]> git.sesse.net Git - ffmpeg/blob - tests/checkasm/sw_scale.c
avutil/frame: Remove AVFrame QP table API
[ffmpeg] / tests / checkasm / sw_scale.c
1 /*
2  *
3  * This file is part of FFmpeg.
4  *
5  * FFmpeg is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * FFmpeg is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with FFmpeg; if not, write to the Free Software Foundation, Inc.,
17  * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18  */
19
20 #include <string.h>
21
22 #include "libavutil/common.h"
23 #include "libavutil/intreadwrite.h"
24 #include "libavutil/mem.h"
25 #include "libavutil/mem_internal.h"
26
27 #include "libswscale/swscale.h"
28 #include "libswscale/swscale_internal.h"
29
30 #include "checkasm.h"
31
32 #define randomize_buffers(buf, size)      \
33     do {                                  \
34         int j;                            \
35         for (j = 0; j < size; j+=4)       \
36             AV_WN32(buf + j, rnd());      \
37     } while (0)
38
39 // This reference function is the same approximate algorithm employed by the
40 // SIMD functions
41 static void ref_function(const int16_t *filter, int filterSize,
42                                                  const int16_t **src, uint8_t *dest, int dstW,
43                                                  const uint8_t *dither, int offset)
44 {
45     int i, d;
46     d = ((filterSize - 1) * 8 + dither[0]) >> 4;
47     for ( i = 0; i < dstW; i++) {
48         int16_t val = d;
49         int j;
50         union {
51             int val;
52             int16_t v[2];
53         } t;
54         for (j = 0; j < filterSize; j++){
55             t.val = (int)src[j][i + offset] * (int)filter[j];
56             val += t.v[1];
57         }
58         dest[i]= av_clip_uint8(val>>3);
59     }
60 }
61
62 static void check_yuv2yuvX(void)
63 {
64     struct SwsContext *ctx;
65     int fsi, osi, isi, i, j;
66     int dstW;
67 #define LARGEST_FILTER 16
68 #define FILTER_SIZES 4
69     static const int filter_sizes[FILTER_SIZES] = {1, 4, 8, 16};
70 #define LARGEST_INPUT_SIZE 512
71 #define INPUT_SIZES 6
72     static const int input_sizes[INPUT_SIZES] = {8, 24, 128, 144, 256, 512};
73
74     declare_func_emms(AV_CPU_FLAG_MMX, void, const int16_t *filter,
75                       int filterSize, const int16_t **src, uint8_t *dest,
76                       int dstW, const uint8_t *dither, int offset);
77
78     const int16_t **src;
79     LOCAL_ALIGNED_8(int16_t, src_pixels, [LARGEST_FILTER * LARGEST_INPUT_SIZE]);
80     LOCAL_ALIGNED_8(int16_t, filter_coeff, [LARGEST_FILTER]);
81     LOCAL_ALIGNED_8(uint8_t, dst0, [LARGEST_INPUT_SIZE]);
82     LOCAL_ALIGNED_8(uint8_t, dst1, [LARGEST_INPUT_SIZE]);
83     LOCAL_ALIGNED_8(uint8_t, dither, [LARGEST_INPUT_SIZE]);
84     union VFilterData{
85         const int16_t *src;
86         uint16_t coeff[8];
87     } *vFilterData;
88     uint8_t d_val = rnd();
89     memset(dither, d_val, LARGEST_INPUT_SIZE);
90     randomize_buffers((uint8_t*)src_pixels, LARGEST_FILTER * LARGEST_INPUT_SIZE * sizeof(int16_t));
91     randomize_buffers((uint8_t*)filter_coeff, LARGEST_FILTER * sizeof(int16_t));
92     ctx = sws_alloc_context();
93     if (sws_init_context(ctx, NULL, NULL) < 0)
94         fail();
95
96     ff_getSwsFunc(ctx);
97     for(isi = 0; isi < INPUT_SIZES; ++isi){
98         dstW = input_sizes[isi];
99         for(osi = 0; osi < 64; osi += 16){
100             for(fsi = 0; fsi < FILTER_SIZES; ++fsi){
101                 src = av_malloc(sizeof(int16_t*) * filter_sizes[fsi]);
102                 vFilterData = av_malloc((filter_sizes[fsi] + 2) * sizeof(union VFilterData));
103                 memset(vFilterData, 0, (filter_sizes[fsi] + 2) * sizeof(union VFilterData));
104                 for(i = 0; i < filter_sizes[fsi]; ++i){
105                     src[i] = &src_pixels[i * LARGEST_INPUT_SIZE];
106                     vFilterData[i].src = src[i];
107                     for(j = 0; j < 4; ++j)
108                         vFilterData[i].coeff[j + 4] = filter_coeff[i];
109                 }
110                 if (check_func(ctx->yuv2planeX, "yuv2yuvX_%d_%d_%d", filter_sizes[fsi], osi, dstW)){
111                     memset(dst0, 0, LARGEST_INPUT_SIZE * sizeof(dst0[0]));
112                     memset(dst1, 0, LARGEST_INPUT_SIZE * sizeof(dst1[0]));
113
114                     // The reference function is not the scalar function selected when mmx
115                     // is deactivated as the SIMD functions do not give the same result as
116                     // the scalar ones due to rounding. The SIMD functions are activated by
117                     // the flag SWS_ACCURATE_RND
118                     ref_function(&filter_coeff[0], filter_sizes[fsi], src, dst0, dstW - osi, dither, osi);
119                     // There's no point in calling new for the reference function
120                     if(ctx->use_mmx_vfilter){
121                         call_new((const int16_t*)vFilterData, filter_sizes[fsi], src, dst1, dstW - osi, dither, osi);
122                         if (memcmp(dst0, dst1, LARGEST_INPUT_SIZE * sizeof(dst0[0])))
123                             fail();
124                         if(dstW == LARGEST_INPUT_SIZE)
125                             bench_new((const int16_t*)vFilterData, filter_sizes[fsi], src, dst1, dstW - osi, dither, osi);
126                     }
127                 }
128                 av_freep(&src);
129                 av_freep(&vFilterData);
130             }
131         }
132     }
133     sws_freeContext(ctx);
134 #undef FILTER_SIZES
135 }
136
137 #undef SRC_PIXELS
138 #define SRC_PIXELS 128
139
140 static void check_hscale(void)
141 {
142 #define MAX_FILTER_WIDTH 40
143 #define FILTER_SIZES 5
144     static const int filter_sizes[FILTER_SIZES] = { 4, 8, 16, 32, 40 };
145
146 #define HSCALE_PAIRS 2
147     static const int hscale_pairs[HSCALE_PAIRS][2] = {
148         { 8, 14 },
149         { 8, 18 },
150     };
151
152     int i, j, fsi, hpi, width;
153     struct SwsContext *ctx;
154
155     // padded
156     LOCAL_ALIGNED_32(uint8_t, src, [FFALIGN(SRC_PIXELS + MAX_FILTER_WIDTH - 1, 4)]);
157     LOCAL_ALIGNED_32(uint32_t, dst0, [SRC_PIXELS]);
158     LOCAL_ALIGNED_32(uint32_t, dst1, [SRC_PIXELS]);
159
160     // padded
161     LOCAL_ALIGNED_32(int16_t, filter, [SRC_PIXELS * MAX_FILTER_WIDTH + MAX_FILTER_WIDTH]);
162     LOCAL_ALIGNED_32(int32_t, filterPos, [SRC_PIXELS]);
163
164     // The dst parameter here is either int16_t or int32_t but we use void* to
165     // just cover both cases.
166     declare_func_emms(AV_CPU_FLAG_MMX, void, void *c, void *dst, int dstW,
167                       const uint8_t *src, const int16_t *filter,
168                       const int32_t *filterPos, int filterSize);
169
170     ctx = sws_alloc_context();
171     if (sws_init_context(ctx, NULL, NULL) < 0)
172         fail();
173
174     randomize_buffers(src, SRC_PIXELS + MAX_FILTER_WIDTH - 1);
175
176     for (hpi = 0; hpi < HSCALE_PAIRS; hpi++) {
177         for (fsi = 0; fsi < FILTER_SIZES; fsi++) {
178             width = filter_sizes[fsi];
179
180             ctx->srcBpc = hscale_pairs[hpi][0];
181             ctx->dstBpc = hscale_pairs[hpi][1];
182             ctx->hLumFilterSize = ctx->hChrFilterSize = width;
183
184             for (i = 0; i < SRC_PIXELS; i++) {
185                 filterPos[i] = i;
186
187                 // These filter cofficients are chosen to try break two corner
188                 // cases, namely:
189                 //
190                 // - Negative filter coefficients. The filters output signed
191                 //   values, and it should be possible to end up with negative
192                 //   output values.
193                 //
194                 // - Positive clipping. The hscale filter function has clipping
195                 //   at (1<<15) - 1
196                 //
197                 // The coefficients sum to the 1.0 point for the hscale
198                 // functions (1 << 14).
199
200                 for (j = 0; j < width; j++) {
201                     filter[i * width + j] = -((1 << 14) / (width - 1));
202                 }
203                 filter[i * width + (rnd() % width)] = ((1 << 15) - 1);
204             }
205
206             for (i = 0; i < MAX_FILTER_WIDTH; i++) {
207                 // These values should be unused in SIMD implementations but
208                 // may still be read, random coefficients here should help show
209                 // issues where they are used in error.
210
211                 filter[SRC_PIXELS * width + i] = rnd();
212             }
213             ff_getSwsFunc(ctx);
214
215             if (check_func(ctx->hcScale, "hscale_%d_to_%d_width%d", ctx->srcBpc, ctx->dstBpc + 1, width)) {
216                 memset(dst0, 0, SRC_PIXELS * sizeof(dst0[0]));
217                 memset(dst1, 0, SRC_PIXELS * sizeof(dst1[0]));
218
219                 call_ref(NULL, dst0, SRC_PIXELS, src, filter, filterPos, width);
220                 call_new(NULL, dst1, SRC_PIXELS, src, filter, filterPos, width);
221                 if (memcmp(dst0, dst1, SRC_PIXELS * sizeof(dst0[0])))
222                     fail();
223                 bench_new(NULL, dst0, SRC_PIXELS, src, filter, filterPos, width);
224             }
225         }
226     }
227     sws_freeContext(ctx);
228 }
229
230 void checkasm_check_sw_scale(void)
231 {
232     check_hscale();
233     report("hscale");
234     check_yuv2yuvX();
235     report("yuv2yuvX");
236 }