]> git.sesse.net Git - x264/blobdiff - encoder/ratecontrol.c
eliminate some divisions
[x264] / encoder / ratecontrol.c
index e10de4c2dfcb51148f15254faaa5828ad21199c2..7054c35ad5dc10b9788e543b79a9f5cf90534e7d 100644 (file)
@@ -1,11 +1,12 @@
 /***************************************************-*- coding: iso-8859-1 -*-
  * ratecontrol.c: h264 encoder library (Rate Control)
  *****************************************************************************
- * Copyright (C) 2005 x264 project
- * $Id: ratecontrol.c,v 1.1 2004/06/03 19:27:08 fenrir Exp $
+ * Copyright (C) 2005-2008 x264 project
  *
  * Authors: Loren Merritt <lorenm@u.washington.edu>
  *          Michael Niedermayer <michaelni@gmx.at>
+ *          Gabriel Bouvigne <gabriel.bouvigne@joost.com>
+ *          Fiona Glaser <fiona@x264.com>
  *          Måns Rullgård <mru@mru.ath.cx>
  *
  * This program is free software; you can redistribute it and/or modify
  *
  * You should have received a copy of the GNU General Public License
  * along with this program; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111, USA.
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02111, USA.
  *****************************************************************************/
 
 #define _ISOC99_SOURCE
 #undef NDEBUG // always check asserts, the speed effect is far too small to disable them
-#include <stdlib.h>
-#include <stdio.h>
-#include <string.h>
 #include <math.h>
-#include <limits.h>
-#include <assert.h>
 
 #include "common/common.h"
 #include "common/cpu.h"
 #include "ratecontrol.h"
-
-#if defined(SYS_FREEBSD) || defined(SYS_BEOS) || defined(SYS_NETBSD)
-#define exp2f(x) powf( 2, (x) )
-#endif
-#if defined(_MSC_VER) || defined(SYS_SunOS)
-#define exp2f(x) pow( 2, (x) )
-#define sqrtf sqrt
-#endif
-#ifdef WIN32 // POSIX says that rename() removes the destination, but win32 doesn't.
-#define rename(src,dst) (unlink(dst), rename(src,dst))
-#endif
+#include "me.h"
 
 typedef struct
 {
@@ -53,16 +39,19 @@ typedef struct
     int kept_as_ref;
     float qscale;
     int mv_bits;
-    int i_tex_bits;
-    int p_tex_bits;
+    int tex_bits;
     int misc_bits;
-    uint64_t expected_bits;
+    uint64_t expected_bits; /*total expected bits up to the current frame (current one excluded)*/
+    double expected_vbv;
     float new_qscale;
     int new_qp;
     int i_count;
     int p_count;
     int s_count;
     float blurred_complexity;
+    char direct_mode;
+    int refcount[16];
+    int refs;
 } ratecontrol_entry_t;
 
 typedef struct
@@ -70,6 +59,7 @@ typedef struct
     double coeff;
     double count;
     double decay;
+    double offset;
 } predictor_t;
 
 struct x264_ratecontrol_t
@@ -77,39 +67,53 @@ struct x264_ratecontrol_t
     /* constants */
     int b_abr;
     int b_2pass;
+    int b_vbv;
+    int b_vbv_min_rate;
     double fps;
     double bitrate;
     double rate_tolerance;
+    double qcompress;
     int nmb;                    /* number of macroblocks in a frame */
     int qp_constant[5];
 
     /* current frame */
     ratecontrol_entry_t *rce;
     int qp;                     /* qp for current frame */
-    float qpa;                  /* average of macroblocks' qp (same as qp if no adaptive quant) */
-    int slice_type;
+    int qpm;                    /* qp for current macroblock */
+    float f_qpm;                /* qp for current macroblock: precise float for AQ */
+    float qpa_rc;               /* average of macroblocks' qp before aq */
+    float qpa_aq;               /* average of macroblocks' qp after aq */
+    float qp_novbv;             /* QP for the current frame if 1-pass VBV was disabled. */
     int qp_force;
 
     /* VBV stuff */
     double buffer_size;
-    double buffer_fill;
+    double buffer_fill_final;   /* real buffer as of the last finished frame */
+    double buffer_fill;         /* planned buffer, if all in-progress frames hit their bit budget */
     double buffer_rate;         /* # of bits added to buffer_fill after each frame */
-    predictor_t pred[5];        /* predict frame size from satd */
+    predictor_t *pred;          /* predict frame size from satd */
+    int single_frame_vbv;
 
     /* ABR stuff */
     int    last_satd;
     double last_rceq;
     double cplxr_sum;           /* sum of bits*qscale/rceq */
-    double expected_bits_sum;   /* sum of qscale2bits after rceq, ratefactor, and overflow */
+    double expected_bits_sum;   /* sum of qscale2bits after rceq, ratefactor, and overflow, only includes finished frames */
     double wanted_bits_window;  /* target bitrate * window */
     double cbr_decay;
     double short_term_cplxsum;
     double short_term_cplxcount;
     double rate_factor_constant;
+    double ip_offset;
+    double pb_offset;
 
     /* 2pass stuff */
     FILE *p_stat_file_out;
     char *psz_stat_file_tmpname;
+    FILE *p_mbtree_stat_file_out;
+    char *psz_mbtree_stat_file_tmpname;
+    char *psz_mbtree_stat_file_name;
+    FILE *p_mbtree_stat_file_in;
 
     int num_entries;            /* number of ratecontrol_entry_ts */
     ratecontrol_entry_t *entry; /* FIXME: copy needed data and free this once init is done */
@@ -122,21 +126,30 @@ struct x264_ratecontrol_t
     double lmin[5];             /* min qscale by frame type */
     double lmax[5];
     double lstep;               /* max change (multiply) in qscale per frame */
-    double i_cplx_sum[5];       /* estimated total texture bits in intra MBs at qscale=1 */
-    double p_cplx_sum[5];
-    double mv_bits_sum[5];
-    int frame_count[5];         /* number of frames of each type */
+    uint16_t *qp_buffer; /* Global buffer for converting MB-tree quantizer data. */
+
+    /* MBRC stuff */
+    double frame_size_estimated;
+    double frame_size_planned;
+    predictor_t (*row_pred)[2];
+    predictor_t row_preds[5][2];
+    predictor_t *pred_b_from_p; /* predict B-frame size from P-frame satd */
+    int bframes;                /* # consecutive B-frames before this P-frame */
+    int bframe_bits;            /* total cost of those frames */
 
     int i_zones;
     x264_zone_t *zones;
+    x264_zone_t *prev_zone;
 };
 
 
 static int parse_zones( x264_t *h );
 static int init_pass2(x264_t *);
-static float rate_estimate_qscale( x264_t *h, int pict_type );
+static float rate_estimate_qscale( x264_t *h );
 static void update_vbv( x264_t *h, int bits );
-int  x264_rc_analyse_slice( x264_t *h );
+static void update_vbv_plan( x264_t *h, int overhead );
+static double predict_size( predictor_t *p, double q, double var );
+static void update_predictor( predictor_t *p, double q, double var, double bits );
 
 /* Terminology:
  * qp = h.264's quantizer
@@ -159,114 +172,403 @@ static inline double qscale2bits(ratecontrol_entry_t *rce, double qscale)
 {
     if(qscale<0.1)
         qscale = 0.1;
-    return (rce->i_tex_bits + rce->p_tex_bits + .1) * pow( rce->qscale / qscale, 1.1 )
-           + rce->mv_bits * pow( X264_MAX(rce->qscale, 12) / X264_MAX(qscale, 12), 0.5 );
+    return (rce->tex_bits + .1) * pow( rce->qscale / qscale, 1.1 )
+           + rce->mv_bits * pow( X264_MAX(rce->qscale, 1) / X264_MAX(qscale, 1), 0.5 )
+           + rce->misc_bits;
+}
+
+// Find the total AC energy of the block in all planes.
+static NOINLINE uint32_t ac_energy_mb( x264_t *h, int mb_x, int mb_y, x264_frame_t *frame )
+{
+    /* This function contains annoying hacks because GCC has a habit of reordering emms
+     * and putting it after floating point ops.  As a result, we put the emms at the end of the
+     * function and make sure that its always called before the float math.  Noinline makes
+     * sure no reordering goes on. */
+    uint32_t var = 0, i;
+    for( i = 0; i < 3; i++ )
+    {
+        int w = i ? 8 : 16;
+        int stride = frame->i_stride[i];
+        int offset = h->mb.b_interlaced
+            ? w * (mb_x + (mb_y&~1) * stride) + (mb_y&1) * stride
+            : w * (mb_x + mb_y * stride);
+        int pix = i ? PIXEL_8x8 : PIXEL_16x16;
+        stride <<= h->mb.b_interlaced;
+        var += h->pixf.var[pix]( frame->plane[i]+offset, stride );
+    }
+    x264_emms();
+    return var;
+}
+
+void x264_adaptive_quant_frame( x264_t *h, x264_frame_t *frame )
+{
+    /* constants chosen to result in approximately the same overall bitrate as without AQ.
+     * FIXME: while they're written in 5 significant digits, they're only tuned to 2. */
+    int mb_x, mb_y;
+    float strength;
+    float avg_adj = 0.f;
+    /* Need to init it anyways for MB tree. */
+    if( h->param.rc.f_aq_strength == 0 )
+    {
+        int mb_xy;
+        memset( frame->f_qp_offset, 0, h->mb.i_mb_count * sizeof(float) );
+        memset( frame->f_qp_offset_aq, 0, h->mb.i_mb_count * sizeof(float) );
+        if( h->frames.b_have_lowres )
+            for( mb_xy = 0; mb_xy < h->mb.i_mb_count; mb_xy++ )
+                frame->i_inv_qscale_factor[mb_xy] = 256;
+        return;
+    }
+
+    if( h->param.rc.i_aq_mode == X264_AQ_AUTOVARIANCE )
+    {
+        for( mb_y = 0; mb_y < h->sps->i_mb_height; mb_y++ )
+            for( mb_x = 0; mb_x < h->sps->i_mb_width; mb_x++ )
+            {
+                uint32_t energy = ac_energy_mb( h, mb_x, mb_y, frame );
+                float qp_adj = x264_log2( energy + 2 );
+                qp_adj *= qp_adj;
+                frame->f_qp_offset[mb_x + mb_y*h->mb.i_mb_stride] = qp_adj;
+                avg_adj += qp_adj;
+            }
+        avg_adj /= h->mb.i_mb_count;
+        strength = h->param.rc.f_aq_strength * avg_adj * (1.f / 6000.f);
+    }
+    else
+        strength = h->param.rc.f_aq_strength * 1.0397f;
+
+    for( mb_y = 0; mb_y < h->sps->i_mb_height; mb_y++ )
+        for( mb_x = 0; mb_x < h->sps->i_mb_width; mb_x++ )
+        {
+            float qp_adj;
+            if( h->param.rc.i_aq_mode == X264_AQ_AUTOVARIANCE )
+            {
+                qp_adj = frame->f_qp_offset[mb_x + mb_y*h->mb.i_mb_stride];
+                qp_adj = strength * (qp_adj - avg_adj);
+            }
+            else
+            {
+                uint32_t energy = ac_energy_mb( h, mb_x, mb_y, frame );
+                qp_adj = strength * (x264_log2( X264_MAX(energy, 1) ) - 14.427f);
+            }
+            frame->f_qp_offset[mb_x + mb_y*h->mb.i_mb_stride] =
+            frame->f_qp_offset_aq[mb_x + mb_y*h->mb.i_mb_stride] = qp_adj;
+            if( h->frames.b_have_lowres )
+                frame->i_inv_qscale_factor[mb_x + mb_y*h->mb.i_mb_stride] = x264_exp2fix8(qp_adj);
+        }
+}
+
+
+/*****************************************************************************
+* x264_adaptive_quant:
+ * adjust macroblock QP based on variance (AC energy) of the MB.
+ * high variance  = higher QP
+ * low variance = lower QP
+ * This generally increases SSIM and lowers PSNR.
+*****************************************************************************/
+void x264_adaptive_quant( x264_t *h )
+{
+    x264_emms();
+    h->mb.i_qp = x264_clip3( h->rc->f_qpm + h->fenc->f_qp_offset[h->mb.i_mb_xy] + .5, h->param.rc.i_qp_min, h->param.rc.i_qp_max );
+}
+
+int x264_macroblock_tree_read( x264_t *h, x264_frame_t *frame )
+{
+    x264_ratecontrol_t *rc = h->rc;
+    uint8_t i_type_actual = rc->entry[frame->i_frame].pict_type;
+    int i;
+
+    if( i_type_actual != SLICE_TYPE_B )
+    {
+        uint8_t i_type;
+
+        if( !fread( &i_type, 1, 1, rc->p_mbtree_stat_file_in ) )
+            goto fail;
+
+        if( i_type != i_type_actual )
+        {
+            x264_log(h, X264_LOG_ERROR, "MB-tree frametype %d doesn't match actual frametype %d.\n", i_type,i_type_actual);
+            return -1;
+        }
+
+        if( fread( rc->qp_buffer, sizeof(uint16_t), h->mb.i_mb_count, rc->p_mbtree_stat_file_in ) != h->mb.i_mb_count )
+            goto fail;
+
+        for( i = 0; i < h->mb.i_mb_count; i++ )
+        {
+            frame->f_qp_offset[i] = ((float)(int16_t)endian_fix16( rc->qp_buffer[i] )) * (1/256.0);
+            if( h->frames.b_have_lowres )
+                frame->i_inv_qscale_factor[i] = x264_exp2fix8(frame->f_qp_offset[i]);
+        }
+    }
+    else
+        x264_adaptive_quant_frame( h, frame );
+    return 0;
+fail:
+    x264_log(h, X264_LOG_ERROR, "Incomplete MB-tree stats file.\n");
+    return -1;
+}
+
+int x264_reference_build_list_optimal( x264_t *h )
+{
+    ratecontrol_entry_t *rce = h->rc->rce;
+    x264_frame_t *frames[16];
+    int ref, i;
+
+    if( rce->refs != h->i_ref0 )
+        return -1;
+
+    memcpy( frames, h->fref0, sizeof(frames) );
+
+    /* For now don't reorder ref 0; it seems to lower quality
+       in most cases due to skips. */
+    for( ref = 1; ref < h->i_ref0; ref++ )
+    {
+        int max = -1;
+        int bestref = 1;
+        for( i = 1; i < h->i_ref0; i++ )
+            /* Favor lower POC as a tiebreaker. */
+            COPY2_IF_GT( max, rce->refcount[i], bestref, i );
+        rce->refcount[bestref] = -1;
+        h->fref0[ref] = frames[bestref];
+    }
+
+    return 0;
 }
 
+static char *x264_strcat_filename( char *input, char *suffix )
+{
+    char *output = x264_malloc( strlen( input ) + strlen( suffix ) + 1 );
+    if( !output )
+        return NULL;
+    strcpy( output, input );
+    strcat( output, suffix );
+    return output;
+}
 
 int x264_ratecontrol_new( x264_t *h )
 {
     x264_ratecontrol_t *rc;
-    int i;
+    int i, j;
 
-    x264_cpu_restore( h->param.cpu );
+    x264_emms();
 
-    h->rc = rc = x264_malloc( sizeof( x264_ratecontrol_t ) );
-    memset(rc, 0, sizeof(*rc));
+    CHECKED_MALLOCZERO( h->rc, h->param.i_threads * sizeof(x264_ratecontrol_t) );
+    rc = h->rc;
+
+    rc->b_abr = h->param.rc.i_rc_method != X264_RC_CQP && !h->param.rc.b_stat_read;
+    rc->b_2pass = h->param.rc.i_rc_method == X264_RC_ABR && h->param.rc.b_stat_read;
 
-    rc->b_abr = ( h->param.rc.b_cbr || h->param.rc.i_rf_constant ) && !h->param.rc.b_stat_read;
-    rc->b_2pass = h->param.rc.b_cbr && h->param.rc.b_stat_read;
-    h->mb.b_variable_qp = 0;
-    
     /* FIXME: use integers */
     if(h->param.i_fps_num > 0 && h->param.i_fps_den > 0)
         rc->fps = (float) h->param.i_fps_num / h->param.i_fps_den;
     else
         rc->fps = 25.0;
 
-    rc->bitrate = h->param.rc.i_bitrate * 1000;
+    if( h->param.rc.b_mb_tree )
+    {
+        h->param.rc.f_pb_factor = 1;
+        rc->qcompress = 1;
+    }
+    else
+        rc->qcompress = h->param.rc.f_qcompress;
+
+    rc->bitrate = h->param.rc.i_bitrate * 1000.;
     rc->rate_tolerance = h->param.rc.f_rate_tolerance;
     rc->nmb = h->mb.i_mb_count;
     rc->last_non_b_pict_type = -1;
     rc->cbr_decay = 1.0;
 
-    if( rc->b_2pass && h->param.rc.i_rf_constant )
+    if( h->param.rc.i_rc_method == X264_RC_CRF && h->param.rc.b_stat_read )
+    {
         x264_log(h, X264_LOG_ERROR, "constant rate-factor is incompatible with 2pass.\n");
+        return -1;
+    }
+    if( h->param.rc.i_vbv_buffer_size )
+    {
+        if( h->param.rc.i_rc_method == X264_RC_CQP )
+        {
+            x264_log(h, X264_LOG_WARNING, "VBV is incompatible with constant QP, ignored.\n");
+            h->param.rc.i_vbv_max_bitrate = 0;
+            h->param.rc.i_vbv_buffer_size = 0;
+        }
+        else if( h->param.rc.i_vbv_max_bitrate == 0 )
+        {
+            x264_log( h, X264_LOG_DEBUG, "VBV maxrate unspecified, assuming CBR\n" );
+            h->param.rc.i_vbv_max_bitrate = h->param.rc.i_bitrate;
+        }
+    }
     if( h->param.rc.i_vbv_max_bitrate < h->param.rc.i_bitrate &&
         h->param.rc.i_vbv_max_bitrate > 0)
-        x264_log(h, X264_LOG_ERROR, "max bitrate less than average bitrate, ignored.\n");
+        x264_log(h, X264_LOG_WARNING, "max bitrate less than average bitrate, ignored.\n");
     else if( h->param.rc.i_vbv_max_bitrate > 0 &&
              h->param.rc.i_vbv_buffer_size > 0 )
     {
-        if( h->param.rc.i_vbv_buffer_size < 10 * h->param.rc.i_vbv_max_bitrate / rc->fps ) {
-            h->param.rc.i_vbv_buffer_size = 10 * h->param.rc.i_vbv_max_bitrate / rc->fps;
-            x264_log( h, X264_LOG_ERROR, "VBV buffer size too small, using %d kbit\n",
+        if( h->param.rc.i_vbv_buffer_size < (int)(h->param.rc.i_vbv_max_bitrate / rc->fps) )
+        {
+            h->param.rc.i_vbv_buffer_size = h->param.rc.i_vbv_max_bitrate / rc->fps;
+            x264_log( h, X264_LOG_WARNING, "VBV buffer size cannot be smaller than one frame, using %d kbit\n",
                       h->param.rc.i_vbv_buffer_size );
         }
-        rc->buffer_rate = h->param.rc.i_vbv_max_bitrate * 1000 / rc->fps;
-        rc->buffer_size = h->param.rc.i_vbv_buffer_size * 1000;
-        rc->buffer_fill = rc->buffer_size * h->param.rc.f_vbv_buffer_init;
+        if( h->param.rc.f_vbv_buffer_init > 1. )
+            h->param.rc.f_vbv_buffer_init = x264_clip3f( h->param.rc.f_vbv_buffer_init / h->param.rc.i_vbv_buffer_size, 0, 1 );
+        rc->buffer_rate = h->param.rc.i_vbv_max_bitrate * 1000. / rc->fps;
+        rc->buffer_size = h->param.rc.i_vbv_buffer_size * 1000.;
+        rc->single_frame_vbv = rc->buffer_rate * 1.1 > rc->buffer_size;
+        h->param.rc.f_vbv_buffer_init = X264_MAX( h->param.rc.f_vbv_buffer_init, rc->buffer_rate / rc->buffer_size );
+        rc->buffer_fill_final = rc->buffer_size * h->param.rc.f_vbv_buffer_init;
         rc->cbr_decay = 1.0 - rc->buffer_rate / rc->buffer_size
                       * 0.5 * X264_MAX(0, 1.5 - rc->buffer_rate * rc->fps / rc->bitrate);
+        rc->b_vbv = 1;
+        rc->b_vbv_min_rate = !rc->b_2pass
+                          && h->param.rc.i_rc_method == X264_RC_ABR
+                          && h->param.rc.i_vbv_max_bitrate <= h->param.rc.i_bitrate;
     }
-    else if( h->param.rc.i_vbv_max_bitrate || h->param.rc.i_vbv_buffer_size )
-        x264_log(h, X264_LOG_ERROR, "VBV maxrate or buffer size specified, but not both.\n");
-    if(rc->rate_tolerance < 0.01) {
-        x264_log(h, X264_LOG_ERROR, "bitrate tolerance too small, using .01\n");
+    else if( h->param.rc.i_vbv_max_bitrate )
+    {
+        x264_log(h, X264_LOG_WARNING, "VBV maxrate specified, but no bufsize.\n");
+        h->param.rc.i_vbv_max_bitrate = 0;
+    }
+    if(rc->rate_tolerance < 0.01)
+    {
+        x264_log(h, X264_LOG_WARNING, "bitrate tolerance too small, using .01\n");
         rc->rate_tolerance = 0.01;
     }
 
+    h->mb.b_variable_qp = rc->b_vbv || h->param.rc.i_aq_mode;
+
     if( rc->b_abr )
     {
-        /* FIXME shouldn't need to arbitrarily specify a QP,
-         * but this is more robust than BPP measures */
-#define ABR_INIT_QP ( h->param.rc.i_rf_constant > 0 ? h->param.rc.i_rf_constant : 24 )
+        /* FIXME ABR_INIT_QP is actually used only in CRF */
+#define ABR_INIT_QP ( h->param.rc.i_rc_method == X264_RC_CRF ? h->param.rc.f_rf_constant : 24 )
         rc->accum_p_norm = .01;
         rc->accum_p_qp = ABR_INIT_QP * rc->accum_p_norm;
-        rc->cplxr_sum = .01;
-        rc->wanted_bits_window = .01;
+        /* estimated ratio that produces a reasonable QP for the first I-frame */
+        rc->cplxr_sum = .01 * pow( 7.0e5, rc->qcompress ) * pow( h->mb.i_mb_count, 0.5 );
+        rc->wanted_bits_window = 1.0 * rc->bitrate / rc->fps;
+        rc->last_non_b_pict_type = SLICE_TYPE_I;
     }
 
-    if( h->param.rc.i_rf_constant )
+    if( h->param.rc.i_rc_method == X264_RC_CRF )
     {
-        /* arbitrary rescaling to make CRF somewhat similar to QP */
+        /* Arbitrary rescaling to make CRF somewhat similar to QP.
+         * Try to compensate for MB-tree's effects as well. */
         double base_cplx = h->mb.i_mb_count * (h->param.i_bframe ? 120 : 80);
-        rc->rate_factor_constant = pow( base_cplx, 1 - h->param.rc.f_qcompress )
-                                 / qp2qscale( h->param.rc.i_rf_constant );
+        double mbtree_offset = h->param.rc.b_mb_tree ? (1.0-h->param.rc.f_qcompress)*13.5 : 0;
+        rc->rate_factor_constant = pow( base_cplx, 1 - rc->qcompress )
+                                 / qp2qscale( h->param.rc.f_rf_constant + mbtree_offset );
     }
 
+    rc->ip_offset = 6.0 * log(h->param.rc.f_ip_factor) / log(2.0);
+    rc->pb_offset = 6.0 * log(h->param.rc.f_pb_factor) / log(2.0);
     rc->qp_constant[SLICE_TYPE_P] = h->param.rc.i_qp_constant;
-    rc->qp_constant[SLICE_TYPE_I] = x264_clip3( (int)( qscale2qp( qp2qscale( h->param.rc.i_qp_constant ) / fabs( h->param.rc.f_ip_factor )) + 0.5 ), 0, 51 );
-    rc->qp_constant[SLICE_TYPE_B] = x264_clip3( (int)( qscale2qp( qp2qscale( h->param.rc.i_qp_constant ) * fabs( h->param.rc.f_pb_factor )) + 0.5 ), 0, 51 );
+    rc->qp_constant[SLICE_TYPE_I] = x264_clip3( h->param.rc.i_qp_constant - rc->ip_offset + 0.5, 0, 51 );
+    rc->qp_constant[SLICE_TYPE_B] = x264_clip3( h->param.rc.i_qp_constant + rc->pb_offset + 0.5, 0, 51 );
 
-    rc->lstep = exp2f(h->param.rc.i_qp_step / 6.0);
+    rc->lstep = pow( 2, h->param.rc.i_qp_step / 6.0 );
     rc->last_qscale = qp2qscale(26);
+    CHECKED_MALLOC( rc->pred, 5*sizeof(predictor_t) );
+    CHECKED_MALLOC( rc->pred_b_from_p, sizeof(predictor_t) );
     for( i = 0; i < 5; i++ )
     {
-        rc->last_qscale_for[i] = qp2qscale(26);
+        rc->last_qscale_for[i] = qp2qscale( ABR_INIT_QP );
         rc->lmin[i] = qp2qscale( h->param.rc.i_qp_min );
         rc->lmax[i] = qp2qscale( h->param.rc.i_qp_max );
         rc->pred[i].coeff= 2.0;
         rc->pred[i].count= 1.0;
         rc->pred[i].decay= 0.5;
+        rc->pred[i].offset= 0.0;
+        for( j = 0; j < 2; j++ )
+        {
+            rc->row_preds[i][j].coeff= .25;
+            rc->row_preds[i][j].count= 1.0;
+            rc->row_preds[i][j].decay= 0.5;
+            rc->row_preds[i][j].offset= 0.0;
+        }
     }
+    *rc->pred_b_from_p = rc->pred[0];
 
     if( parse_zones( h ) < 0 )
+    {
+        x264_log( h, X264_LOG_ERROR, "failed to parse zones\n" );
         return -1;
+    }
 
     /* Load stat file and init 2pass algo */
     if( h->param.rc.b_stat_read )
     {
-        char *p, *stats_in;
+        char *p, *stats_in, *stats_buf;
 
         /* read 1st pass stats */
         assert( h->param.rc.psz_stat_in );
-        stats_in = x264_slurp_file( h->param.rc.psz_stat_in );
-        if( !stats_in )
+        stats_buf = stats_in = x264_slurp_file( h->param.rc.psz_stat_in );
+        if( !stats_buf )
         {
             x264_log(h, X264_LOG_ERROR, "ratecontrol_init: can't open stats file\n");
             return -1;
         }
+        if( h->param.rc.b_mb_tree )
+        {
+            char *mbtree_stats_in = x264_strcat_filename( h->param.rc.psz_stat_in, ".mbtree" );
+            if( !mbtree_stats_in )
+                return -1;
+            rc->p_mbtree_stat_file_in = fopen( mbtree_stats_in, "rb" );
+            x264_free( mbtree_stats_in );
+            if( !rc->p_mbtree_stat_file_in )
+            {
+                x264_log(h, X264_LOG_ERROR, "ratecontrol_init: can't open mbtree stats file\n");
+                return -1;
+            }
+        }
+
+        /* check whether 1st pass options were compatible with current options */
+        if( !strncmp( stats_buf, "#options:", 9 ) )
+        {
+            int i;
+            char *opts = stats_buf;
+            stats_in = strchr( stats_buf, '\n' );
+            if( !stats_in )
+                return -1;
+            *stats_in = '\0';
+            stats_in++;
+
+            if( ( p = strstr( opts, "bframes=" ) ) && sscanf( p, "bframes=%d", &i )
+                && h->param.i_bframe != i )
+            {
+                x264_log( h, X264_LOG_ERROR, "different number of B-frames than 1st pass (%d vs %d)\n",
+                          h->param.i_bframe, i );
+                return -1;
+            }
+
+            /* since B-adapt doesn't (yet) take into account B-pyramid,
+             * the converse is not a problem */
+            if( strstr( opts, "b_pyramid=1" ) && !h->param.b_bframe_pyramid )
+                x264_log( h, X264_LOG_WARNING, "1st pass used B-pyramid, 2nd doesn't\n" );
+
+            if( ( p = strstr( opts, "keyint=" ) ) && sscanf( p, "keyint=%d", &i )
+                && h->param.i_keyint_max != i )
+                x264_log( h, X264_LOG_WARNING, "different keyint than 1st pass (%d vs %d)\n",
+                          h->param.i_keyint_max, i );
+
+            if( strstr( opts, "qp=0" ) && h->param.rc.i_rc_method == X264_RC_ABR )
+                x264_log( h, X264_LOG_WARNING, "1st pass was lossless, bitrate prediction will be inaccurate\n" );
+
+            if( !strstr( opts, "direct=3" ) && h->param.analyse.i_direct_mv_pred == X264_DIRECT_PRED_AUTO )
+            {
+                x264_log( h, X264_LOG_WARNING, "direct=auto not used on the first pass\n" );
+                h->mb.b_direct_auto_write = 1;
+            }
+
+            if( ( p = strstr( opts, "b_adapt=" ) ) && sscanf( p, "b_adapt=%d", &i ) && i >= X264_B_ADAPT_NONE && i <= X264_B_ADAPT_TRELLIS )
+                h->param.i_bframe_adaptive = i;
+            else if( h->param.i_bframe )
+            {
+                x264_log( h, X264_LOG_ERROR, "b_adapt method specified in stats file not valid\n" );
+                return -1;
+            }
+
+            if( h->param.rc.b_mb_tree && ( p = strstr( opts, "rc_lookahead=" ) ) && sscanf( p, "rc_lookahead=%d", &i ) )
+                h->param.rc.i_lookahead = i;
+        }
 
         /* find number of pics */
         p = stats_in;
@@ -284,21 +586,18 @@ int x264_ratecontrol_new( x264_t *h )
             x264_log( h, X264_LOG_WARNING, "2nd pass has fewer frames than 1st pass (%d vs %d)\n",
                       h->param.i_frame_total, rc->num_entries );
         }
-        if( h->param.i_frame_total > rc->num_entries + h->param.i_bframe )
+        if( h->param.i_frame_total > rc->num_entries )
         {
             x264_log( h, X264_LOG_ERROR, "2nd pass has more frames than 1st pass (%d vs %d)\n",
                       h->param.i_frame_total, rc->num_entries );
             return -1;
         }
 
-        /* FIXME: ugly padding because VfW drops delayed B-frames */
-        rc->num_entries += h->param.i_bframe;
-
-        rc->entry = (ratecontrol_entry_t*) x264_malloc(rc->num_entries * sizeof(ratecontrol_entry_t));
-        memset(rc->entry, 0, rc->num_entries * sizeof(ratecontrol_entry_t));
+        CHECKED_MALLOCZERO( rc->entry, rc->num_entries * sizeof(ratecontrol_entry_t) );
 
         /* init all to skipped p frames */
-        for(i=0; i<rc->num_entries; i++){
+        for(i=0; i<rc->num_entries; i++)
+        {
             ratecontrol_entry_t *rce = &rc->entry[i];
             rce->pict_type = SLICE_TYPE_P;
             rce->qscale = rce->new_qscale = qp2qscale(20);
@@ -308,17 +607,20 @@ int x264_ratecontrol_new( x264_t *h )
 
         /* read stats */
         p = stats_in;
-        for(i=0; i < rc->num_entries - h->param.i_bframe; i++){
+        for(i=0; i < rc->num_entries; i++)
+        {
             ratecontrol_entry_t *rce;
             int frame_number;
             char pict_type;
             int e;
             char *next;
             float qp;
+            int ref;
 
             next= strchr(p, ';');
-            if(next){
-                (*next)=0; //sscanf is unbelievably slow on looong strings
+            if(next)
+            {
+                (*next)=0; //sscanf is unbelievably slow on long strings
                 next++;
             }
             e = sscanf(p, " in:%d ", &frame_number);
@@ -329,12 +631,29 @@ int x264_ratecontrol_new( x264_t *h )
                 return -1;
             }
             rce = &rc->entry[frame_number];
+            rce->direct_mode = 0;
+
+            e += sscanf(p, " in:%*d out:%*d type:%c q:%f tex:%d mv:%d misc:%d imb:%d pmb:%d smb:%d d:%c",
+                   &pict_type, &qp, &rce->tex_bits,
+                   &rce->mv_bits, &rce->misc_bits, &rce->i_count, &rce->p_count,
+                   &rce->s_count, &rce->direct_mode);
+
+            p = strstr( p, "ref:" );
+            if( !p )
+                goto parse_error;
+            p += 4;
+            for( ref = 0; ref < 16; ref++ )
+            {
+                if( sscanf( p, " %d", &rce->refcount[ref] ) != 1 )
+                    break;
+                p = strchr( p+1, ' ' );
+                if( !p )
+                    goto parse_error;
+            }
+            rce->refs = ref;
 
-            e += sscanf(p, " in:%*d out:%*d type:%c q:%f itex:%d ptex:%d mv:%d misc:%d imb:%d pmb:%d smb:%d",
-                   &pict_type, &qp, &rce->i_tex_bits, &rce->p_tex_bits,
-                   &rce->mv_bits, &rce->misc_bits, &rce->i_count, &rce->p_count, &rce->s_count);
-
-            switch(pict_type){
+            switch(pict_type)
+            {
                 case 'I': rce->kept_as_ref = 1;
                 case 'i': rce->pict_type = SLICE_TYPE_I; break;
                 case 'P': rce->pict_type = SLICE_TYPE_P; break;
@@ -342,7 +661,9 @@ int x264_ratecontrol_new( x264_t *h )
                 case 'b': rce->pict_type = SLICE_TYPE_B; break;
                 default:  e = -1; break;
             }
-            if(e != 10){
+            if(e < 10)
+            {
+parse_error:
                 x264_log(h, X264_LOG_ERROR, "statistics are damaged at line %d, parser out=%d\n", i, e);
                 return -1;
             }
@@ -350,9 +671,9 @@ int x264_ratecontrol_new( x264_t *h )
             p = next;
         }
 
-        x264_free(stats_in);
+        x264_free(stats_buf);
 
-        if(h->param.rc.b_cbr)
+        if(h->param.rc.i_rc_method == X264_RC_ABR)
         {
             if(init_pass2(h) < 0) return -1;
         } /* else we're using constant quant, so no need to run the bitrate allocation */
@@ -363,9 +684,10 @@ int x264_ratecontrol_new( x264_t *h )
      * and move it to the real name only when it's complete */
     if( h->param.rc.b_stat_write )
     {
-        rc->psz_stat_file_tmpname = x264_malloc( strlen(h->param.rc.psz_stat_out) + 6 );
-        strcpy( rc->psz_stat_file_tmpname, h->param.rc.psz_stat_out );
-        strcat( rc->psz_stat_file_tmpname, ".temp" );
+        char *p;
+        rc->psz_stat_file_tmpname = x264_strcat_filename( h->param.rc.psz_stat_out, ".temp" );
+        if( !rc->psz_stat_file_tmpname )
+            return -1;
 
         rc->p_stat_file_out = fopen( rc->psz_stat_file_tmpname, "wb" );
         if( rc->p_stat_file_out == NULL )
@@ -373,9 +695,87 @@ int x264_ratecontrol_new( x264_t *h )
             x264_log(h, X264_LOG_ERROR, "ratecontrol_init: can't open stats file\n");
             return -1;
         }
+
+        p = x264_param2string( &h->param, 1 );
+        if( p )
+            fprintf( rc->p_stat_file_out, "#options: %s\n", p );
+        x264_free( p );
+        if( h->param.rc.b_mb_tree && !h->param.rc.b_stat_read )
+        {
+            rc->psz_mbtree_stat_file_tmpname = x264_strcat_filename( h->param.rc.psz_stat_out, ".mbtree.temp" );
+            rc->psz_mbtree_stat_file_name = x264_strcat_filename( h->param.rc.psz_stat_out, ".mbtree" );
+            if( !rc->psz_mbtree_stat_file_tmpname || !rc->psz_mbtree_stat_file_name )
+                return -1;
+
+            rc->p_mbtree_stat_file_out = fopen( rc->psz_mbtree_stat_file_tmpname, "wb" );
+            if( rc->p_mbtree_stat_file_out == NULL )
+            {
+                x264_log(h, X264_LOG_ERROR, "ratecontrol_init: can't open mbtree stats file\n");
+                return -1;
+            }
+        }
+    }
+
+    if( h->param.rc.b_mb_tree && (h->param.rc.b_stat_read || h->param.rc.b_stat_write) )
+        CHECKED_MALLOC( rc->qp_buffer, h->mb.i_mb_count * sizeof(uint16_t) );
+
+    for( i=0; i<h->param.i_threads; i++ )
+    {
+        h->thread[i]->rc = rc+i;
+        if( i )
+        {
+            rc[i] = rc[0];
+            memcpy( &h->thread[i]->param, &h->param, sizeof(x264_param_t) );
+            h->thread[i]->mb.b_variable_qp = h->mb.b_variable_qp;
+        }
     }
 
     return 0;
+fail:
+    return -1;
+}
+
+static int parse_zone( x264_t *h, x264_zone_t *z, char *p )
+{
+    int len = 0;
+    char *tok, UNUSED *saveptr;
+    z->param = NULL;
+    z->f_bitrate_factor = 1;
+    if( 3 <= sscanf(p, "%u,%u,q=%u%n", &z->i_start, &z->i_end, &z->i_qp, &len) )
+        z->b_force_qp = 1;
+    else if( 3 <= sscanf(p, "%u,%u,b=%f%n", &z->i_start, &z->i_end, &z->f_bitrate_factor, &len) )
+        z->b_force_qp = 0;
+    else if( 2 <= sscanf(p, "%u,%u%n", &z->i_start, &z->i_end, &len) )
+        z->b_force_qp = 0;
+    else
+    {
+        x264_log( h, X264_LOG_ERROR, "invalid zone: \"%s\"\n", p );
+        return -1;
+    }
+    p += len;
+    if( !*p )
+        return 0;
+    CHECKED_MALLOC( z->param, sizeof(x264_param_t) );
+    memcpy( z->param, &h->param, sizeof(x264_param_t) );
+    z->param->param_free = x264_free;
+    while( (tok = strtok_r( p, ",", &saveptr )) )
+    {
+        char *val = strchr( tok, '=' );
+        if( val )
+        {
+            *val = '\0';
+            val++;
+        }
+        if( x264_param_parse( z->param, tok, val ) )
+        {
+            x264_log( h, X264_LOG_ERROR, "invalid zone param: %s = %s\n", tok, val );
+            return -1;
+        }
+        p = NULL;
+    }
+    return 0;
+fail:
+    return -1;
 }
 
 static int parse_zones( x264_t *h )
@@ -384,28 +784,22 @@ static int parse_zones( x264_t *h )
     int i;
     if( h->param.rc.psz_zones && !h->param.rc.i_zones )
     {
-        char *p;
+        char *psz_zones, *p, *tok, UNUSED *saveptr;
+        CHECKED_MALLOC( psz_zones, strlen( h->param.rc.psz_zones )+1 );
+        strcpy( psz_zones, h->param.rc.psz_zones );
         h->param.rc.i_zones = 1;
-        for( p = h->param.rc.psz_zones; *p; p++ )
+        for( p = psz_zones; *p; p++ )
             h->param.rc.i_zones += (*p == '/');
-        h->param.rc.zones = x264_malloc( h->param.rc.i_zones * sizeof(x264_zone_t) );
-        p = h->param.rc.psz_zones;
-        for( i = 0; i < h->param.rc.i_zones; i++)
+        CHECKED_MALLOC( h->param.rc.zones, h->param.rc.i_zones * sizeof(x264_zone_t) );
+        p = psz_zones;
+        for( i = 0; i < h->param.rc.i_zones; i++ )
         {
-            x264_zone_t *z = &h->param.rc.zones[i];
-            if( 3 == sscanf(p, "%u,%u,q=%u", &z->i_start, &z->i_end, &z->i_qp) )
-                z->b_force_qp = 1;
-            else if( 3 == sscanf(p, "%u,%u,b=%f", &z->i_start, &z->i_end, &z->f_bitrate_factor) )
-                z->b_force_qp = 0;
-            else
-            {
-                char *slash = strchr(p, '/');
-                if(slash) *slash = '\0';
-                x264_log( h, X264_LOG_ERROR, "invalid zone: \"%s\"\n", p );
+            tok = strtok_r( p, "/", &saveptr );
+            if( !tok || parse_zone( h, &h->param.rc.zones[i], tok ) )
                 return -1;
-            }
-            p = strchr(p, '/') + 1;
+            p = NULL;
         }
+        x264_free( psz_zones );
     }
 
     if( h->param.rc.i_zones > 0 )
@@ -427,22 +821,63 @@ static int parse_zones( x264_t *h )
             }
         }
 
-        rc->i_zones = h->param.rc.i_zones;
-        rc->zones = x264_malloc( rc->i_zones * sizeof(x264_zone_t) );
-        memcpy( rc->zones, h->param.rc.zones, rc->i_zones * sizeof(x264_zone_t) );
+        rc->i_zones = h->param.rc.i_zones + 1;
+        CHECKED_MALLOC( rc->zones, rc->i_zones * sizeof(x264_zone_t) );
+        memcpy( rc->zones+1, h->param.rc.zones, (rc->i_zones-1) * sizeof(x264_zone_t) );
+
+        // default zone to fall back to if none of the others match
+        rc->zones[0].i_start = 0;
+        rc->zones[0].i_end = INT_MAX;
+        rc->zones[0].b_force_qp = 0;
+        rc->zones[0].f_bitrate_factor = 1;
+        CHECKED_MALLOC( rc->zones[0].param, sizeof(x264_param_t) );
+        memcpy( rc->zones[0].param, &h->param, sizeof(x264_param_t) );
+        for( i = 1; i < rc->i_zones; i++ )
+        {
+            if( !rc->zones[i].param )
+                rc->zones[i].param = rc->zones[0].param;
+        }
     }
 
     return 0;
+fail:
+    return -1;
+}
+
+static x264_zone_t *get_zone( x264_t *h, int frame_num )
+{
+    int i;
+    for( i = h->rc->i_zones-1; i >= 0; i-- )
+    {
+        x264_zone_t *z = &h->rc->zones[i];
+        if( frame_num >= z->i_start && frame_num <= z->i_end )
+            return z;
+    }
+    return NULL;
+}
+
+void x264_ratecontrol_summary( x264_t *h )
+{
+    x264_ratecontrol_t *rc = h->rc;
+    if( rc->b_abr && h->param.rc.i_rc_method == X264_RC_ABR && rc->cbr_decay > .9999 )
+    {
+        double base_cplx = h->mb.i_mb_count * (h->param.i_bframe ? 120 : 80);
+        double mbtree_offset = h->param.rc.b_mb_tree ? (1.0-h->param.rc.f_qcompress)*13.5 : 0;
+        x264_log( h, X264_LOG_INFO, "final ratefactor: %.2f\n",
+                  qscale2qp( pow( base_cplx, 1 - rc->qcompress )
+                             * rc->cplxr_sum / rc->wanted_bits_window ) - mbtree_offset );
+    }
 }
 
 void x264_ratecontrol_delete( x264_t *h )
 {
     x264_ratecontrol_t *rc = h->rc;
+    int i;
 
     if( rc->p_stat_file_out )
     {
         fclose( rc->p_stat_file_out );
-        if( h->i_frame >= rc->num_entries - h->param.i_bframe )
+        if( h->i_frame >= rc->num_entries )
             if( rename( rc->psz_stat_file_tmpname, h->param.rc.psz_stat_out ) != 0 )
             {
                 x264_log( h, X264_LOG_ERROR, "failed to rename \"%s\" to \"%s\"\n",
@@ -450,60 +885,293 @@ void x264_ratecontrol_delete( x264_t *h )
             }
         x264_free( rc->psz_stat_file_tmpname );
     }
+    if( rc->p_mbtree_stat_file_out )
+    {
+        fclose( rc->p_mbtree_stat_file_out );
+        if( h->i_frame >= rc->num_entries )
+            if( rename( rc->psz_mbtree_stat_file_tmpname, rc->psz_mbtree_stat_file_name ) != 0 )
+            {
+                x264_log( h, X264_LOG_ERROR, "failed to rename \"%s\" to \"%s\"\n",
+                          rc->psz_mbtree_stat_file_tmpname, rc->psz_mbtree_stat_file_name );
+            }
+        x264_free( rc->psz_mbtree_stat_file_tmpname );
+        x264_free( rc->psz_mbtree_stat_file_name );
+    }
+    if( rc->p_mbtree_stat_file_in )
+        fclose( rc->p_mbtree_stat_file_in );
+    x264_free( rc->pred );
+    x264_free( rc->pred_b_from_p );
     x264_free( rc->entry );
-    x264_free( rc->zones );
+    x264_free( rc->qp_buffer );
+    if( rc->zones )
+    {
+        x264_free( rc->zones[0].param );
+        for( i=1; i<rc->i_zones; i++ )
+            if( rc->zones[i].param != rc->zones[0].param && rc->zones[i].param->param_free )
+                rc->zones[i].param->param_free( rc->zones[i].param );
+        x264_free( rc->zones );
+    }
     x264_free( rc );
 }
 
+void x264_ratecontrol_set_estimated_size( x264_t *h, int bits )
+{
+    x264_pthread_mutex_lock( &h->fenc->mutex );
+    h->rc->frame_size_estimated = bits;
+    x264_pthread_mutex_unlock( &h->fenc->mutex );
+}
+
+int x264_ratecontrol_get_estimated_size( x264_t const *h)
+{
+    int size;
+    x264_pthread_mutex_lock( &h->fenc->mutex );
+    size = h->rc->frame_size_estimated;
+    x264_pthread_mutex_unlock( &h->fenc->mutex );
+    return size;
+}
+
+static void accum_p_qp_update( x264_t *h, float qp )
+{
+    x264_ratecontrol_t *rc = h->rc;
+    rc->accum_p_qp   *= .95;
+    rc->accum_p_norm *= .95;
+    rc->accum_p_norm += 1;
+    if( h->sh.i_type == SLICE_TYPE_I )
+        rc->accum_p_qp += qp + rc->ip_offset;
+    else
+        rc->accum_p_qp += qp;
+}
+
 /* Before encoding a frame, choose a QP for it */
-void x264_ratecontrol_start( x264_t *h, int i_slice_type, int i_force_qp )
+void x264_ratecontrol_start( x264_t *h, int i_force_qp, int overhead )
 {
     x264_ratecontrol_t *rc = h->rc;
+    ratecontrol_entry_t *rce = NULL;
+    x264_zone_t *zone = get_zone( h, h->fenc->i_frame );
+    float q;
 
-    x264_cpu_restore( h->param.cpu );
+    x264_emms();
+
+    if( zone && (!rc->prev_zone || zone->param != rc->prev_zone->param) )
+        x264_encoder_reconfig( h, zone->param );
+    rc->prev_zone = zone;
 
     rc->qp_force = i_force_qp;
-    rc->slice_type = i_slice_type;
+
+    if( h->param.rc.b_stat_read )
+    {
+        int frame = h->fenc->i_frame;
+        assert( frame >= 0 && frame < rc->num_entries );
+        rce = h->rc->rce = &h->rc->entry[frame];
+
+        if( h->sh.i_type == SLICE_TYPE_B
+            && h->param.analyse.i_direct_mv_pred == X264_DIRECT_PRED_AUTO )
+        {
+            h->sh.b_direct_spatial_mv_pred = ( rce->direct_mode == 's' );
+            h->mb.b_direct_auto_read = ( rce->direct_mode == 's' || rce->direct_mode == 't' );
+        }
+    }
+
+    if( rc->b_vbv )
+    {
+        memset( h->fdec->i_row_bits, 0, h->sps->i_mb_height * sizeof(int) );
+        rc->row_pred = &rc->row_preds[h->sh.i_type];
+        update_vbv_plan( h, overhead );
+    }
+
+    if( h->sh.i_type != SLICE_TYPE_B )
+        rc->bframes = h->fenc->i_bframes;
 
     if( i_force_qp )
     {
-        rc->qpa = rc->qp = i_force_qp - 1;
+        q = i_force_qp - 1;
     }
     else if( rc->b_abr )
     {
-        rc->qpa = rc->qp =
-            x264_clip3( (int)(qscale2qp( rate_estimate_qscale( h, i_slice_type ) ) + .5), 0, 51 );
+        q = qscale2qp( rate_estimate_qscale( h ) );
     }
     else if( rc->b_2pass )
     {
-        int frame = h->fenc->i_frame;
-        ratecontrol_entry_t *rce;
-        assert( frame >= 0 && frame < rc->num_entries );
-        rce = h->rc->rce = &h->rc->entry[frame];
-
-        rce->new_qscale = rate_estimate_qscale( h, i_slice_type );
-        rc->qpa = rc->qp = rce->new_qp =
-            x264_clip3( (int)(qscale2qp(rce->new_qscale) + 0.5), 0, 51 );
+        rce->new_qscale = rate_estimate_qscale( h );
+        q = qscale2qp( rce->new_qscale );
     }
     else /* CQP */
     {
-        int q;
-        if( i_slice_type == SLICE_TYPE_B && h->fdec->b_kept_as_ref )
+        if( h->sh.i_type == SLICE_TYPE_B && h->fdec->b_kept_as_ref )
             q = ( rc->qp_constant[ SLICE_TYPE_B ] + rc->qp_constant[ SLICE_TYPE_P ] ) / 2;
         else
-            q = rc->qp_constant[ i_slice_type ];
-        rc->qpa = rc->qp = q;
+            q = rc->qp_constant[ h->sh.i_type ];
+
+        if( zone )
+        {
+            if( zone->b_force_qp )
+                q += zone->i_qp - rc->qp_constant[SLICE_TYPE_P];
+            else
+                q -= 6*log(zone->f_bitrate_factor)/log(2);
+        }
+    }
+
+    q = x264_clip3f( q, h->param.rc.i_qp_min, h->param.rc.i_qp_max );
+
+    rc->qpa_rc =
+    rc->qpa_aq = 0;
+    h->fdec->f_qp_avg_rc =
+    h->fdec->f_qp_avg_aq =
+    rc->qpm =
+    rc->qp = x264_clip3( (int)(q + 0.5), 0, 51 );
+    rc->f_qpm = q;
+    if( rce )
+        rce->new_qp = rc->qp;
+
+    accum_p_qp_update( h, rc->qp );
+
+    if( h->sh.i_type != SLICE_TYPE_B )
+        rc->last_non_b_pict_type = h->sh.i_type;
+}
+
+static double predict_row_size( x264_t *h, int y, int qp )
+{
+    /* average between two predictors:
+     * absolute SATD, and scaled bit cost of the colocated row in the previous frame */
+    x264_ratecontrol_t *rc = h->rc;
+    double pred_s = predict_size( rc->row_pred[0], qp2qscale(qp), h->fdec->i_row_satd[y] );
+    double pred_t = 0;
+    if( h->sh.i_type == SLICE_TYPE_I || qp >= h->fref0[0]->i_row_qp[y] )
+    {
+        if( h->sh.i_type == SLICE_TYPE_P
+            && h->fref0[0]->i_type == h->fdec->i_type
+            && h->fref0[0]->i_row_satd[y] > 0
+            && (abs(h->fref0[0]->i_row_satd[y] - h->fdec->i_row_satd[y]) < h->fdec->i_row_satd[y]/2))
+        {
+            pred_t = h->fref0[0]->i_row_bits[y] * h->fdec->i_row_satd[y] / h->fref0[0]->i_row_satd[y]
+                     * qp2qscale(h->fref0[0]->i_row_qp[y]) / qp2qscale(qp);
+        }
+        if( pred_t == 0 )
+            pred_t = pred_s;
+        return (pred_s + pred_t) / 2;
+    }
+    /* Our QP is lower than the reference! */
+    else
+    {
+        double newq = qp2qscale(qp);
+        double oldq = qp2qscale(h->fref0[0]->i_row_qp[y]);
+        double pred_intra = predict_size( rc->row_pred[1], (1 - newq / oldq) * newq, h->fdec->i_row_satds[0][0][y] );
+        /* Sum: better to overestimate than underestimate by using only one of the two predictors. */
+        return pred_intra + pred_s;
     }
 }
 
+static double row_bits_so_far( x264_t *h, int y )
+{
+    int i;
+    double bits = 0;
+    for( i = 0; i <= y; i++ )
+        bits += h->fdec->i_row_bits[i];
+    return bits;
+}
+
+static double predict_row_size_sum( x264_t *h, int y, int qp )
+{
+    int i;
+    double bits = row_bits_so_far(h, y);
+    for( i = y+1; i < h->sps->i_mb_height; i++ )
+        bits += predict_row_size( h, i, qp );
+    return bits;
+}
+
+
 void x264_ratecontrol_mb( x264_t *h, int bits )
 {
-    /* currently no adaptive quant */
+    x264_ratecontrol_t *rc = h->rc;
+    const int y = h->mb.i_mb_y;
+
+    x264_emms();
+
+    h->fdec->i_row_bits[y] += bits;
+    rc->qpa_rc += rc->f_qpm;
+    rc->qpa_aq += h->mb.i_qp;
+
+    if( h->mb.i_mb_x != h->sps->i_mb_width - 1 || !rc->b_vbv )
+        return;
+
+    h->fdec->i_row_qp[y] = rc->qpm;
+
+    update_predictor( rc->row_pred[0], qp2qscale(rc->qpm), h->fdec->i_row_satd[y], h->fdec->i_row_bits[y] );
+    if( h->sh.i_type == SLICE_TYPE_P && rc->qpm < h->fref0[0]->i_row_qp[y] )
+    {
+        double newq = qp2qscale(rc->qpm);
+        double oldq = qp2qscale(h->fref0[0]->i_row_qp[y]);
+        update_predictor( rc->row_pred[1], (1 - newq / oldq) * newq, h->fdec->i_row_satds[0][0][y], h->fdec->i_row_bits[y] );
+    }
+
+    /* tweak quality based on difference from predicted size */
+    if( y < h->sps->i_mb_height-1 )
+    {
+        int prev_row_qp = h->fdec->i_row_qp[y];
+        int i_qp_max = X264_MIN( prev_row_qp + h->param.rc.i_qp_step, h->param.rc.i_qp_max );
+        int i_qp_min = X264_MAX( prev_row_qp - h->param.rc.i_qp_step, h->param.rc.i_qp_min );
+
+        /* B-frames shouldn't use lower QP than their reference frames. */
+        if( h->sh.i_type == SLICE_TYPE_B )
+        {
+            i_qp_min = X264_MAX( i_qp_min, X264_MAX( h->fref0[0]->i_row_qp[y+1], h->fref1[0]->i_row_qp[y+1] ) );
+            rc->qpm = X264_MAX( rc->qpm, i_qp_min );
+        }
+
+        int b0 = predict_row_size_sum( h, y, rc->qpm );
+        int b1 = b0;
+        float buffer_left_planned = rc->buffer_fill - rc->frame_size_planned;
+
+        /* More threads means we have to be more cautious in letting ratecontrol use up extra bits. */
+        float rc_tol = buffer_left_planned / h->param.i_threads * rc->rate_tolerance;
+
+        /* Don't modify the row QPs until a sufficent amount of the bits of the frame have been processed, in case a flat */
+        /* area at the top of the frame was measured inaccurately. */
+        if( row_bits_so_far(h,y) < 0.05 * rc->frame_size_planned )
+            return;
+
+        if( h->sh.i_type != SLICE_TYPE_I )
+            rc_tol /= 2;
+
+        if( !rc->b_vbv_min_rate )
+            i_qp_min = X264_MAX( i_qp_min, h->sh.i_qp );
+
+        while( rc->qpm < i_qp_max
+               && ((b1 > rc->frame_size_planned + rc_tol) ||
+                   (rc->buffer_fill - b1 < buffer_left_planned * 0.5) ||
+                   (b1 > rc->frame_size_planned && rc->qpm < rc->qp_novbv)) )
+        {
+            rc->qpm ++;
+            b1 = predict_row_size_sum( h, y, rc->qpm );
+        }
+
+        while( rc->qpm > i_qp_min
+               && (rc->qpm > h->fdec->i_row_qp[0] || rc->single_frame_vbv)
+               && ((b1 < rc->frame_size_planned * 0.8 && rc->qpm <= prev_row_qp)
+               || b1 < (rc->buffer_fill - rc->buffer_size + rc->buffer_rate) * 1.1) )
+        {
+            rc->qpm --;
+            b1 = predict_row_size_sum( h, y, rc->qpm );
+        }
+
+        /* avoid VBV underflow */
+        while( (rc->qpm < h->param.rc.i_qp_max)
+               && (rc->buffer_fill - b1 < rc->buffer_rate * 0.05 ) )
+        {
+            rc->qpm ++;
+            b1 = predict_row_size_sum( h, y, rc->qpm );
+        }
+
+        x264_ratecontrol_set_estimated_size(h, b1);
+    }
+
+    /* loses the fractional part of the frame-wise qp */
+    rc->f_qpm = rc->qpm;
 }
 
 int x264_ratecontrol_qp( x264_t *h )
 {
-    return h->rc->qp;
+    return h->rc->qpm;
 }
 
 /* In 2pass, force the same frame types as in the 1st pass */
@@ -517,26 +1185,31 @@ int x264_ratecontrol_slice_type( x264_t *h, int frame_num )
             /* We could try to initialize everything required for ABR and
              * adaptive B-frames, but that would be complicated.
              * So just calculate the average QP used so far. */
+            int i;
 
-            h->param.rc.i_qp_constant = (h->stat.i_slice_count[SLICE_TYPE_P] == 0) ? 24
-                                      : 1 + h->stat.i_slice_qp[SLICE_TYPE_P] / h->stat.i_slice_count[SLICE_TYPE_P];
+            h->param.rc.i_qp_constant = (h->stat.i_frame_count[SLICE_TYPE_P] == 0) ? 24
+                                      : 1 + h->stat.f_frame_qp[SLICE_TYPE_P] / h->stat.i_frame_count[SLICE_TYPE_P];
             rc->qp_constant[SLICE_TYPE_P] = x264_clip3( h->param.rc.i_qp_constant, 0, 51 );
             rc->qp_constant[SLICE_TYPE_I] = x264_clip3( (int)( qscale2qp( qp2qscale( h->param.rc.i_qp_constant ) / fabs( h->param.rc.f_ip_factor )) + 0.5 ), 0, 51 );
             rc->qp_constant[SLICE_TYPE_B] = x264_clip3( (int)( qscale2qp( qp2qscale( h->param.rc.i_qp_constant ) * fabs( h->param.rc.f_pb_factor )) + 0.5 ), 0, 51 );
 
             x264_log(h, X264_LOG_ERROR, "2nd pass has more frames than 1st pass (%d)\n", rc->num_entries);
             x264_log(h, X264_LOG_ERROR, "continuing anyway, at constant QP=%d\n", h->param.rc.i_qp_constant);
-            if( h->param.b_bframe_adaptive )
+            if( h->param.i_bframe_adaptive )
                 x264_log(h, X264_LOG_ERROR, "disabling adaptive B-frames\n");
 
-            rc->b_abr = 0;
-            rc->b_2pass = 0;
-            h->param.rc.b_cbr = 0;
-            h->param.rc.b_stat_read = 0;
-            h->param.b_bframe_adaptive = 0;
-            if( h->param.i_bframe > 1 )
-                h->param.i_bframe = 1;
-            return X264_TYPE_P;
+            for( i = 0; i < h->param.i_threads; i++ )
+            {
+                h->thread[i]->rc->b_abr = 0;
+                h->thread[i]->rc->b_2pass = 0;
+                h->thread[i]->param.rc.i_rc_method = X264_RC_CQP;
+                h->thread[i]->param.rc.b_stat_read = 0;
+                h->thread[i]->param.i_bframe_adaptive = 0;
+                h->thread[i]->param.i_scenecut_threshold = 0;
+                if( h->thread[i]->param.i_bframe > 1 )
+                    h->thread[i]->param.i_bframe = 1;
+            }
+            return X264_TYPE_AUTO;
         }
         switch( rc->entry[frame_num].pict_type )
         {
@@ -558,13 +1231,13 @@ int x264_ratecontrol_slice_type( x264_t *h, int frame_num )
 }
 
 /* After encoding one frame, save stats and update ratecontrol state */
-void x264_ratecontrol_end( x264_t *h, int bits )
+int x264_ratecontrol_end( x264_t *h, int bits )
 {
     x264_ratecontrol_t *rc = h->rc;
     const int *mbs = h->stat.frame.i_mb_count;
     int i;
 
-    x264_cpu_restore( h->param.cpu );
+    x264_emms();
 
     h->stat.frame.i_mb_count_skip = mbs[P_SKIP] + mbs[B_SKIP];
     h->stat.frame.i_mb_count_i = mbs[I_16x16] + mbs[I_8x8] + mbs[I_4x4];
@@ -572,43 +1245,73 @@ void x264_ratecontrol_end( x264_t *h, int bits )
     for( i = B_DIRECT; i < B_8x8; i++ )
         h->stat.frame.i_mb_count_p += mbs[i];
 
+    h->fdec->f_qp_avg_rc = rc->qpa_rc /= h->mb.i_mb_count;
+    h->fdec->f_qp_avg_aq = rc->qpa_aq /= h->mb.i_mb_count;
+
     if( h->param.rc.b_stat_write )
     {
-        char c_type = rc->slice_type==SLICE_TYPE_I ? (h->fenc->i_poc==0 ? 'I' : 'i')
-                    : rc->slice_type==SLICE_TYPE_P ? 'P'
+        char c_type = h->sh.i_type==SLICE_TYPE_I ? (h->fenc->i_poc==0 ? 'I' : 'i')
+                    : h->sh.i_type==SLICE_TYPE_P ? 'P'
                     : h->fenc->b_kept_as_ref ? 'B' : 'b';
-        fprintf( rc->p_stat_file_out,
-                 "in:%d out:%d type:%c q:%.2f itex:%d ptex:%d mv:%d misc:%d imb:%d pmb:%d smb:%d;\n",
-                 h->fenc->i_frame, h->i_frame-1,
-                 c_type, rc->qpa,
-                 h->stat.frame.i_itex_bits, h->stat.frame.i_ptex_bits,
-                 h->stat.frame.i_hdr_bits, h->stat.frame.i_misc_bits,
+        int dir_frame = h->stat.frame.i_direct_score[1] - h->stat.frame.i_direct_score[0];
+        int dir_avg = h->stat.i_direct_score[1] - h->stat.i_direct_score[0];
+        char c_direct = h->mb.b_direct_auto_write ?
+                        ( dir_frame>0 ? 's' : dir_frame<0 ? 't' :
+                          dir_avg>0 ? 's' : dir_avg<0 ? 't' : '-' )
+                        : '-';
+        if( fprintf( rc->p_stat_file_out,
+                 "in:%d out:%d type:%c q:%.2f tex:%d mv:%d misc:%d imb:%d pmb:%d smb:%d d:%c ref:",
+                 h->fenc->i_frame, h->i_frame,
+                 c_type, rc->qpa_rc,
+                 h->stat.frame.i_tex_bits,
+                 h->stat.frame.i_mv_bits,
+                 h->stat.frame.i_misc_bits,
                  h->stat.frame.i_mb_count_i,
                  h->stat.frame.i_mb_count_p,
-                 h->stat.frame.i_mb_count_skip);
+                 h->stat.frame.i_mb_count_skip,
+                 c_direct) < 0 )
+            goto fail;
+
+        for( i = 0; i < h->i_ref0; i++ )
+        {
+            int refcount = h->param.b_interlaced ? h->stat.frame.i_mb_count_ref[0][i*2]
+                                                 + h->stat.frame.i_mb_count_ref[0][i*2+1] :
+                                                   h->stat.frame.i_mb_count_ref[0][i];
+            if( fprintf( rc->p_stat_file_out, "%d ", refcount ) < 0 )
+                goto fail;
+        }
+
+        if( fprintf( rc->p_stat_file_out, ";\n" ) < 0 )
+            goto fail;
+
+        /* Don't re-write the data in multi-pass mode. */
+        if( h->param.rc.b_mb_tree && h->fenc->b_kept_as_ref && !h->param.rc.b_stat_read )
+        {
+            uint8_t i_type = h->sh.i_type;
+            int i;
+            /* Values are stored as big-endian FIX8.8 */
+            for( i = 0; i < h->mb.i_mb_count; i++ )
+                rc->qp_buffer[i] = endian_fix16( h->fenc->f_qp_offset[i]*256.0 );
+            if( fwrite( &i_type, 1, 1, rc->p_mbtree_stat_file_out ) < 1 )
+                goto fail;
+            if( fwrite( rc->qp_buffer, sizeof(uint16_t), h->mb.i_mb_count, rc->p_mbtree_stat_file_out ) < h->mb.i_mb_count )
+                goto fail;
+        }
     }
 
     if( rc->b_abr )
     {
-        if( rc->slice_type != SLICE_TYPE_B )
-            rc->cplxr_sum += bits * qp2qscale(rc->qpa) / rc->last_rceq;
+        if( h->sh.i_type != SLICE_TYPE_B )
+            rc->cplxr_sum += bits * qp2qscale(rc->qpa_rc) / rc->last_rceq;
         else
         {
             /* Depends on the fact that B-frame's QP is an offset from the following P-frame's.
              * Not perfectly accurate with B-refs, but good enough. */
-            rc->cplxr_sum += bits * qp2qscale(rc->qpa) / (rc->last_rceq * fabs(h->param.rc.f_pb_factor));
+            rc->cplxr_sum += bits * qp2qscale(rc->qpa_rc) / (rc->last_rceq * fabs(h->param.rc.f_pb_factor));
         }
         rc->cplxr_sum *= rc->cbr_decay;
         rc->wanted_bits_window += rc->bitrate / rc->fps;
         rc->wanted_bits_window *= rc->cbr_decay;
-
-        rc->accum_p_qp   *= .95;
-        rc->accum_p_norm *= .95;
-        rc->accum_p_norm += 1;
-        if( rc->slice_type == SLICE_TYPE_I )
-            rc->accum_p_qp += rc->qpa * fabs(h->param.rc.f_ip_factor);
-        else
-            rc->accum_p_qp += rc->qpa;
     }
 
     if( rc->b_2pass )
@@ -616,104 +1319,58 @@ void x264_ratecontrol_end( x264_t *h, int bits )
         rc->expected_bits_sum += qscale2bits( rc->rce, qp2qscale(rc->rce->new_qp) );
     }
 
-    update_vbv( h, bits );
+    if( h->mb.b_variable_qp )
+    {
+        if( h->sh.i_type == SLICE_TYPE_B )
+        {
+            rc->bframe_bits += bits;
+            if( h->fenc->b_last_minigop_bframe )
+            {
+                update_predictor( rc->pred_b_from_p, qp2qscale(rc->qpa_rc),
+                                  h->fref1[h->i_ref1-1]->i_satd, rc->bframe_bits / rc->bframes );
+                rc->bframe_bits = 0;
+            }
+        }
+    }
 
-    if( rc->slice_type != SLICE_TYPE_B )
-        rc->last_non_b_pict_type = rc->slice_type;
+    update_vbv( h, bits );
+    return 0;
+fail:
+    x264_log(h, X264_LOG_ERROR, "ratecontrol_end: stats file could not be written to\n");
+    return -1;
 }
 
 /****************************************************************************
  * 2 pass functions
  ***************************************************************************/
 
-double x264_eval( char *s, double *const_value, const char **const_name,
-                  double (**func1)(void *, double), const char **func1_name,
-                  double (**func2)(void *, double, double), char **func2_name,
-                  void *opaque );
-
 /**
  * modify the bitrate curve from pass1 for one frame
  */
 static double get_qscale(x264_t *h, ratecontrol_entry_t *rce, double rate_factor, int frame_num)
 {
     x264_ratecontrol_t *rcc= h->rc;
-    const int pict_type = rce->pict_type;
     double q;
-    int i;
+    x264_zone_t *zone = get_zone( h, frame_num );
 
-    double const_values[]={
-        rce->i_tex_bits * rce->qscale,
-        rce->p_tex_bits * rce->qscale,
-        (rce->i_tex_bits + rce->p_tex_bits) * rce->qscale,
-        rce->mv_bits * rce->qscale,
-        (double)rce->i_count / rcc->nmb,
-        (double)rce->p_count / rcc->nmb,
-        (double)rce->s_count / rcc->nmb,
-        rce->pict_type == SLICE_TYPE_I,
-        rce->pict_type == SLICE_TYPE_P,
-        rce->pict_type == SLICE_TYPE_B,
-        h->param.rc.f_qcompress,
-        rcc->i_cplx_sum[SLICE_TYPE_I] / rcc->frame_count[SLICE_TYPE_I],
-        rcc->i_cplx_sum[SLICE_TYPE_P] / rcc->frame_count[SLICE_TYPE_P],
-        rcc->p_cplx_sum[SLICE_TYPE_P] / rcc->frame_count[SLICE_TYPE_P],
-        rcc->p_cplx_sum[SLICE_TYPE_B] / rcc->frame_count[SLICE_TYPE_B],
-        (rcc->i_cplx_sum[pict_type] + rcc->p_cplx_sum[pict_type]) / rcc->frame_count[pict_type],
-        rce->blurred_complexity,
-        0
-    };
-    static const char *const_names[]={
-        "iTex",
-        "pTex",
-        "tex",
-        "mv",
-        "iCount",
-        "pCount",
-        "sCount",
-        "isI",
-        "isP",
-        "isB",
-        "qComp",
-        "avgIITex",
-        "avgPITex",
-        "avgPPTex",
-        "avgBPTex",
-        "avgTex",
-        "blurCplx",
-        NULL
-    };
-    static double (*func1[])(void *, double)={
-//      (void *)bits2qscale,
-        (void *)qscale2bits,
-        NULL
-    };
-    static const char *func1_names[]={
-//      "bits2qp",
-        "qp2bits",
-        NULL
-    };
-
-    q = x264_eval((char*)h->param.rc.psz_rc_eq, const_values, const_names, func1, func1_names, NULL, NULL, rce);
+    q = pow( rce->blurred_complexity, 1 - rcc->qcompress );
 
     // avoid NaN's in the rc_eq
-    if(q != q || rce->i_tex_bits + rce->p_tex_bits + rce->mv_bits == 0)
+    if(!isfinite(q) || rce->tex_bits + rce->mv_bits == 0)
         q = rcc->last_qscale;
-    else {
+    else
+    {
         rcc->last_rceq = q;
         q /= rate_factor;
         rcc->last_qscale = q;
     }
 
-    for( i = rcc->i_zones-1; i >= 0; i-- )
+    if( zone )
     {
-        x264_zone_t *z = &rcc->zones[i];
-        if( frame_num >= z->i_start && frame_num <= z->i_end )
-        {
-            if( z->b_force_qp )
-                q = qp2qscale(z->i_qp);
-            else
-                q /= z->f_bitrate_factor;
-            break;
-        }
+        if( zone->b_force_qp )
+            q = qp2qscale(zone->i_qp);
+        else
+            q /= zone->f_bitrate_factor;
     }
 
     return q;
@@ -751,7 +1408,7 @@ static double get_diff_limited_q(x264_t *h, ratecontrol_entry_t *rce, double q)
     }
     else if( pict_type == SLICE_TYPE_P
              && rcc->last_non_b_pict_type == SLICE_TYPE_P
-             && rce->i_tex_bits + rce->p_tex_bits == 0 )
+             && rce->tex_bits == 0 )
     {
         q = last_p_q;
     }
@@ -788,30 +1445,72 @@ static double get_diff_limited_q(x264_t *h, ratecontrol_entry_t *rce, double q)
 
 static double predict_size( predictor_t *p, double q, double var )
 {
-     return p->coeff*var / (q*p->count);
+     return (p->coeff*var + p->offset) / (q*p->count);
 }
 
 static void update_predictor( predictor_t *p, double q, double var, double bits )
 {
-    p->count *= p->decay;
-    p->coeff *= p->decay;
-    p->count ++;
-    p->coeff += bits*q / var;
+    const double range = 1.5;
+    if( var < 10 )
+        return;
+    double old_coeff = p->coeff / p->count;
+    double new_coeff = bits*q / var;
+    double new_coeff_clipped = x264_clip3f( new_coeff, old_coeff/range, old_coeff*range );
+    double new_offset = bits*q - new_coeff_clipped * var;
+    if( new_offset >= 0 )
+        new_coeff = new_coeff_clipped;
+    else
+        new_offset = 0;
+    p->count  *= p->decay;
+    p->coeff  *= p->decay;
+    p->offset *= p->decay;
+    p->count  ++;
+    p->coeff  += new_coeff;
+    p->offset += new_offset;
 }
 
+// update VBV after encoding a frame
 static void update_vbv( x264_t *h, int bits )
 {
     x264_ratecontrol_t *rcc = h->rc;
-    if( !rcc->buffer_size )
+    x264_ratecontrol_t *rct = h->thread[0]->rc;
+
+    if( rcc->last_satd >= h->mb.i_mb_count )
+        update_predictor( &rct->pred[h->sh.i_type], qp2qscale(rcc->qpa_rc), rcc->last_satd, bits );
+
+    if( !rcc->b_vbv )
         return;
 
-    rcc->buffer_fill += rcc->buffer_rate - bits;
-    if( rcc->buffer_fill < 0 && !rcc->b_2pass )
-        x264_log( h, X264_LOG_WARNING, "VBV underflow (%.0f bits)\n", rcc->buffer_fill );
-    rcc->buffer_fill = x264_clip3( rcc->buffer_fill, 0, rcc->buffer_size );
+    rct->buffer_fill_final -= bits;
+    if( rct->buffer_fill_final < 0 )
+        x264_log( h, X264_LOG_WARNING, "VBV underflow (frame %d, %.0f bits)\n", h->i_frame, rct->buffer_fill_final );
+    rct->buffer_fill_final = X264_MAX( rct->buffer_fill_final, 0 );
+    rct->buffer_fill_final += rct->buffer_rate;
+    rct->buffer_fill_final = X264_MIN( rct->buffer_fill_final, rct->buffer_size );
+}
 
-    if(rcc->last_satd > 100)
-        update_predictor( &rcc->pred[rcc->slice_type], qp2qscale(rcc->qpa), rcc->last_satd, bits );
+// provisionally update VBV according to the planned size of all frames currently in progress
+static void update_vbv_plan( x264_t *h, int overhead )
+{
+    x264_ratecontrol_t *rcc = h->rc;
+    rcc->buffer_fill = h->thread[0]->rc->buffer_fill_final - overhead;
+    if( h->param.i_threads > 1 )
+    {
+        int j = h->rc - h->thread[0]->rc;
+        int i;
+        for( i=1; i<h->param.i_threads; i++ )
+        {
+            x264_t *t = h->thread[ (j+i)%h->param.i_threads ];
+            double bits = t->rc->frame_size_planned;
+            if( !t->b_thread_active )
+                continue;
+            bits  = X264_MAX(bits, x264_ratecontrol_get_estimated_size(t));
+            rcc->buffer_fill -= bits;
+            rcc->buffer_fill = X264_MAX( rcc->buffer_fill, 0 );
+            rcc->buffer_fill += rcc->buffer_rate;
+            rcc->buffer_fill = X264_MIN( rcc->buffer_fill, rcc->buffer_size );
+        }
+    }
 }
 
 // apply VBV constraints and clip qscale to between lmin and lmax
@@ -823,29 +1522,109 @@ static double clip_qscale( x264_t *h, int pict_type, double q )
     double q0 = q;
 
     /* B-frames are not directly subject to VBV,
-     * since they are controlled by the P-frames' QPs.
-     * FIXME: in 2pass we could modify previous frames' QP too,
-     *        instead of waiting for the buffer to fill */
-    if( rcc->buffer_size &&
-        ( pict_type == SLICE_TYPE_P ||
-          ( pict_type == SLICE_TYPE_I && rcc->last_non_b_pict_type == SLICE_TYPE_I ) ) )
-    {
-        if( rcc->buffer_fill/rcc->buffer_size < 0.5 )
-            q /= x264_clip3f( 2.0*rcc->buffer_fill/rcc->buffer_size, 0.5, 1.0 );
-    }
-    /* Now a hard threshold to make sure the frame fits in VBV.
-     * This one is mostly for I-frames. */
-    if( rcc->buffer_size && rcc->last_satd > 0 )
-    {
-        double bits = predict_size( &rcc->pred[rcc->slice_type], q, rcc->last_satd );
-        double qf = 1.0;
-        if( bits > rcc->buffer_fill/2 )
-            qf = x264_clip3f( rcc->buffer_fill/(2*bits), 0.2, 1.0 );
-        q /= qf;
-        bits *= qf;
-        if( bits < rcc->buffer_rate/2 )
-            q *= bits*2/rcc->buffer_rate;
-        q = X264_MAX( q0, q );
+     * since they are controlled by the P-frames' QPs. */
+
+    if( rcc->b_vbv && rcc->last_satd > 0 )
+    {
+        /* Lookahead VBV: raise the quantizer as necessary such that no frames in
+         * the lookahead overflow and such that the buffer is in a reasonable state
+         * by the end of the lookahead. */
+        if( h->param.rc.i_lookahead )
+        {
+            int j, iterations, terminate = 0;
+
+            /* Avoid an infinite loop. */
+            for( iterations = 0; iterations < 1000 && terminate != 3; iterations++ )
+            {
+                double frame_q[3];
+                double cur_bits = predict_size( &rcc->pred[h->sh.i_type], q, rcc->last_satd );
+                double buffer_fill_cur = rcc->buffer_fill - cur_bits + rcc->buffer_rate;
+                double target_fill;
+                frame_q[0] = h->sh.i_type == SLICE_TYPE_I ? q * h->param.rc.f_ip_factor : q;
+                frame_q[1] = frame_q[0] * h->param.rc.f_pb_factor;
+                frame_q[2] = frame_q[0] / h->param.rc.f_ip_factor;
+
+                /* Loop over the planned future frames. */
+                for( j = 0; buffer_fill_cur >= 0 && buffer_fill_cur <= rcc->buffer_size; j++ )
+                {
+                    int i_type = h->fenc->i_planned_type[j];
+                    int i_satd = h->fenc->i_planned_satd[j];
+                    if( i_type == X264_TYPE_AUTO )
+                        break;
+                    i_type = IS_X264_TYPE_I( i_type ) ? SLICE_TYPE_I : IS_X264_TYPE_B( i_type ) ? SLICE_TYPE_B : SLICE_TYPE_P;
+                    cur_bits = predict_size( &rcc->pred[i_type], frame_q[i_type], i_satd );
+                    buffer_fill_cur = buffer_fill_cur - cur_bits + rcc->buffer_rate;
+                }
+                /* Try to get to get the buffer at least 50% filled, but don't set an impossible goal. */
+                target_fill = X264_MIN( rcc->buffer_fill + j * rcc->buffer_rate * 0.5, rcc->buffer_size * 0.5 );
+                if( buffer_fill_cur < target_fill )
+                {
+                    q *= 1.01;
+                    terminate |= 1;
+                    continue;
+                }
+                /* Try to get the buffer no more than 80% filled, but don't set an impossible goal. */
+                target_fill = x264_clip3f( rcc->buffer_fill - j * rcc->buffer_rate * 0.5, rcc->buffer_size * 0.8, rcc->buffer_size );
+                if( rcc->b_vbv_min_rate && buffer_fill_cur > target_fill )
+                {
+                    q /= 1.01;
+                    terminate |= 2;
+                    continue;
+                }
+                break;
+            }
+        }
+        /* Fallback to old purely-reactive algorithm: no lookahead. */
+        else
+        {
+            if( ( pict_type == SLICE_TYPE_P ||
+                ( pict_type == SLICE_TYPE_I && rcc->last_non_b_pict_type == SLICE_TYPE_I ) ) &&
+                rcc->buffer_fill/rcc->buffer_size < 0.5 )
+            {
+                q /= x264_clip3f( 2.0*rcc->buffer_fill/rcc->buffer_size, 0.5, 1.0 );
+            }
+
+            /* Now a hard threshold to make sure the frame fits in VBV.
+             * This one is mostly for I-frames. */
+            double bits = predict_size( &rcc->pred[h->sh.i_type], q, rcc->last_satd );
+            double qf = 1.0;
+            /* For small VBVs, allow the frame to use up the entire VBV. */
+            double max_fill_factor = h->param.rc.i_vbv_buffer_size >= 5*h->param.rc.i_vbv_max_bitrate / rcc->fps ? 2 : 1;
+            /* For single-frame VBVs, request that the frame use up the entire VBV. */
+            double min_fill_factor = rcc->single_frame_vbv ? 1 : 2;
+
+            if( bits > rcc->buffer_fill/max_fill_factor )
+                qf = x264_clip3f( rcc->buffer_fill/(max_fill_factor*bits), 0.2, 1.0 );
+            q /= qf;
+            bits *= qf;
+            if( bits < rcc->buffer_rate/min_fill_factor )
+                q *= bits*min_fill_factor/rcc->buffer_rate;
+            q = X264_MAX( q0, q );
+        }
+
+        /* Check B-frame complexity, and use up any bits that would
+         * overflow before the next P-frame. */
+        if( h->sh.i_type == SLICE_TYPE_P && !rcc->single_frame_vbv )
+        {
+            int nb = rcc->bframes;
+            double bits = predict_size( &rcc->pred[h->sh.i_type], q, rcc->last_satd );
+            double pbbits = bits;
+            double bbits = predict_size( rcc->pred_b_from_p, q * h->param.rc.f_pb_factor, rcc->last_satd );
+            double space;
+            if( bbits > rcc->buffer_rate  )
+                nb = 0;
+            pbbits += nb * bbits;
+
+            space = rcc->buffer_fill + (1+nb)*rcc->buffer_rate - rcc->buffer_size;
+            if( pbbits < space )
+            {
+                q *= X264_MAX( pbbits / space, bits / (0.5 * rcc->buffer_size) );
+            }
+            q = X264_MAX( q0-5, q );
+        }
+
+        if( !rcc->b_vbv_min_rate )
+            q = X264_MAX( q0, q );
     }
 
     if(lmin==lmax)
@@ -864,16 +1643,17 @@ static double clip_qscale( x264_t *h, int pict_type, double q )
 }
 
 // update qscale for 1 frame based on actual bits used so far
-static float rate_estimate_qscale(x264_t *h, int pict_type)
+static float rate_estimate_qscale( x264_t *h )
 {
     float q;
     x264_ratecontrol_t *rcc = h->rc;
     ratecontrol_entry_t rce;
+    int pict_type = h->sh.i_type;
     double lmin = rcc->lmin[pict_type];
     double lmax = rcc->lmax[pict_type];
-    int64_t total_bits = 8*(h->stat.i_slice_size[SLICE_TYPE_I]
-                          + h->stat.i_slice_size[SLICE_TYPE_P]
-                          + h->stat.i_slice_size[SLICE_TYPE_B]);
+    int64_t total_bits = 8*(h->stat.i_frame_size[SLICE_TYPE_I]
+                          + h->stat.i_frame_size[SLICE_TYPE_P]
+                          + h->stat.i_frame_size[SLICE_TYPE_B]);
 
     if( rcc->b_2pass )
     {
@@ -887,23 +1667,86 @@ static float rate_estimate_qscale(x264_t *h, int pict_type)
 
     if( pict_type == SLICE_TYPE_B )
     {
-        rcc->last_satd = 0;
+        /* B-frames don't have independent ratecontrol, but rather get the
+         * average QP of the two adjacent P-frames + an offset */
+
+        int i0 = IS_X264_TYPE_I(h->fref0[0]->i_type);
+        int i1 = IS_X264_TYPE_I(h->fref1[0]->i_type);
+        int dt0 = abs(h->fenc->i_poc - h->fref0[0]->i_poc);
+        int dt1 = abs(h->fenc->i_poc - h->fref1[0]->i_poc);
+        float q0 = h->fref0[0]->f_qp_avg_rc;
+        float q1 = h->fref1[0]->f_qp_avg_rc;
+
+        if( h->fref0[0]->i_type == X264_TYPE_BREF )
+            q0 -= rcc->pb_offset/2;
+        if( h->fref1[0]->i_type == X264_TYPE_BREF )
+            q1 -= rcc->pb_offset/2;
+
+        if(i0 && i1)
+            q = (q0 + q1) / 2 + rcc->ip_offset;
+        else if(i0)
+            q = q1;
+        else if(i1)
+            q = q0;
+        else
+            q = (q0*dt1 + q1*dt0) / (dt0 + dt1);
+
         if(h->fenc->b_kept_as_ref)
-            q = rcc->last_qscale * sqrtf(h->param.rc.f_pb_factor);
+            q += rcc->pb_offset/2;
         else
-            q = rcc->last_qscale * h->param.rc.f_pb_factor;
-        return x264_clip3f(q, lmin, lmax);
+            q += rcc->pb_offset;
+
+        if( rcc->b_2pass && rcc->b_vbv )
+            rcc->frame_size_planned = qscale2bits( &rce, q );
+        else
+            rcc->frame_size_planned = predict_size( rcc->pred_b_from_p, q, h->fref1[h->i_ref1-1]->i_satd );
+        x264_ratecontrol_set_estimated_size(h, rcc->frame_size_planned);
+
+        /* For row SATDs */
+        if( rcc->b_vbv )
+            rcc->last_satd = x264_rc_analyse_slice( h );
+        return qp2qscale(q);
     }
     else
     {
         double abr_buffer = 2 * rcc->rate_tolerance * rcc->bitrate;
+
         if( rcc->b_2pass )
         {
             //FIXME adjust abr_buffer based on distance to the end of the video
-            int64_t diff = total_bits - (int64_t)rce.expected_bits;
+            int64_t diff;
+            int64_t predicted_bits = total_bits;
+
+            if( rcc->b_vbv )
+            {
+                if( h->param.i_threads > 1 )
+                {
+                    int j = h->rc - h->thread[0]->rc;
+                    int i;
+                    for( i=1; i<h->param.i_threads; i++ )
+                    {
+                        x264_t *t = h->thread[ (j+i)%h->param.i_threads ];
+                        double bits = t->rc->frame_size_planned;
+                        if( !t->b_thread_active )
+                            continue;
+                        bits  = X264_MAX(bits, x264_ratecontrol_get_estimated_size(t));
+                        predicted_bits += (int64_t)bits;
+                    }
+                }
+            }
+            else
+            {
+                if( h->fenc->i_frame < h->param.i_threads )
+                    predicted_bits += (int64_t)h->fenc->i_frame * rcc->bitrate / rcc->fps;
+                else
+                    predicted_bits += (int64_t)(h->param.i_threads - 1) * rcc->bitrate / rcc->fps;
+            }
+
+            diff = predicted_bits - (int64_t)rce.expected_bits;
             q = rce.new_qscale;
             q /= x264_clip3f((double)(abr_buffer - diff) / abr_buffer, .5, 2);
-            if( h->fenc->i_frame > 30 )
+            if( ((h->fenc->i_frame + 1 - h->param.i_threads) >= rcc->fps) &&
+                (rcc->expected_bits_sum > 0))
             {
                 /* Adjust quant based on the difference between
                  * achieved and expected bitrate so far */
@@ -911,6 +1754,27 @@ static float rate_estimate_qscale(x264_t *h, int pict_type)
                 double w = x264_clip3f( time*100, 0.0, 1.0 );
                 q *= pow( (double)total_bits / rcc->expected_bits_sum, w );
             }
+            if( rcc->b_vbv )
+            {
+                /* Do not overflow vbv */
+                double expected_size = qscale2bits(&rce, q);
+                double expected_vbv = rcc->buffer_fill + rcc->buffer_rate - expected_size;
+                double expected_fullness =  rce.expected_vbv / rcc->buffer_size;
+                double qmax = q*(2 - expected_fullness);
+                double size_constraint = 1 + expected_fullness;
+                qmax = X264_MAX(qmax, rce.new_qscale);
+                if (expected_fullness < .05)
+                    qmax = lmax;
+                qmax = X264_MIN(qmax, lmax);
+                while( ((expected_vbv < rce.expected_vbv/size_constraint) && (q < qmax)) ||
+                        ((expected_vbv < 0) && (q < lmax)))
+                {
+                    q *= 1.05;
+                    expected_size = qscale2bits(&rce, q);
+                    expected_vbv = rcc->buffer_fill + rcc->buffer_rate - expected_size;
+                }
+                rcc->last_satd = x264_rc_analyse_slice( h );
+            }
             q = x264_clip3f( q, lmin, lmax );
         }
         else /* 1pass ABR */
@@ -925,7 +1789,7 @@ static float rate_estimate_qscale(x264_t *h, int pict_type)
              * tradeoff between quality and bitrate precision. But at large
              * tolerances, the bit distribution approaches that of 2pass. */
 
-            double wanted_bits, overflow, lmin, lmax;
+            double wanted_bits, overflow=1, lmin, lmax;
 
             rcc->last_satd = x264_rc_analyse_slice( h );
             rcc->short_term_cplxsum *= 0.5;
@@ -933,9 +1797,8 @@ static float rate_estimate_qscale(x264_t *h, int pict_type)
             rcc->short_term_cplxsum += rcc->last_satd;
             rcc->short_term_cplxcount ++;
 
-            rce.p_tex_bits = rcc->last_satd;
+            rce.tex_bits = rcc->last_satd;
             rce.blurred_complexity = rcc->short_term_cplxsum / rcc->short_term_cplxcount;
-            rce.i_tex_bits = 0;
             rce.mv_bits = 0;
             rce.p_count = rcc->nmb;
             rce.i_count = 0;
@@ -943,19 +1806,24 @@ static float rate_estimate_qscale(x264_t *h, int pict_type)
             rce.qscale = 1;
             rce.pict_type = pict_type;
 
-            if( h->param.rc.i_rf_constant )
+            if( h->param.rc.i_rc_method == X264_RC_CRF )
             {
                 q = get_qscale( h, &rce, rcc->rate_factor_constant, h->fenc->i_frame );
-                overflow = 1;
             }
             else
             {
+                int i_frame_done = h->fenc->i_frame + 1 - h->param.i_threads;
+
                 q = get_qscale( h, &rce, rcc->wanted_bits_window / rcc->cplxr_sum, h->fenc->i_frame );
 
-                wanted_bits = h->fenc->i_frame * rcc->bitrate / rcc->fps;
-                abr_buffer *= X264_MAX( 1, sqrt(h->fenc->i_frame/25) );
-                overflow = x264_clip3f( 1.0 + (total_bits - wanted_bits) / abr_buffer, .5, 2 );
-                q *= overflow;
+                // FIXME is it simpler to keep track of wanted_bits in ratecontrol_end?
+                wanted_bits = i_frame_done * rcc->bitrate / rcc->fps;
+                if( wanted_bits > 0 )
+                {
+                    abr_buffer *= X264_MAX( 1, sqrt(i_frame_done/25) );
+                    overflow = x264_clip3f( 1.0 + (total_bits - wanted_bits) / abr_buffer, .5, 2 );
+                    q *= overflow;
+                }
             }
 
             if( pict_type == SLICE_TYPE_I && h->param.i_keyint_max > 1
@@ -964,44 +1832,217 @@ static float rate_estimate_qscale(x264_t *h, int pict_type)
             {
                 q = qp2qscale( rcc->accum_p_qp / rcc->accum_p_norm );
                 q /= fabs( h->param.rc.f_ip_factor );
-                q = clip_qscale( h, pict_type, q );
             }
-            else
+            else if( h->i_frame > 0 )
             {
-                if( h->stat.i_slice_count[h->param.i_keyint_max > 1 ? SLICE_TYPE_P : SLICE_TYPE_I] < 5 )
-                {
-                    float w = h->stat.i_slice_count[SLICE_TYPE_P] / 5.;
-                    float q2 = qp2qscale(ABR_INIT_QP);
-                    q = q*w + q2*(1-w);
-                }
-
                 /* Asymmetric clipping, because symmetric would prevent
                  * overflow control in areas of rapidly oscillating complexity */
                 lmin = rcc->last_qscale_for[pict_type] / rcc->lstep;
                 lmax = rcc->last_qscale_for[pict_type] * rcc->lstep;
-                if( overflow > 1.1 )
+                if( overflow > 1.1 && h->i_frame > 3 )
                     lmax *= rcc->lstep;
                 else if( overflow < 0.9 )
                     lmin /= rcc->lstep;
 
                 q = x264_clip3f(q, lmin, lmax);
-                q = clip_qscale(h, pict_type, q);
-                //FIXME use get_diff_limited_q() ?
             }
+            else if( h->param.rc.i_rc_method == X264_RC_CRF )
+            {
+                q = qp2qscale( ABR_INIT_QP ) / fabs( h->param.rc.f_ip_factor );
+            }
+            rcc->qp_novbv = qscale2qp(q);
+
+            //FIXME use get_diff_limited_q() ?
+            q = clip_qscale( h, pict_type, q );
         }
 
         rcc->last_qscale_for[pict_type] =
         rcc->last_qscale = q;
 
+        if( !(rcc->b_2pass && !rcc->b_vbv) && h->fenc->i_frame == 0 )
+            rcc->last_qscale_for[SLICE_TYPE_P] = q;
+
+        if( rcc->b_2pass && rcc->b_vbv )
+            rcc->frame_size_planned = qscale2bits(&rce, q);
+        else
+            rcc->frame_size_planned = predict_size( &rcc->pred[h->sh.i_type], q, rcc->last_satd );
+        x264_ratecontrol_set_estimated_size(h, rcc->frame_size_planned);
         return q;
     }
 }
 
+void x264_thread_sync_ratecontrol( x264_t *cur, x264_t *prev, x264_t *next )
+{
+    if( cur != prev )
+    {
+#define COPY(var) memcpy(&cur->rc->var, &prev->rc->var, sizeof(cur->rc->var))
+        /* these vars are updated in x264_ratecontrol_start()
+         * so copy them from the context that most recently started (prev)
+         * to the context that's about to start (cur).
+         */
+        COPY(accum_p_qp);
+        COPY(accum_p_norm);
+        COPY(last_satd);
+        COPY(last_rceq);
+        COPY(last_qscale_for);
+        COPY(last_non_b_pict_type);
+        COPY(short_term_cplxsum);
+        COPY(short_term_cplxcount);
+        COPY(bframes);
+        COPY(prev_zone);
+#undef COPY
+    }
+    if( cur != next )
+    {
+#define COPY(var) next->rc->var = cur->rc->var
+        /* these vars are updated in x264_ratecontrol_end()
+         * so copy them from the context that most recently ended (cur)
+         * to the context that's about to end (next)
+         */
+        COPY(cplxr_sum);
+        COPY(expected_bits_sum);
+        COPY(wanted_bits_window);
+        COPY(bframe_bits);
+#undef COPY
+    }
+    //FIXME row_preds[] (not strictly necessary, but would improve prediction)
+    /* the rest of the variables are either constant or thread-local */
+}
+
+static int find_underflow( x264_t *h, double *fills, int *t0, int *t1, int over )
+{
+    /* find an interval ending on an overflow or underflow (depending on whether
+     * we're adding or removing bits), and starting on the earliest frame that
+     * can influence the buffer fill of that end frame. */
+    x264_ratecontrol_t *rcc = h->rc;
+    const double buffer_min = (over ? .1 : .1) * rcc->buffer_size;
+    const double buffer_max = .9 * rcc->buffer_size;
+    double fill = fills[*t0-1];
+    double parity = over ? 1. : -1.;
+    int i, start=-1, end=-1;
+    for(i = *t0; i < rcc->num_entries; i++)
+    {
+        fill += (rcc->buffer_rate - qscale2bits(&rcc->entry[i], rcc->entry[i].new_qscale)) * parity;
+        fill = x264_clip3f(fill, 0, rcc->buffer_size);
+        fills[i] = fill;
+        if(fill <= buffer_min || i == 0)
+        {
+            if(end >= 0)
+                break;
+            start = i;
+        }
+        else if(fill >= buffer_max && start >= 0)
+            end = i;
+    }
+    *t0 = start;
+    *t1 = end;
+    return start>=0 && end>=0;
+}
+
+static int fix_underflow( x264_t *h, int t0, int t1, double adjustment, double qscale_min, double qscale_max)
+{
+    x264_ratecontrol_t *rcc = h->rc;
+    double qscale_orig, qscale_new;
+    int i;
+    int adjusted = 0;
+    if(t0 > 0)
+        t0++;
+    for(i = t0; i <= t1; i++)
+    {
+        qscale_orig = rcc->entry[i].new_qscale;
+        qscale_orig = x264_clip3f(qscale_orig, qscale_min, qscale_max);
+        qscale_new  = qscale_orig * adjustment;
+        qscale_new  = x264_clip3f(qscale_new, qscale_min, qscale_max);
+        rcc->entry[i].new_qscale = qscale_new;
+        adjusted = adjusted || (qscale_new != qscale_orig);
+    }
+    return adjusted;
+}
+
+static double count_expected_bits( x264_t *h )
+{
+    x264_ratecontrol_t *rcc = h->rc;
+    double expected_bits = 0;
+    int i;
+    for(i = 0; i < rcc->num_entries; i++)
+    {
+        ratecontrol_entry_t *rce = &rcc->entry[i];
+        rce->expected_bits = expected_bits;
+        expected_bits += qscale2bits(rce, rce->new_qscale);
+    }
+    return expected_bits;
+}
+
+static int vbv_pass2( x264_t *h )
+{
+    /* for each interval of buffer_full .. underflow, uniformly increase the qp of all
+     * frames in the interval until either buffer is full at some intermediate frame or the
+     * last frame in the interval no longer underflows.  Recompute intervals and repeat.
+     * Then do the converse to put bits back into overflow areas until target size is met */
+
+    x264_ratecontrol_t *rcc = h->rc;
+    double *fills;
+    double all_available_bits = h->param.rc.i_bitrate * 1000. * rcc->num_entries / rcc->fps;
+    double expected_bits = 0;
+    double adjustment;
+    double prev_bits = 0;
+    int i, t0, t1;
+    double qscale_min = qp2qscale(h->param.rc.i_qp_min);
+    double qscale_max = qp2qscale(h->param.rc.i_qp_max);
+    int iterations = 0;
+    int adj_min, adj_max;
+    CHECKED_MALLOC( fills, (rcc->num_entries+1)*sizeof(double) );
+
+    fills++;
+
+    /* adjust overall stream size */
+    do
+    {
+        iterations++;
+        prev_bits = expected_bits;
+
+        if(expected_bits != 0)
+        {   /* not first iteration */
+            adjustment = X264_MAX(X264_MIN(expected_bits / all_available_bits, 0.999), 0.9);
+            fills[-1] = rcc->buffer_size * h->param.rc.f_vbv_buffer_init;
+            t0 = 0;
+            /* fix overflows */
+            adj_min = 1;
+            while(adj_min && find_underflow(h, fills, &t0, &t1, 1))
+            {
+                adj_min = fix_underflow(h, t0, t1, adjustment, qscale_min, qscale_max);
+                t0 = t1;
+            }
+        }
+
+        fills[-1] = rcc->buffer_size * (1. - h->param.rc.f_vbv_buffer_init);
+        t0 = 0;
+        /* fix underflows -- should be done after overflow, as we'd better undersize target than underflowing VBV */
+        adj_max = 1;
+        while(adj_max && find_underflow(h, fills, &t0, &t1, 0))
+            adj_max = fix_underflow(h, t0, t1, 1.001, qscale_min, qscale_max);
+
+        expected_bits = count_expected_bits(h);
+    } while((expected_bits < .995*all_available_bits) && ((int64_t)(expected_bits+.5) > (int64_t)(prev_bits+.5)) );
+
+    if (!adj_max)
+        x264_log( h, X264_LOG_WARNING, "vbv-maxrate issue, qpmax or vbv-maxrate too low\n");
+
+    /* store expected vbv filling values for tracking when encoding */
+    for(i = 0; i < rcc->num_entries; i++)
+        rcc->entry[i].expected_vbv = rcc->buffer_size - fills[i];
+
+    x264_free(fills-1);
+    return 0;
+fail:
+    return -1;
+}
+
 static int init_pass2( x264_t *h )
 {
     x264_ratecontrol_t *rcc = h->rc;
     uint64_t all_const_bits = 0;
-    uint64_t all_available_bits = (uint64_t)(h->param.rc.i_bitrate * 1000 * (double)rcc->num_entries / rcc->fps);
+    uint64_t all_available_bits = (uint64_t)(h->param.rc.i_bitrate * 1000. * rcc->num_entries / rcc->fps);
     double rate_factor, step, step_mult;
     double qblur = h->param.rc.f_qblur;
     double cplxblur = h->param.rc.f_complexity_blur;
@@ -1011,19 +2052,16 @@ static int init_pass2( x264_t *h )
     int i;
 
     /* find total/average complexity & const_bits */
-    for(i=0; i<rcc->num_entries; i++){
+    for(i=0; i<rcc->num_entries; i++)
+    {
         ratecontrol_entry_t *rce = &rcc->entry[i];
         all_const_bits += rce->misc_bits;
-        rcc->i_cplx_sum[rce->pict_type] += rce->i_tex_bits * rce->qscale;
-        rcc->p_cplx_sum[rce->pict_type] += rce->p_tex_bits * rce->qscale;
-        rcc->mv_bits_sum[rce->pict_type] += rce->mv_bits * rce->qscale;
-        rcc->frame_count[rce->pict_type] ++;
     }
 
     if( all_available_bits < all_const_bits)
     {
         x264_log(h, X264_LOG_ERROR, "requested bitrate is too low. estimated minimum is %d kbps\n",
-                 (int)(all_const_bits * rcc->fps / (rcc->num_entries * 1000)));
+                 (int)(all_const_bits * rcc->fps / (rcc->num_entries * 1000.)));
         return -1;
     }
 
@@ -1031,27 +2069,33 @@ static int init_pass2( x264_t *h )
      * We don't blur the QPs directly, because then one very simple frame
      * could drag down the QP of a nearby complex frame and give it more
      * bits than intended. */
-    for(i=0; i<rcc->num_entries; i++){
+    for(i=0; i<rcc->num_entries; i++)
+    {
         ratecontrol_entry_t *rce = &rcc->entry[i];
         double weight_sum = 0;
         double cplx_sum = 0;
         double weight = 1.0;
+        double gaussian_weight;
         int j;
         /* weighted average of cplx of future frames */
-        for(j=1; j<cplxblur*2 && j<rcc->num_entries-i; j++){
+        for(j=1; j<cplxblur*2 && j<rcc->num_entries-i; j++)
+        {
             ratecontrol_entry_t *rcj = &rcc->entry[i+j];
             weight *= 1 - pow( (float)rcj->i_count / rcc->nmb, 2 );
             if(weight < .0001)
                 break;
-            weight_sum += weight;
-            cplx_sum += weight * qscale2bits(rcj, 1);
+            gaussian_weight = weight * exp(-j*j/200.0);
+            weight_sum += gaussian_weight;
+            cplx_sum += gaussian_weight * (qscale2bits(rcj, 1) - rcj->misc_bits);
         }
         /* weighted average of cplx of past frames */
         weight = 1.0;
-        for(j=0; j<=cplxblur*2 && j<=i; j++){
+        for(j=0; j<=cplxblur*2 && j<=i; j++)
+        {
             ratecontrol_entry_t *rcj = &rcc->entry[i-j];
-            weight_sum += weight;
-            cplx_sum += weight * qscale2bits(rcj, 1);
+            gaussian_weight = weight * exp(-j*j/200.0);
+            weight_sum += gaussian_weight;
+            cplx_sum += gaussian_weight * (qscale2bits(rcj, 1) - rcj->misc_bits);
             weight *= 1 - pow( (float)rcj->i_count / rcc->nmb, 2 );
             if(weight < .0001)
                 break;
@@ -1059,9 +2103,9 @@ static int init_pass2( x264_t *h )
         rce->blurred_complexity = cplx_sum / weight_sum;
     }
 
-    qscale = x264_malloc(sizeof(double)*rcc->num_entries);
-    if(filter_size > 1)
-        blurred_qscale = x264_malloc(sizeof(double)*rcc->num_entries);
+    CHECKED_MALLOC( qscale, sizeof(double)*rcc->num_entries );
+    if( filter_size > 1 )
+        CHECKED_MALLOC( blurred_qscale, sizeof(double)*rcc->num_entries );
     else
         blurred_qscale = qscale;
 
@@ -1078,40 +2122,47 @@ static int init_pass2( x264_t *h )
     step_mult = all_available_bits / expected_bits;
 
     rate_factor = 0;
-    for(step = 1E4 * step_mult; step > 1E-7 * step_mult; step *= 0.5){
+    for(step = 1E4 * step_mult; step > 1E-7 * step_mult; step *= 0.5)
+    {
         expected_bits = 0;
         rate_factor += step;
 
         rcc->last_non_b_pict_type = -1;
         rcc->last_accum_p_norm = 1;
         rcc->accum_p_norm = 0;
-        rcc->buffer_fill = rcc->buffer_size * h->param.rc.f_vbv_buffer_init;
 
         /* find qscale */
-        for(i=0; i<rcc->num_entries; i++){
+        for(i=0; i<rcc->num_entries; i++)
+        {
             qscale[i] = get_qscale(h, &rcc->entry[i], rate_factor, i);
         }
 
         /* fixed I/B qscale relative to P */
-        for(i=rcc->num_entries-1; i>=0; i--){
+        for(i=rcc->num_entries-1; i>=0; i--)
+        {
             qscale[i] = get_diff_limited_q(h, &rcc->entry[i], qscale[i]);
             assert(qscale[i] >= 0);
         }
 
         /* smooth curve */
-        if(filter_size > 1){
+        if(filter_size > 1)
+        {
             assert(filter_size%2==1);
-            for(i=0; i<rcc->num_entries; i++){
+            for(i=0; i<rcc->num_entries; i++)
+            {
                 ratecontrol_entry_t *rce = &rcc->entry[i];
                 int j;
                 double q=0.0, sum=0.0;
 
-                for(j=0; j<filter_size; j++){
+                for(j=0; j<filter_size; j++)
+                {
                     int index = i+j-filter_size/2;
                     double d = index-i;
                     double coeff = qblur==0 ? 1.0 : exp(-d*d/(qblur*qblur));
-                    if(index < 0 || index >= rcc->num_entries) continue;
-                    if(rce->pict_type != rcc->entry[index].pict_type) continue;
+                    if(index < 0 || index >= rcc->num_entries)
+                        continue;
+                    if(rce->pict_type != rcc->entry[index].pict_type)
+                        continue;
                     q += qscale[index] * coeff;
                     sum += coeff;
                 }
@@ -1120,19 +2171,14 @@ static int init_pass2( x264_t *h )
         }
 
         /* find expected bits */
-        for(i=0; i<rcc->num_entries; i++){
+        for(i=0; i<rcc->num_entries; i++)
+        {
             ratecontrol_entry_t *rce = &rcc->entry[i];
-            double bits;
             rce->new_qscale = clip_qscale(h, rce->pict_type, blurred_qscale[i]);
             assert(rce->new_qscale >= 0);
-            bits = qscale2bits(rce, rce->new_qscale) + rce->misc_bits;
-
-            rce->expected_bits = expected_bits;
-            expected_bits += bits;
-            update_vbv(h, bits);
+            expected_bits += qscale2bits(rce, rce->new_qscale);
         }
 
-//printf("expected:%llu available:%llu factor:%lf avgQ:%lf\n", (uint64_t)expected_bits, all_available_bits, rate_factor);
         if(expected_bits > all_available_bits) rate_factor -= step;
     }
 
@@ -1140,6 +2186,11 @@ static int init_pass2( x264_t *h )
     if(filter_size > 1)
         x264_free(blurred_qscale);
 
+    if(rcc->b_vbv)
+        if( vbv_pass2( h ) )
+            return -1;
+    expected_bits = count_expected_bits(h);
+
     if(fabs(expected_bits/all_available_bits - 1.0) > 0.01)
     {
         double avgq = 0;
@@ -1147,30 +2198,31 @@ static int init_pass2( x264_t *h )
             avgq += rcc->entry[i].new_qscale;
         avgq = qscale2qp(avgq / rcc->num_entries);
 
-        x264_log(h, X264_LOG_ERROR, "Error: 2pass curve failed to converge\n");
-        x264_log(h, X264_LOG_ERROR, "target: %.2f kbit/s, expected: %.2f kbit/s, avg QP: %.4f\n",
+        if ((expected_bits > all_available_bits) || (!rcc->b_vbv))
+            x264_log(h, X264_LOG_WARNING, "Error: 2pass curve failed to converge\n");
+        x264_log(h, X264_LOG_WARNING, "target: %.2f kbit/s, expected: %.2f kbit/s, avg QP: %.4f\n",
                  (float)h->param.rc.i_bitrate,
                  expected_bits * rcc->fps / (rcc->num_entries * 1000.),
                  avgq);
         if(expected_bits < all_available_bits && avgq < h->param.rc.i_qp_min + 2)
         {
             if(h->param.rc.i_qp_min > 0)
-                x264_log(h, X264_LOG_ERROR, "try reducing target bitrate or reducing qp_min (currently %d)\n", h->param.rc.i_qp_min);
+                x264_log(h, X264_LOG_WARNING, "try reducing target bitrate or reducing qp_min (currently %d)\n", h->param.rc.i_qp_min);
             else
-                x264_log(h, X264_LOG_ERROR, "try reducing target bitrate\n");
+                x264_log(h, X264_LOG_WARNING, "try reducing target bitrate\n");
         }
         else if(expected_bits > all_available_bits && avgq > h->param.rc.i_qp_max - 2)
         {
             if(h->param.rc.i_qp_max < 51)
-                x264_log(h, X264_LOG_ERROR, "try increasing target bitrate or increasing qp_max (currently %d)\n", h->param.rc.i_qp_max);
+                x264_log(h, X264_LOG_WARNING, "try increasing target bitrate or increasing qp_max (currently %d)\n", h->param.rc.i_qp_max);
             else
-                x264_log(h, X264_LOG_ERROR, "try increasing target bitrate\n");
+                x264_log(h, X264_LOG_WARNING, "try increasing target bitrate\n");
         }
-        else
-            x264_log(h, X264_LOG_ERROR, "internal error\n");
+        else if(!(rcc->b_2pass && rcc->b_vbv))
+            x264_log(h, X264_LOG_WARNING, "internal error\n");
     }
 
     return 0;
+fail:
+    return -1;
 }
-
-