]> git.sesse.net Git - x264/blobdiff - encoder/macroblock.c
Eliminate the possibility of CAVLC level code overflow
[x264] / encoder / macroblock.c
index 19d2f85ed74a659da465fa1b5f4dbc4ffc3b39ab..441df88ab1cc7539ef3de2b7703c740b5cc10bf6 100644 (file)
@@ -1,7 +1,7 @@
 /*****************************************************************************
- * macroblock.c: h264 encoder library
+ * macroblock.c: macroblock encoding
  *****************************************************************************
- * Copyright (C) 2003-2008 x264 project
+ * Copyright (C) 2003-2011 x264 project
  *
  * Authors: Laurent Aimar <fenrir@via.ecp.fr>
  *          Loren Merritt <lorenm@u.washington.edu>
@@ -20,6 +20,9 @@
  * You should have received a copy of the GNU General Public License
  * along with this program; if not, write to the Free Software
  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02111, USA.
+ *
+ * This program is also available under a commercial proprietary license.
+ * For more information, contact us at licensing@x264.com.
  *****************************************************************************/
 
 #include "common/common.h"
@@ -28,7 +31,7 @@
 /* These chroma DC functions don't have assembly versions and are only used here. */
 
 #define ZIG(i,y,x) level[i] = dct[x*2+y];
-static inline void zigzag_scan_2x2_dc( int16_t level[4], int16_t dct[4] )
+static inline void zigzag_scan_2x2_dc( dctcoef level[4], dctcoef dct[4] )
 {
     ZIG(0,0,0)
     ZIG(1,0,1)
@@ -44,7 +47,7 @@ static inline void zigzag_scan_2x2_dc( int16_t level[4], int16_t dct[4] )
     int d3 = dct[2] - dct[3]; \
     int dmf = dequant_mf[i_qp%6][0] << i_qp/6;
 
-static inline void idct_dequant_2x2_dc( int16_t dct[4], int16_t dct4x4[4][16], int dequant_mf[6][16], int i_qp )
+static inline void idct_dequant_2x2_dc( dctcoef dct[4], dctcoef dct4x4[4][16], int dequant_mf[6][16], int i_qp )
 {
     IDCT_DEQUANT_START
     dct4x4[0][0] = (d0 + d1) * dmf >> 5;
@@ -53,7 +56,7 @@ static inline void idct_dequant_2x2_dc( int16_t dct[4], int16_t dct4x4[4][16], i
     dct4x4[3][0] = (d2 - d3) * dmf >> 5;
 }
 
-static inline void idct_dequant_2x2_dconly( int16_t out[4], int16_t dct[4], int dequant_mf[6][16], int i_qp )
+static inline void idct_dequant_2x2_dconly( dctcoef out[4], dctcoef dct[4], int dequant_mf[6][16], int i_qp )
 {
     IDCT_DEQUANT_START
     out[0] = (d0 + d1) * dmf >> 5;
@@ -62,7 +65,7 @@ static inline void idct_dequant_2x2_dconly( int16_t out[4], int16_t dct[4], int
     out[3] = (d2 - d3) * dmf >> 5;
 }
 
-static inline void dct2x2dc( int16_t d[4], int16_t dct4x4[4][16] )
+static inline void dct2x2dc( dctcoef d[4], dctcoef dct4x4[4][16] )
 {
     int d0 = dct4x4[0][0] + dct4x4[1][0];
     int d1 = dct4x4[2][0] + dct4x4[3][0];
@@ -78,18 +81,22 @@ static inline void dct2x2dc( int16_t d[4], int16_t dct4x4[4][16] )
     dct4x4[3][0] = 0;
 }
 
-static ALWAYS_INLINE int x264_quant_4x4( x264_t *h, int16_t dct[16], int i_qp, int i_ctxBlockCat, int b_intra, int idx )
+static ALWAYS_INLINE int x264_quant_4x4( x264_t *h, dctcoef dct[16], int i_qp, int ctx_block_cat, int b_intra, int idx )
 {
     int i_quant_cat = b_intra ? CQM_4IY : CQM_4PY;
+    if( h->mb.b_noise_reduction && ctx_block_cat != DCT_LUMA_AC )
+        h->quantf.denoise_dct( dct, h->nr_residual_sum[0], h->nr_offset[0], 16 );
     if( h->mb.b_trellis )
-        return x264_quant_4x4_trellis( h, dct, i_quant_cat, i_qp, i_ctxBlockCat, b_intra, 0, idx );
+        return x264_quant_4x4_trellis( h, dct, i_quant_cat, i_qp, ctx_block_cat, b_intra, 0, idx );
     else
         return h->quantf.quant_4x4( dct, h->quant4_mf[i_quant_cat][i_qp], h->quant4_bias[i_quant_cat][i_qp] );
 }
 
-static ALWAYS_INLINE int x264_quant_8x8( x264_t *h, int16_t dct[64], int i_qp, int b_intra, int idx )
+static ALWAYS_INLINE int x264_quant_8x8( x264_t *h, dctcoef dct[64], int i_qp, int b_intra, int idx )
 {
     int i_quant_cat = b_intra ? CQM_8IY : CQM_8PY;
+    if( h->mb.b_noise_reduction )
+        h->quantf.denoise_dct( dct, h->nr_residual_sum[1], h->nr_offset[1], 64 );
     if( h->mb.b_trellis )
         return x264_quant_8x8_trellis( h, dct, i_quant_cat, i_qp, b_intra, idx );
     else
@@ -112,7 +119,7 @@ void x264_mb_encode_i4x4( x264_t *h, int idx, int i_qp )
     int nz;
     pixel *p_src = &h->mb.pic.p_fenc[0][block_idx_xy_fenc[idx]];
     pixel *p_dst = &h->mb.pic.p_fdec[0][block_idx_xy_fdec[idx]];
-    ALIGNED_ARRAY_16( int16_t, dct4x4,[16] );
+    ALIGNED_ARRAY_16( dctcoef, dct4x4,[16] );
 
     if( h->mb.b_lossless )
     {
@@ -158,7 +165,7 @@ void x264_mb_encode_i8x8( x264_t *h, int idx, int i_qp )
     int nz;
     pixel *p_src = &h->mb.pic.p_fenc[0][8*x + 8*y*FENC_STRIDE];
     pixel *p_dst = &h->mb.pic.p_fdec[0][8*x + 8*y*FDEC_STRIDE];
-    ALIGNED_ARRAY_16( int16_t, dct8x8,[64] );
+    ALIGNED_ARRAY_16( dctcoef, dct8x8,[64] );
 
     if( h->mb.b_lossless )
     {
@@ -188,8 +195,8 @@ static void x264_mb_encode_i16x16( x264_t *h, int i_qp )
     pixel *p_src = h->mb.pic.p_fenc[0];
     pixel *p_dst = h->mb.pic.p_fdec[0];
 
-    ALIGNED_ARRAY_16( int16_t, dct4x4,[16],[16] );
-    ALIGNED_ARRAY_16( int16_t, dct_dc4x4,[16] );
+    ALIGNED_ARRAY_16( dctcoef, dct4x4,[16],[16] );
+    ALIGNED_ARRAY_16( dctcoef, dct_dc4x4,[16] );
 
     int nz;
     int decimate_score = h->mb.b_dct_decimate ? 0 : 9;
@@ -215,6 +222,8 @@ static void x264_mb_encode_i16x16( x264_t *h, int i_qp )
     for( int i = 0; i < 16; i++ )
     {
         /* copy dc coeff */
+        if( h->mb.b_noise_reduction )
+            h->quantf.denoise_dct( dct4x4[i], h->nr_residual_sum[0], h->nr_offset[0], 16 );
         dct_dc4x4[block_idx_xy_1d[i]] = dct4x4[i][0];
         dct4x4[i][0] = 0;
 
@@ -264,72 +273,33 @@ static void x264_mb_encode_i16x16( x264_t *h, int i_qp )
         h->dctf.add16x16_idct_dc( p_dst, dct_dc4x4 );
 }
 
-static inline int idct_dequant_round_2x2_dc( int16_t ref[4], int16_t dct[4], int dequant_mf[6][16], int i_qp )
-{
-    int16_t out[4];
-    idct_dequant_2x2_dconly( out, dct, dequant_mf, i_qp );
-    return ((ref[0] ^ (out[0]+32))
-          | (ref[1] ^ (out[1]+32))
-          | (ref[2] ^ (out[2]+32))
-          | (ref[3] ^ (out[3]+32))) >> 6;
-}
-
 /* Round down coefficients losslessly in DC-only chroma blocks.
  * Unlike luma blocks, this can't be done with a lookup table or
  * other shortcut technique because of the interdependencies
  * between the coefficients due to the chroma DC transform. */
-static inline int x264_mb_optimize_chroma_dc( x264_t *h, int b_inter, int i_qp, int16_t dct2x2[4] )
+static ALWAYS_INLINE int x264_mb_optimize_chroma_dc( x264_t *h, dctcoef dct2x2[4], int dequant_mf[6][16], int i_qp )
 {
-    int16_t dct2x2_orig[4];
-    int coeff, nz;
+    int dmf = dequant_mf[i_qp%6][0] << i_qp/6;
 
     /* If the QP is too high, there's no benefit to rounding optimization. */
-    if( h->dequant4_mf[CQM_4IC + b_inter][i_qp%6][0] << (i_qp/6) > 32*64 )
+    if( dmf > 32*64 )
         return 1;
 
-    idct_dequant_2x2_dconly( dct2x2_orig, dct2x2, h->dequant4_mf[CQM_4IC + b_inter], i_qp );
-    dct2x2_orig[0] += 32;
-    dct2x2_orig[1] += 32;
-    dct2x2_orig[2] += 32;
-    dct2x2_orig[3] += 32;
-
-    /* If the DC coefficients already round to zero, terminate early. */
-    if( !((dct2x2_orig[0]|dct2x2_orig[1]|dct2x2_orig[2]|dct2x2_orig[3])>>6) )
-        return 0;
-
-    /* Start with the highest frequency coefficient... is this the best option? */
-    for( nz = 0, coeff = h->quantf.coeff_last[DCT_CHROMA_DC]( dct2x2 ); coeff >= 0; coeff-- )
-    {
-        int level = dct2x2[coeff];
-        int sign = level>>31 | 1; /* dct2x2[coeff] < 0 ? -1 : 1 */
-
-        while( level )
-        {
-            dct2x2[coeff] = level - sign;
-            if( idct_dequant_round_2x2_dc( dct2x2_orig, dct2x2, h->dequant4_mf[CQM_4IC + b_inter], i_qp ) )
-            {
-                nz = 1;
-                dct2x2[coeff] = level;
-                break;
-            }
-            level -= sign;
-        }
-    }
-
-    return nz;
+    return h->quantf.optimize_chroma_dc( dct2x2, dmf );
 }
 
 void x264_mb_encode_8x8_chroma( x264_t *h, int b_inter, int i_qp )
 {
     int nz, nz_dc;
     int b_decimate = b_inter && h->mb.b_dct_decimate;
-    ALIGNED_ARRAY_16( int16_t, dct2x2,[4] );
+    ALIGNED_ARRAY_16( dctcoef, dct2x2,[4] );
     h->mb.i_cbp_chroma = 0;
+    h->nr_count[2] += h->mb.b_noise_reduction * 4;
 
     /* Early termination: check variance of chroma residual before encoding.
      * Don't bother trying early termination at low QPs.
      * Values are experimentally derived. */
-    if( b_decimate && i_qp >= (h->mb.b_trellis ? 12 : 18) )
+    if( b_decimate && i_qp >= (h->mb.b_trellis ? 12 : 18) && !h->mb.b_noise_reduction )
     {
         int thresh = (x264_lambda2_tab[i_qp] + 32) >> 6;
         int ssd[2];
@@ -360,7 +330,7 @@ void x264_mb_encode_8x8_chroma( x264_t *h, int b_inter, int i_qp )
 
                     if( nz_dc )
                     {
-                        if( !x264_mb_optimize_chroma_dc( h, b_inter, i_qp, dct2x2 ) )
+                        if( !x264_mb_optimize_chroma_dc( h, dct2x2, h->dequant4_mf[CQM_4IC + b_inter], i_qp ) )
                             continue;
                         h->mb.cache.non_zero_count[x264_scan8[25]+ch] = 1;
                         zigzag_scan_2x2_dc( h->dct.chroma_dc[ch], dct2x2 );
@@ -381,7 +351,7 @@ void x264_mb_encode_8x8_chroma( x264_t *h, int b_inter, int i_qp )
         int i_decimate_score = 0;
         int nz_ac = 0;
 
-        ALIGNED_ARRAY_16( int16_t, dct4x4,[4],[16] );
+        ALIGNED_ARRAY_16( dctcoef, dct4x4,[4],[16] );
 
         if( h->mb.b_lossless )
         {
@@ -398,6 +368,9 @@ void x264_mb_encode_8x8_chroma( x264_t *h, int b_inter, int i_qp )
         }
 
         h->dctf.sub8x8_dct( dct4x4, p_src, p_dst );
+        if( h->mb.b_noise_reduction )
+            for( int i = 0; i < 4; i++ )
+                h->quantf.denoise_dct( dct4x4[i], h->nr_residual_sum[2], h->nr_offset[2], 16 );
         dct2x2dc( dct2x2, dct4x4 );
         /* calculate dct coeffs */
         for( int i = 0; i < 4; i++ )
@@ -433,7 +406,7 @@ void x264_mb_encode_8x8_chroma( x264_t *h, int b_inter, int i_qp )
             h->mb.cache.non_zero_count[x264_scan8[16+3]+24*ch] = 0;
             if( !nz_dc ) /* Whole block is empty */
                 continue;
-            if( !x264_mb_optimize_chroma_dc( h, b_inter, i_qp, dct2x2 ) )
+            if( !x264_mb_optimize_chroma_dc( h, dct2x2, h->dequant4_mf[CQM_4IC + b_inter], i_qp  ) )
             {
                 h->mb.cache.non_zero_count[x264_scan8[25]+ch] = 0;
                 continue;
@@ -492,25 +465,16 @@ static void x264_macroblock_encode_pskip( x264_t *h )
 
         /* Special case for mv0, which is (of course) very common in P-skip mode. */
         if( mvx | mvy )
-        {
-            h->mc.mc_chroma( h->mb.pic.p_fdec[1],       FDEC_STRIDE,
+            h->mc.mc_chroma( h->mb.pic.p_fdec[1], h->mb.pic.p_fdec[2], FDEC_STRIDE,
                              h->mb.pic.p_fref[0][0][4], h->mb.pic.i_stride[1],
                              mvx, mvy, 8, 8 );
-            h->mc.mc_chroma( h->mb.pic.p_fdec[2],       FDEC_STRIDE,
-                             h->mb.pic.p_fref[0][0][5], h->mb.pic.i_stride[2],
-                             mvx, mvy, 8, 8 );
-        }
         else
-        {
-            h->mc.copy[PIXEL_8x8]( h->mb.pic.p_fdec[1], FDEC_STRIDE, h->mb.pic.p_fref[0][0][4], h->mb.pic.i_stride[1], 8 );
-            h->mc.copy[PIXEL_8x8]( h->mb.pic.p_fdec[2], FDEC_STRIDE, h->mb.pic.p_fref[0][0][5], h->mb.pic.i_stride[2], 8 );
-        }
+            h->mc.load_deinterleave_8x8x2_fdec( h->mb.pic.p_fdec[1], h->mb.pic.p_fref[0][0][4], h->mb.pic.i_stride[1] );
 
         if( h->sh.weight[0][1].weightfn )
             h->sh.weight[0][1].weightfn[8>>2]( h->mb.pic.p_fdec[1], FDEC_STRIDE,
                                                h->mb.pic.p_fdec[1], FDEC_STRIDE,
                                                &h->sh.weight[0][1], 8 );
-
         if( h->sh.weight[0][2].weightfn )
             h->sh.weight[0][2].weightfn[8>>2]( h->mb.pic.p_fdec[2], FDEC_STRIDE,
                                                h->mb.pic.p_fdec[2], FDEC_STRIDE,
@@ -524,25 +488,21 @@ static void x264_macroblock_encode_pskip( x264_t *h )
  * Intra prediction for predictive lossless mode.
  *****************************************************************************/
 
-/* Note that these functions take a shortcut (mc.copy instead of actual pixel prediction) which assumes
- * that the edge pixels of the reconstructed frame are the same as that of the source frame.  This means
- * they will only work correctly if the neighboring blocks are losslessly coded.  In practice, this means
- * lossless mode cannot be mixed with lossy mode within a frame. */
-/* This can be resolved by explicitly copying the edge pixels after doing the mc.copy, but this doesn't
- * need to be done unless we decide to allow mixing lossless and lossy compression. */
-
 void x264_predict_lossless_8x8_chroma( x264_t *h, int i_mode )
 {
-    int stride = h->fenc->i_stride[1] << h->mb.b_interlaced;
     if( i_mode == I_PRED_CHROMA_V )
     {
-        h->mc.copy[PIXEL_8x8]( h->mb.pic.p_fdec[1], FDEC_STRIDE, h->mb.pic.p_fenc_plane[1]-stride, stride, 8 );
-        h->mc.copy[PIXEL_8x8]( h->mb.pic.p_fdec[2], FDEC_STRIDE, h->mb.pic.p_fenc_plane[2]-stride, stride, 8 );
+        h->mc.copy[PIXEL_8x8]( h->mb.pic.p_fdec[1], FDEC_STRIDE, h->mb.pic.p_fenc[1]-FENC_STRIDE, FENC_STRIDE, 8 );
+        h->mc.copy[PIXEL_8x8]( h->mb.pic.p_fdec[2], FDEC_STRIDE, h->mb.pic.p_fenc[2]-FENC_STRIDE, FENC_STRIDE, 8 );
+        memcpy( h->mb.pic.p_fdec[1], h->mb.pic.p_fdec[1]-FDEC_STRIDE, 8*sizeof(pixel) );
+        memcpy( h->mb.pic.p_fdec[2], h->mb.pic.p_fdec[2]-FDEC_STRIDE, 8*sizeof(pixel) );
     }
     else if( i_mode == I_PRED_CHROMA_H )
     {
-        h->mc.copy[PIXEL_8x8]( h->mb.pic.p_fdec[1], FDEC_STRIDE, h->mb.pic.p_fenc_plane[1]-1, stride, 8 );
-        h->mc.copy[PIXEL_8x8]( h->mb.pic.p_fdec[2], FDEC_STRIDE, h->mb.pic.p_fenc_plane[2]-1, stride, 8 );
+        h->mc.copy[PIXEL_8x8]( h->mb.pic.p_fdec[1], FDEC_STRIDE, h->mb.pic.p_fenc[1]-1, FENC_STRIDE, 8 );
+        h->mc.copy[PIXEL_8x8]( h->mb.pic.p_fdec[2], FDEC_STRIDE, h->mb.pic.p_fenc[2]-1, FENC_STRIDE, 8 );
+        x264_copy_column8( h->mb.pic.p_fdec[1]+4*FDEC_STRIDE, h->mb.pic.p_fdec[1]+4*FDEC_STRIDE-1 );
+        x264_copy_column8( h->mb.pic.p_fdec[2]+4*FDEC_STRIDE, h->mb.pic.p_fdec[2]+4*FDEC_STRIDE-1 );
     }
     else
     {
@@ -751,15 +711,13 @@ void x264_macroblock_encode( x264_t *h )
         }
         else if( h->mb.b_transform_8x8 )
         {
-            ALIGNED_ARRAY_16( int16_t, dct8x8,[4],[64] );
-            b_decimate &= !h->mb.b_trellis; // 8x8 trellis is inherently optimal decimation
+            ALIGNED_ARRAY_16( dctcoef, dct8x8,[4],[64] );
+            b_decimate &= !h->mb.b_trellis || !h->param.b_cabac; // 8x8 trellis is inherently optimal decimation for CABAC
             h->dctf.sub16x16_dct8( dct8x8, h->mb.pic.p_fenc[0], h->mb.pic.p_fdec[0] );
             h->nr_count[1] += h->mb.b_noise_reduction * 4;
 
             for( int idx = 0; idx < 4; idx++ )
             {
-                if( h->mb.b_noise_reduction )
-                    h->quantf.denoise_dct( dct8x8[idx], h->nr_residual_sum[1], h->nr_offset[1], 64 );
                 nz = x264_quant_8x8( h, dct8x8[idx], i_qp, 0, idx );
 
                 if( nz )
@@ -803,7 +761,7 @@ void x264_macroblock_encode( x264_t *h )
         }
         else
         {
-            ALIGNED_ARRAY_16( int16_t, dct4x4,[16],[16] );
+            ALIGNED_ARRAY_16( dctcoef, dct4x4,[16],[16] );
             h->dctf.sub16x16_dct( dct4x4, h->mb.pic.p_fenc[0], h->mb.pic.p_fdec[0] );
             h->nr_count[0] += h->mb.b_noise_reduction * 16;
 
@@ -817,8 +775,6 @@ void x264_macroblock_encode( x264_t *h )
                 {
                     int idx = i8x8 * 4 + i4x4;
 
-                    if( h->mb.b_noise_reduction )
-                        h->quantf.denoise_dct( dct4x4[idx], h->nr_residual_sum[0], h->nr_offset[0], 16 );
                     nz = x264_quant_4x4( h, dct4x4[idx], i_qp, DCT_LUMA_4x4, 0, idx );
                     h->mb.cache.non_zero_count[x264_scan8[idx]] = nz;
 
@@ -922,9 +878,9 @@ void x264_macroblock_encode( x264_t *h )
  *****************************************************************************/
 int x264_macroblock_probe_skip( x264_t *h, int b_bidir )
 {
-    ALIGNED_ARRAY_16( int16_t, dct4x4,[4],[16] );
-    ALIGNED_ARRAY_16( int16_t, dct2x2,[4] );
-    ALIGNED_ARRAY_16( int16_t, dctscan,[16] );
+    ALIGNED_ARRAY_16( dctcoef, dct4x4,[4],[16] );
+    ALIGNED_ARRAY_16( dctcoef, dct2x2,[4] );
+    ALIGNED_ARRAY_16( dctcoef, dctscan,[16] );
     ALIGNED_4( int16_t mvp[2] );
 
     int i_qp = h->mb.i_qp;
@@ -952,6 +908,8 @@ int x264_macroblock_probe_skip( x264_t *h, int b_bidir )
         /* encode one 4x4 block */
         for( int i4x4 = 0; i4x4 < 4; i4x4++ )
         {
+            if( h->mb.b_noise_reduction )
+                h->quantf.denoise_dct( dct4x4[i4x4], h->nr_residual_sum[0], h->nr_offset[0], 16 );
             if( !h->quantf.quant_4x4( dct4x4[i4x4], h->quant4_mf[CQM_4PY][i_qp], h->quant4_bias[CQM_4PY][i_qp] ) )
                 continue;
             h->zigzagf.scan_4x4( dctscan, dct4x4[i4x4] );
@@ -965,28 +923,26 @@ int x264_macroblock_probe_skip( x264_t *h, int b_bidir )
     i_qp = h->mb.i_chroma_qp;
     thresh = (x264_lambda2_tab[i_qp] + 32) >> 6;
 
+    if( !b_bidir )
+    {
+        /* Special case for mv0, which is (of course) very common in P-skip mode. */
+        if( M32( mvp ) )
+            h->mc.mc_chroma( h->mb.pic.p_fdec[1], h->mb.pic.p_fdec[2], FDEC_STRIDE,
+                             h->mb.pic.p_fref[0][0][4], h->mb.pic.i_stride[1],
+                             mvp[0], mvp[1], 8, 8 );
+        else
+            h->mc.load_deinterleave_8x8x2_fdec( h->mb.pic.p_fdec[1], h->mb.pic.p_fref[0][0][4], h->mb.pic.i_stride[1] );
+    }
+
     for( int ch = 0; ch < 2; ch++ )
     {
         pixel *p_src = h->mb.pic.p_fenc[1+ch];
         pixel *p_dst = h->mb.pic.p_fdec[1+ch];
 
-        if( !b_bidir )
-        {
-            /* Special case for mv0, which is (of course) very common in P-skip mode. */
-            if( M32( mvp ) )
-            {
-                h->mc.mc_chroma( h->mb.pic.p_fdec[1+ch],       FDEC_STRIDE,
-                                 h->mb.pic.p_fref[0][0][4+ch], h->mb.pic.i_stride[1+ch],
-                                 mvp[0], mvp[1], 8, 8 );
-            }
-            else
-                h->mc.copy[PIXEL_8x8]( h->mb.pic.p_fdec[1+ch], FDEC_STRIDE, h->mb.pic.p_fref[0][0][4+ch], h->mb.pic.i_stride[1+ch], 8 );
-
-            if( h->sh.weight[0][1+ch].weightfn )
-                h->sh.weight[0][1+ch].weightfn[8>>2]( h->mb.pic.p_fdec[1+ch], FDEC_STRIDE,
-                                                      h->mb.pic.p_fdec[1+ch], FDEC_STRIDE,
-                                                      &h->sh.weight[0][1+ch], 8 );
-        }
+        if( !b_bidir && h->sh.weight[0][1+ch].weightfn )
+            h->sh.weight[0][1+ch].weightfn[8>>2]( h->mb.pic.p_fdec[1+ch], FDEC_STRIDE,
+                                                  h->mb.pic.p_fdec[1+ch], FDEC_STRIDE,
+                                                  &h->sh.weight[0][1+ch], 8 );
 
         /* there is almost never a termination during chroma, but we can't avoid the check entirely */
         /* so instead we check SSD and skip the actual check if the score is low enough. */
@@ -996,7 +952,17 @@ int x264_macroblock_probe_skip( x264_t *h, int b_bidir )
 
         /* The vast majority of chroma checks will terminate during the DC check or the higher
          * threshold check, so we can save time by doing a DC-only DCT. */
-        h->dctf.sub8x8_dct_dc( dct2x2, p_src, p_dst );
+        if( h->mb.b_noise_reduction )
+        {
+            h->dctf.sub8x8_dct( dct4x4, p_src, p_dst );
+            for( int i4x4 = 0; i4x4 < 4; i4x4++ )
+            {
+                h->quantf.denoise_dct( dct4x4[i4x4], h->nr_residual_sum[2], h->nr_offset[2], 16 );
+                dct2x2[i4x4] = dct4x4[i4x4][0];
+            }
+        }
+        else
+            h->dctf.sub8x8_dct_dc( dct2x2, p_src, p_dst );
 
         if( h->quantf.quant_2x2_dc( dct2x2, h->quant4_mf[CQM_4PC][i_qp][0]>>1, h->quant4_bias[CQM_4PC][i_qp][0]<<1 ) )
             return 0;
@@ -1005,12 +971,15 @@ int x264_macroblock_probe_skip( x264_t *h, int b_bidir )
         if( ssd < thresh*4 )
             continue;
 
-        h->dctf.sub8x8_dct( dct4x4, p_src, p_dst );
+        if( !h->mb.b_noise_reduction )
+            h->dctf.sub8x8_dct( dct4x4, p_src, p_dst );
 
         /* calculate dct coeffs */
         for( int i4x4 = 0, i_decimate_mb = 0; i4x4 < 4; i4x4++ )
         {
             dct4x4[i4x4][0] = 0;
+            if( h->mb.b_noise_reduction )
+                h->quantf.denoise_dct( dct4x4[i4x4], h->nr_residual_sum[2], h->nr_offset[2], 16 );
             if( !h->quantf.quant_4x4( dct4x4[i4x4], h->quant4_mf[CQM_4PC][i_qp], h->quant4_bias[CQM_4PC][i_qp] ) )
                 continue;
             h->zigzagf.scan_4x4( dctscan, dct4x4[i4x4] );
@@ -1031,12 +1000,16 @@ int x264_macroblock_probe_skip( x264_t *h, int b_bidir )
 
 void x264_noise_reduction_update( x264_t *h )
 {
-    for( int cat = 0; cat < 2; cat++ )
+    h->nr_offset = h->nr_offset_denoise;
+    h->nr_residual_sum = h->nr_residual_sum_buf[0];
+    h->nr_count = h->nr_count_buf[0];
+    for( int cat = 0; cat < 3; cat++ )
     {
-        int size = cat ? 64 : 16;
-        const uint16_t *weight = cat ? x264_dct8_weight2_tab : x264_dct4_weight2_tab;
+        int dct8x8 = cat == 1;
+        int size = dct8x8 ? 64 : 16;
+        const uint16_t *weight = dct8x8 ? x264_dct8_weight2_tab : x264_dct4_weight2_tab;
 
-        if( h->nr_count[cat] > (cat ? (1<<16) : (1<<18)) )
+        if( h->nr_count[cat] > (dct8x8 ? (1<<16) : (1<<18)) )
         {
             for( int i = 0; i < size; i++ )
                 h->nr_residual_sum[cat][i] >>= 1;
@@ -1048,6 +1021,9 @@ void x264_noise_reduction_update( x264_t *h )
                 ((uint64_t)h->param.analyse.i_noise_reduction * h->nr_count[cat]
                  + h->nr_residual_sum[cat][i]/2)
               / ((uint64_t)h->nr_residual_sum[cat][i] * weight[i]/256 + 1);
+
+        /* Don't denoise DC coefficients */
+        h->nr_offset[cat][0] = 0;
     }
 }
 
@@ -1090,7 +1066,7 @@ void x264_macroblock_encode_p8x8( x264_t *h, int i8 )
         }
         for( int ch = 0; ch < 2; ch++ )
         {
-            int16_t dc;
+            dctcoef dc;
             p_fenc = h->mb.pic.p_fenc[1+ch] + 4*x + 4*y*FENC_STRIDE;
             p_fdec = h->mb.pic.p_fdec[1+ch] + 4*x + 4*y*FDEC_STRIDE;
             nz = h->zigzagf.sub_4x4ac( h->dct.luma4x4[16+i8+ch*4], p_fenc, p_fdec, &dc );
@@ -1101,7 +1077,7 @@ void x264_macroblock_encode_p8x8( x264_t *h, int i8 )
     {
         if( h->mb.b_transform_8x8 )
         {
-            ALIGNED_ARRAY_16( int16_t, dct8x8,[64] );
+            ALIGNED_ARRAY_16( dctcoef, dct8x8,[64] );
             h->dctf.sub8x8_dct8( dct8x8, p_fenc, p_fdec );
             nnz8x8 = x264_quant_8x8( h, dct8x8, i_qp, 0, i8 );
             if( nnz8x8 )
@@ -1126,7 +1102,7 @@ void x264_macroblock_encode_p8x8( x264_t *h, int i8 )
         else
         {
             int i_decimate_8x8 = 0;
-            ALIGNED_ARRAY_16( int16_t, dct4x4,[4],[16] );
+            ALIGNED_ARRAY_16( dctcoef, dct4x4,[4],[16] );
             h->dctf.sub8x8_dct( dct4x4, p_fenc, p_fdec );
             for( int i4 = 0; i4 < 4; i4++ )
             {
@@ -1155,11 +1131,12 @@ void x264_macroblock_encode_p8x8( x264_t *h, int i8 )
 
         for( int ch = 0; ch < 2; ch++ )
         {
-            ALIGNED_ARRAY_16( int16_t, dct4x4,[16] );
+            ALIGNED_ARRAY_16( dctcoef, dct4x4,[16] );
             p_fenc = h->mb.pic.p_fenc[1+ch] + 4*x + 4*y*FENC_STRIDE;
             p_fdec = h->mb.pic.p_fdec[1+ch] + 4*x + 4*y*FDEC_STRIDE;
-
             h->dctf.sub4x4_dct( dct4x4, p_fenc, p_fdec );
+            if( h->mb.b_noise_reduction )
+                h->quantf.denoise_dct( dct4x4, h->nr_residual_sum[2], h->nr_offset[2], 16 );
             dct4x4[0] = 0;
 
             if( h->mb.b_trellis )
@@ -1200,7 +1177,7 @@ void x264_macroblock_encode_p4x4( x264_t *h, int i4 )
     }
     else
     {
-        ALIGNED_ARRAY_16( int16_t, dct4x4,[16] );
+        ALIGNED_ARRAY_16( dctcoef, dct4x4,[16] );
         h->dctf.sub4x4_dct( dct4x4, p_fenc, p_fdec );
         nz = x264_quant_4x4( h, dct4x4, i_qp, DCT_LUMA_4x4, 0, i4 );
         h->mb.cache.non_zero_count[x264_scan8[i4]] = nz;