]> git.sesse.net Git - ffmpeg/blob - tools/python/convert_from_tensorflow.py
78297e48a9f6e41ea209b4d9e36a2d8628fb5952
[ffmpeg] / tools / python / convert_from_tensorflow.py
1 # Copyright (c) 2019 Guo Yejun
2 #
3 # This file is part of FFmpeg.
4 #
5 # FFmpeg is free software; you can redistribute it and/or
6 # modify it under the terms of the GNU Lesser General Public
7 # License as published by the Free Software Foundation; either
8 # version 2.1 of the License, or (at your option) any later version.
9 #
10 # FFmpeg is distributed in the hope that it will be useful,
11 # but WITHOUT ANY WARRANTY; without even the implied warranty of
12 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13 # Lesser General Public License for more details.
14 #
15 # You should have received a copy of the GNU Lesser General Public
16 # License along with FFmpeg; if not, write to the Free Software
17 # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 # ==============================================================================
19
20 import tensorflow as tf
21 import numpy as np
22 import sys, struct
23 import convert_header as header
24
25 __all__ = ['convert_from_tensorflow']
26
27 class Operand(object):
28     IOTYPE_INPUT = 1
29     IOTYPE_OUTPUT = 2
30     IOTYPE_INTERMEDIATE = IOTYPE_INPUT | IOTYPE_OUTPUT
31     DTYPE_FLOAT = 1
32     DTYPE_UINT8 = 4
33     index = 0
34     def __init__(self, name, dtype, dims):
35         self.name = name
36         self.dtype = dtype
37         self.dims = dims
38         self.iotype = 0
39         self.used_count = 0
40         self.index = Operand.index
41         Operand.index = Operand.index + 1
42         self.iotype2str = {Operand.IOTYPE_INPUT: 'in', Operand.IOTYPE_OUTPUT: 'out', Operand.IOTYPE_INTERMEDIATE: 'inout'}
43         self.dtype2str = {Operand.DTYPE_FLOAT: 'DT_FLOAT', Operand.DTYPE_UINT8: 'DT_UINT8'}
44
45     def add_iotype(self, iotype):
46         self.iotype = self.iotype | iotype
47         if iotype == Operand.IOTYPE_INPUT:
48             self.used_count = self.used_count + 1
49
50     def __str__(self):
51         return "{}: (name: {}, iotype: {}, dtype: {}, dims: ({},{},{},{}) used_count: {})".format(self.index,
52                             self.name, self.iotype2str[self.iotype], self.dtype2str[self.dtype],
53                             self.dims[0], self.dims[1], self.dims[2], self.dims[3], self.used_count)
54
55     def __lt__(self, other):
56         return self.index < other.index
57
58 class TFConverter:
59     def __init__(self, graph_def, nodes, outfile, dump4tb):
60         self.graph_def = graph_def
61         self.nodes = nodes
62         self.outfile = outfile
63         self.dump4tb = dump4tb
64         self.layer_number = 0
65         self.output_names = []
66         self.name_node_dict = {}
67         self.edges = {}
68         self.conv_activations = {'Relu':0, 'Tanh':1, 'Sigmoid':2, 'None':3, 'LeakyRelu':4}
69         self.conv_paddings = {'VALID':0, 'SAME':1}
70         self.converted_nodes = set()
71         self.conv2d_scope_names = set()
72         self.conv2d_scopename_inputname_dict = {}
73         self.op2code = {'Conv2D':1, 'DepthToSpace':2, 'MirrorPad':3, 'Maximum':4, 'MathBinary':5, 'MathUnary':6}
74         self.mathbin2code = {'Sub':0, 'Add':1, 'Mul':2, 'RealDiv':3, 'Minimum':4}
75         self.mathun2code  = {'Abs':0, 'Sin':1, 'Cos':2, 'Tan':3, 'Asin':4, 'Acos':5}
76         self.mirrorpad_mode = {'CONSTANT':0, 'REFLECT':1, 'SYMMETRIC':2}
77         self.name_operand_dict = {}
78
79
80     def add_operand(self, name, type):
81         node = self.name_node_dict[name]
82         if name not in self.name_operand_dict:
83             dtype = node.attr['dtype'].type
84             if dtype == 0:
85                 dtype = node.attr['T'].type
86             dims = [-1,-1,-1,-1]
87             if 'shape' in node.attr:
88                 dims[0] = node.attr['shape'].shape.dim[0].size
89                 dims[1] = node.attr['shape'].shape.dim[1].size
90                 dims[2] = node.attr['shape'].shape.dim[2].size
91                 dims[3] = node.attr['shape'].shape.dim[3].size
92             operand = Operand(name, dtype, dims)
93             self.name_operand_dict[name] = operand;
94         self.name_operand_dict[name].add_iotype(type)
95         return self.name_operand_dict[name].index
96
97
98     def dump_for_tensorboard(self):
99         graph = tf.get_default_graph()
100         tf.import_graph_def(self.graph_def, name="")
101         tf.summary.FileWriter('/tmp/graph', graph)
102         print('graph saved, run "tensorboard --logdir=/tmp/graph" to see it')
103
104
105     def get_conv2d_params(self, conv2d_scope_name):
106         knode = self.name_node_dict[conv2d_scope_name + '/kernel']
107         bnode = self.name_node_dict[conv2d_scope_name + '/bias']
108
109         if conv2d_scope_name + '/dilation_rate' in self.name_node_dict:
110             dnode = self.name_node_dict[conv2d_scope_name + '/dilation_rate']
111         else:
112             dnode = None
113
114         # the BiasAdd name is possible be changed into the output name,
115         # if activation is None, and BiasAdd.next is the last op which is Identity
116         if conv2d_scope_name + '/BiasAdd' in self.edges:
117             anode = self.edges[conv2d_scope_name + '/BiasAdd'][0]
118             if anode.op not in self.conv_activations:
119                 anode = None
120         else:
121             anode = None
122         return knode, bnode, dnode, anode
123
124
125     def dump_complex_conv2d_to_file(self, node, f):
126         assert(node.op == 'Conv2D')
127         self.layer_number = self.layer_number + 1
128         self.converted_nodes.add(node.name)
129
130         scope_name = TFConverter.get_scope_name(node.name)
131         #knode for kernel, bnode for bias, dnode for dilation, anode for activation
132         knode, bnode, dnode, anode = self.get_conv2d_params(scope_name)
133
134         if dnode is not None:
135             dilation = struct.unpack('i', dnode.attr['value'].tensor.tensor_content[0:4])[0]
136         else:
137             dilation = 1
138
139         if anode is not None:
140             activation = anode.op
141         else:
142             activation = 'None'
143
144         padding = node.attr['padding'].s.decode("utf-8")
145         # conv2d with dilation > 1 generates tens of nodes, not easy to parse them, so use this tricky method.
146         if dilation > 1 and scope_name + '/stack' in self.name_node_dict:
147             if self.name_node_dict[scope_name + '/stack'].op == "Const":
148                 padding = 'SAME'
149         padding = self.conv_paddings[padding]
150
151         ktensor = knode.attr['value'].tensor
152         filter_height = ktensor.tensor_shape.dim[0].size
153         filter_width = ktensor.tensor_shape.dim[1].size
154         in_channels = ktensor.tensor_shape.dim[2].size
155         out_channels = ktensor.tensor_shape.dim[3].size
156         kernel = np.frombuffer(ktensor.tensor_content, dtype=np.float32)
157         kernel = kernel.reshape(filter_height, filter_width, in_channels, out_channels)
158         kernel = np.transpose(kernel, [3, 0, 1, 2])
159
160         has_bias = 1
161         np.array([self.op2code[node.op], dilation, padding, self.conv_activations[activation], in_channels, out_channels, filter_height, has_bias], dtype=np.uint32).tofile(f)
162         kernel.tofile(f)
163
164         btensor = bnode.attr['value'].tensor
165         if btensor.tensor_shape.dim[0].size == 1:
166             bias = struct.pack("f", btensor.float_val[0])
167         else:
168             bias = btensor.tensor_content
169         f.write(bias)
170
171         input_name = self.conv2d_scopename_inputname_dict[scope_name]
172         input_operand_index = self.add_operand(input_name, Operand.IOTYPE_INPUT)
173
174         if anode is not None:
175             output_operand_index = self.add_operand(anode.name, Operand.IOTYPE_OUTPUT)
176         else:
177             output_operand_index = self.add_operand(self.edges[bnode.name][0].name, Operand.IOTYPE_OUTPUT)
178         np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)
179
180
181     def dump_simple_conv2d_to_file(self, node, f):
182         assert(node.op == 'Conv2D')
183         self.layer_number = self.layer_number + 1
184         self.converted_nodes.add(node.name)
185
186         node0 = self.name_node_dict[node.input[0]]
187         node1 = self.name_node_dict[node.input[1]]
188         if node0.op == 'Const':
189             knode = node0
190             input_name = node.input[1]
191         else:
192             knode = node1
193             input_name = node.input[0]
194
195         ktensor = knode.attr['value'].tensor
196         filter_height = ktensor.tensor_shape.dim[0].size
197         filter_width = ktensor.tensor_shape.dim[1].size
198         in_channels = ktensor.tensor_shape.dim[2].size
199         out_channels = ktensor.tensor_shape.dim[3].size
200         if filter_height * filter_width * in_channels * out_channels == 1:
201             kernel = np.float32(ktensor.float_val[0])
202         else:
203             kernel = np.frombuffer(ktensor.tensor_content, dtype=np.float32)
204         kernel = kernel.reshape(filter_height, filter_width, in_channels, out_channels)
205         kernel = np.transpose(kernel, [3, 0, 1, 2])
206
207         has_bias = 0
208         dilation = 1
209         padding = node.attr['padding'].s.decode("utf-8")
210         np.array([self.op2code[node.op], dilation, self.conv_paddings[padding], self.conv_activations['None'],
211                   in_channels, out_channels, filter_height, has_bias], dtype=np.uint32).tofile(f)
212         kernel.tofile(f)
213
214         input_operand_index = self.add_operand(input_name, Operand.IOTYPE_INPUT)
215         output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT)
216         np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)
217
218
219     def dump_depth2space_to_file(self, node, f):
220         assert(node.op == 'DepthToSpace')
221         self.layer_number = self.layer_number + 1
222         block_size = node.attr['block_size'].i
223         np.array([self.op2code[node.op], block_size], dtype=np.uint32).tofile(f)
224         self.converted_nodes.add(node.name)
225         input_operand_index = self.add_operand(node.input[0], Operand.IOTYPE_INPUT)
226         output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT)
227         np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)
228
229
230     def dump_mirrorpad_to_file(self, node, f):
231         assert(node.op == 'MirrorPad')
232         self.layer_number = self.layer_number + 1
233         mode = node.attr['mode'].s
234         mode = self.mirrorpad_mode[mode.decode("utf-8")]
235         np.array([self.op2code[node.op], mode], dtype=np.uint32).tofile(f)
236         pnode = self.name_node_dict[node.input[1]]
237         self.converted_nodes.add(pnode.name)
238         paddings = pnode.attr['value'].tensor.tensor_content
239         f.write(paddings)
240         self.converted_nodes.add(node.name)
241         input_operand_index = self.add_operand(node.input[0], Operand.IOTYPE_INPUT)
242         output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT)
243         np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)
244
245
246     def dump_maximum_to_file(self, node, f):
247         assert(node.op == 'Maximum')
248         self.layer_number = self.layer_number + 1
249         ynode = self.name_node_dict[node.input[1]]
250         y = ynode.attr['value'].tensor.float_val[0]
251         np.array([self.op2code[node.op]], dtype=np.uint32).tofile(f)
252         np.array([y], dtype=np.float32).tofile(f)
253         self.converted_nodes.add(node.name)
254         input_operand_index = self.add_operand(node.input[0], Operand.IOTYPE_INPUT)
255         output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT)
256         np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)
257
258
259     def dump_mathbinary_to_file(self, node, f):
260         self.layer_number = self.layer_number + 1
261         self.converted_nodes.add(node.name)
262         i0_node = self.name_node_dict[node.input[0]]
263         i1_node = self.name_node_dict[node.input[1]]
264         np.array([self.op2code['MathBinary'], self.mathbin2code[node.op]], dtype=np.uint32).tofile(f)
265         if i0_node.op == 'Const':
266             scalar = i0_node.attr['value'].tensor.float_val[0]
267             np.array([1], dtype=np.uint32).tofile(f)            # broadcast: 1
268             np.array([scalar], dtype=np.float32).tofile(f)
269             np.array([0], dtype=np.uint32).tofile(f)            # broadcast: 0
270             input_operand_index = self.add_operand(i1_node.name, Operand.IOTYPE_INPUT)
271             np.array([input_operand_index], dtype=np.uint32).tofile(f)
272         elif i1_node.op == 'Const':
273             scalar = i1_node.attr['value'].tensor.float_val[0]
274             np.array([0], dtype=np.uint32).tofile(f)
275             input_operand_index = self.add_operand(i0_node.name, Operand.IOTYPE_INPUT)
276             np.array([input_operand_index], dtype=np.uint32).tofile(f)
277             np.array([1], dtype=np.uint32).tofile(f)
278             np.array([scalar], dtype=np.float32).tofile(f)
279         else:
280             np.array([0], dtype=np.uint32).tofile(f)
281             input_operand_index = self.add_operand(i0_node.name, Operand.IOTYPE_INPUT)
282             np.array([input_operand_index], dtype=np.uint32).tofile(f)
283             np.array([0], dtype=np.uint32).tofile(f)
284             input_operand_index = self.add_operand(i1_node.name, Operand.IOTYPE_INPUT)
285             np.array([input_operand_index], dtype=np.uint32).tofile(f)
286         output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT)
287         np.array([output_operand_index], dtype=np.uint32).tofile(f)
288
289
290     def dump_mathunary_to_file(self, node, f):
291         self.layer_number = self.layer_number + 1
292         self.converted_nodes.add(node.name)
293         i0_node = self.name_node_dict[node.input[0]]
294         np.array([self.op2code['MathUnary'], self.mathun2code[node.op]], dtype=np.uint32).tofile(f)
295         input_operand_index = self.add_operand(i0_node.name, Operand.IOTYPE_INPUT)
296         np.array([input_operand_index], dtype=np.uint32).tofile(f)
297         output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT)
298         np.array([output_operand_index],dtype=np.uint32).tofile(f)
299
300
301     def dump_layers_to_file(self, f):
302         for node in self.nodes:
303             if node.name in self.converted_nodes:
304                 continue
305
306             # conv2d with dilation generates very complex nodes, so handle it in special
307             if self.in_conv2d_scope(node.name):
308                 if node.op == 'Conv2D':
309                     self.dump_complex_conv2d_to_file(node, f)
310                 continue
311
312             if node.op == 'Conv2D':
313                 self.dump_simple_conv2d_to_file(node, f)
314             elif node.op == 'DepthToSpace':
315                 self.dump_depth2space_to_file(node, f)
316             elif node.op == 'MirrorPad':
317                 self.dump_mirrorpad_to_file(node, f)
318             elif node.op == 'Maximum':
319                 self.dump_maximum_to_file(node, f)
320             elif node.op in self.mathbin2code:
321                 self.dump_mathbinary_to_file(node, f)
322             elif node.op in self.mathun2code:
323                 self.dump_mathunary_to_file(node, f)
324
325
326     def dump_operands_to_file(self, f):
327             operands = sorted(self.name_operand_dict.values())
328             for operand in operands:
329                 #print('{}'.format(operand))
330                 np.array([operand.index, len(operand.name)], dtype=np.uint32).tofile(f)
331                 f.write(operand.name.encode('utf-8'))
332                 np.array([operand.iotype, operand.dtype], dtype=np.uint32).tofile(f)
333                 np.array([operand.dims[0], operand.dims[1], operand.dims[2], operand.dims[3]], dtype=np.uint32).tofile(f)
334
335
336     def dump_to_file(self):
337         with open(self.outfile, 'wb') as f:
338             f.write(header.str.encode('utf-8'))
339             np.array([header.major, header.minor], dtype=np.uint32).tofile(f)
340             self.dump_layers_to_file(f)
341             self.dump_operands_to_file(f)
342             np.array([self.layer_number, len(self.name_operand_dict)], dtype=np.uint32).tofile(f)
343
344
345     def generate_name_node_dict(self):
346         for node in self.nodes:
347             self.name_node_dict[node.name] = node
348
349
350     def generate_output_names(self):
351         used_names = []
352         for node in self.nodes:
353             for input in node.input:
354                 used_names.append(input)
355
356         for node in self.nodes:
357             if node.name not in used_names:
358                 self.output_names.append(node.name)
359
360
361     def remove_identity(self):
362         id_nodes = []
363         id_dict = {}
364         for node in self.nodes:
365             if node.op == 'Identity':
366                 name = node.name
367                 input = node.input[0]
368                 id_nodes.append(node)
369                 # do not change the output name
370                 if name in self.output_names:
371                     self.name_node_dict[input].name = name
372                     self.name_node_dict[name] = self.name_node_dict[input]
373                     del self.name_node_dict[input]
374                 else:
375                     id_dict[name] = input
376
377         for idnode in id_nodes:
378             self.nodes.remove(idnode)
379
380         for node in self.nodes:
381             for i in range(len(node.input)):
382                 input = node.input[i]
383                 if input in id_dict:
384                     node.input[i] = id_dict[input]
385
386
387     def generate_edges(self):
388         for node in self.nodes:
389             for input in node.input:
390                 if input in self.edges:
391                     self.edges[input].append(node)
392                 else:
393                     self.edges[input] = [node]
394
395
396     @staticmethod
397     def get_scope_name(name):
398         index = name.rfind('/')
399         if index == -1:
400             return ""
401         return name[0:index]
402
403
404     def in_conv2d_scope(self, name):
405         inner_scope = TFConverter.get_scope_name(name)
406         if inner_scope == "":
407             return False;
408         for scope in self.conv2d_scope_names:
409             index = inner_scope.find(scope)
410             if index == 0:
411                 return True
412         return False
413
414
415     def generate_conv2d_scope_info(self):
416         # mostly, conv2d is a sub block in graph, get the scope name
417         for node in self.nodes:
418             if node.op == 'Conv2D':
419                 scope = TFConverter.get_scope_name(node.name)
420                 # for the case tf.nn.conv2d is called directly
421                 if scope == '':
422                     continue
423                 # for the case tf.nn.conv2d is called within a scope
424                 if scope + '/kernel' not in self.name_node_dict:
425                     continue
426                 self.conv2d_scope_names.add(scope)
427
428         # get the input name to the conv2d sub block
429         for node in self.nodes:
430             scope = TFConverter.get_scope_name(node.name)
431             if scope in self.conv2d_scope_names:
432                 if node.op == 'Conv2D' or node.op == 'Shape':
433                     for inp in node.input:
434                         if TFConverter.get_scope_name(inp) != scope:
435                             self.conv2d_scopename_inputname_dict[scope] = inp
436
437
438     def run(self):
439         self.generate_name_node_dict()
440         self.generate_output_names()
441         self.remove_identity()
442         self.generate_edges()
443         self.generate_conv2d_scope_info()
444
445         if self.dump4tb:
446             self.dump_for_tensorboard()
447
448         self.dump_to_file()
449
450
451 def convert_from_tensorflow(infile, outfile, dump4tb):
452     with open(infile, 'rb') as f:
453         # read the file in .proto format
454         graph_def = tf.GraphDef()
455         graph_def.ParseFromString(f.read())
456         nodes = graph_def.node
457
458     converter = TFConverter(graph_def, nodes, outfile, dump4tb)
459     converter.run()