]> git.sesse.net Git - casparcg/blobdiff - dependencies64/cef/windows/include/base/cef_scoped_ptr.h
Upgrade CEF to 3.3029.1611.g44e39a8 / Chromium 58.0.3029.81.
[casparcg] / dependencies64 / cef / windows / include / base / cef_scoped_ptr.h
diff --git a/dependencies64/cef/windows/include/base/cef_scoped_ptr.h b/dependencies64/cef/windows/include/base/cef_scoped_ptr.h
new file mode 100644 (file)
index 0000000..5635589
--- /dev/null
@@ -0,0 +1,623 @@
+// Copyright (c) 2014 Marshall A. Greenblatt. Portions copyright (c) 2012
+// Google Inc. All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+//    * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+//    * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following disclaimer
+// in the documentation and/or other materials provided with the
+// distribution.
+//    * Neither the name of Google Inc. nor the name Chromium Embedded
+// Framework nor the names of its contributors may be used to endorse
+// or promote products derived from this software without specific prior
+// written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+// Scopers help you manage ownership of a pointer, helping you easily manage a
+// pointer within a scope, and automatically destroying the pointer at the end
+// of a scope.  There are two main classes you will use, which correspond to the
+// operators new/delete and new[]/delete[].
+//
+// Example usage (scoped_ptr<T>):
+//   {
+//     scoped_ptr<Foo> foo(new Foo("wee"));
+//   }  // foo goes out of scope, releasing the pointer with it.
+//
+//   {
+//     scoped_ptr<Foo> foo;          // No pointer managed.
+//     foo.reset(new Foo("wee"));    // Now a pointer is managed.
+//     foo.reset(new Foo("wee2"));   // Foo("wee") was destroyed.
+//     foo.reset(new Foo("wee3"));   // Foo("wee2") was destroyed.
+//     foo->Method();                // Foo::Method() called.
+//     foo.get()->Method();          // Foo::Method() called.
+//     SomeFunc(foo.release());      // SomeFunc takes ownership, foo no longer
+//                                   // manages a pointer.
+//     foo.reset(new Foo("wee4"));   // foo manages a pointer again.
+//     foo.reset();                  // Foo("wee4") destroyed, foo no longer
+//                                   // manages a pointer.
+//   }  // foo wasn't managing a pointer, so nothing was destroyed.
+//
+// Example usage (scoped_ptr<T[]>):
+//   {
+//     scoped_ptr<Foo[]> foo(new Foo[100]);
+//     foo.get()->Method();  // Foo::Method on the 0th element.
+//     foo[10].Method();     // Foo::Method on the 10th element.
+//   }
+//
+// These scopers also implement part of the functionality of C++11 unique_ptr
+// in that they are "movable but not copyable."  You can use the scopers in
+// the parameter and return types of functions to signify ownership transfer
+// in to and out of a function.  When calling a function that has a scoper
+// as the argument type, it must be called with the result of an analogous
+// scoper's Pass() function or another function that generates a temporary;
+// passing by copy will NOT work.  Here is an example using scoped_ptr:
+//
+//   void TakesOwnership(scoped_ptr<Foo> arg) {
+//     // Do something with arg
+//   }
+//   scoped_ptr<Foo> CreateFoo() {
+//     // No need for calling Pass() because we are constructing a temporary
+//     // for the return value.
+//     return scoped_ptr<Foo>(new Foo("new"));
+//   }
+//   scoped_ptr<Foo> PassThru(scoped_ptr<Foo> arg) {
+//     return arg.Pass();
+//   }
+//
+//   {
+//     scoped_ptr<Foo> ptr(new Foo("yay"));  // ptr manages Foo("yay").
+//     TakesOwnership(ptr.Pass());           // ptr no longer owns Foo("yay").
+//     scoped_ptr<Foo> ptr2 = CreateFoo();   // ptr2 owns the return Foo.
+//     scoped_ptr<Foo> ptr3 =                // ptr3 now owns what was in ptr2.
+//         PassThru(ptr2.Pass());            // ptr2 is correspondingly NULL.
+//   }
+//
+// Notice that if you do not call Pass() when returning from PassThru(), or
+// when invoking TakesOwnership(), the code will not compile because scopers
+// are not copyable; they only implement move semantics which require calling
+// the Pass() function to signify a destructive transfer of state. CreateFoo()
+// is different though because we are constructing a temporary on the return
+// line and thus can avoid needing to call Pass().
+//
+// Pass() properly handles upcast in initialization, i.e. you can use a
+// scoped_ptr<Child> to initialize a scoped_ptr<Parent>:
+//
+//   scoped_ptr<Foo> foo(new Foo());
+//   scoped_ptr<FooParent> parent(foo.Pass());
+//
+// PassAs<>() should be used to upcast return value in return statement:
+//
+//   scoped_ptr<Foo> CreateFoo() {
+//     scoped_ptr<FooChild> result(new FooChild());
+//     return result.PassAs<Foo>();
+//   }
+//
+// Note that PassAs<>() is implemented only for scoped_ptr<T>, but not for
+// scoped_ptr<T[]>. This is because casting array pointers may not be safe.
+
+#ifndef CEF_INCLUDE_BASE_CEF_MEMORY_SCOPED_PTR_H_
+#define CEF_INCLUDE_BASE_CEF_MEMORY_SCOPED_PTR_H_
+#pragma once
+
+#if defined(BASE_MEMORY_SCOPED_PTR_H_)
+// Do nothing if the Chromium header has already been included.
+// This can happen in cases where Chromium code is used directly by the
+// client application. When using Chromium code directly always include
+// the Chromium header first to avoid type conflicts.
+#elif defined(USING_CHROMIUM_INCLUDES)
+// Do nothing when building CEF.
+#else  // !USING_CHROMIUM_INCLUDES
+// The following is substantially similar to the Chromium implementation.
+// If the Chromium implementation diverges the below implementation should be
+// updated to match.
+
+// This is an implementation designed to match the anticipated future TR2
+// implementation of the scoped_ptr class.
+
+#include <assert.h>
+#include <stddef.h>
+#include <stdlib.h>
+
+#include <algorithm>  // For std::swap().
+
+#include "include/base/cef_basictypes.h"
+#include "include/base/cef_build.h"
+#include "include/base/cef_macros.h"
+#include "include/base/cef_move.h"
+#include "include/base/cef_template_util.h"
+
+namespace base {
+
+namespace subtle {
+class RefCountedBase;
+class RefCountedThreadSafeBase;
+}  // namespace subtle
+
+// Function object which deletes its parameter, which must be a pointer.
+// If C is an array type, invokes 'delete[]' on the parameter; otherwise,
+// invokes 'delete'. The default deleter for scoped_ptr<T>.
+template <class T>
+struct DefaultDeleter {
+  DefaultDeleter() {}
+  template <typename U> DefaultDeleter(const DefaultDeleter<U>& other) {
+    // IMPLEMENTATION NOTE: C++11 20.7.1.1.2p2 only provides this constructor
+    // if U* is implicitly convertible to T* and U is not an array type.
+    //
+    // Correct implementation should use SFINAE to disable this
+    // constructor. However, since there are no other 1-argument constructors,
+    // using a COMPILE_ASSERT() based on is_convertible<> and requiring
+    // complete types is simpler and will cause compile failures for equivalent
+    // misuses.
+    //
+    // Note, the is_convertible<U*, T*> check also ensures that U is not an
+    // array. T is guaranteed to be a non-array, so any U* where U is an array
+    // cannot convert to T*.
+    enum { T_must_be_complete = sizeof(T) };
+    enum { U_must_be_complete = sizeof(U) };
+    COMPILE_ASSERT((base::is_convertible<U*, T*>::value),
+                   U_ptr_must_implicitly_convert_to_T_ptr);
+  }
+  inline void operator()(T* ptr) const {
+    enum { type_must_be_complete = sizeof(T) };
+    delete ptr;
+  }
+};
+
+// Specialization of DefaultDeleter for array types.
+template <class T>
+struct DefaultDeleter<T[]> {
+  inline void operator()(T* ptr) const {
+    enum { type_must_be_complete = sizeof(T) };
+    delete[] ptr;
+  }
+
+ private:
+  // Disable this operator for any U != T because it is undefined to execute
+  // an array delete when the static type of the array mismatches the dynamic
+  // type.
+  //
+  // References:
+  //   C++98 [expr.delete]p3
+  //   http://cplusplus.github.com/LWG/lwg-defects.html#938
+  template <typename U> void operator()(U* array) const;
+};
+
+template <class T, int n>
+struct DefaultDeleter<T[n]> {
+  // Never allow someone to declare something like scoped_ptr<int[10]>.
+  COMPILE_ASSERT(sizeof(T) == -1, do_not_use_array_with_size_as_type);
+};
+
+// Function object which invokes 'free' on its parameter, which must be
+// a pointer. Can be used to store malloc-allocated pointers in scoped_ptr:
+//
+// scoped_ptr<int, base::FreeDeleter> foo_ptr(
+//     static_cast<int*>(malloc(sizeof(int))));
+struct FreeDeleter {
+  inline void operator()(void* ptr) const {
+    free(ptr);
+  }
+};
+
+namespace cef_internal {
+
+template <typename T> struct IsNotRefCounted {
+  enum {
+    value = !base::is_convertible<T*, base::subtle::RefCountedBase*>::value &&
+        !base::is_convertible<T*, base::subtle::RefCountedThreadSafeBase*>::
+            value
+  };
+};
+
+// Minimal implementation of the core logic of scoped_ptr, suitable for
+// reuse in both scoped_ptr and its specializations.
+template <class T, class D>
+class scoped_ptr_impl {
+ public:
+  explicit scoped_ptr_impl(T* p) : data_(p) { }
+
+  // Initializer for deleters that have data parameters.
+  scoped_ptr_impl(T* p, const D& d) : data_(p, d) {}
+
+  // Templated constructor that destructively takes the value from another
+  // scoped_ptr_impl.
+  template <typename U, typename V>
+  scoped_ptr_impl(scoped_ptr_impl<U, V>* other)
+      : data_(other->release(), other->get_deleter()) {
+    // We do not support move-only deleters.  We could modify our move
+    // emulation to have base::subtle::move() and base::subtle::forward()
+    // functions that are imperfect emulations of their C++11 equivalents,
+    // but until there's a requirement, just assume deleters are copyable.
+  }
+
+  template <typename U, typename V>
+  void TakeState(scoped_ptr_impl<U, V>* other) {
+    // See comment in templated constructor above regarding lack of support
+    // for move-only deleters.
+    reset(other->release());
+    get_deleter() = other->get_deleter();
+  }
+
+  ~scoped_ptr_impl() {
+    if (data_.ptr != NULL) {
+      // Not using get_deleter() saves one function call in non-optimized
+      // builds.
+      static_cast<D&>(data_)(data_.ptr);
+    }
+  }
+
+  void reset(T* p) {
+    // This is a self-reset, which is no longer allowed: http://crbug.com/162971
+    if (p != NULL && p == data_.ptr)
+      abort();
+
+    // Note that running data_.ptr = p can lead to undefined behavior if
+    // get_deleter()(get()) deletes this. In order to prevent this, reset()
+    // should update the stored pointer before deleting its old value.
+    //
+    // However, changing reset() to use that behavior may cause current code to
+    // break in unexpected ways. If the destruction of the owned object
+    // dereferences the scoped_ptr when it is destroyed by a call to reset(),
+    // then it will incorrectly dispatch calls to |p| rather than the original
+    // value of |data_.ptr|.
+    //
+    // During the transition period, set the stored pointer to NULL while
+    // deleting the object. Eventually, this safety check will be removed to
+    // prevent the scenario initially described from occuring and
+    // http://crbug.com/176091 can be closed.
+    T* old = data_.ptr;
+    data_.ptr = NULL;
+    if (old != NULL)
+      static_cast<D&>(data_)(old);
+    data_.ptr = p;
+  }
+
+  T* get() const { return data_.ptr; }
+
+  D& get_deleter() { return data_; }
+  const D& get_deleter() const { return data_; }
+
+  void swap(scoped_ptr_impl& p2) {
+    // Standard swap idiom: 'using std::swap' ensures that std::swap is
+    // present in the overload set, but we call swap unqualified so that
+    // any more-specific overloads can be used, if available.
+    using std::swap;
+    swap(static_cast<D&>(data_), static_cast<D&>(p2.data_));
+    swap(data_.ptr, p2.data_.ptr);
+  }
+
+  T* release() {
+    T* old_ptr = data_.ptr;
+    data_.ptr = NULL;
+    return old_ptr;
+  }
+
+ private:
+  // Needed to allow type-converting constructor.
+  template <typename U, typename V> friend class scoped_ptr_impl;
+
+  // Use the empty base class optimization to allow us to have a D
+  // member, while avoiding any space overhead for it when D is an
+  // empty class.  See e.g. http://www.cantrip.org/emptyopt.html for a good
+  // discussion of this technique.
+  struct Data : public D {
+    explicit Data(T* ptr_in) : ptr(ptr_in) {}
+    Data(T* ptr_in, const D& other) : D(other), ptr(ptr_in) {}
+    T* ptr;
+  };
+
+  Data data_;
+
+  DISALLOW_COPY_AND_ASSIGN(scoped_ptr_impl);
+};
+
+}  // namespace cef_internal
+
+}  // namespace base
+
+// A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T>
+// automatically deletes the pointer it holds (if any).
+// That is, scoped_ptr<T> owns the T object that it points to.
+// Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to a T object.
+// Also like T*, scoped_ptr<T> is thread-compatible, and once you
+// dereference it, you get the thread safety guarantees of T.
+//
+// The size of scoped_ptr is small. On most compilers, when using the
+// DefaultDeleter, sizeof(scoped_ptr<T>) == sizeof(T*). Custom deleters will
+// increase the size proportional to whatever state they need to have. See
+// comments inside scoped_ptr_impl<> for details.
+//
+// Current implementation targets having a strict subset of  C++11's
+// unique_ptr<> features. Known deficiencies include not supporting move-only
+// deleteres, function pointers as deleters, and deleters with reference
+// types.
+template <class T, class D = base::DefaultDeleter<T> >
+class scoped_ptr {
+  MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr, RValue)
+
+  COMPILE_ASSERT(base::cef_internal::IsNotRefCounted<T>::value,
+                 T_is_refcounted_type_and_needs_scoped_refptr);
+
+ public:
+  // The element and deleter types.
+  typedef T element_type;
+  typedef D deleter_type;
+
+  // Constructor.  Defaults to initializing with NULL.
+  scoped_ptr() : impl_(NULL) { }
+
+  // Constructor.  Takes ownership of p.
+  explicit scoped_ptr(element_type* p) : impl_(p) { }
+
+  // Constructor.  Allows initialization of a stateful deleter.
+  scoped_ptr(element_type* p, const D& d) : impl_(p, d) { }
+
+  // Constructor.  Allows construction from a scoped_ptr rvalue for a
+  // convertible type and deleter.
+  //
+  // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this constructor distinct
+  // from the normal move constructor. By C++11 20.7.1.2.1.21, this constructor
+  // has different post-conditions if D is a reference type. Since this
+  // implementation does not support deleters with reference type,
+  // we do not need a separate move constructor allowing us to avoid one
+  // use of SFINAE. You only need to care about this if you modify the
+  // implementation of scoped_ptr.
+  template <typename U, typename V>
+  scoped_ptr(scoped_ptr<U, V> other) : impl_(&other.impl_) {
+    COMPILE_ASSERT(!base::is_array<U>::value, U_cannot_be_an_array);
+  }
+
+  // Constructor.  Move constructor for C++03 move emulation of this type.
+  scoped_ptr(RValue rvalue) : impl_(&rvalue.object->impl_) { }
+
+  // operator=.  Allows assignment from a scoped_ptr rvalue for a convertible
+  // type and deleter.
+  //
+  // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this operator= distinct from
+  // the normal move assignment operator. By C++11 20.7.1.2.3.4, this templated
+  // form has different requirements on for move-only Deleters. Since this
+  // implementation does not support move-only Deleters, we do not need a
+  // separate move assignment operator allowing us to avoid one use of SFINAE.
+  // You only need to care about this if you modify the implementation of
+  // scoped_ptr.
+  template <typename U, typename V>
+  scoped_ptr& operator=(scoped_ptr<U, V> rhs) {
+    COMPILE_ASSERT(!base::is_array<U>::value, U_cannot_be_an_array);
+    impl_.TakeState(&rhs.impl_);
+    return *this;
+  }
+
+  // Reset.  Deletes the currently owned object, if any.
+  // Then takes ownership of a new object, if given.
+  void reset(element_type* p = NULL) { impl_.reset(p); }
+
+  // Accessors to get the owned object.
+  // operator* and operator-> will assert() if there is no current object.
+  element_type& operator*() const {
+    assert(impl_.get() != NULL);
+    return *impl_.get();
+  }
+  element_type* operator->() const  {
+    assert(impl_.get() != NULL);
+    return impl_.get();
+  }
+  element_type* get() const { return impl_.get(); }
+
+  // Access to the deleter.
+  deleter_type& get_deleter() { return impl_.get_deleter(); }
+  const deleter_type& get_deleter() const { return impl_.get_deleter(); }
+
+  // Allow scoped_ptr<element_type> to be used in boolean expressions, but not
+  // implicitly convertible to a real bool (which is dangerous).
+  //
+  // Note that this trick is only safe when the == and != operators
+  // are declared explicitly, as otherwise "scoped_ptr1 ==
+  // scoped_ptr2" will compile but do the wrong thing (i.e., convert
+  // to Testable and then do the comparison).
+ private:
+  typedef base::cef_internal::scoped_ptr_impl<element_type, deleter_type>
+      scoped_ptr::*Testable;
+
+ public:
+  operator Testable() const { return impl_.get() ? &scoped_ptr::impl_ : NULL; }
+
+  // Comparison operators.
+  // These return whether two scoped_ptr refer to the same object, not just to
+  // two different but equal objects.
+  bool operator==(const element_type* p) const { return impl_.get() == p; }
+  bool operator!=(const element_type* p) const { return impl_.get() != p; }
+
+  // Swap two scoped pointers.
+  void swap(scoped_ptr& p2) {
+    impl_.swap(p2.impl_);
+  }
+
+  // Release a pointer.
+  // The return value is the current pointer held by this object.
+  // If this object holds a NULL pointer, the return value is NULL.
+  // After this operation, this object will hold a NULL pointer,
+  // and will not own the object any more.
+  element_type* release() WARN_UNUSED_RESULT {
+    return impl_.release();
+  }
+
+  // C++98 doesn't support functions templates with default parameters which
+  // makes it hard to write a PassAs() that understands converting the deleter
+  // while preserving simple calling semantics.
+  //
+  // Until there is a use case for PassAs() with custom deleters, just ignore
+  // the custom deleter.
+  template <typename PassAsType>
+  scoped_ptr<PassAsType> PassAs() {
+    return scoped_ptr<PassAsType>(Pass());
+  }
+
+ private:
+  // Needed to reach into |impl_| in the constructor.
+  template <typename U, typename V> friend class scoped_ptr;
+  base::cef_internal::scoped_ptr_impl<element_type, deleter_type> impl_;
+
+  // Forbidden for API compatibility with std::unique_ptr.
+  explicit scoped_ptr(int disallow_construction_from_null);
+
+  // Forbid comparison of scoped_ptr types.  If U != T, it totally
+  // doesn't make sense, and if U == T, it still doesn't make sense
+  // because you should never have the same object owned by two different
+  // scoped_ptrs.
+  template <class U> bool operator==(scoped_ptr<U> const& p2) const;
+  template <class U> bool operator!=(scoped_ptr<U> const& p2) const;
+};
+
+template <class T, class D>
+class scoped_ptr<T[], D> {
+  MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr, RValue)
+
+ public:
+  // The element and deleter types.
+  typedef T element_type;
+  typedef D deleter_type;
+
+  // Constructor.  Defaults to initializing with NULL.
+  scoped_ptr() : impl_(NULL) { }
+
+  // Constructor. Stores the given array. Note that the argument's type
+  // must exactly match T*. In particular:
+  // - it cannot be a pointer to a type derived from T, because it is
+  //   inherently unsafe in the general case to access an array through a
+  //   pointer whose dynamic type does not match its static type (eg., if
+  //   T and the derived types had different sizes access would be
+  //   incorrectly calculated). Deletion is also always undefined
+  //   (C++98 [expr.delete]p3). If you're doing this, fix your code.
+  // - it cannot be NULL, because NULL is an integral expression, not a
+  //   pointer to T. Use the no-argument version instead of explicitly
+  //   passing NULL.
+  // - it cannot be const-qualified differently from T per unique_ptr spec
+  //   (http://cplusplus.github.com/LWG/lwg-active.html#2118). Users wanting
+  //   to work around this may use implicit_cast<const T*>().
+  //   However, because of the first bullet in this comment, users MUST
+  //   NOT use implicit_cast<Base*>() to upcast the static type of the array.
+  explicit scoped_ptr(element_type* array) : impl_(array) { }
+
+  // Constructor.  Move constructor for C++03 move emulation of this type.
+  scoped_ptr(RValue rvalue) : impl_(&rvalue.object->impl_) { }
+
+  // operator=.  Move operator= for C++03 move emulation of this type.
+  scoped_ptr& operator=(RValue rhs) {
+    impl_.TakeState(&rhs.object->impl_);
+    return *this;
+  }
+
+  // Reset.  Deletes the currently owned array, if any.
+  // Then takes ownership of a new object, if given.
+  void reset(element_type* array = NULL) { impl_.reset(array); }
+
+  // Accessors to get the owned array.
+  element_type& operator[](size_t i) const {
+    assert(impl_.get() != NULL);
+    return impl_.get()[i];
+  }
+  element_type* get() const { return impl_.get(); }
+
+  // Access to the deleter.
+  deleter_type& get_deleter() { return impl_.get_deleter(); }
+  const deleter_type& get_deleter() const { return impl_.get_deleter(); }
+
+  // Allow scoped_ptr<element_type> to be used in boolean expressions, but not
+  // implicitly convertible to a real bool (which is dangerous).
+ private:
+  typedef base::cef_internal::scoped_ptr_impl<element_type, deleter_type>
+      scoped_ptr::*Testable;
+
+ public:
+  operator Testable() const { return impl_.get() ? &scoped_ptr::impl_ : NULL; }
+
+  // Comparison operators.
+  // These return whether two scoped_ptr refer to the same object, not just to
+  // two different but equal objects.
+  bool operator==(element_type* array) const { return impl_.get() == array; }
+  bool operator!=(element_type* array) const { return impl_.get() != array; }
+
+  // Swap two scoped pointers.
+  void swap(scoped_ptr& p2) {
+    impl_.swap(p2.impl_);
+  }
+
+  // Release a pointer.
+  // The return value is the current pointer held by this object.
+  // If this object holds a NULL pointer, the return value is NULL.
+  // After this operation, this object will hold a NULL pointer,
+  // and will not own the object any more.
+  element_type* release() WARN_UNUSED_RESULT {
+    return impl_.release();
+  }
+
+ private:
+  // Force element_type to be a complete type.
+  enum { type_must_be_complete = sizeof(element_type) };
+
+  // Actually hold the data.
+  base::cef_internal::scoped_ptr_impl<element_type, deleter_type> impl_;
+
+  // Disable initialization from any type other than element_type*, by
+  // providing a constructor that matches such an initialization, but is
+  // private and has no definition. This is disabled because it is not safe to
+  // call delete[] on an array whose static type does not match its dynamic
+  // type.
+  template <typename U> explicit scoped_ptr(U* array);
+  explicit scoped_ptr(int disallow_construction_from_null);
+
+  // Disable reset() from any type other than element_type*, for the same
+  // reasons as the constructor above.
+  template <typename U> void reset(U* array);
+  void reset(int disallow_reset_from_null);
+
+  // Forbid comparison of scoped_ptr types.  If U != T, it totally
+  // doesn't make sense, and if U == T, it still doesn't make sense
+  // because you should never have the same object owned by two different
+  // scoped_ptrs.
+  template <class U> bool operator==(scoped_ptr<U> const& p2) const;
+  template <class U> bool operator!=(scoped_ptr<U> const& p2) const;
+};
+
+// Free functions
+template <class T, class D>
+void swap(scoped_ptr<T, D>& p1, scoped_ptr<T, D>& p2) {
+  p1.swap(p2);
+}
+
+template <class T, class D>
+bool operator==(T* p1, const scoped_ptr<T, D>& p2) {
+  return p1 == p2.get();
+}
+
+template <class T, class D>
+bool operator!=(T* p1, const scoped_ptr<T, D>& p2) {
+  return p1 != p2.get();
+}
+
+// A function to convert T* into scoped_ptr<T>
+// Doing e.g. make_scoped_ptr(new FooBarBaz<type>(arg)) is a shorter notation
+// for scoped_ptr<FooBarBaz<type> >(new FooBarBaz<type>(arg))
+template <typename T>
+scoped_ptr<T> make_scoped_ptr(T* ptr) {
+  return scoped_ptr<T>(ptr);
+}
+
+#endif  // !USING_CHROMIUM_INCLUDES
+
+#endif  // CEF_INCLUDE_BASE_CEF_MEMORY_SCOPED_PTR_H_