]> git.sesse.net Git - bcachefs-tools-debian/blobdiff - c_src/libbcachefs/btree_key_cache.c
move Rust sources to top level, C sources into c_src
[bcachefs-tools-debian] / c_src / libbcachefs / btree_key_cache.c
diff --git a/c_src/libbcachefs/btree_key_cache.c b/c_src/libbcachefs/btree_key_cache.c
new file mode 100644 (file)
index 0000000..74e52fd
--- /dev/null
@@ -0,0 +1,1067 @@
+// SPDX-License-Identifier: GPL-2.0
+
+#include "bcachefs.h"
+#include "btree_cache.h"
+#include "btree_iter.h"
+#include "btree_key_cache.h"
+#include "btree_locking.h"
+#include "btree_update.h"
+#include "errcode.h"
+#include "error.h"
+#include "journal.h"
+#include "journal_reclaim.h"
+#include "trace.h"
+
+#include <linux/sched/mm.h>
+
+static inline bool btree_uses_pcpu_readers(enum btree_id id)
+{
+       return id == BTREE_ID_subvolumes;
+}
+
+static struct kmem_cache *bch2_key_cache;
+
+static int bch2_btree_key_cache_cmp_fn(struct rhashtable_compare_arg *arg,
+                                      const void *obj)
+{
+       const struct bkey_cached *ck = obj;
+       const struct bkey_cached_key *key = arg->key;
+
+       return ck->key.btree_id != key->btree_id ||
+               !bpos_eq(ck->key.pos, key->pos);
+}
+
+static const struct rhashtable_params bch2_btree_key_cache_params = {
+       .head_offset    = offsetof(struct bkey_cached, hash),
+       .key_offset     = offsetof(struct bkey_cached, key),
+       .key_len        = sizeof(struct bkey_cached_key),
+       .obj_cmpfn      = bch2_btree_key_cache_cmp_fn,
+};
+
+__flatten
+inline struct bkey_cached *
+bch2_btree_key_cache_find(struct bch_fs *c, enum btree_id btree_id, struct bpos pos)
+{
+       struct bkey_cached_key key = {
+               .btree_id       = btree_id,
+               .pos            = pos,
+       };
+
+       return rhashtable_lookup_fast(&c->btree_key_cache.table, &key,
+                                     bch2_btree_key_cache_params);
+}
+
+static bool bkey_cached_lock_for_evict(struct bkey_cached *ck)
+{
+       if (!six_trylock_intent(&ck->c.lock))
+               return false;
+
+       if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
+               six_unlock_intent(&ck->c.lock);
+               return false;
+       }
+
+       if (!six_trylock_write(&ck->c.lock)) {
+               six_unlock_intent(&ck->c.lock);
+               return false;
+       }
+
+       return true;
+}
+
+static void bkey_cached_evict(struct btree_key_cache *c,
+                             struct bkey_cached *ck)
+{
+       BUG_ON(rhashtable_remove_fast(&c->table, &ck->hash,
+                                     bch2_btree_key_cache_params));
+       memset(&ck->key, ~0, sizeof(ck->key));
+
+       atomic_long_dec(&c->nr_keys);
+}
+
+static void bkey_cached_free(struct btree_key_cache *bc,
+                            struct bkey_cached *ck)
+{
+       struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
+
+       BUG_ON(test_bit(BKEY_CACHED_DIRTY, &ck->flags));
+
+       ck->btree_trans_barrier_seq =
+               start_poll_synchronize_srcu(&c->btree_trans_barrier);
+
+       if (ck->c.lock.readers) {
+               list_move_tail(&ck->list, &bc->freed_pcpu);
+               bc->nr_freed_pcpu++;
+       } else {
+               list_move_tail(&ck->list, &bc->freed_nonpcpu);
+               bc->nr_freed_nonpcpu++;
+       }
+       atomic_long_inc(&bc->nr_freed);
+
+       kfree(ck->k);
+       ck->k           = NULL;
+       ck->u64s        = 0;
+
+       six_unlock_write(&ck->c.lock);
+       six_unlock_intent(&ck->c.lock);
+}
+
+#ifdef __KERNEL__
+static void __bkey_cached_move_to_freelist_ordered(struct btree_key_cache *bc,
+                                                  struct bkey_cached *ck)
+{
+       struct bkey_cached *pos;
+
+       bc->nr_freed_nonpcpu++;
+
+       list_for_each_entry_reverse(pos, &bc->freed_nonpcpu, list) {
+               if (ULONG_CMP_GE(ck->btree_trans_barrier_seq,
+                                pos->btree_trans_barrier_seq)) {
+                       list_move(&ck->list, &pos->list);
+                       return;
+               }
+       }
+
+       list_move(&ck->list, &bc->freed_nonpcpu);
+}
+#endif
+
+static void bkey_cached_move_to_freelist(struct btree_key_cache *bc,
+                                        struct bkey_cached *ck)
+{
+       BUG_ON(test_bit(BKEY_CACHED_DIRTY, &ck->flags));
+
+       if (!ck->c.lock.readers) {
+#ifdef __KERNEL__
+               struct btree_key_cache_freelist *f;
+               bool freed = false;
+
+               preempt_disable();
+               f = this_cpu_ptr(bc->pcpu_freed);
+
+               if (f->nr < ARRAY_SIZE(f->objs)) {
+                       f->objs[f->nr++] = ck;
+                       freed = true;
+               }
+               preempt_enable();
+
+               if (!freed) {
+                       mutex_lock(&bc->lock);
+                       preempt_disable();
+                       f = this_cpu_ptr(bc->pcpu_freed);
+
+                       while (f->nr > ARRAY_SIZE(f->objs) / 2) {
+                               struct bkey_cached *ck2 = f->objs[--f->nr];
+
+                               __bkey_cached_move_to_freelist_ordered(bc, ck2);
+                       }
+                       preempt_enable();
+
+                       __bkey_cached_move_to_freelist_ordered(bc, ck);
+                       mutex_unlock(&bc->lock);
+               }
+#else
+               mutex_lock(&bc->lock);
+               list_move_tail(&ck->list, &bc->freed_nonpcpu);
+               bc->nr_freed_nonpcpu++;
+               mutex_unlock(&bc->lock);
+#endif
+       } else {
+               mutex_lock(&bc->lock);
+               list_move_tail(&ck->list, &bc->freed_pcpu);
+               mutex_unlock(&bc->lock);
+       }
+}
+
+static void bkey_cached_free_fast(struct btree_key_cache *bc,
+                                 struct bkey_cached *ck)
+{
+       struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
+
+       ck->btree_trans_barrier_seq =
+               start_poll_synchronize_srcu(&c->btree_trans_barrier);
+
+       list_del_init(&ck->list);
+       atomic_long_inc(&bc->nr_freed);
+
+       kfree(ck->k);
+       ck->k           = NULL;
+       ck->u64s        = 0;
+
+       bkey_cached_move_to_freelist(bc, ck);
+
+       six_unlock_write(&ck->c.lock);
+       six_unlock_intent(&ck->c.lock);
+}
+
+static struct bkey_cached *
+bkey_cached_alloc(struct btree_trans *trans, struct btree_path *path,
+                 bool *was_new)
+{
+       struct bch_fs *c = trans->c;
+       struct btree_key_cache *bc = &c->btree_key_cache;
+       struct bkey_cached *ck = NULL;
+       bool pcpu_readers = btree_uses_pcpu_readers(path->btree_id);
+       int ret;
+
+       if (!pcpu_readers) {
+#ifdef __KERNEL__
+               struct btree_key_cache_freelist *f;
+
+               preempt_disable();
+               f = this_cpu_ptr(bc->pcpu_freed);
+               if (f->nr)
+                       ck = f->objs[--f->nr];
+               preempt_enable();
+
+               if (!ck) {
+                       mutex_lock(&bc->lock);
+                       preempt_disable();
+                       f = this_cpu_ptr(bc->pcpu_freed);
+
+                       while (!list_empty(&bc->freed_nonpcpu) &&
+                              f->nr < ARRAY_SIZE(f->objs) / 2) {
+                               ck = list_last_entry(&bc->freed_nonpcpu, struct bkey_cached, list);
+                               list_del_init(&ck->list);
+                               bc->nr_freed_nonpcpu--;
+                               f->objs[f->nr++] = ck;
+                       }
+
+                       ck = f->nr ? f->objs[--f->nr] : NULL;
+                       preempt_enable();
+                       mutex_unlock(&bc->lock);
+               }
+#else
+               mutex_lock(&bc->lock);
+               if (!list_empty(&bc->freed_nonpcpu)) {
+                       ck = list_last_entry(&bc->freed_nonpcpu, struct bkey_cached, list);
+                       list_del_init(&ck->list);
+                       bc->nr_freed_nonpcpu--;
+               }
+               mutex_unlock(&bc->lock);
+#endif
+       } else {
+               mutex_lock(&bc->lock);
+               if (!list_empty(&bc->freed_pcpu)) {
+                       ck = list_last_entry(&bc->freed_pcpu, struct bkey_cached, list);
+                       list_del_init(&ck->list);
+               }
+               mutex_unlock(&bc->lock);
+       }
+
+       if (ck) {
+               ret = btree_node_lock_nopath(trans, &ck->c, SIX_LOCK_intent, _THIS_IP_);
+               if (unlikely(ret)) {
+                       bkey_cached_move_to_freelist(bc, ck);
+                       return ERR_PTR(ret);
+               }
+
+               path->l[0].b = (void *) ck;
+               path->l[0].lock_seq = six_lock_seq(&ck->c.lock);
+               mark_btree_node_locked(trans, path, 0, BTREE_NODE_INTENT_LOCKED);
+
+               ret = bch2_btree_node_lock_write(trans, path, &ck->c);
+               if (unlikely(ret)) {
+                       btree_node_unlock(trans, path, 0);
+                       bkey_cached_move_to_freelist(bc, ck);
+                       return ERR_PTR(ret);
+               }
+
+               return ck;
+       }
+
+       ck = allocate_dropping_locks(trans, ret,
+                       kmem_cache_zalloc(bch2_key_cache, _gfp));
+       if (ret) {
+               kmem_cache_free(bch2_key_cache, ck);
+               return ERR_PTR(ret);
+       }
+
+       if (!ck)
+               return NULL;
+
+       INIT_LIST_HEAD(&ck->list);
+       bch2_btree_lock_init(&ck->c, pcpu_readers ? SIX_LOCK_INIT_PCPU : 0);
+
+       ck->c.cached = true;
+       BUG_ON(!six_trylock_intent(&ck->c.lock));
+       BUG_ON(!six_trylock_write(&ck->c.lock));
+       *was_new = true;
+       return ck;
+}
+
+static struct bkey_cached *
+bkey_cached_reuse(struct btree_key_cache *c)
+{
+       struct bucket_table *tbl;
+       struct rhash_head *pos;
+       struct bkey_cached *ck;
+       unsigned i;
+
+       mutex_lock(&c->lock);
+       rcu_read_lock();
+       tbl = rht_dereference_rcu(c->table.tbl, &c->table);
+       for (i = 0; i < tbl->size; i++)
+               rht_for_each_entry_rcu(ck, pos, tbl, i, hash) {
+                       if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags) &&
+                           bkey_cached_lock_for_evict(ck)) {
+                               bkey_cached_evict(c, ck);
+                               goto out;
+                       }
+               }
+       ck = NULL;
+out:
+       rcu_read_unlock();
+       mutex_unlock(&c->lock);
+       return ck;
+}
+
+static struct bkey_cached *
+btree_key_cache_create(struct btree_trans *trans, struct btree_path *path)
+{
+       struct bch_fs *c = trans->c;
+       struct btree_key_cache *bc = &c->btree_key_cache;
+       struct bkey_cached *ck;
+       bool was_new = false;
+
+       ck = bkey_cached_alloc(trans, path, &was_new);
+       if (IS_ERR(ck))
+               return ck;
+
+       if (unlikely(!ck)) {
+               ck = bkey_cached_reuse(bc);
+               if (unlikely(!ck)) {
+                       bch_err(c, "error allocating memory for key cache item, btree %s",
+                               bch2_btree_id_str(path->btree_id));
+                       return ERR_PTR(-BCH_ERR_ENOMEM_btree_key_cache_create);
+               }
+
+               mark_btree_node_locked(trans, path, 0, BTREE_NODE_INTENT_LOCKED);
+       }
+
+       ck->c.level             = 0;
+       ck->c.btree_id          = path->btree_id;
+       ck->key.btree_id        = path->btree_id;
+       ck->key.pos             = path->pos;
+       ck->valid               = false;
+       ck->flags               = 1U << BKEY_CACHED_ACCESSED;
+
+       if (unlikely(rhashtable_lookup_insert_fast(&bc->table,
+                                         &ck->hash,
+                                         bch2_btree_key_cache_params))) {
+               /* We raced with another fill: */
+
+               if (likely(was_new)) {
+                       six_unlock_write(&ck->c.lock);
+                       six_unlock_intent(&ck->c.lock);
+                       kfree(ck);
+               } else {
+                       bkey_cached_free_fast(bc, ck);
+               }
+
+               mark_btree_node_locked(trans, path, 0, BTREE_NODE_UNLOCKED);
+               return NULL;
+       }
+
+       atomic_long_inc(&bc->nr_keys);
+
+       six_unlock_write(&ck->c.lock);
+
+       return ck;
+}
+
+static int btree_key_cache_fill(struct btree_trans *trans,
+                               struct btree_path *ck_path,
+                               struct bkey_cached *ck)
+{
+       struct btree_iter iter;
+       struct bkey_s_c k;
+       unsigned new_u64s = 0;
+       struct bkey_i *new_k = NULL;
+       int ret;
+
+       k = bch2_bkey_get_iter(trans, &iter, ck->key.btree_id, ck->key.pos,
+                              BTREE_ITER_KEY_CACHE_FILL|
+                              BTREE_ITER_CACHED_NOFILL);
+       ret = bkey_err(k);
+       if (ret)
+               goto err;
+
+       if (!bch2_btree_node_relock(trans, ck_path, 0)) {
+               trace_and_count(trans->c, trans_restart_relock_key_cache_fill, trans, _THIS_IP_, ck_path);
+               ret = btree_trans_restart(trans, BCH_ERR_transaction_restart_key_cache_fill);
+               goto err;
+       }
+
+       /*
+        * bch2_varint_decode can read past the end of the buffer by at
+        * most 7 bytes (it won't be used):
+        */
+       new_u64s = k.k->u64s + 1;
+
+       /*
+        * Allocate some extra space so that the transaction commit path is less
+        * likely to have to reallocate, since that requires a transaction
+        * restart:
+        */
+       new_u64s = min(256U, (new_u64s * 3) / 2);
+
+       if (new_u64s > ck->u64s) {
+               new_u64s = roundup_pow_of_two(new_u64s);
+               new_k = kmalloc(new_u64s * sizeof(u64), GFP_NOWAIT|__GFP_NOWARN);
+               if (!new_k) {
+                       bch2_trans_unlock(trans);
+
+                       new_k = kmalloc(new_u64s * sizeof(u64), GFP_KERNEL);
+                       if (!new_k) {
+                               bch_err(trans->c, "error allocating memory for key cache key, btree %s u64s %u",
+                                       bch2_btree_id_str(ck->key.btree_id), new_u64s);
+                               ret = -BCH_ERR_ENOMEM_btree_key_cache_fill;
+                               goto err;
+                       }
+
+                       if (!bch2_btree_node_relock(trans, ck_path, 0)) {
+                               kfree(new_k);
+                               trace_and_count(trans->c, trans_restart_relock_key_cache_fill, trans, _THIS_IP_, ck_path);
+                               ret = btree_trans_restart(trans, BCH_ERR_transaction_restart_key_cache_fill);
+                               goto err;
+                       }
+
+                       ret = bch2_trans_relock(trans);
+                       if (ret) {
+                               kfree(new_k);
+                               goto err;
+                       }
+               }
+       }
+
+       ret = bch2_btree_node_lock_write(trans, ck_path, &ck_path->l[0].b->c);
+       if (ret) {
+               kfree(new_k);
+               goto err;
+       }
+
+       if (new_k) {
+               kfree(ck->k);
+               ck->u64s = new_u64s;
+               ck->k = new_k;
+       }
+
+       bkey_reassemble(ck->k, k);
+       ck->valid = true;
+       bch2_btree_node_unlock_write(trans, ck_path, ck_path->l[0].b);
+
+       /* We're not likely to need this iterator again: */
+       set_btree_iter_dontneed(&iter);
+err:
+       bch2_trans_iter_exit(trans, &iter);
+       return ret;
+}
+
+static noinline int
+bch2_btree_path_traverse_cached_slowpath(struct btree_trans *trans, struct btree_path *path,
+                                        unsigned flags)
+{
+       struct bch_fs *c = trans->c;
+       struct bkey_cached *ck;
+       int ret = 0;
+
+       BUG_ON(path->level);
+
+       path->l[1].b = NULL;
+
+       if (bch2_btree_node_relock_notrace(trans, path, 0)) {
+               ck = (void *) path->l[0].b;
+               goto fill;
+       }
+retry:
+       ck = bch2_btree_key_cache_find(c, path->btree_id, path->pos);
+       if (!ck) {
+               ck = btree_key_cache_create(trans, path);
+               ret = PTR_ERR_OR_ZERO(ck);
+               if (ret)
+                       goto err;
+               if (!ck)
+                       goto retry;
+
+               mark_btree_node_locked(trans, path, 0, BTREE_NODE_INTENT_LOCKED);
+               path->locks_want = 1;
+       } else {
+               enum six_lock_type lock_want = __btree_lock_want(path, 0);
+
+               ret = btree_node_lock(trans, path, (void *) ck, 0,
+                                     lock_want, _THIS_IP_);
+               if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
+                       goto err;
+
+               BUG_ON(ret);
+
+               if (ck->key.btree_id != path->btree_id ||
+                   !bpos_eq(ck->key.pos, path->pos)) {
+                       six_unlock_type(&ck->c.lock, lock_want);
+                       goto retry;
+               }
+
+               mark_btree_node_locked(trans, path, 0,
+                                      (enum btree_node_locked_type) lock_want);
+       }
+
+       path->l[0].lock_seq     = six_lock_seq(&ck->c.lock);
+       path->l[0].b            = (void *) ck;
+fill:
+       path->uptodate = BTREE_ITER_UPTODATE;
+
+       if (!ck->valid && !(flags & BTREE_ITER_CACHED_NOFILL)) {
+               /*
+                * Using the underscore version because we haven't set
+                * path->uptodate yet:
+                */
+               if (!path->locks_want &&
+                   !__bch2_btree_path_upgrade(trans, path, 1, NULL)) {
+                       trace_and_count(trans->c, trans_restart_key_cache_upgrade, trans, _THIS_IP_);
+                       ret = btree_trans_restart(trans, BCH_ERR_transaction_restart_key_cache_upgrade);
+                       goto err;
+               }
+
+               ret = btree_key_cache_fill(trans, path, ck);
+               if (ret)
+                       goto err;
+
+               ret = bch2_btree_path_relock(trans, path, _THIS_IP_);
+               if (ret)
+                       goto err;
+
+               path->uptodate = BTREE_ITER_UPTODATE;
+       }
+
+       if (!test_bit(BKEY_CACHED_ACCESSED, &ck->flags))
+               set_bit(BKEY_CACHED_ACCESSED, &ck->flags);
+
+       BUG_ON(btree_node_locked_type(path, 0) != btree_lock_want(path, 0));
+       BUG_ON(path->uptodate);
+
+       return ret;
+err:
+       path->uptodate = BTREE_ITER_NEED_TRAVERSE;
+       if (!bch2_err_matches(ret, BCH_ERR_transaction_restart)) {
+               btree_node_unlock(trans, path, 0);
+               path->l[0].b = ERR_PTR(ret);
+       }
+       return ret;
+}
+
+int bch2_btree_path_traverse_cached(struct btree_trans *trans, struct btree_path *path,
+                                   unsigned flags)
+{
+       struct bch_fs *c = trans->c;
+       struct bkey_cached *ck;
+       int ret = 0;
+
+       EBUG_ON(path->level);
+
+       path->l[1].b = NULL;
+
+       if (bch2_btree_node_relock_notrace(trans, path, 0)) {
+               ck = (void *) path->l[0].b;
+               goto fill;
+       }
+retry:
+       ck = bch2_btree_key_cache_find(c, path->btree_id, path->pos);
+       if (!ck) {
+               return bch2_btree_path_traverse_cached_slowpath(trans, path, flags);
+       } else {
+               enum six_lock_type lock_want = __btree_lock_want(path, 0);
+
+               ret = btree_node_lock(trans, path, (void *) ck, 0,
+                                     lock_want, _THIS_IP_);
+               EBUG_ON(ret && !bch2_err_matches(ret, BCH_ERR_transaction_restart));
+
+               if (ret)
+                       return ret;
+
+               if (ck->key.btree_id != path->btree_id ||
+                   !bpos_eq(ck->key.pos, path->pos)) {
+                       six_unlock_type(&ck->c.lock, lock_want);
+                       goto retry;
+               }
+
+               mark_btree_node_locked(trans, path, 0,
+                                      (enum btree_node_locked_type) lock_want);
+       }
+
+       path->l[0].lock_seq     = six_lock_seq(&ck->c.lock);
+       path->l[0].b            = (void *) ck;
+fill:
+       if (!ck->valid)
+               return bch2_btree_path_traverse_cached_slowpath(trans, path, flags);
+
+       if (!test_bit(BKEY_CACHED_ACCESSED, &ck->flags))
+               set_bit(BKEY_CACHED_ACCESSED, &ck->flags);
+
+       path->uptodate = BTREE_ITER_UPTODATE;
+       EBUG_ON(!ck->valid);
+       EBUG_ON(btree_node_locked_type(path, 0) != btree_lock_want(path, 0));
+
+       return ret;
+}
+
+static int btree_key_cache_flush_pos(struct btree_trans *trans,
+                                    struct bkey_cached_key key,
+                                    u64 journal_seq,
+                                    unsigned commit_flags,
+                                    bool evict)
+{
+       struct bch_fs *c = trans->c;
+       struct journal *j = &c->journal;
+       struct btree_iter c_iter, b_iter;
+       struct bkey_cached *ck = NULL;
+       int ret;
+
+       bch2_trans_iter_init(trans, &b_iter, key.btree_id, key.pos,
+                            BTREE_ITER_SLOTS|
+                            BTREE_ITER_INTENT|
+                            BTREE_ITER_ALL_SNAPSHOTS);
+       bch2_trans_iter_init(trans, &c_iter, key.btree_id, key.pos,
+                            BTREE_ITER_CACHED|
+                            BTREE_ITER_INTENT);
+       b_iter.flags &= ~BTREE_ITER_WITH_KEY_CACHE;
+
+       ret = bch2_btree_iter_traverse(&c_iter);
+       if (ret)
+               goto out;
+
+       ck = (void *) btree_iter_path(trans, &c_iter)->l[0].b;
+       if (!ck)
+               goto out;
+
+       if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
+               if (evict)
+                       goto evict;
+               goto out;
+       }
+
+       BUG_ON(!ck->valid);
+
+       if (journal_seq && ck->journal.seq != journal_seq)
+               goto out;
+
+       trans->journal_res.seq = ck->journal.seq;
+
+       /*
+        * If we're at the end of the journal, we really want to free up space
+        * in the journal right away - we don't want to pin that old journal
+        * sequence number with a new btree node write, we want to re-journal
+        * the update
+        */
+       if (ck->journal.seq == journal_last_seq(j))
+               commit_flags |= BCH_WATERMARK_reclaim;
+
+       if (ck->journal.seq != journal_last_seq(j) ||
+           j->watermark == BCH_WATERMARK_stripe)
+               commit_flags |= BCH_TRANS_COMMIT_no_journal_res;
+
+       ret   = bch2_btree_iter_traverse(&b_iter) ?:
+               bch2_trans_update(trans, &b_iter, ck->k,
+                                 BTREE_UPDATE_KEY_CACHE_RECLAIM|
+                                 BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE|
+                                 BTREE_TRIGGER_NORUN) ?:
+               bch2_trans_commit(trans, NULL, NULL,
+                                 BCH_TRANS_COMMIT_no_check_rw|
+                                 BCH_TRANS_COMMIT_no_enospc|
+                                 commit_flags);
+
+       bch2_fs_fatal_err_on(ret &&
+                            !bch2_err_matches(ret, BCH_ERR_transaction_restart) &&
+                            !bch2_err_matches(ret, BCH_ERR_journal_reclaim_would_deadlock) &&
+                            !bch2_journal_error(j), c,
+                            "error flushing key cache: %s", bch2_err_str(ret));
+       if (ret)
+               goto out;
+
+       bch2_journal_pin_drop(j, &ck->journal);
+
+       struct btree_path *path = btree_iter_path(trans, &c_iter);
+       BUG_ON(!btree_node_locked(path, 0));
+
+       if (!evict) {
+               if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
+                       clear_bit(BKEY_CACHED_DIRTY, &ck->flags);
+                       atomic_long_dec(&c->btree_key_cache.nr_dirty);
+               }
+       } else {
+               struct btree_path *path2;
+               unsigned i;
+evict:
+               trans_for_each_path(trans, path2, i)
+                       if (path2 != path)
+                               __bch2_btree_path_unlock(trans, path2);
+
+               bch2_btree_node_lock_write_nofail(trans, path, &ck->c);
+
+               if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
+                       clear_bit(BKEY_CACHED_DIRTY, &ck->flags);
+                       atomic_long_dec(&c->btree_key_cache.nr_dirty);
+               }
+
+               mark_btree_node_locked_noreset(path, 0, BTREE_NODE_UNLOCKED);
+               bkey_cached_evict(&c->btree_key_cache, ck);
+               bkey_cached_free_fast(&c->btree_key_cache, ck);
+       }
+out:
+       bch2_trans_iter_exit(trans, &b_iter);
+       bch2_trans_iter_exit(trans, &c_iter);
+       return ret;
+}
+
+int bch2_btree_key_cache_journal_flush(struct journal *j,
+                               struct journal_entry_pin *pin, u64 seq)
+{
+       struct bch_fs *c = container_of(j, struct bch_fs, journal);
+       struct bkey_cached *ck =
+               container_of(pin, struct bkey_cached, journal);
+       struct bkey_cached_key key;
+       struct btree_trans *trans = bch2_trans_get(c);
+       int srcu_idx = srcu_read_lock(&c->btree_trans_barrier);
+       int ret = 0;
+
+       btree_node_lock_nopath_nofail(trans, &ck->c, SIX_LOCK_read);
+       key = ck->key;
+
+       if (ck->journal.seq != seq ||
+           !test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
+               six_unlock_read(&ck->c.lock);
+               goto unlock;
+       }
+
+       if (ck->seq != seq) {
+               bch2_journal_pin_update(&c->journal, ck->seq, &ck->journal,
+                                       bch2_btree_key_cache_journal_flush);
+               six_unlock_read(&ck->c.lock);
+               goto unlock;
+       }
+       six_unlock_read(&ck->c.lock);
+
+       ret = lockrestart_do(trans,
+               btree_key_cache_flush_pos(trans, key, seq,
+                               BCH_TRANS_COMMIT_journal_reclaim, false));
+unlock:
+       srcu_read_unlock(&c->btree_trans_barrier, srcu_idx);
+
+       bch2_trans_put(trans);
+       return ret;
+}
+
+bool bch2_btree_insert_key_cached(struct btree_trans *trans,
+                                 unsigned flags,
+                                 struct btree_insert_entry *insert_entry)
+{
+       struct bch_fs *c = trans->c;
+       struct bkey_cached *ck = (void *) (trans->paths + insert_entry->path)->l[0].b;
+       struct bkey_i *insert = insert_entry->k;
+       bool kick_reclaim = false;
+
+       BUG_ON(insert->k.u64s > ck->u64s);
+
+       bkey_copy(ck->k, insert);
+       ck->valid = true;
+
+       if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
+               EBUG_ON(test_bit(BCH_FS_clean_shutdown, &c->flags));
+               set_bit(BKEY_CACHED_DIRTY, &ck->flags);
+               atomic_long_inc(&c->btree_key_cache.nr_dirty);
+
+               if (bch2_nr_btree_keys_need_flush(c))
+                       kick_reclaim = true;
+       }
+
+       /*
+        * To minimize lock contention, we only add the journal pin here and
+        * defer pin updates to the flush callback via ->seq. Be careful not to
+        * update ->seq on nojournal commits because we don't want to update the
+        * pin to a seq that doesn't include journal updates on disk. Otherwise
+        * we risk losing the update after a crash.
+        *
+        * The only exception is if the pin is not active in the first place. We
+        * have to add the pin because journal reclaim drives key cache
+        * flushing. The flush callback will not proceed unless ->seq matches
+        * the latest pin, so make sure it starts with a consistent value.
+        */
+       if (!(insert_entry->flags & BTREE_UPDATE_NOJOURNAL) ||
+           !journal_pin_active(&ck->journal)) {
+               ck->seq = trans->journal_res.seq;
+       }
+       bch2_journal_pin_add(&c->journal, trans->journal_res.seq,
+                            &ck->journal, bch2_btree_key_cache_journal_flush);
+
+       if (kick_reclaim)
+               journal_reclaim_kick(&c->journal);
+       return true;
+}
+
+void bch2_btree_key_cache_drop(struct btree_trans *trans,
+                              struct btree_path *path)
+{
+       struct bch_fs *c = trans->c;
+       struct bkey_cached *ck = (void *) path->l[0].b;
+
+       BUG_ON(!ck->valid);
+
+       /*
+        * We just did an update to the btree, bypassing the key cache: the key
+        * cache key is now stale and must be dropped, even if dirty:
+        */
+       if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
+               clear_bit(BKEY_CACHED_DIRTY, &ck->flags);
+               atomic_long_dec(&c->btree_key_cache.nr_dirty);
+               bch2_journal_pin_drop(&c->journal, &ck->journal);
+       }
+
+       ck->valid = false;
+}
+
+static unsigned long bch2_btree_key_cache_scan(struct shrinker *shrink,
+                                          struct shrink_control *sc)
+{
+       struct bch_fs *c = shrink->private_data;
+       struct btree_key_cache *bc = &c->btree_key_cache;
+       struct bucket_table *tbl;
+       struct bkey_cached *ck, *t;
+       size_t scanned = 0, freed = 0, nr = sc->nr_to_scan;
+       unsigned start, flags;
+       int srcu_idx;
+
+       mutex_lock(&bc->lock);
+       srcu_idx = srcu_read_lock(&c->btree_trans_barrier);
+       flags = memalloc_nofs_save();
+
+       /*
+        * Newest freed entries are at the end of the list - once we hit one
+        * that's too new to be freed, we can bail out:
+        */
+       scanned += bc->nr_freed_nonpcpu;
+
+       list_for_each_entry_safe(ck, t, &bc->freed_nonpcpu, list) {
+               if (!poll_state_synchronize_srcu(&c->btree_trans_barrier,
+                                                ck->btree_trans_barrier_seq))
+                       break;
+
+               list_del(&ck->list);
+               six_lock_exit(&ck->c.lock);
+               kmem_cache_free(bch2_key_cache, ck);
+               atomic_long_dec(&bc->nr_freed);
+               freed++;
+               bc->nr_freed_nonpcpu--;
+       }
+
+       if (scanned >= nr)
+               goto out;
+
+       scanned += bc->nr_freed_pcpu;
+
+       list_for_each_entry_safe(ck, t, &bc->freed_pcpu, list) {
+               if (!poll_state_synchronize_srcu(&c->btree_trans_barrier,
+                                                ck->btree_trans_barrier_seq))
+                       break;
+
+               list_del(&ck->list);
+               six_lock_exit(&ck->c.lock);
+               kmem_cache_free(bch2_key_cache, ck);
+               atomic_long_dec(&bc->nr_freed);
+               freed++;
+               bc->nr_freed_pcpu--;
+       }
+
+       if (scanned >= nr)
+               goto out;
+
+       rcu_read_lock();
+       tbl = rht_dereference_rcu(bc->table.tbl, &bc->table);
+       if (bc->shrink_iter >= tbl->size)
+               bc->shrink_iter = 0;
+       start = bc->shrink_iter;
+
+       do {
+               struct rhash_head *pos, *next;
+
+               pos = rht_ptr_rcu(rht_bucket(tbl, bc->shrink_iter));
+
+               while (!rht_is_a_nulls(pos)) {
+                       next = rht_dereference_bucket_rcu(pos->next, tbl, bc->shrink_iter);
+                       ck = container_of(pos, struct bkey_cached, hash);
+
+                       if (test_bit(BKEY_CACHED_DIRTY, &ck->flags))
+                               goto next;
+
+                       if (test_bit(BKEY_CACHED_ACCESSED, &ck->flags))
+                               clear_bit(BKEY_CACHED_ACCESSED, &ck->flags);
+                       else if (bkey_cached_lock_for_evict(ck)) {
+                               bkey_cached_evict(bc, ck);
+                               bkey_cached_free(bc, ck);
+                       }
+
+                       scanned++;
+                       if (scanned >= nr)
+                               break;
+next:
+                       pos = next;
+               }
+
+               bc->shrink_iter++;
+               if (bc->shrink_iter >= tbl->size)
+                       bc->shrink_iter = 0;
+       } while (scanned < nr && bc->shrink_iter != start);
+
+       rcu_read_unlock();
+out:
+       memalloc_nofs_restore(flags);
+       srcu_read_unlock(&c->btree_trans_barrier, srcu_idx);
+       mutex_unlock(&bc->lock);
+
+       return freed;
+}
+
+static unsigned long bch2_btree_key_cache_count(struct shrinker *shrink,
+                                           struct shrink_control *sc)
+{
+       struct bch_fs *c = shrink->private_data;
+       struct btree_key_cache *bc = &c->btree_key_cache;
+       long nr = atomic_long_read(&bc->nr_keys) -
+               atomic_long_read(&bc->nr_dirty);
+
+       return max(0L, nr);
+}
+
+void bch2_fs_btree_key_cache_exit(struct btree_key_cache *bc)
+{
+       struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
+       struct bucket_table *tbl;
+       struct bkey_cached *ck, *n;
+       struct rhash_head *pos;
+       LIST_HEAD(items);
+       unsigned i;
+#ifdef __KERNEL__
+       int cpu;
+#endif
+
+       shrinker_free(bc->shrink);
+
+       mutex_lock(&bc->lock);
+
+       /*
+        * The loop is needed to guard against racing with rehash:
+        */
+       while (atomic_long_read(&bc->nr_keys)) {
+               rcu_read_lock();
+               tbl = rht_dereference_rcu(bc->table.tbl, &bc->table);
+               if (tbl)
+                       for (i = 0; i < tbl->size; i++)
+                               rht_for_each_entry_rcu(ck, pos, tbl, i, hash) {
+                                       bkey_cached_evict(bc, ck);
+                                       list_add(&ck->list, &items);
+                               }
+               rcu_read_unlock();
+       }
+
+#ifdef __KERNEL__
+       for_each_possible_cpu(cpu) {
+               struct btree_key_cache_freelist *f =
+                       per_cpu_ptr(bc->pcpu_freed, cpu);
+
+               for (i = 0; i < f->nr; i++) {
+                       ck = f->objs[i];
+                       list_add(&ck->list, &items);
+               }
+       }
+#endif
+
+       BUG_ON(list_count_nodes(&bc->freed_pcpu) != bc->nr_freed_pcpu);
+       BUG_ON(list_count_nodes(&bc->freed_nonpcpu) != bc->nr_freed_nonpcpu);
+
+       list_splice(&bc->freed_pcpu,    &items);
+       list_splice(&bc->freed_nonpcpu, &items);
+
+       mutex_unlock(&bc->lock);
+
+       list_for_each_entry_safe(ck, n, &items, list) {
+               cond_resched();
+
+               list_del(&ck->list);
+               kfree(ck->k);
+               six_lock_exit(&ck->c.lock);
+               kmem_cache_free(bch2_key_cache, ck);
+       }
+
+       if (atomic_long_read(&bc->nr_dirty) &&
+           !bch2_journal_error(&c->journal) &&
+           test_bit(BCH_FS_was_rw, &c->flags))
+               panic("btree key cache shutdown error: nr_dirty nonzero (%li)\n",
+                     atomic_long_read(&bc->nr_dirty));
+
+       if (atomic_long_read(&bc->nr_keys))
+               panic("btree key cache shutdown error: nr_keys nonzero (%li)\n",
+                     atomic_long_read(&bc->nr_keys));
+
+       if (bc->table_init_done)
+               rhashtable_destroy(&bc->table);
+
+       free_percpu(bc->pcpu_freed);
+}
+
+void bch2_fs_btree_key_cache_init_early(struct btree_key_cache *c)
+{
+       mutex_init(&c->lock);
+       INIT_LIST_HEAD(&c->freed_pcpu);
+       INIT_LIST_HEAD(&c->freed_nonpcpu);
+}
+
+int bch2_fs_btree_key_cache_init(struct btree_key_cache *bc)
+{
+       struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
+       struct shrinker *shrink;
+
+#ifdef __KERNEL__
+       bc->pcpu_freed = alloc_percpu(struct btree_key_cache_freelist);
+       if (!bc->pcpu_freed)
+               return -BCH_ERR_ENOMEM_fs_btree_cache_init;
+#endif
+
+       if (rhashtable_init(&bc->table, &bch2_btree_key_cache_params))
+               return -BCH_ERR_ENOMEM_fs_btree_cache_init;
+
+       bc->table_init_done = true;
+
+       shrink = shrinker_alloc(0, "%s-btree_key_cache", c->name);
+       if (!shrink)
+               return -BCH_ERR_ENOMEM_fs_btree_cache_init;
+       bc->shrink = shrink;
+       shrink->seeks           = 0;
+       shrink->count_objects   = bch2_btree_key_cache_count;
+       shrink->scan_objects    = bch2_btree_key_cache_scan;
+       shrink->private_data    = c;
+       shrinker_register(shrink);
+       return 0;
+}
+
+void bch2_btree_key_cache_to_text(struct printbuf *out, struct btree_key_cache *c)
+{
+       prt_printf(out, "nr_freed:\t%lu",       atomic_long_read(&c->nr_freed));
+       prt_newline(out);
+       prt_printf(out, "nr_keys:\t%lu",        atomic_long_read(&c->nr_keys));
+       prt_newline(out);
+       prt_printf(out, "nr_dirty:\t%lu",       atomic_long_read(&c->nr_dirty));
+       prt_newline(out);
+}
+
+void bch2_btree_key_cache_exit(void)
+{
+       kmem_cache_destroy(bch2_key_cache);
+}
+
+int __init bch2_btree_key_cache_init(void)
+{
+       bch2_key_cache = KMEM_CACHE(bkey_cached, SLAB_RECLAIM_ACCOUNT);
+       if (!bch2_key_cache)
+               return -ENOMEM;
+
+       return 0;
+}