]> git.sesse.net Git - movit/blob - white_balance_effect.cpp
Calculate the RGB-to-XYZ matrix ourselves instead of using a “magic” one from Wikipedia.
[movit] / white_balance_effect.cpp
1 #include <Eigen/Core>
2 #include <Eigen/LU>
3 #include <GL/glew.h>
4 #include <assert.h>
5
6 #include "colorspace_conversion_effect.h"
7 #include "d65.h"
8 #include "effect_util.h"
9 #include "util.h"
10 #include "white_balance_effect.h"
11
12 using namespace Eigen;
13
14 namespace {
15
16 // Temperature is in Kelvin. Formula from http://en.wikipedia.org/wiki/Planckian_locus#Approximation .
17 Vector3d convert_color_temperature_to_xyz(float T)
18 {
19         double invT = 1.0 / T;
20         double x, y;
21
22         assert(T >= 1000.0f);
23         assert(T <= 15000.0f);
24
25         if (T <= 4000.0f) {
26                 x = ((-0.2661239e9 * invT - 0.2343589e6) * invT + 0.8776956e3) * invT + 0.179910;
27         } else {
28                 x = ((-3.0258469e9 * invT + 2.1070379e6) * invT + 0.2226347e3) * invT + 0.240390;
29         }
30
31         if (T <= 2222.0f) {
32                 y = ((-1.1063814 * x - 1.34811020) * x + 2.18555832) * x - 0.20219683;
33         } else if (T <= 4000.0f) {
34                 y = ((-0.9549476 * x - 1.37418593) * x + 2.09137015) * x - 0.16748867;
35         } else {
36                 y = (( 3.0817580 * x - 5.87338670) * x + 3.75112997) * x - 0.37001483;
37         }
38
39         return Vector3d(x, y, 1.0 - x - y);
40 }
41
42 /*
43  * There are several different perceptual color spaces with different intended
44  * uses; for instance, CIECAM02 uses one space (CAT02) for purposes of computing
45  * chromatic adaptation (the effect that the human eye perceives an object as
46  * the same color even under differing illuminants), but a different space
47  * (Hunt-Pointer-Estevez, or HPE) for the actual perception post-adaptation. 
48  *
49  * CIECAM02 chromatic adaptation, while related to the transformation we want,
50  * is a more complex phenomenon that depends on factors like the viewing conditions
51  * (e.g. amount of surrounding light), and can no longer be implemented by just scaling
52  * each component in LMS space. The simpler way out is to use the HPE matrix,
53  * which is intended to be close to the actual cone response; this results in
54  * the “von Kries transformation” when we couple it with normalization in LMS space.
55  *
56  * http://www.brucelindbloom.com/index.html?Eqn_ChromAdapt.html compares
57  * von Kries transformation with using another matrix, the Bradford matrix,
58  * and generally finds that the Bradford method gives a better result,
59  * as in giving better matches with the true result (as calculated using
60  * spectral matching) when converting between various CIE illuminants.
61  * The actual perceptual differences were found to be minor, though.
62  * We use the Bradford tranformation matrix from that page, and compute the
63  * inverse ourselves. (The Bradford matrix is also used in CMCCAT97.) 
64  */
65 const double xyz_to_lms_matrix[9] = {
66          0.7328, -0.7036,  0.0030,
67          0.4296,  1.6975,  0.0136,
68         -0.1624,  0.0061,  0.9834,
69 };
70
71 /*
72  * For a given reference color (given in XYZ space), compute scaling factors
73  * for L, M and S. What we want at the output is turning the reference color
74  * into a scaled version of the D65 illuminant (giving it R=G=B in sRGB), or
75  * 
76  *   (sL ref_L, sM ref_M, sS ref_S) = (s d65_L, s d65_M, s d65_S)
77  *
78  * This removes two degrees of freedom from our system, and we only need to find s.
79  * A reasonable last constraint would be to preserve Y, approximately the brightness,
80  * for the reference color. Thus, we choose our D65 illuminant's Y such that it is
81  * equal to the reference color's Y, and the rest is easy.
82  */
83 Vector3d compute_lms_scaling_factors(const Vector3d &ref_xyz)
84 {
85         Vector3d ref_lms = Map<const Matrix3d>(xyz_to_lms_matrix) * ref_xyz;
86         Vector3d d65_lms = Map<const Matrix3d>(xyz_to_lms_matrix) *
87                 (ref_xyz[1] * Vector3d(d65_X, d65_Y, d65_Z));  // d65_Y = 1.0.
88
89         double scale_l = d65_lms[0] / ref_lms[0];
90         double scale_m = d65_lms[1] / ref_lms[1];
91         double scale_s = d65_lms[2] / ref_lms[2];
92
93         return Vector3d(scale_l, scale_m, scale_s);
94 }
95
96 }  // namespace
97
98 WhiteBalanceEffect::WhiteBalanceEffect()
99         : neutral_color(0.5f, 0.5f, 0.5f),
100           output_color_temperature(6500.0f)
101 {
102         register_vec3("neutral_color", (float *)&neutral_color);
103         register_float("output_color_temperature", &output_color_temperature);
104 }
105
106 std::string WhiteBalanceEffect::output_fragment_shader()
107 {
108         return read_file("white_balance_effect.frag");
109 }
110
111 void WhiteBalanceEffect::set_gl_state(GLuint glsl_program_num, const std::string &prefix, unsigned *sampler_num)
112 {
113         Matrix3d rgb_to_xyz_matrix = ColorspaceConversionEffect::get_xyz_matrix(COLORSPACE_sRGB);
114         Vector3d rgb(neutral_color.r, neutral_color.g, neutral_color.b);
115         Vector3d xyz = rgb_to_xyz_matrix * rgb;
116         Vector3d lms_scale = compute_lms_scaling_factors(xyz);
117
118         /*
119          * Now apply the color balance. Simply put, we find the chromacity point
120          * for the desired white temperature, see what LMS scaling factors they
121          * would have given us, and then reverse that transform. For T=6500K,
122          * the default, this gives us nearly an identity transform (but only nearly,
123          * since the D65 illuminant does not exactly match the results of T=6500K);
124          * we normalize so that T=6500K really is a no-op.
125          */
126         Vector3d white_xyz = convert_color_temperature_to_xyz(output_color_temperature);
127         Vector3d lms_scale_white = compute_lms_scaling_factors(white_xyz);
128
129         Vector3d ref_xyz = convert_color_temperature_to_xyz(6500.0f);
130         Vector3d lms_scale_ref = compute_lms_scaling_factors(ref_xyz);
131
132         lms_scale[0] *= lms_scale_ref[0] / lms_scale_white[0];
133         lms_scale[1] *= lms_scale_ref[1] / lms_scale_white[1];
134         lms_scale[2] *= lms_scale_ref[2] / lms_scale_white[2];
135
136         /*
137          * Concatenate all the different linear operations into a single 3x3 matrix.
138          * Note that since we postmultiply our vectors, the order of the matrices
139          * has to be the opposite of the execution order.
140          */
141         Matrix3d corr_matrix =
142                 rgb_to_xyz_matrix.inverse() *
143                 Map<const Matrix3d>(xyz_to_lms_matrix).inverse() *
144                 lms_scale.asDiagonal() *
145                 Map<const Matrix3d>(xyz_to_lms_matrix) *
146                 rgb_to_xyz_matrix;
147         set_uniform_mat3(glsl_program_num, prefix, "correction_matrix", corr_matrix);
148 }