]> git.sesse.net Git - ffmpeg/blob - tools/python/convert_from_tensorflow.py
libavfilter/dnn: add layer maximum for native mode.
[ffmpeg] / tools / python / convert_from_tensorflow.py
1 # Copyright (c) 2019 Guo Yejun
2 #
3 # This file is part of FFmpeg.
4 #
5 # FFmpeg is free software; you can redistribute it and/or
6 # modify it under the terms of the GNU Lesser General Public
7 # License as published by the Free Software Foundation; either
8 # version 2.1 of the License, or (at your option) any later version.
9 #
10 # FFmpeg is distributed in the hope that it will be useful,
11 # but WITHOUT ANY WARRANTY; without even the implied warranty of
12 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13 # Lesser General Public License for more details.
14 #
15 # You should have received a copy of the GNU Lesser General Public
16 # License along with FFmpeg; if not, write to the Free Software
17 # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 # ==============================================================================
19
20 import tensorflow as tf
21 import numpy as np
22 import sys, struct
23 import convert_header as header
24
25 __all__ = ['convert_from_tensorflow']
26
27 class Operand(object):
28     IOTYPE_INPUT = 1
29     IOTYPE_OUTPUT = 2
30     IOTYPE_INTERMEDIATE = IOTYPE_INPUT | IOTYPE_OUTPUT
31     DTYPE_FLOAT = 1
32     DTYPE_UINT8 = 4
33     index = 0
34     def __init__(self, name, dtype, dims):
35         self.name = name
36         self.dtype = dtype
37         self.dims = dims
38         self.iotype = 0
39         self.used_count = 0
40         self.index = Operand.index
41         Operand.index = Operand.index + 1
42         self.iotype2str = {Operand.IOTYPE_INPUT: 'in', Operand.IOTYPE_OUTPUT: 'out', Operand.IOTYPE_INTERMEDIATE: 'inout'}
43         self.dtype2str = {Operand.DTYPE_FLOAT: 'DT_FLOAT', Operand.DTYPE_UINT8: 'DT_UINT8'}
44
45     def add_iotype(self, iotype):
46         self.iotype = self.iotype | iotype
47         if iotype == Operand.IOTYPE_INPUT:
48             self.used_count = self.used_count + 1
49
50     def __str__(self):
51         return "{}: (name: {}, iotype: {}, dtype: {}, dims: ({},{},{},{}) used_count: {})".format(self.index,
52                             self.name, self.iotype2str[self.iotype], self.dtype2str[self.dtype],
53                             self.dims[0], self.dims[1], self.dims[2], self.dims[3], self.used_count)
54
55     def __lt__(self, other):
56         return self.index < other.index
57
58 class TFConverter:
59     def __init__(self, graph_def, nodes, outfile, dump4tb):
60         self.graph_def = graph_def
61         self.nodes = nodes
62         self.outfile = outfile
63         self.dump4tb = dump4tb
64         self.layer_number = 0
65         self.output_names = []
66         self.name_node_dict = {}
67         self.edges = {}
68         self.conv_activations = {'Relu':0, 'Tanh':1, 'Sigmoid':2, 'None':3, 'LeakyRelu':4}
69         self.conv_paddings = {'VALID':0, 'SAME':1}
70         self.converted_nodes = set()
71         self.conv2d_scope_names = set()
72         self.conv2d_scopename_inputname_dict = {}
73         self.op2code = {'Conv2D':1, 'DepthToSpace':2, 'MirrorPad':3, 'Maximum':4}
74         self.mirrorpad_mode = {'CONSTANT':0, 'REFLECT':1, 'SYMMETRIC':2}
75         self.name_operand_dict = {}
76
77
78     def add_operand(self, name, type):
79         node = self.name_node_dict[name]
80         if name not in self.name_operand_dict:
81             dtype = node.attr['dtype'].type
82             if dtype == 0:
83                 dtype = node.attr['T'].type
84             dims = [-1,-1,-1,-1]
85             if 'shape' in node.attr:
86                 dims[0] = node.attr['shape'].shape.dim[0].size
87                 dims[1] = node.attr['shape'].shape.dim[1].size
88                 dims[2] = node.attr['shape'].shape.dim[2].size
89                 dims[3] = node.attr['shape'].shape.dim[3].size
90             operand = Operand(name, dtype, dims)
91             self.name_operand_dict[name] = operand;
92         self.name_operand_dict[name].add_iotype(type)
93         return self.name_operand_dict[name].index
94
95
96     def dump_for_tensorboard(self):
97         graph = tf.get_default_graph()
98         tf.import_graph_def(self.graph_def, name="")
99         tf.summary.FileWriter('/tmp/graph', graph)
100         print('graph saved, run "tensorboard --logdir=/tmp/graph" to see it')
101
102
103     def get_conv2d_params(self, conv2d_scope_name):
104         knode = self.name_node_dict[conv2d_scope_name + '/kernel']
105         bnode = self.name_node_dict[conv2d_scope_name + '/bias']
106
107         if conv2d_scope_name + '/dilation_rate' in self.name_node_dict:
108             dnode = self.name_node_dict[conv2d_scope_name + '/dilation_rate']
109         else:
110             dnode = None
111
112         # the BiasAdd name is possible be changed into the output name,
113         # if activation is None, and BiasAdd.next is the last op which is Identity
114         if conv2d_scope_name + '/BiasAdd' in self.edges:
115             anode = self.edges[conv2d_scope_name + '/BiasAdd'][0]
116         else:
117             anode = None
118         return knode, bnode, dnode, anode
119
120
121     def dump_conv2d_to_file(self, node, f):
122         assert(node.op == 'Conv2D')
123         self.layer_number = self.layer_number + 1
124         self.converted_nodes.add(node.name)
125
126         scope_name = TFConverter.get_scope_name(node.name)
127         #knode for kernel, bnode for bias, dnode for dilation, anode for activation
128         knode, bnode, dnode, anode = self.get_conv2d_params(scope_name)
129
130         if dnode is not None:
131             dilation = struct.unpack('i', dnode.attr['value'].tensor.tensor_content[0:4])[0]
132         else:
133             dilation = 1
134
135         if anode is not None:
136             activation = anode.op
137         else:
138             activation = 'None'
139
140         padding = node.attr['padding'].s.decode("utf-8")
141         # conv2d with dilation > 1 generates tens of nodes, not easy to parse them, so use this tricky method.
142         if dilation > 1 and scope_name + '/stack' in self.name_node_dict:
143             if self.name_node_dict[scope_name + '/stack'].op == "Const":
144                 padding = 'SAME'
145         padding = self.conv_paddings[padding]
146
147         ktensor = knode.attr['value'].tensor
148         filter_height = ktensor.tensor_shape.dim[0].size
149         filter_width = ktensor.tensor_shape.dim[1].size
150         in_channels = ktensor.tensor_shape.dim[2].size
151         out_channels = ktensor.tensor_shape.dim[3].size
152         kernel = np.frombuffer(ktensor.tensor_content, dtype=np.float32)
153         kernel = kernel.reshape(filter_height, filter_width, in_channels, out_channels)
154         kernel = np.transpose(kernel, [3, 0, 1, 2])
155
156         np.array([self.op2code[node.op], dilation, padding, self.conv_activations[activation], in_channels, out_channels, filter_height], dtype=np.uint32).tofile(f)
157         kernel.tofile(f)
158
159         btensor = bnode.attr['value'].tensor
160         if btensor.tensor_shape.dim[0].size == 1:
161             bias = struct.pack("f", btensor.float_val[0])
162         else:
163             bias = btensor.tensor_content
164         f.write(bias)
165
166         input_name = self.conv2d_scopename_inputname_dict[scope_name]
167         input_operand_index = self.add_operand(input_name, Operand.IOTYPE_INPUT)
168
169         if anode is not None:
170             output_operand_index = self.add_operand(anode.name, Operand.IOTYPE_OUTPUT)
171         else:
172             output_operand_index = self.add_operand(self.edges[bnode.name][0].name, Operand.IOTYPE_OUTPUT)
173         np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)
174
175
176     def dump_depth2space_to_file(self, node, f):
177         assert(node.op == 'DepthToSpace')
178         self.layer_number = self.layer_number + 1
179         block_size = node.attr['block_size'].i
180         np.array([self.op2code[node.op], block_size], dtype=np.uint32).tofile(f)
181         self.converted_nodes.add(node.name)
182         input_operand_index = self.add_operand(node.input[0], Operand.IOTYPE_INPUT)
183         output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT)
184         np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)
185
186
187     def dump_mirrorpad_to_file(self, node, f):
188         assert(node.op == 'MirrorPad')
189         self.layer_number = self.layer_number + 1
190         mode = node.attr['mode'].s
191         mode = self.mirrorpad_mode[mode.decode("utf-8")]
192         np.array([self.op2code[node.op], mode], dtype=np.uint32).tofile(f)
193         pnode = self.name_node_dict[node.input[1]]
194         self.converted_nodes.add(pnode.name)
195         paddings = pnode.attr['value'].tensor.tensor_content
196         f.write(paddings)
197         self.converted_nodes.add(node.name)
198         input_operand_index = self.add_operand(node.input[0], Operand.IOTYPE_INPUT)
199         output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT)
200         np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)
201
202
203     def dump_maximum_to_file(self, node, f):
204         assert(node.op == 'Maximum')
205         self.layer_number = self.layer_number + 1
206         ynode = self.name_node_dict[node.input[1]]
207         y = ynode.attr['value'].tensor.float_val[0]
208         np.array([self.op2code[node.op]], dtype=np.uint32).tofile(f)
209         np.array([y], dtype=np.float32).tofile(f)
210         self.converted_nodes.add(node.name)
211         input_operand_index = self.add_operand(node.input[0], Operand.IOTYPE_INPUT)
212         output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT)
213         np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)
214
215
216     def dump_layers_to_file(self, f):
217         for node in self.nodes:
218             if node.name in self.converted_nodes:
219                 continue
220
221             # conv2d with dilation generates very complex nodes, so handle it in special
222             scope_name = TFConverter.get_scope_name(node.name)
223             if scope_name in self.conv2d_scope_names:
224                 if node.op == 'Conv2D':
225                     self.dump_conv2d_to_file(node, f)
226                 continue
227
228             if node.op == 'DepthToSpace':
229                 self.dump_depth2space_to_file(node, f)
230             elif node.op == 'MirrorPad':
231                 self.dump_mirrorpad_to_file(node, f)
232             elif node.op == 'Maximum':
233                 self.dump_maximum_to_file(node, f)
234
235
236     def dump_operands_to_file(self, f):
237             operands = sorted(self.name_operand_dict.values())
238             for operand in operands:
239                 #print('{}'.format(operand))
240                 np.array([operand.index, len(operand.name)], dtype=np.uint32).tofile(f)
241                 f.write(operand.name.encode('utf-8'))
242                 np.array([operand.iotype, operand.dtype], dtype=np.uint32).tofile(f)
243                 np.array([operand.dims[0], operand.dims[1], operand.dims[2], operand.dims[3]], dtype=np.uint32).tofile(f)
244
245
246     def dump_to_file(self):
247         with open(self.outfile, 'wb') as f:
248             f.write(header.str.encode('utf-8'))
249             np.array([header.major, header.minor], dtype=np.uint32).tofile(f)
250             self.dump_layers_to_file(f)
251             self.dump_operands_to_file(f)
252             np.array([self.layer_number, len(self.name_operand_dict)], dtype=np.uint32).tofile(f)
253
254
255     def generate_name_node_dict(self):
256         for node in self.nodes:
257             self.name_node_dict[node.name] = node
258
259
260     def generate_output_names(self):
261         used_names = []
262         for node in self.nodes:
263             for input in node.input:
264                 used_names.append(input)
265
266         for node in self.nodes:
267             if node.name not in used_names:
268                 self.output_names.append(node.name)
269
270
271     def remove_identity(self):
272         id_nodes = []
273         id_dict = {}
274         for node in self.nodes:
275             if node.op == 'Identity':
276                 name = node.name
277                 input = node.input[0]
278                 id_nodes.append(node)
279                 # do not change the output name
280                 if name in self.output_names:
281                     self.name_node_dict[input].name = name
282                     self.name_node_dict[name] = self.name_node_dict[input]
283                     del self.name_node_dict[input]
284                 else:
285                     id_dict[name] = input
286
287         for idnode in id_nodes:
288             self.nodes.remove(idnode)
289
290         for node in self.nodes:
291             for i in range(len(node.input)):
292                 input = node.input[i]
293                 if input in id_dict:
294                     node.input[i] = id_dict[input]
295
296
297     def generate_edges(self):
298         for node in self.nodes:
299             for input in node.input:
300                 if input in self.edges:
301                     self.edges[input].append(node)
302                 else:
303                     self.edges[input] = [node]
304
305
306     @staticmethod
307     def get_scope_name(name):
308         index = name.rfind('/')
309         if index == -1:
310             return ""
311         return name[0:index]
312
313
314     def generate_conv2d_scope_info(self):
315         # conv2d is a sub block in graph, get the scope name
316         for node in self.nodes:
317             if node.op == 'Conv2D':
318                 scope = TFConverter.get_scope_name(node.name)
319                 self.conv2d_scope_names.add(scope)
320
321         # get the input name to the conv2d sub block
322         for node in self.nodes:
323             scope = TFConverter.get_scope_name(node.name)
324             if scope in self.conv2d_scope_names:
325                 if node.op == 'Conv2D' or node.op == 'Shape':
326                     for inp in node.input:
327                         if TFConverter.get_scope_name(inp) != scope:
328                             self.conv2d_scopename_inputname_dict[scope] = inp
329
330
331     def run(self):
332         self.generate_name_node_dict()
333         self.generate_output_names()
334         self.remove_identity()
335         self.generate_edges()
336         self.generate_conv2d_scope_info()
337
338         if self.dump4tb:
339             self.dump_for_tensorboard()
340
341         self.dump_to_file()
342
343
344 def convert_from_tensorflow(infile, outfile, dump4tb):
345     with open(infile, 'rb') as f:
346         # read the file in .proto format
347         graph_def = tf.GraphDef()
348         graph_def.ParseFromString(f.read())
349         nodes = graph_def.node
350
351     converter = TFConverter(graph_def, nodes, outfile, dump4tb)
352     converter.run()