]> git.sesse.net Git - ffmpeg/blob - tools/python/convert_from_tensorflow.py
tests: stop using -vsync drop
[ffmpeg] / tools / python / convert_from_tensorflow.py
1 # Copyright (c) 2019 Guo Yejun
2 #
3 # This file is part of FFmpeg.
4 #
5 # FFmpeg is free software; you can redistribute it and/or
6 # modify it under the terms of the GNU Lesser General Public
7 # License as published by the Free Software Foundation; either
8 # version 2.1 of the License, or (at your option) any later version.
9 #
10 # FFmpeg is distributed in the hope that it will be useful,
11 # but WITHOUT ANY WARRANTY; without even the implied warranty of
12 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13 # Lesser General Public License for more details.
14 #
15 # You should have received a copy of the GNU Lesser General Public
16 # License along with FFmpeg; if not, write to the Free Software
17 # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 # ==============================================================================
19
20 import tensorflow as tf
21 import numpy as np
22 import sys, struct
23 import convert_header as header
24
25 __all__ = ['convert_from_tensorflow']
26
27 class Operand(object):
28     IOTYPE_INPUT = 1
29     IOTYPE_OUTPUT = 2
30     IOTYPE_INTERMEDIATE = IOTYPE_INPUT | IOTYPE_OUTPUT
31     DTYPE_FLOAT = 1
32     DTYPE_UINT8 = 4
33     index = 0
34     def __init__(self, name, dtype, dims):
35         self.name = name
36         self.dtype = dtype
37         self.dims = dims
38         self.iotype = 0
39         self.used_count = 0
40         self.index = Operand.index
41         Operand.index = Operand.index + 1
42         self.iotype2str = {Operand.IOTYPE_INPUT: 'in', Operand.IOTYPE_OUTPUT: 'out', Operand.IOTYPE_INTERMEDIATE: 'inout'}
43         self.dtype2str = {Operand.DTYPE_FLOAT: 'DT_FLOAT', Operand.DTYPE_UINT8: 'DT_UINT8'}
44
45     def add_iotype(self, iotype):
46         self.iotype = self.iotype | iotype
47         if iotype == Operand.IOTYPE_INPUT:
48             self.used_count = self.used_count + 1
49
50     def __str__(self):
51         return "{}: (name: {}, iotype: {}, dtype: {}, dims: {}, used_count: {})".format(self.index,
52                             self.name, self.iotype2str[self.iotype], self.dtype2str[self.dtype],
53                             self.dims, self.used_count)
54
55     def __lt__(self, other):
56         return self.index < other.index
57
58 class TFConverter:
59     def __init__(self, graph_def, nodes, outfile, dump4tb):
60         self.graph_def = graph_def
61         self.nodes = nodes
62         self.outfile = outfile
63         self.dump4tb = dump4tb
64         self.layer_number = 0
65         self.output_names = []
66         self.name_node_dict = {}
67         self.edges = {}
68         self.conv_activations = {'Relu':0, 'Tanh':1, 'Sigmoid':2, 'None':3, 'LeakyRelu':4}
69         self.conv_paddings = {'VALID':0, 'SAME':1}
70         self.pool_paddings = {'VALID':0, 'SAME':1}
71         self.converted_nodes = set()
72         self.conv2d_scope_names = set()
73         self.conv2d_scopename_inputname_dict = {}
74         self.dense_scope_names = set()
75         self.dense_scopename_inputname_dict = {}
76         self.op2code = {'Conv2D':1, 'DepthToSpace':2, 'MirrorPad':3, 'Maximum':4,
77                         'MathBinary':5, 'MathUnary':6, 'AvgPool':7, 'MatMul':8}
78         self.mathbin2code = {'Sub':0, 'Add':1, 'Mul':2, 'RealDiv':3, 'Minimum':4, 'FloorMod':5}
79         self.mathun2code  = {'Abs':0, 'Sin':1, 'Cos':2, 'Tan':3, 'Asin':4,
80                 'Acos':5, 'Atan':6, 'Sinh':7, 'Cosh':8, 'Tanh':9, 'Asinh':10,
81                 'Acosh':11, 'Atanh':12, 'Ceil':13, 'Floor':14, 'Round':15}
82         self.mirrorpad_mode = {'CONSTANT':0, 'REFLECT':1, 'SYMMETRIC':2}
83         self.name_operand_dict = {}
84
85
86     def add_operand(self, name, type):
87         node = self.name_node_dict[name]
88         if name not in self.name_operand_dict:
89             dtype = node.attr['dtype'].type
90             if dtype == 0:
91                 dtype = node.attr['T'].type
92             dims = [-1,-1,-1,-1]
93             if 'shape' in node.attr:
94                 dims[0] = node.attr['shape'].shape.dim[0].size
95                 dims[1] = node.attr['shape'].shape.dim[1].size
96                 dims[2] = node.attr['shape'].shape.dim[2].size
97                 dims[3] = node.attr['shape'].shape.dim[3].size
98             operand = Operand(name, dtype, dims)
99             self.name_operand_dict[name] = operand;
100         self.name_operand_dict[name].add_iotype(type)
101         return self.name_operand_dict[name].index
102
103
104     def dump_for_tensorboard(self):
105         graph = tf.get_default_graph()
106         tf.import_graph_def(self.graph_def, name="")
107         tf.summary.FileWriter('/tmp/graph', graph)
108         print('graph saved, run "tensorboard --logdir=/tmp/graph" to see it')
109
110
111     def get_conv2d_params(self, conv2d_scope_name):
112         knode = self.name_node_dict[conv2d_scope_name + '/kernel']
113         bnode = self.name_node_dict[conv2d_scope_name + '/bias']
114
115         if conv2d_scope_name + '/dilation_rate' in self.name_node_dict:
116             dnode = self.name_node_dict[conv2d_scope_name + '/dilation_rate']
117         else:
118             dnode = None
119
120         # the BiasAdd name is possible be changed into the output name,
121         # if activation is None, and BiasAdd.next is the last op which is Identity
122         if conv2d_scope_name + '/BiasAdd' in self.edges:
123             anode = self.edges[conv2d_scope_name + '/BiasAdd'][0]
124             if anode.op not in self.conv_activations:
125                 anode = None
126         else:
127             anode = None
128         return knode, bnode, dnode, anode
129
130
131     def get_dense_params(self, dense_scope_name):
132         knode = self.name_node_dict[dense_scope_name + '/kernel']
133         bnode = self.name_node_dict.get(dense_scope_name + '/bias')
134         # the BiasAdd name is possible be changed into the output name,
135         # if activation is None, and BiasAdd.next is the last op which is Identity
136         anode = None
137         if bnode:
138             if dense_scope_name + '/BiasAdd' in self.edges:
139                 anode = self.edges[dense_scope_name + '/BiasAdd'][0]
140                 if anode.op not in self.conv_activations:
141                     anode = None
142         else:
143             anode = None
144         return knode, bnode, anode
145
146
147     def dump_complex_conv2d_to_file(self, node, f):
148         assert(node.op == 'Conv2D')
149         self.layer_number = self.layer_number + 1
150         self.converted_nodes.add(node.name)
151
152         scope_name = TFConverter.get_scope_name(node.name)
153         #knode for kernel, bnode for bias, dnode for dilation, anode for activation
154         knode, bnode, dnode, anode = self.get_conv2d_params(scope_name)
155
156         if dnode is not None:
157             dilation = struct.unpack('i', dnode.attr['value'].tensor.tensor_content[0:4])[0]
158         else:
159             dilation = 1
160
161         if anode is not None:
162             activation = anode.op
163         else:
164             activation = 'None'
165
166         padding = node.attr['padding'].s.decode("utf-8")
167         # conv2d with dilation > 1 generates tens of nodes, not easy to parse them, so use this tricky method.
168         if dilation > 1 and scope_name + '/stack' in self.name_node_dict:
169             if self.name_node_dict[scope_name + '/stack'].op == "Const":
170                 padding = 'SAME'
171         padding = self.conv_paddings[padding]
172
173         ktensor = knode.attr['value'].tensor
174         filter_height = ktensor.tensor_shape.dim[0].size
175         filter_width = ktensor.tensor_shape.dim[1].size
176         in_channels = ktensor.tensor_shape.dim[2].size
177         out_channels = ktensor.tensor_shape.dim[3].size
178         kernel = np.frombuffer(ktensor.tensor_content, dtype=np.float32)
179         kernel = kernel.reshape(filter_height, filter_width, in_channels, out_channels)
180         kernel = np.transpose(kernel, [3, 0, 1, 2])
181
182         has_bias = 1
183         np.array([self.op2code[node.op], dilation, padding, self.conv_activations[activation], in_channels, out_channels, filter_height, has_bias], dtype=np.uint32).tofile(f)
184         kernel.tofile(f)
185
186         btensor = bnode.attr['value'].tensor
187         if btensor.tensor_shape.dim[0].size == 1:
188             bias = struct.pack("f", btensor.float_val[0])
189         else:
190             bias = btensor.tensor_content
191         f.write(bias)
192
193         input_name = self.conv2d_scopename_inputname_dict[scope_name]
194         input_operand_index = self.add_operand(input_name, Operand.IOTYPE_INPUT)
195
196         if anode is not None:
197             output_operand_index = self.add_operand(anode.name, Operand.IOTYPE_OUTPUT)
198         else:
199             output_operand_index = self.add_operand(self.edges[bnode.name][0].name, Operand.IOTYPE_OUTPUT)
200         np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)
201
202     def dump_dense_to_file(self, node, f):
203         assert(node.op == 'MatMul')
204         self.layer_number = self.layer_number + 1
205         self.converted_nodes.add(node.name)
206
207         scope_name = TFConverter.get_scope_name(node.name)
208         #knode for kernel, bnode for bias, anode for activation
209         knode, bnode, anode = self.get_dense_params(scope_name.split('/')[0])
210
211         if bnode is not None:
212             has_bias = 1
213             btensor = bnode.attr['value'].tensor
214             if btensor.tensor_shape.dim[0].size == 1:
215                 bias = struct.pack("f", btensor.float_val[0])
216             else:
217                 bias = btensor.tensor_content
218         else:
219             has_bias = 0
220
221         if anode is not None:
222             activation = anode.op
223         else:
224             activation = 'None'
225
226         ktensor = knode.attr['value'].tensor
227         in_channels = ktensor.tensor_shape.dim[0].size
228         out_channels = ktensor.tensor_shape.dim[1].size
229         if in_channels * out_channels == 1:
230             kernel = np.float32(ktensor.float_val[0])
231         else:
232             kernel = np.frombuffer(ktensor.tensor_content, dtype=np.float32)
233         kernel = kernel.reshape(in_channels, out_channels)
234         kernel = np.transpose(kernel, [1, 0])
235
236         np.array([self.op2code[node.op], self.conv_activations[activation], in_channels, out_channels, has_bias], dtype=np.uint32).tofile(f)
237         kernel.tofile(f)
238         if has_bias:
239             f.write(bias)
240
241         input_name = self.dense_scopename_inputname_dict[scope_name.split('/')[0]]
242         input_operand_index = self.add_operand(input_name, Operand.IOTYPE_INPUT)
243
244         if anode is not None:
245             output_operand_index = self.add_operand(anode.name, Operand.IOTYPE_OUTPUT)
246         else:
247             if bnode is not None:
248                 output_operand_index = self.add_operand(self.edges[bnode.name][0].name, Operand.IOTYPE_OUTPUT)
249             else:
250                 output_operand_index = self.add_operand(self.edges[scope_name+'/concat_1'][0].name, Operand.IOTYPE_OUTPUT)
251         np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)
252
253
254     def dump_simple_conv2d_to_file(self, node, f):
255         assert(node.op == 'Conv2D')
256         self.layer_number = self.layer_number + 1
257         self.converted_nodes.add(node.name)
258
259         node0 = self.name_node_dict[node.input[0]]
260         node1 = self.name_node_dict[node.input[1]]
261         if node0.op == 'Const':
262             knode = node0
263             input_name = node.input[1]
264         else:
265             knode = node1
266             input_name = node.input[0]
267
268         ktensor = knode.attr['value'].tensor
269         filter_height = ktensor.tensor_shape.dim[0].size
270         filter_width = ktensor.tensor_shape.dim[1].size
271         in_channels = ktensor.tensor_shape.dim[2].size
272         out_channels = ktensor.tensor_shape.dim[3].size
273         if filter_height * filter_width * in_channels * out_channels == 1:
274             kernel = np.float32(ktensor.float_val[0])
275         else:
276             kernel = np.frombuffer(ktensor.tensor_content, dtype=np.float32)
277         kernel = kernel.reshape(filter_height, filter_width, in_channels, out_channels)
278         kernel = np.transpose(kernel, [3, 0, 1, 2])
279
280         has_bias = 0
281         dilation = 1
282         padding = node.attr['padding'].s.decode("utf-8")
283         np.array([self.op2code[node.op], dilation, self.conv_paddings[padding], self.conv_activations['None'],
284                   in_channels, out_channels, filter_height, has_bias], dtype=np.uint32).tofile(f)
285         kernel.tofile(f)
286
287         input_operand_index = self.add_operand(input_name, Operand.IOTYPE_INPUT)
288         output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT)
289         np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)
290
291
292     def dump_depth2space_to_file(self, node, f):
293         assert(node.op == 'DepthToSpace')
294         self.layer_number = self.layer_number + 1
295         block_size = node.attr['block_size'].i
296         np.array([self.op2code[node.op], block_size], dtype=np.uint32).tofile(f)
297         self.converted_nodes.add(node.name)
298         input_operand_index = self.add_operand(node.input[0], Operand.IOTYPE_INPUT)
299         output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT)
300         np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)
301
302
303     def dump_mirrorpad_to_file(self, node, f):
304         assert(node.op == 'MirrorPad')
305         self.layer_number = self.layer_number + 1
306         mode = node.attr['mode'].s
307         mode = self.mirrorpad_mode[mode.decode("utf-8")]
308         np.array([self.op2code[node.op], mode], dtype=np.uint32).tofile(f)
309         pnode = self.name_node_dict[node.input[1]]
310         self.converted_nodes.add(pnode.name)
311         paddings = pnode.attr['value'].tensor.tensor_content
312         f.write(paddings)
313         self.converted_nodes.add(node.name)
314         input_operand_index = self.add_operand(node.input[0], Operand.IOTYPE_INPUT)
315         output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT)
316         np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)
317
318
319     def dump_maximum_to_file(self, node, f):
320         assert(node.op == 'Maximum')
321         self.layer_number = self.layer_number + 1
322         ynode = self.name_node_dict[node.input[1]]
323         y = ynode.attr['value'].tensor.float_val[0]
324         np.array([self.op2code[node.op]], dtype=np.uint32).tofile(f)
325         np.array([y], dtype=np.float32).tofile(f)
326         self.converted_nodes.add(node.name)
327         input_operand_index = self.add_operand(node.input[0], Operand.IOTYPE_INPUT)
328         output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT)
329         np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)
330
331
332     def dump_mathbinary_to_file(self, node, f):
333         self.layer_number = self.layer_number + 1
334         self.converted_nodes.add(node.name)
335         i0_node = self.name_node_dict[node.input[0]]
336         i1_node = self.name_node_dict[node.input[1]]
337         np.array([self.op2code['MathBinary'], self.mathbin2code[node.op]], dtype=np.uint32).tofile(f)
338         if i0_node.op == 'Const':
339             scalar = i0_node.attr['value'].tensor.float_val[0]
340             np.array([1], dtype=np.uint32).tofile(f)            # broadcast: 1
341             np.array([scalar], dtype=np.float32).tofile(f)
342             np.array([0], dtype=np.uint32).tofile(f)            # broadcast: 0
343             input_operand_index = self.add_operand(i1_node.name, Operand.IOTYPE_INPUT)
344             np.array([input_operand_index], dtype=np.uint32).tofile(f)
345         elif i1_node.op == 'Const':
346             scalar = i1_node.attr['value'].tensor.float_val[0]
347             np.array([0], dtype=np.uint32).tofile(f)
348             input_operand_index = self.add_operand(i0_node.name, Operand.IOTYPE_INPUT)
349             np.array([input_operand_index], dtype=np.uint32).tofile(f)
350             np.array([1], dtype=np.uint32).tofile(f)
351             np.array([scalar], dtype=np.float32).tofile(f)
352         else:
353             np.array([0], dtype=np.uint32).tofile(f)
354             input_operand_index = self.add_operand(i0_node.name, Operand.IOTYPE_INPUT)
355             np.array([input_operand_index], dtype=np.uint32).tofile(f)
356             np.array([0], dtype=np.uint32).tofile(f)
357             input_operand_index = self.add_operand(i1_node.name, Operand.IOTYPE_INPUT)
358             np.array([input_operand_index], dtype=np.uint32).tofile(f)
359         output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT)
360         np.array([output_operand_index], dtype=np.uint32).tofile(f)
361
362
363     def dump_mathunary_to_file(self, node, f):
364         self.layer_number = self.layer_number + 1
365         self.converted_nodes.add(node.name)
366         i0_node = self.name_node_dict[node.input[0]]
367         np.array([self.op2code['MathUnary'], self.mathun2code[node.op]], dtype=np.uint32).tofile(f)
368         input_operand_index = self.add_operand(i0_node.name, Operand.IOTYPE_INPUT)
369         np.array([input_operand_index], dtype=np.uint32).tofile(f)
370         output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT)
371         np.array([output_operand_index],dtype=np.uint32).tofile(f)
372
373
374     def dump_avg_pool_to_file(self, node, f):
375         assert(node.op == 'AvgPool')
376         self.layer_number = self.layer_number + 1
377         self.converted_nodes.add(node.name)
378         node0 = self.name_node_dict[node.input[0]]
379         strides = node.attr['strides']
380
381         # Tensorflow do not support pooling strides in batch dimension and
382         # current native NN do not support pooling strides in channel dimension, added assert() here.
383         assert(strides.list.i[1]==strides.list.i[2])
384         assert(strides.list.i[0]==1)
385         assert(strides.list.i[3]==1)
386         strides = strides.list.i[1]
387         filter_node = node.attr['ksize']
388         input_name = node.input[0]
389
390         # Tensorflow do not support pooling ksize in batch dimension and channel dimension.
391         assert(filter_node.list.i[0]==1)
392         assert(filter_node.list.i[3]==1)
393         filter_height = filter_node.list.i[1]
394         filter_width = filter_node.list.i[2]
395
396         padding = node.attr['padding'].s.decode("utf-8")
397         np.array([self.op2code[node.op], strides, self.pool_paddings[padding], filter_height],
398                  dtype=np.uint32).tofile(f)
399
400         input_operand_index = self.add_operand(input_name, Operand.IOTYPE_INPUT)
401         output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT)
402         np.array([input_operand_index, output_operand_index],dtype=np.uint32).tofile(f)
403
404
405     def dump_layers_to_file(self, f):
406         for node in self.nodes:
407             if node.name in self.converted_nodes:
408                 continue
409
410             # conv2d with dilation generates very complex nodes, so handle it in special
411             if self.in_conv2d_scope(node.name):
412                 if node.op == 'Conv2D':
413                     self.dump_complex_conv2d_to_file(node, f)
414                 continue
415             if self.in_dense_scope(node.name):
416                 if node.op == 'MatMul':
417                     self.dump_dense_to_file(node, f)
418                 continue
419
420
421             if node.op == 'Conv2D':
422                 self.dump_simple_conv2d_to_file(node, f)
423                 continue
424             if node.name in self.output_names:
425                 input_name = self.id_different_scope_dict[node.name]
426                 if TFConverter.get_scope_name(input_name)!=TFConverter.get_scope_name(node.name):
427                     continue
428             if node.op == 'AvgPool':
429                 self.dump_avg_pool_to_file(node, f)
430             elif node.op == 'DepthToSpace':
431                 self.dump_depth2space_to_file(node, f)
432             elif node.op == 'MirrorPad':
433                 self.dump_mirrorpad_to_file(node, f)
434             elif node.op == 'Maximum':
435                 self.dump_maximum_to_file(node, f)
436             elif node.op in self.mathbin2code:
437                 self.dump_mathbinary_to_file(node, f)
438             elif node.op in self.mathun2code:
439                 self.dump_mathunary_to_file(node, f)
440
441
442     def dump_operands_to_file(self, f):
443             operands = sorted(self.name_operand_dict.values())
444             for operand in operands:
445                 #print('{}'.format(operand))
446                 np.array([operand.index, len(operand.name)], dtype=np.uint32).tofile(f)
447                 f.write(operand.name.encode('utf-8'))
448                 np.array([operand.iotype, operand.dtype], dtype=np.uint32).tofile(f)
449                 np.array(operand.dims, dtype=np.uint32).tofile(f)
450
451
452     def dump_to_file(self):
453         with open(self.outfile, 'wb') as f:
454             f.write(header.str.encode('utf-8'))
455             np.array([header.major, header.minor], dtype=np.uint32).tofile(f)
456             self.dump_layers_to_file(f)
457             self.dump_operands_to_file(f)
458             np.array([self.layer_number, len(self.name_operand_dict)], dtype=np.uint32).tofile(f)
459
460
461     def generate_name_node_dict(self):
462         for node in self.nodes:
463             self.name_node_dict[node.name] = node
464
465
466     def generate_output_names(self):
467         used_names = []
468         for node in self.nodes:
469             for input in node.input:
470                 used_names.append(input)
471
472         for node in self.nodes:
473             if node.name not in used_names:
474                 self.output_names.append(node.name)
475
476
477     def remove_identity(self):
478         self.id_different_scope_dict = {}
479         id_nodes = []
480         id_dict = {}
481         for node in self.nodes:
482             if node.op == 'Identity':
483                 name = node.name
484                 input = node.input[0]
485                 id_nodes.append(node)
486                 # do not change the output name
487                 if name in self.output_names:
488                     self.name_node_dict[input].name = name
489                     self.name_node_dict[name] = self.name_node_dict[input]
490                     del self.name_node_dict[input]
491                     self.id_different_scope_dict[name] = input
492                 else:
493                     id_dict[name] = input
494
495         for idnode in id_nodes:
496             self.nodes.remove(idnode)
497
498         for node in self.nodes:
499             for i in range(len(node.input)):
500                 input = node.input[i]
501                 if input in id_dict:
502                     node.input[i] = id_dict[input]
503
504
505     def generate_edges(self):
506         for node in self.nodes:
507             for input in node.input:
508                 if input in self.edges:
509                     self.edges[input].append(node)
510                 else:
511                     self.edges[input] = [node]
512
513
514     @staticmethod
515     def get_scope_name(name):
516         index = name.rfind('/')
517         if index == -1:
518             return ""
519         return name[0:index]
520
521
522     def in_conv2d_scope(self, name):
523         inner_scope = TFConverter.get_scope_name(name)
524         if inner_scope == "":
525             return False;
526         for scope in self.conv2d_scope_names:
527             index = inner_scope.find(scope)
528             if index == 0:
529                 return True
530         return False
531
532
533     def in_dense_scope(self, name):
534         inner_scope = TFConverter.get_scope_name(name)
535         if inner_scope == "":
536             return False;
537         for scope in self.dense_scope_names:
538             index = inner_scope.find(scope)
539             if index == 0:
540                 return True
541         return False
542
543     def generate_sub_block_op_scope_info(self):
544         # mostly, conv2d/dense is a sub block in graph, get the scope name
545         for node in self.nodes:
546             if node.op == 'Conv2D':
547                 scope = TFConverter.get_scope_name(node.name)
548                 # for the case tf.nn.conv2d is called directly
549                 if scope == '':
550                     continue
551                 # for the case tf.nn.conv2d is called within a scope
552                 if scope + '/kernel' not in self.name_node_dict:
553                     continue
554                 self.conv2d_scope_names.add(scope)
555             elif node.op == 'MatMul':
556                 scope = TFConverter.get_scope_name(node.name)
557                 # for the case tf.nn.dense is called directly
558                 if scope == '':
559                     continue
560                 # for the case tf.nn.dense is called within a scope
561                 if scope + '/kernel' not in self.name_node_dict and scope.split('/Tensordot')[0] + '/kernel' not in self.name_node_dict:
562                     continue
563                 self.dense_scope_names.add(scope.split('/Tensordot')[0])
564
565         # get the input name to the conv2d/dense sub block
566         for node in self.nodes:
567             scope = TFConverter.get_scope_name(node.name)
568             if scope in self.conv2d_scope_names:
569                 if node.op == 'Conv2D' or node.op == 'Shape':
570                     for inp in node.input:
571                         if TFConverter.get_scope_name(inp) != scope:
572                             self.conv2d_scopename_inputname_dict[scope] = inp
573             elif scope in self.dense_scope_names:
574                 if node.op == 'MatMul' or node.op == 'Shape':
575                     for inp in node.input:
576                         if TFConverter.get_scope_name(inp) != scope:
577                             self.dense_scopename_inputname_dict[scope] = inp
578             elif scope.split('/Tensordot')[0] in self.dense_scope_names:
579                 if node.op == 'Transpose':
580                     for inp in node.input:
581                         if TFConverter.get_scope_name(inp).find(scope)<0 and TFConverter.get_scope_name(inp).find(scope.split('/')[0])<0:
582                             self.dense_scopename_inputname_dict[scope.split('/Tensordot')[0]] = inp
583
584
585     def run(self):
586         self.generate_name_node_dict()
587         self.generate_output_names()
588         self.remove_identity()
589         self.generate_edges()
590         self.generate_sub_block_op_scope_info()
591
592         if self.dump4tb:
593             self.dump_for_tensorboard()
594
595         self.dump_to_file()
596
597
598 def convert_from_tensorflow(infile, outfile, dump4tb):
599     with open(infile, 'rb') as f:
600         # read the file in .proto format
601         graph_def = tf.GraphDef()
602         graph_def.ParseFromString(f.read())
603         nodes = graph_def.node
604
605     converter = TFConverter(graph_def, nodes, outfile, dump4tb)
606     converter.run()