do_move(move, st, ci, moveIsCheck);
1729 value = -qsearch(pos, ss, -beta, -alpha, depth-OnePly, ply+1, threadID);
1730 pos.undo_move(move);
1732 assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
1735 if (value > bestValue)
1746 // All legal moves have been searched. A special case: If we're in check
1747 // and no legal moves were found, it is checkmate.
1748 if (!moveCount && pos.is_check()) // Mate!
1749 return value_mated_in(ply);
1751 // Update transposition table
1752 Depth d = (depth == Depth(0) ? Depth(0) : Depth(-1));
1753 if (bestValue <= oldAlpha)
1755 // If bestValue isn't changed it means it is still the static evaluation
1756 // of the node, so keep this info to avoid a future evaluation() call.
1757 ValueType type = (bestValue == staticValue && !ei.futilityMargin[pos.side_to_move()] ? VALUE_TYPE_EV_UP : VALUE_TYPE_UPPER);
1758 TT.store(pos.get_key(), value_to_tt(bestValue, ply), type, d, MOVE_NONE);
1760 else if (bestValue >= beta)
1762 move = ss[ply].pv[ply];
1763 TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_LOWER, d, move);
1765 // Update killers only for good checking moves
1766 if (!pos.move_is_capture_or_promotion(move))
1767 update_killers(move, ss[ply]);
1770 TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_EXACT, d, ss[ply].pv[ply]);
1772 assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
1778 // sp_search() is used to search from a split point. This function is called
1779 // by each thread working at the split point. It is similar to the normal
1780 // search() function, but simpler. Because we have already probed the hash
1781 // table, done a null move search, and searched the first move before
1782 // splitting, we don't have to repeat all this work in sp_search(). We
1783 // also don't need to store anything to the hash table here: This is taken
1784 // care of after we return from the split point.
1785 // FIXME: We are currently ignoring mateThreat flag here
1787 void sp_search(SplitPoint* sp, int threadID) {
1789 assert(threadID >= 0 && threadID < TM.active_threads());
1790 assert(TM.active_threads() > 1);
1794 Depth ext, newDepth;
1795 Value value, futilityValueScaled;
1796 bool isCheck, moveIsCheck, captureOrPromotion, dangerous;
1798 value = -VALUE_INFINITE;
1800 Position pos(*sp->pos);
1802 SearchStack* ss = sp->sstack[threadID];
1803 isCheck = pos.is_check();
1805 // Step 10. Loop through moves
1806 // Loop through all legal moves until no moves remain or a beta cutoff occurs
1807 lock_grab(&(sp->lock));
1809 while ( sp->bestValue < sp->beta
1810 && !TM.thread_should_stop(threadID)
1811 && (move = sp->mp->get_next_move()) != MOVE_NONE)
1813 moveCount = ++sp->moves;
1814 lock_release(&(sp->lock));
1816 assert(move_is_ok(move));
1818 moveIsCheck = pos.move_is_check(move, ci);
1819 captureOrPromotion = pos.move_is_capture_or_promotion(move);
1821 // Step 11. Decide the new search depth
1822 ext = extension(pos, move, false, captureOrPromotion, moveIsCheck, false, false, &dangerous);
1823 newDepth = sp->depth - OnePly + ext;
1825 // Update current move
1826 ss[sp->ply].currentMove = move;
1828 // Step 12. Futility pruning
1831 && !captureOrPromotion
1832 && !move_is_castle(move))
1834 // Move count based pruning
1835 if ( moveCount >= futility_move_count(sp->depth)
1836 && ok_to_prune(pos, move, ss[sp->ply].threatMove)
1837 && sp->bestValue > value_mated_in(PLY_MAX))
1839 lock_grab(&(sp->lock));
1843 // Value based pruning
1844 Depth predictedDepth = newDepth - nonpv_reduction(sp->depth, moveCount);
1845 futilityValueScaled = ss[sp->ply].eval + futility_margin(predictedDepth, moveCount)
1846 + H.gain(pos.piece_on(move_from(move)), move_to(move)) + 45;
1848 if (futilityValueScaled < sp->beta)
1850 lock_grab(&(sp->lock));
1852 if (futilityValueScaled > sp->bestValue)
1853 sp->bestValue = futilityValueScaled;
1858 // Step 13. Make the move
1859 pos.do_move(move, st, ci, moveIsCheck);
1861 // Step 14. Reduced search
1862 // if the move fails high will be re-searched at full depth.
1863 bool doFullDepthSearch = true;
1866 && !captureOrPromotion
1867 && !move_is_castle(move)
1868 && !move_is_killer(move, ss[sp->ply]))
1870 ss[sp->ply].reduction = nonpv_reduction(sp->depth, moveCount);
1871 if (ss[sp->ply].reduction)
1873 value = -search(pos, ss, -(sp->beta-1), newDepth-ss[sp->ply].reduction, sp->ply+1, true, threadID);
1874 doFullDepthSearch = (value >= sp->beta && !TM.thread_should_stop(threadID));
1878 // Step 15. Full depth search
1879 if (doFullDepthSearch)
1881 ss[sp->ply].reduction = Depth(0);
1882 value = -search(pos, ss, -(sp->beta - 1), newDepth, sp->ply+1, true, threadID);
1885 // Step 16. Undo move
1886 pos.undo_move(move);
1888 assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
1890 // Step 17. Check for new best move
1891 lock_grab(&(sp->lock));
1893 if (value > sp->bestValue && !TM.thread_should_stop(threadID))
1895 sp->bestValue = value;
1896 if (sp->bestValue >= sp->beta)
1898 sp->stopRequest = true;
1899 sp_update_pv(sp->parentSstack, ss, sp->ply);
1904 /* Here we have the lock still grabbed */
1906 sp->slaves[threadID] = 0;
1909 lock_release(&(sp->lock));
1913 // sp_search_pv() is used to search from a PV split point. This function
1914 // is called by each thread working at the split point. It is similar to
1915 // the normal search_pv() function, but simpler. Because we have already
1916 // probed the hash table and searched the first move before splitting, we
1917 // don't have to repeat all this work in sp_search_pv(). We also don't
1918 // need to store anything to the hash table here: This is taken care of
1919 // after we return from the split point.
1920 // FIXME: We are ignoring mateThreat flag!
1922 void sp_search_pv(SplitPoint* sp, int threadID) {
1924 assert(threadID >= 0 && threadID < TM.active_threads());
1925 assert(TM.active_threads() > 1);
1929 Depth ext, newDepth;
1931 bool moveIsCheck, captureOrPromotion, dangerous;
1933 value = -VALUE_INFINITE;
1935 Position pos(*sp->pos);
1937 SearchStack* ss = sp->sstack[threadID];
1939 // Step 10. Loop through moves
1940 // Loop through all legal moves until no moves remain or a beta cutoff occurs
1941 lock_grab(&(sp->lock));
1943 while ( sp->alpha < sp->beta
1944 && !TM.thread_should_stop(threadID)
1945 && (move = sp->mp->get_next_move()) != MOVE_NONE)
1947 moveCount = ++sp->moves;
1948 lock_release(&(sp->lock));
1950 assert(move_is_ok(move));
1952 moveIsCheck = pos.move_is_check(move, ci);
1953 captureOrPromotion = pos.move_is_capture_or_promotion(move);
1955 // Step 11. Decide the new search depth
1956 ext = extension(pos, move, true, captureOrPromotion, moveIsCheck, false, false, &dangerous);
1957 newDepth = sp->depth - OnePly + ext;
1959 // Update current move
1960 ss[sp->ply].currentMove = move;
1962 // Step 12. Futility pruning (is omitted in PV nodes)
1964 // Step 13. Make the move
1965 pos.do_move(move, st, ci, moveIsCheck);
1967 // Step 14. Reduced search
1968 // if the move fails high will be re-searched at full depth.
1969 bool doFullDepthSearch = true;
1972 && !captureOrPromotion
1973 && !move_is_castle(move)
1974 && !move_is_killer(move, ss[sp->ply]))
1976 ss[sp->ply].reduction = pv_reduction(sp->depth, moveCount);
1977 if (ss[sp->ply].reduction)
1979 Value localAlpha = sp->alpha;
1980 value = -search(pos, ss, -localAlpha, newDepth-ss[sp->ply].reduction, sp->ply+1, true, threadID);
1981 doFullDepthSearch = (value > localAlpha && !TM.thread_should_stop(threadID));
1985 // Step 15. Full depth search
1986 if (doFullDepthSearch)
1988 Value localAlpha = sp->alpha;
1989 ss[sp->ply].reduction = Depth(0);
1990 value = -search(pos, ss, -localAlpha, newDepth, sp->ply+1, true, threadID);
1992 if (value > localAlpha && value < sp->beta && !TM.thread_should_stop(threadID))
1994 // If another thread has failed high then sp->alpha has been increased
1995 // to be higher or equal then beta, if so, avoid to start a PV search.
1996 localAlpha = sp->alpha;
1997 if (localAlpha < sp->beta)
1998 value = -search_pv(pos, ss, -sp->beta, -localAlpha, newDepth, sp->ply+1, threadID);
2002 // Step 16. Undo move
2003 pos.undo_move(move);
2005 assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
2007 // Step 17. Check for new best move
2008 lock_grab(&(sp->lock));
2010 if (value > sp->bestValue && !TM.thread_should_stop(threadID))
2012 sp->bestValue = value;
2013 if (value > sp->alpha)
2015 // Ask threads to stop before to modify sp->alpha
2016 if (value >= sp->beta)
2017 sp->stopRequest = true;
2021 sp_update_pv(sp->parentSstack, ss, sp->ply);
2022 if (value == value_mate_in(sp->ply + 1))
2023 ss[sp->ply].mateKiller = move;
2028 /* Here we have the lock still grabbed */
2030 sp->slaves[threadID] = 0;
2033 lock_release(&(sp->lock));
2037 // init_node() is called at the beginning of all the search functions
2038 // (search(), search_pv(), qsearch(), and so on) and initializes the
2039 // search stack object corresponding to the current node. Once every
2040 // NodesBetweenPolls nodes, init_node() also calls poll(), which polls
2041 // for user input and checks whether it is time to stop the search.
2043 void init_node(SearchStack ss[], int ply, int threadID) {
2045 assert(ply >= 0 && ply < PLY_MAX);
2046 assert(threadID >= 0 && threadID < TM.active_threads());
2048 TM.incrementNodeCounter(threadID);
2053 if (NodesSincePoll >= NodesBetweenPolls)
2060 ss[ply + 2].initKillers();
2064 // update_pv() is called whenever a search returns a value > alpha.
2065 // It updates the PV in the SearchStack object corresponding to the
2068 void update_pv(SearchStack ss[], int ply) {
2070 assert(ply >= 0 && ply < PLY_MAX);
2074 ss[ply].pv[ply] = ss[ply].currentMove;
2076 for (p = ply + 1; ss[ply + 1].pv[p] != MOVE_NONE; p++)
2077 ss[ply].pv[p] = ss[ply + 1].pv[p];
2079 ss[ply].pv[p] = MOVE_NONE;
2083 // sp_update_pv() is a variant of update_pv for use at split points. The
2084 // difference between the two functions is that sp_update_pv also updates
2085 // the PV at the parent node.
2087 void sp_update_pv(SearchStack* pss, SearchStack ss[], int ply) {
2089 assert(ply >= 0 && ply < PLY_MAX);
2093 ss[ply].pv[ply] = pss[ply].pv[ply] = ss[ply].currentMove;
2095 for (p = ply + 1; ss[ply + 1].pv[p] != MOVE_NONE; p++)
2096 ss[ply].pv[p] = pss[ply].pv[p] = ss[ply + 1].pv[p];
2098 ss[ply].pv[p] = pss[ply].pv[p] = MOVE_NONE;
2102 // connected_moves() tests whether two moves are 'connected' in the sense
2103 // that the first move somehow made the second move possible (for instance
2104 // if the moving piece is the same in both moves). The first move is assumed
2105 // to be the move that was made to reach the current position, while the
2106 // second move is assumed to be a move from the current position.
2108 bool connected_moves(const Position& pos, Move m1, Move m2) {
2110 Square f1, t1, f2, t2;
2113 assert(move_is_ok(m1));
2114 assert(move_is_ok(m2));
2116 if (m2 == MOVE_NONE)
2119 // Case 1: The moving piece is the same in both moves
2125 // Case 2: The destination square for m2 was vacated by m1
2131 // Case 3: Moving through the vacated square
2132 if ( piece_is_slider(pos.piece_on(f2))
2133 && bit_is_set(squares_between(f2, t2), f1))
2136 // Case 4: The destination square for m2 is defended by the moving piece in m1
2137 p = pos.piece_on(t1);
2138 if (bit_is_set(pos.attacks_from(p, t1), t2))
2141 // Case 5: Discovered check, checking piece is the piece moved in m1
2142 if ( piece_is_slider(p)
2143 && bit_is_set(squares_between(t1, pos.king_square(pos.side_to_move())), f2)
2144 && !bit_is_set(squares_between(t1, pos.king_square(pos.side_to_move())), t2))
2146 // discovered_check_candidates() works also if the Position's side to
2147 // move is the opposite of the checking piece.
2148 Color them = opposite_color(pos.side_to_move());
2149 Bitboard dcCandidates = pos.discovered_check_candidates(them);
2151 if (bit_is_set(dcCandidates, f2))
2158 // value_is_mate() checks if the given value is a mate one
2159 // eventually compensated for the ply.
2161 bool value_is_mate(Value value) {
2163 assert(abs(value) <= VALUE_INFINITE);
2165 return value <= value_mated_in(PLY_MAX)
2166 || value >= value_mate_in(PLY_MAX);
2170 // move_is_killer() checks if the given move is among the
2171 // killer moves of that ply.
2173 bool move_is_killer(Move m, const SearchStack& ss) {
2175 const Move* k = ss.killers;
2176 for (int i = 0; i < KILLER_MAX; i++, k++)
2184 // extension() decides whether a move should be searched with normal depth,
2185 // or with extended depth. Certain classes of moves (checking moves, in
2186 // particular) are searched with bigger depth than ordinary moves and in
2187 // any case are marked as 'dangerous'. Note that also if a move is not
2188 // extended, as example because the corresponding UCI option is set to zero,
2189 // the move is marked as 'dangerous' so, at least, we avoid to prune it.
2191 Depth extension(const Position& pos, Move m, bool pvNode, bool captureOrPromotion,
2192 bool moveIsCheck, bool singleEvasion, bool mateThreat, bool* dangerous) {
2194 assert(m != MOVE_NONE);
2196 Depth result = Depth(0);
2197 *dangerous = moveIsCheck | singleEvasion | mateThreat;
2202 result += CheckExtension[pvNode];
2205 result += SingleEvasionExtension[pvNode];
2208 result += MateThreatExtension[pvNode];
2211 if (pos.type_of_piece_on(move_from(m)) == PAWN)
2213 Color c = pos.side_to_move();
2214 if (relative_rank(c, move_to(m)) == RANK_7)
2216 result += PawnPushTo7thExtension[pvNode];
2219 if (pos.pawn_is_passed(c, move_to(m)))
2221 result += PassedPawnExtension[pvNode];
2226 if ( captureOrPromotion
2227 && pos.type_of_piece_on(move_to(m)) != PAWN
2228 && ( pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK)
2229 - pos.midgame_value_of_piece_on(move_to(m)) == Value(0))
2230 && !move_is_promotion(m)
2233 result += PawnEndgameExtension[pvNode];
2238 && captureOrPromotion
2239 && pos.type_of_piece_on(move_to(m)) != PAWN
2240 && pos.see_sign(m) >= 0)
2246 return Min(result, OnePly);
2250 // ok_to_do_nullmove() looks at the current position and decides whether
2251 // doing a 'null move' should be allowed. In order to avoid zugzwang
2252 // problems, null moves are not allowed when the side to move has very
2253 // little material left. Currently, the test is a bit too simple: Null
2254 // moves are avoided only when the side to move has only pawns left.
2255 // It's probably a good idea to avoid null moves in at least some more
2256 // complicated endgames, e.g. KQ vs KR. FIXME
2258 bool ok_to_do_nullmove(const Position& pos) {
2260 return pos.non_pawn_material(pos.side_to_move()) != Value(0);
2264 // ok_to_prune() tests whether it is safe to forward prune a move. Only
2265 // non-tactical moves late in the move list close to the leaves are
2266 // candidates for pruning.
2268 bool ok_to_prune(const Position& pos, Move m, Move threat) {
2270 assert(move_is_ok(m));
2271 assert(threat == MOVE_NONE || move_is_ok(threat));
2272 assert(!pos.move_is_check(m));
2273 assert(!pos.move_is_capture_or_promotion(m));
2274 assert(!pos.move_is_passed_pawn_push(m));
2276 Square mfrom, mto, tfrom, tto;
2278 // Prune if there isn't any threat move
2279 if (threat == MOVE_NONE)
2282 mfrom = move_from(m);
2284 tfrom = move_from(threat);
2285 tto = move_to(threat);
2287 // Case 1: Don't prune moves which move the threatened piece
2291 // Case 2: If the threatened piece has value less than or equal to the
2292 // value of the threatening piece, don't prune move which defend it.
2293 if ( pos.move_is_capture(threat)
2294 && ( pos.midgame_value_of_piece_on(tfrom) >= pos.midgame_value_of_piece_on(tto)
2295 || pos.type_of_piece_on(tfrom) == KING)
2296 && pos.move_attacks_square(m, tto))
2299 // Case 3: If the moving piece in the threatened move is a slider, don't
2300 // prune safe moves which block its ray.
2301 if ( piece_is_slider(pos.piece_on(tfrom))
2302 && bit_is_set(squares_between(tfrom, tto), mto)
2303 && pos.see_sign(m) >= 0)
2310 // ok_to_use_TT() returns true if a transposition table score
2311 // can be used at a given point in search.
2313 bool ok_to_use_TT(const TTEntry* tte, Depth depth, Value beta, int ply) {
2315 Value v = value_from_tt(tte->value(), ply);
2317 return ( tte->depth() >= depth
2318 || v >= Max(value_mate_in(PLY_MAX), beta)
2319 || v < Min(value_mated_in(PLY_MAX), beta))
2321 && ( (is_lower_bound(tte->type()) && v >= beta)
2322 || (is_upper_bound(tte->type()) && v < beta));
2326 // refine_eval() returns the transposition table score if
2327 // possible otherwise falls back on static position evaluation.
2329 Value refine_eval(const TTEntry* tte, Value defaultEval, int ply) {
2334 Value v = value_from_tt(tte->value(), ply);
2336 if ( (is_lower_bound(tte->type()) && v >= defaultEval)
2337 || (is_upper_bound(tte->type()) && v < defaultEval))
2344 // update_history() registers a good move that produced a beta-cutoff
2345 // in history and marks as failures all the other moves of that ply.
2347 void update_history(const Position& pos, Move move, Depth depth,
2348 Move movesSearched[], int moveCount) {
2352 H.success(pos.piece_on(move_from(move)), move_to(move), depth);
2354 for (int i = 0; i < moveCount - 1; i++)
2356 m = movesSearched[i];
2360 if (!pos.move_is_capture_or_promotion(m))
2361 H.failure(pos.piece_on(move_from(m)), move_to(m), depth);
2366 // update_killers() add a good move that produced a beta-cutoff
2367 // among the killer moves of that ply.
2369 void update_killers(Move m, SearchStack& ss) {
2371 if (m == ss.killers[0])
2374 for (int i = KILLER_MAX - 1; i > 0; i--)
2375 ss.killers[i] = ss.killers[i - 1];
2381 // update_gains() updates the gains table of a non-capture move given
2382 // the static position evaluation before and after the move.
2384 void update_gains(const Position& pos, Move m, Value before, Value after) {
2387 && before != VALUE_NONE
2388 && after != VALUE_NONE
2389 && pos.captured_piece() == NO_PIECE_TYPE
2390 && !move_is_castle(m)
2391 && !move_is_promotion(m))
2392 H.set_gain(pos.piece_on(move_to(m)), move_to(m), -(before + after));
2396 // current_search_time() returns the number of milliseconds which have passed
2397 // since the beginning of the current search.
2399 int current_search_time() {
2401 return get_system_time() - SearchStartTime;
2405 // nps() computes the current nodes/second count.
2409 int t = current_search_time();
2410 return (t > 0 ? int((TM.nodes_searched() * 1000) / t) : 0);
2414 // poll() performs two different functions: It polls for user input, and it
2415 // looks at the time consumed so far and decides if it's time to abort the
2418 void poll(SearchStack ss[], int ply) {
2420 static int lastInfoTime;
2421 int t = current_search_time();
2426 // We are line oriented, don't read single chars
2427 std::string command;
2429 if (!std::getline(std::cin, command))
2432 if (command == "quit")
2435 PonderSearch = false;
2439 else if (command == "stop")
2442 PonderSearch = false;
2444 else if (command == "ponderhit")
2448 // Print search information
2452 else if (lastInfoTime > t)
2453 // HACK: Must be a new search where we searched less than
2454 // NodesBetweenPolls nodes during the first second of search.
2457 else if (t - lastInfoTime >= 1000)
2464 if (dbg_show_hit_rate)
2465 dbg_print_hit_rate();
2467 cout << "info nodes " << TM.nodes_searched() << " nps " << nps()
2468 << " time " << t << " hashfull " << TT.full() << endl;
2470 // We only support current line printing in single thread mode
2471 if (ShowCurrentLine && TM.active_threads() == 1)
2473 cout << "info currline";
2474 for (int p = 0; p < ply; p++)
2475 cout << " " << ss[p].currentMove;
2481 // Should we stop the search?
2485 bool stillAtFirstMove = RootMoveNumber == 1
2486 && !AspirationFailLow
2487 && t > MaxSearchTime + ExtraSearchTime;
2489 bool noMoreTime = t > AbsoluteMaxSearchTime
2490 || stillAtFirstMove;
2492 if ( (Iteration >= 3 && UseTimeManagement && noMoreTime)
2493 || (ExactMaxTime && t >= ExactMaxTime)
2494 || (Iteration >= 3 && MaxNodes && TM.nodes_searched() >= MaxNodes))
2499 // ponderhit() is called when the program is pondering (i.e. thinking while
2500 // it's the opponent's turn to move) in order to let the engine know that
2501 // it correctly predicted the opponent's move.
2505 int t = current_search_time();
2506 PonderSearch = false;
2508 bool stillAtFirstMove = RootMoveNumber == 1
2509 && !AspirationFailLow
2510 && t > MaxSearchTime + ExtraSearchTime;
2512 bool noMoreTime = t > AbsoluteMaxSearchTime
2513 || stillAtFirstMove;
2515 if (Iteration >= 3 && UseTimeManagement && (noMoreTime || StopOnPonderhit))
2520 // init_ss_array() does a fast reset of the first entries of a SearchStack array
2522 void init_ss_array(SearchStack ss[]) {
2524 for (int i = 0; i < 3; i++)
2527 ss[i].initKillers();
2532 // wait_for_stop_or_ponderhit() is called when the maximum depth is reached
2533 // while the program is pondering. The point is to work around a wrinkle in
2534 // the UCI protocol: When pondering, the engine is not allowed to give a
2535 // "bestmove" before the GUI sends it a "stop" or "ponderhit" command.
2536 // We simply wait here until one of these commands is sent, and return,
2537 // after which the bestmove and pondermove will be printed (in id_loop()).
2539 void wait_for_stop_or_ponderhit() {
2541 std::string command;
2545 if (!std::getline(std::cin, command))
2548 if (command == "quit")
2553 else if (command == "ponderhit" || command == "stop")
2559 // print_pv_info() prints to standard output and eventually to log file information on
2560 // the current PV line. It is called at each iteration or after a new pv is found.
2562 void print_pv_info(const Position& pos, SearchStack ss[], Value alpha, Value beta, Value value) {
2564 cout << "info depth " << Iteration
2565 << " score " << value_to_string(value)
2566 << ((value >= beta) ? " lowerbound" :
2567 ((value <= alpha)? " upperbound" : ""))
2568 << " time " << current_search_time()
2569 << " nodes " << TM.nodes_searched()
2573 for (int j = 0; ss[0].pv[j] != MOVE_NONE && j < PLY_MAX; j++)
2574 cout << ss[0].pv[j] << " ";
2580 ValueType type = (value >= beta ? VALUE_TYPE_LOWER
2581 : (value <= alpha ? VALUE_TYPE_UPPER : VALUE_TYPE_EXACT));
2583 LogFile << pretty_pv(pos, current_search_time(), Iteration,
2584 TM.nodes_searched(), value, type, ss[0].pv) << endl;
2589 // init_thread() is the function which is called when a new thread is
2590 // launched. It simply calls the idle_loop() function with the supplied
2591 // threadID. There are two versions of this function; one for POSIX
2592 // threads and one for Windows threads.
2594 #if !defined(_MSC_VER)
2596 void* init_thread(void *threadID) {
2598 TM.idle_loop(*(int*)threadID, NULL);
2604 DWORD WINAPI init_thread(LPVOID threadID) {
2606 TM.idle_loop(*(int*)threadID, NULL);
2613 /// The ThreadsManager class
2615 // resetNodeCounters(), resetBetaCounters(), searched_nodes() and
2616 // get_beta_counters() are getters/setters for the per thread
2617 // counters used to sort the moves at root.
2619 void ThreadsManager::resetNodeCounters() {
2621 for (int i = 0; i < MAX_THREADS; i++)
2622 threads[i].nodes = 0ULL;
2625 void ThreadsManager::resetBetaCounters() {
2627 for (int i = 0; i < MAX_THREADS; i++)
2628 threads[i].betaCutOffs[WHITE] = threads[i].betaCutOffs[BLACK] = 0ULL;
2631 int64_t ThreadsManager::nodes_searched() const {
2633 int64_t result = 0ULL;
2634 for (int i = 0; i < ActiveThreads; i++)
2635 result += threads[i].nodes;
2640 void ThreadsManager::get_beta_counters(Color us, int64_t& our, int64_t& their) const {
2643 for (int i = 0; i < MAX_THREADS; i++)
2645 our += threads[i].betaCutOffs[us];
2646 their += threads[i].betaCutOffs[opposite_color(us)];
2651 // idle_loop() is where the threads are parked when they have no work to do.
2652 // The parameter "waitSp", if non-NULL, is a pointer to an active SplitPoint
2653 // object for which the current thread is the master.
2655 void ThreadsManager::idle_loop(int threadID, SplitPoint* waitSp) {
2657 assert(threadID >= 0 && threadID < MAX_THREADS);
2661 // Slave threads can exit as soon as AllThreadsShouldExit raises,
2662 // master should exit as last one.
2663 if (AllThreadsShouldExit)
2666 threads[threadID].state = THREAD_TERMINATED;
2670 // If we are not thinking, wait for a condition to be signaled
2671 // instead of wasting CPU time polling for work.
2672 while (AllThreadsShouldSleep || threadID >= ActiveThreads)
2675 assert(threadID != 0);
2676 threads[threadID].state = THREAD_SLEEPING;
2678 #if !defined(_MSC_VER)
2679 lock_grab(&WaitLock);
2680 if (AllThreadsShouldSleep || threadID >= ActiveThreads)
2681 pthread_cond_wait(&WaitCond, &WaitLock);
2682 lock_release(&WaitLock);
2684 WaitForSingleObject(SitIdleEvent[threadID], INFINITE);
2688 // If thread has just woken up, mark it as available
2689 if (threads[threadID].state == THREAD_SLEEPING)
2690 threads[threadID].state = THREAD_AVAILABLE;
2692 // If this thread has been assigned work, launch a search
2693 if (threads[threadID].state == THREAD_WORKISWAITING)
2695 assert(!AllThreadsShouldExit && !AllThreadsShouldSleep);
2697 threads[threadID].state = THREAD_SEARCHING;
2699 if (threads[threadID].splitPoint->pvNode)
2700 sp_search_pv(threads[threadID].splitPoint, threadID);
2702 sp_search(threads[threadID].splitPoint, threadID);
2704 assert(threads[threadID].state == THREAD_SEARCHING);
2706 threads[threadID].state = THREAD_AVAILABLE;
2709 // If this thread is the master of a split point and all threads have
2710 // finished their work at this split point, return from the idle loop.
2711 if (waitSp != NULL && waitSp->cpus == 0)
2713 assert(threads[threadID].state == THREAD_AVAILABLE);
2715 threads[threadID].state = THREAD_SEARCHING;
2722 // init_threads() is called during startup. It launches all helper threads,
2723 // and initializes the split point stack and the global locks and condition
2726 void ThreadsManager::init_threads() {
2731 #if !defined(_MSC_VER)
2732 pthread_t pthread[1];
2735 // Initialize global locks
2736 lock_init(&MPLock, NULL);
2737 lock_init(&WaitLock, NULL);
2739 #if !defined(_MSC_VER)
2740 pthread_cond_init(&WaitCond, NULL);
2742 for (i = 0; i < MAX_THREADS; i++)
2743 SitIdleEvent[i] = CreateEvent(0, FALSE, FALSE, 0);
2746 // Initialize SplitPointStack locks
2747 for (i = 0; i < MAX_THREADS; i++)
2748 for (int j = 0; j < ACTIVE_SPLIT_POINTS_MAX; j++)
2750 SplitPointStack[i][j].parent = NULL;
2751 lock_init(&(SplitPointStack[i][j].lock), NULL);
2754 // Will be set just before program exits to properly end the threads
2755 AllThreadsShouldExit = false;
2757 // Threads will be put to sleep as soon as created
2758 AllThreadsShouldSleep = true;
2760 // All threads except the main thread should be initialized to THREAD_AVAILABLE
2762 threads[0].state = THREAD_SEARCHING;
2763 for (i = 1; i < MAX_THREADS; i++)
2764 threads[i].state = THREAD_AVAILABLE;
2766 // Launch the helper threads
2767 for (i = 1; i < MAX_THREADS; i++)
2770 #if !defined(_MSC_VER)
2771 ok = (pthread_create(pthread, NULL, init_thread, (void*)(&i)) == 0);
2773 ok = (CreateThread(NULL, 0, init_thread, (LPVOID)(&i), 0, NULL) != NULL);
2778 cout << "Failed to create thread number " << i << endl;
2779 Application::exit_with_failure();
2782 // Wait until the thread has finished launching and is gone to sleep
2783 while (threads[i].state != THREAD_SLEEPING);
2788 // exit_threads() is called when the program exits. It makes all the
2789 // helper threads exit cleanly.
2791 void ThreadsManager::exit_threads() {
2793 ActiveThreads = MAX_THREADS; // HACK
2794 AllThreadsShouldSleep = true; // HACK
2795 wake_sleeping_threads();
2797 // This makes the threads to exit idle_loop()
2798 AllThreadsShouldExit = true;
2800 // Wait for thread termination
2801 for (int i = 1; i < MAX_THREADS; i++)
2802 while (threads[i].state != THREAD_TERMINATED);
2804 // Now we can safely destroy the locks
2805 for (int i = 0; i < MAX_THREADS; i++)
2806 for (int j = 0; j < ACTIVE_SPLIT_POINTS_MAX; j++)
2807 lock_destroy(&(SplitPointStack[i][j].lock));
2809 lock_destroy(&WaitLock);
2810 lock_destroy(&MPLock);
2814 // thread_should_stop() checks whether the thread should stop its search.
2815 // This can happen if a beta cutoff has occurred in the thread's currently
2816 // active split point, or in some ancestor of the current split point.
2818 bool ThreadsManager::thread_should_stop(int threadID) const {
2820 assert(threadID >= 0 && threadID < ActiveThreads);
2824 for (sp = threads[threadID].splitPoint; sp && !sp->stopRequest; sp = sp->parent);
2829 // thread_is_available() checks whether the thread with threadID "slave" is
2830 // available to help the thread with threadID "master" at a split point. An
2831 // obvious requirement is that "slave" must be idle. With more than two
2832 // threads, this is not by itself sufficient: If "slave" is the master of
2833 // some active split point, it is only available as a slave to the other
2834 // threads which are busy searching the split point at the top of "slave"'s
2835 // split point stack (the "helpful master concept" in YBWC terminology).
2837 bool ThreadsManager::thread_is_available(int slave, int master) const {
2839 assert(slave >= 0 && slave < ActiveThreads);
2840 assert(master >= 0 && master < ActiveThreads);
2841 assert(ActiveThreads > 1);
2843 if (threads[slave].state != THREAD_AVAILABLE || slave == master)
2846 // Make a local copy to be sure doesn't change under our feet
2847 int localActiveSplitPoints = threads[slave].activeSplitPoints;
2849 if (localActiveSplitPoints == 0)
2850 // No active split points means that the thread is available as
2851 // a slave for any other thread.
2854 if (ActiveThreads == 2)
2857 // Apply the "helpful master" concept if possible. Use localActiveSplitPoints
2858 // that is known to be > 0, instead of threads[slave].activeSplitPoints that
2859 // could have been set to 0 by another thread leading to an out of bound access.
2860 if (SplitPointStack[slave][localActiveSplitPoints - 1].slaves[master])
2867 // available_thread_exists() tries to find an idle thread which is available as
2868 // a slave for the thread with threadID "master".
2870 bool ThreadsManager::available_thread_exists(int master) const {
2872 assert(master >= 0 && master < ActiveThreads);
2873 assert(ActiveThreads > 1);
2875 for (int i = 0; i < ActiveThreads; i++)
2876 if (thread_is_available(i, master))
2883 // split() does the actual work of distributing the work at a node between
2884 // several threads at PV nodes. If it does not succeed in splitting the
2885 // node (because no idle threads are available, or because we have no unused
2886 // split point objects), the function immediately returns false. If
2887 // splitting is possible, a SplitPoint object is initialized with all the
2888 // data that must be copied to the helper threads (the current position and
2889 // search stack, alpha, beta, the search depth, etc.), and we tell our
2890 // helper threads that they have been assigned work. This will cause them
2891 // to instantly leave their idle loops and call sp_search_pv(). When all
2892 // threads have returned from sp_search_pv (or, equivalently, when
2893 // splitPoint->cpus becomes 0), split() returns true.
2895 bool ThreadsManager::split(const Position& p, SearchStack* sstck, int ply,
2896 Value* alpha, const Value beta, Value* bestValue,
2897 Depth depth, int* moves, MovePicker* mp, int master, bool pvNode) {
2900 assert(sstck != NULL);
2901 assert(ply >= 0 && ply < PLY_MAX);
2902 assert(*bestValue >= -VALUE_INFINITE);
2903 assert( ( pvNode && *bestValue <= *alpha)
2904 || (!pvNode && *bestValue < beta ));
2905 assert(!pvNode || *alpha < beta);
2906 assert(beta <= VALUE_INFINITE);
2907 assert(depth > Depth(0));
2908 assert(master >= 0 && master < ActiveThreads);
2909 assert(ActiveThreads > 1);
2911 SplitPoint* splitPoint;
2915 // If no other thread is available to help us, or if we have too many
2916 // active split points, don't split.
2917 if ( !available_thread_exists(master)
2918 || threads[master].activeSplitPoints >= ACTIVE_SPLIT_POINTS_MAX)
2920 lock_release(&MPLock);
2924 // Pick the next available split point object from the split point stack
2925 splitPoint = &SplitPointStack[master][threads[master].activeSplitPoints];
2927 // Initialize the split point object
2928 splitPoint->parent = threads[master].splitPoint;
2929 splitPoint->stopRequest = false;
2930 splitPoint->ply = ply;
2931 splitPoint->depth = depth;
2932 splitPoint->alpha = pvNode ? *alpha : beta - 1;
2933 splitPoint->beta = beta;
2934 splitPoint->pvNode = pvNode;
2935 splitPoint->bestValue = *bestValue;
2936 splitPoint->master = master;
2937 splitPoint->mp = mp;
2938 splitPoint->moves = *moves;
2939 splitPoint->cpus = 1;
2940 splitPoint->pos = &p;
2941 splitPoint->parentSstack = sstck;
2942 for (int i = 0; i < ActiveThreads; i++)
2943 splitPoint->slaves[i] = 0;
2945 threads[master].splitPoint = splitPoint;
2946 threads[master].activeSplitPoints++;
2948 // If we are here it means we are not available
2949 assert(threads[master].state != THREAD_AVAILABLE);
2951 // Allocate available threads setting state to THREAD_BOOKED
2952 for (int i = 0; i < ActiveThreads && splitPoint->cpus < MaxThreadsPerSplitPoint; i++)
2953 if (thread_is_available(i, master))
2955 threads[i].state = THREAD_BOOKED;
2956 threads[i].splitPoint = splitPoint;
2957 splitPoint->slaves[i] = 1;
2961 assert(splitPoint->cpus > 1);
2963 // We can release the lock because slave threads are already booked and master is not available
2964 lock_release(&MPLock);
2966 // Tell the threads that they have work to do. This will make them leave
2967 // their idle loop. But before copy search stack tail for each thread.
2968 for (int i = 0; i < ActiveThreads; i++)
2969 if (i == master || splitPoint->slaves[i])
2971 memcpy(splitPoint->sstack[i] + ply - 1, sstck + ply - 1, 4 * sizeof(SearchStack));
2973 assert(i == master || threads[i].state == THREAD_BOOKED);
2975 threads[i].state = THREAD_WORKISWAITING; // This makes the slave to exit from idle_loop()
2978 // Everything is set up. The master thread enters the idle loop, from
2979 // which it will instantly launch a search, because its state is
2980 // THREAD_WORKISWAITING. We send the split point as a second parameter to the
2981 // idle loop, which means that the main thread will return from the idle
2982 // loop when all threads have finished their work at this split point
2983 // (i.e. when splitPoint->cpus == 0).
2984 idle_loop(master, splitPoint);
2986 // We have returned from the idle loop, which means that all threads are
2987 // finished. Update alpha, beta and bestValue, and return.
2991 *alpha = splitPoint->alpha;
2993 *bestValue = splitPoint->bestValue;
2994 threads[master].activeSplitPoints--;
2995 threads[master].splitPoint = splitPoint->parent;
2997 lock_release(&MPLock);
3002 // wake_sleeping_threads() wakes up all sleeping threads when it is time
3003 // to start a new search from the root.
3005 void ThreadsManager::wake_sleeping_threads() {
3007 assert(AllThreadsShouldSleep);
3008 assert(ActiveThreads > 0);
3010 AllThreadsShouldSleep = false;
3012 if (ActiveThreads == 1)
3015 #if !defined(_MSC_VER)
3016 pthread_mutex_lock(&WaitLock);
3017 pthread_cond_broadcast(&WaitCond);
3018 pthread_mutex_unlock(&WaitLock);
3020 for (int i = 1; i < MAX_THREADS; i++)
3021 SetEvent(SitIdleEvent[i]);
3027 // put_threads_to_sleep() makes all the threads go to sleep just before
3028 // to leave think(), at the end of the search. Threads should have already
3029 // finished the job and should be idle.
3031 void ThreadsManager::put_threads_to_sleep() {
3033 assert(!AllThreadsShouldSleep);
3035 // This makes the threads to go to sleep
3036 AllThreadsShouldSleep = true;
3039 /// The RootMoveList class
3041 // RootMoveList c'tor
3043 RootMoveList::RootMoveList(Position& pos, Move searchMoves[]) : count(0) {
3045 SearchStack ss[PLY_MAX_PLUS_2];
3046 MoveStack mlist[MaxRootMoves];
3048 bool includeAllMoves = (searchMoves[0] == MOVE_NONE);
3050 // Generate all legal moves
3051 MoveStack* last = generate_moves(pos, mlist);
3053 // Add each move to the moves[] array
3054 for (MoveStack* cur = mlist; cur != last; cur++)
3056 bool includeMove = includeAllMoves;
3058 for (int k = 0; !includeMove && searchMoves[k] != MOVE_NONE; k++)
3059 includeMove = (searchMoves[k] == cur->move);
3064 // Find a quick score for the move
3066 pos.do_move(cur->move, st);
3067 moves[count].move = cur->move;
3068 moves[count].score = -qsearch(pos, ss, -VALUE_INFINITE, VALUE_INFINITE, Depth(0), 1, 0);
3069 moves[count].pv[0] = cur->move;
3070 moves[count].pv[1] = MOVE_NONE;
3071 pos.undo_move(cur->move);
3078 // RootMoveList simple methods definitions
3080 void RootMoveList::set_move_nodes(int moveNum, int64_t nodes) {
3082 moves[moveNum].nodes = nodes;
3083 moves[moveNum].cumulativeNodes += nodes;
3086 void RootMoveList::set_beta_counters(int moveNum, int64_t our, int64_t their) {
3088 moves[moveNum].ourBeta = our;
3089 moves[moveNum].theirBeta = their;
3092 void RootMoveList::set_move_pv(int moveNum, const Move pv[]) {
3096 for (j = 0; pv[j] != MOVE_NONE; j++)
3097 moves[moveNum].pv[j] = pv[j];
3099 moves[moveNum].pv[j] = MOVE_NONE;
3103 // RootMoveList::sort() sorts the root move list at the beginning of a new
3106 void RootMoveList::sort() {
3108 sort_multipv(count - 1); // Sort all items
3112 // RootMoveList::sort_multipv() sorts the first few moves in the root move
3113 // list by their scores and depths. It is used to order the different PVs
3114 // correctly in MultiPV mode.
3116 void RootMoveList::sort_multipv(int n) {
3120 for (i = 1; i <= n; i++)
3122 RootMove rm = moves[i];
3123 for (j = i; j > 0 && moves[j - 1] < rm; j--)
3124 moves[j] = moves[j - 1];