]> git.sesse.net Git - x264/blobdiff - encoder/ratecontrol.c
Mark some local functions as static, cosmetics
[x264] / encoder / ratecontrol.c
index 90baaba9b5c4c8ec85bd83191d89bf0fe4150d15..7e77accf9774ec8c0317b1c8a73a77f4ac9d359d 100644 (file)
@@ -1,7 +1,7 @@
-/***************************************************-*- coding: iso-8859-1 -*-
- * ratecontrol.c: h264 encoder library (Rate Control)
+/*****************************************************************************
+ * ratecontrol.c: ratecontrol
  *****************************************************************************
- * Copyright (C) 2005-2008 x264 project
+ * Copyright (C) 2005-2011 x264 project
  *
  * Authors: Loren Merritt <lorenm@u.washington.edu>
  *          Michael Niedermayer <michaelni@gmx.at>
  * You should have received a copy of the GNU General Public License
  * along with this program; if not, write to the Free Software
  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02111, USA.
+ *
+ * This program is also available under a commercial proprietary license.
+ * For more information, contact us at licensing@x264.com.
  *****************************************************************************/
 
 #define _ISOC99_SOURCE
 #undef NDEBUG // always check asserts, the speed effect is far too small to disable them
-#include <math.h>
 
 #include "common/common.h"
-#include "common/cpu.h"
 #include "ratecontrol.h"
 #include "me.h"
 
@@ -51,18 +52,20 @@ typedef struct
     int s_count;
     float blurred_complexity;
     char direct_mode;
-    int16_t weight[2];
-    int16_t i_weight_denom;
+    int16_t weight[3][2];
+    int16_t i_weight_denom[2];
     int refcount[16];
     int refs;
+    int64_t i_duration;
+    int64_t i_cpb_duration;
 } ratecontrol_entry_t;
 
 typedef struct
 {
-    double coeff;
-    double count;
-    double decay;
-    double offset;
+    float coeff;
+    float count;
+    float decay;
+    float offset;
 } predictor_t;
 
 struct x264_ratecontrol_t
@@ -77,31 +80,32 @@ struct x264_ratecontrol_t
     double rate_tolerance;
     double qcompress;
     int nmb;                    /* number of macroblocks in a frame */
-    int qp_constant[5];
+    int qp_constant[3];
 
     /* current frame */
     ratecontrol_entry_t *rce;
     int qp;                     /* qp for current frame */
-    int qpm;                    /* qp for current macroblock */
-    float f_qpm;                /* qp for current macroblock: precise float for AQ */
+    float qpm;                  /* qp for current macroblock: precise float for AQ */
     float qpa_rc;               /* average of macroblocks' qp before aq */
-    float qpa_aq;               /* average of macroblocks' qp after aq */
+    int   qpa_aq;               /* average of macroblocks' qp after aq */
     float qp_novbv;             /* QP for the current frame if 1-pass VBV was disabled. */
-    int qp_force;
 
     /* VBV stuff */
     double buffer_size;
-    double buffer_fill_final;   /* real buffer as of the last finished frame */
+    int64_t buffer_fill_final;
     double buffer_fill;         /* planned buffer, if all in-progress frames hit their bit budget */
     double buffer_rate;         /* # of bits added to buffer_fill after each frame */
+    double vbv_max_rate;        /* # of bits added to buffer_fill per second */
     predictor_t *pred;          /* predict frame size from satd */
     int single_frame_vbv;
+    double rate_factor_max_increment; /* Don't allow RF above (CRF + this value). */
 
     /* ABR stuff */
     int    last_satd;
     double last_rceq;
     double cplxr_sum;           /* sum of bits*qscale/rceq */
     double expected_bits_sum;   /* sum of qscale2bits after rceq, ratefactor, and overflow, only includes finished frames */
+    int64_t filler_bits_sum;    /* sum in bits of finished frames' filler data */
     double wanted_bits_window;  /* target bitrate * window */
     double cbr_decay;
     double short_term_cplxsum;
@@ -121,13 +125,13 @@ struct x264_ratecontrol_t
     int num_entries;            /* number of ratecontrol_entry_ts */
     ratecontrol_entry_t *entry; /* FIXME: copy needed data and free this once init is done */
     double last_qscale;
-    double last_qscale_for[5];  /* last qscale for a specific pict type, used for max_diff & ipb factor stuff  */
+    double last_qscale_for[3];  /* last qscale for a specific pict type, used for max_diff & ipb factor stuff */
     int last_non_b_pict_type;
     double accum_p_qp;          /* for determining I-frame quant */
     double accum_p_norm;
     double last_accum_p_norm;
-    double lmin[5];             /* min qscale by frame type */
-    double lmax[5];
+    double lmin[3];             /* min qscale by frame type */
+    double lmax[3];
     double lstep;               /* max change (multiply) in qscale per frame */
     uint16_t *qp_buffer[2];     /* Global buffers for converting MB-tree quantizer data. */
     int qpbuf_pos;              /* In order to handle pyramid reordering, QP buffer acts as a stack.
@@ -136,11 +140,11 @@ struct x264_ratecontrol_t
     /* MBRC stuff */
     float frame_size_estimated; /* Access to this variable must be atomic: double is
                                  * not atomic on all arches we care about */
+    double frame_size_maximum;  /* Maximum frame size due to MinCR */
     double frame_size_planned;
     double slice_size_planned;
-    double max_frame_error;
     predictor_t (*row_pred)[2];
-    predictor_t row_preds[5][2];
+    predictor_t row_preds[3][2];
     predictor_t *pred_b_from_p; /* predict B-frame size from P-frame satd */
     int bframes;                /* # consecutive B-frames before this P-frame */
     int bframe_bits;            /* total cost of those frames */
@@ -148,16 +152,23 @@ struct x264_ratecontrol_t
     int i_zones;
     x264_zone_t *zones;
     x264_zone_t *prev_zone;
+
+    /* hrd stuff */
+    int initial_cpb_removal_delay;
+    int initial_cpb_removal_delay_offset;
+    double nrt_first_access_unit; /* nominal removal time */
+    double previous_cpb_final_arrival_time;
+    uint64_t hrd_multiply_denom;
 };
 
 
 static int parse_zones( x264_t *h );
 static int init_pass2(x264_t *);
 static float rate_estimate_qscale( x264_t *h );
-static void update_vbv( x264_t *h, int bits );
+static int update_vbv( x264_t *h, int bits );
 static void update_vbv_plan( x264_t *h, int overhead );
-static double predict_size( predictor_t *p, double q, double var );
-static void update_predictor( predictor_t *p, double q, double var, double bits );
+static float predict_size( predictor_t *p, float q, float var );
+static void update_predictor( predictor_t *p, float q, float var, float bits );
 
 #define CMP_OPT_FIRST_PASS( opt, param_val )\
 {\
@@ -172,136 +183,216 @@ static void update_predictor( predictor_t *p, double q, double var, double bits
  * qp = h.264's quantizer
  * qscale = linearized quantizer = Lagrange multiplier
  */
-static inline double qp2qscale(double qp)
+static inline float qp2qscale( float qp )
 {
-    return 0.85 * pow(2.0, ( qp - 12.0 ) / 6.0);
+    return 0.85f * powf( 2.0f, ( qp - 12.0f ) / 6.0f );
 }
-static inline double qscale2qp(double qscale)
+static inline float qscale2qp( float qscale )
 {
-    return 12.0 + 6.0 * log(qscale/0.85) / log(2.0);
+    return 12.0f + 6.0f * log2f( qscale/0.85f );
 }
 
 /* Texture bitrate is not quite inversely proportional to qscale,
  * probably due the the changing number of SKIP blocks.
  * MV bits level off at about qp<=12, because the lambda used
  * for motion estimation is constant there. */
-static inline double qscale2bits(ratecontrol_entry_t *rce, double qscale)
+static inline double qscale2bits( ratecontrol_entry_t *rce, double qscale )
 {
-    if(qscale<0.1)
+    if( qscale<0.1 )
         qscale = 0.1;
     return (rce->tex_bits + .1) * pow( rce->qscale / qscale, 1.1 )
            + rce->mv_bits * pow( X264_MAX(rce->qscale, 1) / X264_MAX(qscale, 1), 0.5 )
            + rce->misc_bits;
 }
 
-static ALWAYS_INLINE uint32_t ac_energy_plane( x264_t *h, int mb_x, int mb_y, x264_frame_t *frame, int i )
+static ALWAYS_INLINE uint32_t ac_energy_var( uint64_t sum_ssd, int shift, x264_frame_t *frame, int i, int b_store )
 {
-    int w = i ? 8 : 16;
-    int shift = i ? 6 : 8;
+    uint32_t sum = sum_ssd;
+    uint32_t ssd = sum_ssd >> 32;
+    if( b_store )
+    {
+        frame->i_pixel_sum[i] += sum;
+        frame->i_pixel_ssd[i] += ssd;
+    }
+    return ssd - ((uint64_t)sum * sum >> shift);
+}
+
+static ALWAYS_INLINE uint32_t ac_energy_plane( x264_t *h, int mb_x, int mb_y, x264_frame_t *frame, int i, int b_chroma, int b_field, int b_store )
+{
+    int height = b_chroma ? 16>>CHROMA_V_SHIFT : 16;
     int stride = frame->i_stride[i];
-    int offset = h->mb.b_interlaced
-        ? w * (mb_x + (mb_y&~1) * stride) + (mb_y&1) * stride
-        : w * (mb_x + mb_y * stride);
-    int pix = i ? PIXEL_8x8 : PIXEL_16x16;
-    stride <<= h->mb.b_interlaced;
-    uint64_t res = h->pixf.var[pix]( frame->plane[i] + offset, stride );
-    uint32_t sum = (uint32_t)res;
-    uint32_t sqr = res >> 32;
-    return sqr - (sum * sum >> shift);
+    int offset = b_field
+        ? 16 * mb_x + height * (mb_y&~1) * stride + (mb_y&1) * stride
+        : 16 * mb_x + height * mb_y * stride;
+    stride <<= b_field;
+    if( b_chroma )
+    {
+        ALIGNED_ARRAY_16( pixel, pix,[FENC_STRIDE*16] );
+        int chromapix = h->luma2chroma_pixel[PIXEL_16x16];
+        int shift = 7 - CHROMA_V_SHIFT;
+
+        h->mc.load_deinterleave_chroma_fenc( pix, frame->plane[1] + offset, stride, height );
+        return ac_energy_var( h->pixf.var[chromapix]( pix,               FENC_STRIDE ), shift, frame, 1, b_store )
+             + ac_energy_var( h->pixf.var[chromapix]( pix+FENC_STRIDE/2, FENC_STRIDE ), shift, frame, 2, b_store );
+    }
+    else
+        return ac_energy_var( h->pixf.var[PIXEL_16x16]( frame->plane[i] + offset, stride ), 8, frame, i, b_store );
 }
 
 // Find the total AC energy of the block in all planes.
-static NOINLINE uint32_t ac_energy_mb( x264_t *h, int mb_x, int mb_y, x264_frame_t *frame )
+static NOINLINE uint32_t x264_ac_energy_mb( x264_t *h, int mb_x, int mb_y, x264_frame_t *frame )
 {
     /* This function contains annoying hacks because GCC has a habit of reordering emms
      * and putting it after floating point ops.  As a result, we put the emms at the end of the
      * function and make sure that its always called before the float math.  Noinline makes
      * sure no reordering goes on. */
-    uint32_t var = ac_energy_plane( h, mb_x, mb_y, frame, 0 );
-    var         += ac_energy_plane( h, mb_x, mb_y, frame, 1 );
-    var         += ac_energy_plane( h, mb_x, mb_y, frame, 2 );
+    uint32_t var;
+    x264_prefetch_fenc( h, frame, mb_x, mb_y );
+    if( h->mb.b_adaptive_mbaff )
+    {
+        /* We don't know the super-MB mode we're going to pick yet, so
+         * simply try both and pick the lower of the two. */
+        uint32_t var_interlaced, var_progressive;
+        var_interlaced   = ac_energy_plane( h, mb_x, mb_y, frame, 0, 0, 1, 1 );
+        var_progressive  = ac_energy_plane( h, mb_x, mb_y, frame, 0, 0, 0, 0 );
+        if( CHROMA444 )
+        {
+            var_interlaced  += ac_energy_plane( h, mb_x, mb_y, frame, 1, 0, 1, 1 );
+            var_progressive += ac_energy_plane( h, mb_x, mb_y, frame, 1, 0, 0, 0 );
+            var_interlaced  += ac_energy_plane( h, mb_x, mb_y, frame, 2, 0, 1, 1 );
+            var_progressive += ac_energy_plane( h, mb_x, mb_y, frame, 2, 0, 0, 0 );
+        }
+        else
+        {
+            var_interlaced  += ac_energy_plane( h, mb_x, mb_y, frame, 1, 1, 1, 1 );
+            var_progressive += ac_energy_plane( h, mb_x, mb_y, frame, 1, 1, 0, 0 );
+        }
+        var = X264_MIN( var_interlaced, var_progressive );
+    }
+    else
+    {
+        var  = ac_energy_plane( h, mb_x, mb_y, frame, 0, 0, PARAM_INTERLACED, 1 );
+        if( CHROMA444 )
+        {
+            var += ac_energy_plane( h, mb_x, mb_y, frame, 1, 0, PARAM_INTERLACED, 1 );
+            var += ac_energy_plane( h, mb_x, mb_y, frame, 2, 0, PARAM_INTERLACED, 1 );
+        }
+        else
+            var += ac_energy_plane( h, mb_x, mb_y, frame, 1, 1, PARAM_INTERLACED, 1 );
+    }
     x264_emms();
     return var;
 }
 
-void x264_adaptive_quant_frame( x264_t *h, x264_frame_t *frame )
+void x264_adaptive_quant_frame( x264_t *h, x264_frame_t *frame, float *quant_offsets )
 {
     /* constants chosen to result in approximately the same overall bitrate as without AQ.
      * FIXME: while they're written in 5 significant digits, they're only tuned to 2. */
-    int mb_x, mb_y;
     float strength;
     float avg_adj = 0.f;
-    /* Need to init it anyways for MB tree. */
-    if( h->param.rc.f_aq_strength == 0 )
-    {
-        int mb_xy;
-        memset( frame->f_qp_offset, 0, h->mb.i_mb_count * sizeof(float) );
-        memset( frame->f_qp_offset_aq, 0, h->mb.i_mb_count * sizeof(float) );
-        if( h->frames.b_have_lowres )
-            for( mb_xy = 0; mb_xy < h->mb.i_mb_count; mb_xy++ )
-                frame->i_inv_qscale_factor[mb_xy] = 256;
-        return;
-    }
-
-    if( h->param.rc.i_aq_mode == X264_AQ_AUTOVARIANCE )
+    /* Initialize frame stats */
+    for( int i = 0; i < 3; i++ )
     {
-        for( mb_y = 0; mb_y < h->sps->i_mb_height; mb_y++ )
-            for( mb_x = 0; mb_x < h->sps->i_mb_width; mb_x++ )
-            {
-                uint32_t energy = ac_energy_mb( h, mb_x, mb_y, frame );
-                float qp_adj = x264_log2( energy + 2 );
-                qp_adj *= qp_adj;
-                frame->f_qp_offset[mb_x + mb_y*h->mb.i_mb_stride] = qp_adj;
-                avg_adj += qp_adj;
-            }
-        avg_adj /= h->mb.i_mb_count;
-        strength = h->param.rc.f_aq_strength * avg_adj * (1.f / 6000.f);
+        frame->i_pixel_sum[i] = 0;
+        frame->i_pixel_ssd[i] = 0;
     }
-    else
-        strength = h->param.rc.f_aq_strength * 1.0397f;
 
-    for( mb_y = 0; mb_y < h->sps->i_mb_height; mb_y++ )
-        for( mb_x = 0; mb_x < h->sps->i_mb_width; mb_x++ )
+    /* Degenerate cases */
+    if( h->param.rc.i_aq_mode == X264_AQ_NONE || h->param.rc.f_aq_strength == 0 )
+    {
+        /* Need to init it anyways for MB tree */
+        if( h->param.rc.i_aq_mode && h->param.rc.f_aq_strength == 0 )
         {
-            float qp_adj;
-            if( h->param.rc.i_aq_mode == X264_AQ_AUTOVARIANCE )
+            if( quant_offsets )
             {
-                qp_adj = frame->f_qp_offset[mb_x + mb_y*h->mb.i_mb_stride];
-                qp_adj = strength * (qp_adj - avg_adj);
+                for( int mb_xy = 0; mb_xy < h->mb.i_mb_count; mb_xy++ )
+                    frame->f_qp_offset[mb_xy] = frame->f_qp_offset_aq[mb_xy] = quant_offsets[mb_xy];
+                if( h->frames.b_have_lowres )
+                    for( int mb_xy = 0; mb_xy < h->mb.i_mb_count; mb_xy++ )
+                        frame->i_inv_qscale_factor[mb_xy] = x264_exp2fix8( frame->f_qp_offset[mb_xy] );
             }
             else
             {
-                uint32_t energy = ac_energy_mb( h, mb_x, mb_y, frame );
-                qp_adj = strength * (x264_log2( X264_MAX(energy, 1) ) - 14.427f);
+                memset( frame->f_qp_offset, 0, h->mb.i_mb_count * sizeof(float) );
+                memset( frame->f_qp_offset_aq, 0, h->mb.i_mb_count * sizeof(float) );
+                if( h->frames.b_have_lowres )
+                    for( int mb_xy = 0; mb_xy < h->mb.i_mb_count; mb_xy++ )
+                        frame->i_inv_qscale_factor[mb_xy] = 256;
             }
-            frame->f_qp_offset[mb_x + mb_y*h->mb.i_mb_stride] =
-            frame->f_qp_offset_aq[mb_x + mb_y*h->mb.i_mb_stride] = qp_adj;
-            if( h->frames.b_have_lowres )
-                frame->i_inv_qscale_factor[mb_x + mb_y*h->mb.i_mb_stride] = x264_exp2fix8(qp_adj);
         }
-}
+        /* Need variance data for weighted prediction */
+        if( h->param.analyse.i_weighted_pred )
+        {
+            for( int mb_y = 0; mb_y < h->mb.i_mb_height; mb_y++ )
+                for( int mb_x = 0; mb_x < h->mb.i_mb_width; mb_x++ )
+                    x264_ac_energy_mb( h, mb_x, mb_y, frame );
+        }
+        else
+            return;
+    }
+    /* Actual adaptive quantization */
+    else
+    {
+        if( h->param.rc.i_aq_mode == X264_AQ_AUTOVARIANCE )
+        {
+            float bit_depth_correction = powf(1 << (BIT_DEPTH-8), 0.5f);
+            float avg_adj_pow2 = 0.f;
+            for( int mb_y = 0; mb_y < h->mb.i_mb_height; mb_y++ )
+                for( int mb_x = 0; mb_x < h->mb.i_mb_width; mb_x++ )
+                {
+                    uint32_t energy = x264_ac_energy_mb( h, mb_x, mb_y, frame );
+                    float qp_adj = powf( energy + 1, 0.125f );
+                    frame->f_qp_offset[mb_x + mb_y*h->mb.i_mb_stride] = qp_adj;
+                    avg_adj += qp_adj;
+                    avg_adj_pow2 += qp_adj * qp_adj;
+                }
+            avg_adj /= h->mb.i_mb_count;
+            avg_adj_pow2 /= h->mb.i_mb_count;
+            strength = h->param.rc.f_aq_strength * avg_adj / bit_depth_correction;
+            avg_adj = avg_adj - 0.5f * (avg_adj_pow2 - (14.f * bit_depth_correction)) / avg_adj;
+        }
+        else
+            strength = h->param.rc.f_aq_strength * 1.0397f;
 
+        for( int mb_y = 0; mb_y < h->mb.i_mb_height; mb_y++ )
+            for( int mb_x = 0; mb_x < h->mb.i_mb_width; mb_x++ )
+            {
+                float qp_adj;
+                int mb_xy = mb_x + mb_y*h->mb.i_mb_stride;
+                if( h->param.rc.i_aq_mode == X264_AQ_AUTOVARIANCE )
+                {
+                    qp_adj = frame->f_qp_offset[mb_xy];
+                    qp_adj = strength * (qp_adj - avg_adj);
+                }
+                else
+                {
+                    uint32_t energy = x264_ac_energy_mb( h, mb_x, mb_y, frame );
+                    qp_adj = strength * (x264_log2( X264_MAX(energy, 1) ) - (14.427f + 2*(BIT_DEPTH-8)));
+                }
+                if( quant_offsets )
+                    qp_adj += quant_offsets[mb_xy];
+                frame->f_qp_offset[mb_xy] =
+                frame->f_qp_offset_aq[mb_xy] = qp_adj;
+                if( h->frames.b_have_lowres )
+                    frame->i_inv_qscale_factor[mb_xy] = x264_exp2fix8(qp_adj);
+            }
+    }
 
-/*****************************************************************************
-* x264_adaptive_quant:
- * adjust macroblock QP based on variance (AC energy) of the MB.
- * high variance  = higher QP
- * low variance = lower QP
- * This generally increases SSIM and lowers PSNR.
-*****************************************************************************/
-void x264_adaptive_quant( x264_t *h )
-{
-    x264_emms();
-    /* MB-tree currently doesn't adjust quantizers in unreferenced frames. */
-    float qp_offset = h->fdec->b_kept_as_ref ? h->fenc->f_qp_offset[h->mb.i_mb_xy] : h->fenc->f_qp_offset_aq[h->mb.i_mb_xy];
-    h->mb.i_qp = x264_clip3( h->rc->f_qpm + qp_offset + .5, h->param.rc.i_qp_min, h->param.rc.i_qp_max );
+    /* Remove mean from SSD calculation */
+    for( int i = 0; i < 3; i++ )
+    {
+        uint64_t ssd = frame->i_pixel_ssd[i];
+        uint64_t sum = frame->i_pixel_sum[i];
+        int width  = 16*h->mb.i_mb_width  >> (i && CHROMA_H_SHIFT);
+        int height = 16*h->mb.i_mb_height >> (i && CHROMA_V_SHIFT);
+        frame->i_pixel_ssd[i] = ssd - (sum * sum + width * height / 2) / (width * height);
+    }
 }
 
-int x264_macroblock_tree_read( x264_t *h, x264_frame_t *frame )
+int x264_macroblock_tree_read( x264_t *h, x264_frame_t *frame, float *quant_offsets )
 {
     x264_ratecontrol_t *rc = h->rc;
     uint8_t i_type_actual = rc->entry[frame->i_frame].pict_type;
-    int i;
 
     if( rc->entry[frame->i_frame].kept_as_ref )
     {
@@ -319,13 +410,13 @@ int x264_macroblock_tree_read( x264_t *h, x264_frame_t *frame )
 
                 if( i_type != i_type_actual && rc->qpbuf_pos == 1 )
                 {
-                    x264_log(h, X264_LOG_ERROR, "MB-tree frametype %d doesn't match actual frametype %d.\n", i_type, i_type_actual);
+                    x264_log( h, X264_LOG_ERROR, "MB-tree frametype %d doesn't match actual frametype %d.\n", i_type, i_type_actual );
                     return -1;
                 }
             } while( i_type != i_type_actual );
         }
 
-        for( i = 0; i < h->mb.i_mb_count; i++ )
+        for( int i = 0; i < h->mb.i_mb_count; i++ )
         {
             frame->f_qp_offset[i] = ((float)(int16_t)endian_fix16( rc->qp_buffer[rc->qpbuf_pos][i] )) * (1/256.0);
             if( h->frames.b_have_lowres )
@@ -334,10 +425,10 @@ int x264_macroblock_tree_read( x264_t *h, x264_frame_t *frame )
         rc->qpbuf_pos--;
     }
     else
-        x264_adaptive_quant_frame( h, frame );
+        x264_stack_align( x264_adaptive_quant_frame, h, frame, quant_offsets );
     return 0;
 fail:
-    x264_log(h, X264_LOG_ERROR, "Incomplete MB-tree stats file.\n");
+    x264_log( h, X264_LOG_ERROR, "Incomplete MB-tree stats file.\n" );
     return -1;
 }
 
@@ -347,33 +438,31 @@ int x264_reference_build_list_optimal( x264_t *h )
     x264_frame_t *frames[16];
     x264_weight_t weights[16][3];
     int refcount[16];
-    int ref, i;
 
-    if( rce->refs != h->i_ref0 )
+    if( rce->refs != h->i_ref[0] )
         return -1;
 
-    memcpy( frames, h->fref0, sizeof(frames) );
+    memcpy( frames, h->fref[0], sizeof(frames) );
     memcpy( refcount, rce->refcount, sizeof(refcount) );
     memcpy( weights, h->fenc->weight, sizeof(weights) );
     memset( &h->fenc->weight[1][0], 0, sizeof(x264_weight_t[15][3]) );
 
     /* For now don't reorder ref 0; it seems to lower quality
        in most cases due to skips. */
-    for( ref = 1; ref < h->i_ref0; ref++ )
+    for( int ref = 1; ref < h->i_ref[0]; ref++ )
     {
         int max = -1;
         int bestref = 1;
 
-        for( i = 1; i < h->i_ref0; i++ )
-            if( !frames[i]->b_duplicate || frames[i]->i_frame != h->fref0[ref-1]->i_frame )
-                /* Favor lower POC as a tiebreaker. */
-                COPY2_IF_GT( max, refcount[i], bestref, i );
+        for( int i = 1; i < h->i_ref[0]; i++ )
+            /* Favor lower POC as a tiebreaker. */
+            COPY2_IF_GT( max, refcount[i], bestref, i );
 
         /* FIXME: If there are duplicates from frames other than ref0 then it is possible
          * that the optimal ordering doesnt place every duplicate. */
 
         refcount[bestref] = -1;
-        h->fref0[ref] = frames[bestref];
+        h->fref[0][ref] = frames[bestref];
         memcpy( h->fenc->weight[ref], weights[bestref], sizeof(weights[bestref]) );
     }
 
@@ -396,8 +485,23 @@ void x264_ratecontrol_init_reconfigurable( x264_t *h, int b_init )
     if( !b_init && rc->b_2pass )
         return;
 
+    if( h->param.rc.i_rc_method == X264_RC_CRF )
+    {
+        /* Arbitrary rescaling to make CRF somewhat similar to QP.
+         * Try to compensate for MB-tree's effects as well. */
+        double base_cplx = h->mb.i_mb_count * (h->param.i_bframe ? 120 : 80);
+        double mbtree_offset = h->param.rc.b_mb_tree ? (1.0-h->param.rc.f_qcompress)*13.5 : 0;
+        rc->rate_factor_constant = pow( base_cplx, 1 - rc->qcompress )
+                                 / qp2qscale( h->param.rc.f_rf_constant + mbtree_offset + QP_BD_OFFSET );
+    }
+
     if( h->param.rc.i_vbv_max_bitrate > 0 && h->param.rc.i_vbv_buffer_size > 0 )
     {
+        /* We don't support changing the ABR bitrate right now,
+           so if the stream starts as CBR, keep it CBR. */
+        if( rc->b_vbv_min_rate )
+            h->param.rc.i_vbv_max_bitrate = h->param.rc.i_bitrate;
+
         if( h->param.rc.i_vbv_buffer_size < (int)(h->param.rc.i_vbv_max_bitrate / rc->fps) )
         {
             h->param.rc.i_vbv_buffer_size = h->param.rc.i_vbv_max_bitrate / rc->fps;
@@ -405,42 +509,91 @@ void x264_ratecontrol_init_reconfigurable( x264_t *h, int b_init )
                       h->param.rc.i_vbv_buffer_size );
         }
 
-        /* We don't support changing the ABR bitrate right now,
-           so if the stream starts as CBR, keep it CBR. */
+        int vbv_buffer_size = h->param.rc.i_vbv_buffer_size * 1000;
+        int vbv_max_bitrate = h->param.rc.i_vbv_max_bitrate * 1000;
+
+        /* Init HRD */
+        if( h->param.i_nal_hrd && b_init )
+        {
+            h->sps->vui.hrd.i_cpb_cnt = 1;
+            h->sps->vui.hrd.b_cbr_hrd = h->param.i_nal_hrd == X264_NAL_HRD_CBR;
+            h->sps->vui.hrd.i_time_offset_length = 0;
+
+            #define BR_SHIFT  6
+            #define CPB_SHIFT 4
+
+            int bitrate = 1000*h->param.rc.i_vbv_max_bitrate;
+            int bufsize = 1000*h->param.rc.i_vbv_buffer_size;
+
+            // normalize HRD size and rate to the value / scale notation
+            h->sps->vui.hrd.i_bit_rate_scale = x264_clip3( x264_ctz( bitrate ) - BR_SHIFT, 0, 15 );
+            h->sps->vui.hrd.i_bit_rate_value = bitrate >> ( h->sps->vui.hrd.i_bit_rate_scale + BR_SHIFT );
+            h->sps->vui.hrd.i_bit_rate_unscaled = h->sps->vui.hrd.i_bit_rate_value << ( h->sps->vui.hrd.i_bit_rate_scale + BR_SHIFT );
+            h->sps->vui.hrd.i_cpb_size_scale = x264_clip3( x264_ctz( bufsize ) - CPB_SHIFT, 0, 15 );
+            h->sps->vui.hrd.i_cpb_size_value = bufsize >> ( h->sps->vui.hrd.i_cpb_size_scale + CPB_SHIFT );
+            h->sps->vui.hrd.i_cpb_size_unscaled = h->sps->vui.hrd.i_cpb_size_value << ( h->sps->vui.hrd.i_cpb_size_scale + CPB_SHIFT );
+
+            #undef CPB_SHIFT
+            #undef BR_SHIFT
+
+            // arbitrary
+            #define MAX_DURATION 0.5
+
+            int max_cpb_output_delay = X264_MIN( h->param.i_keyint_max * MAX_DURATION * h->sps->vui.i_time_scale / h->sps->vui.i_num_units_in_tick, INT_MAX );
+            int max_dpb_output_delay = h->sps->vui.i_max_dec_frame_buffering * MAX_DURATION * h->sps->vui.i_time_scale / h->sps->vui.i_num_units_in_tick;
+            int max_delay = (int)(90000.0 * (double)h->sps->vui.hrd.i_cpb_size_unscaled / h->sps->vui.hrd.i_bit_rate_unscaled + 0.5);
+
+            h->sps->vui.hrd.i_initial_cpb_removal_delay_length = 2 + x264_clip3( 32 - x264_clz( max_delay ), 4, 22 );
+            h->sps->vui.hrd.i_cpb_removal_delay_length = x264_clip3( 32 - x264_clz( max_cpb_output_delay ), 4, 31 );
+            h->sps->vui.hrd.i_dpb_output_delay_length  = x264_clip3( 32 - x264_clz( max_dpb_output_delay ), 4, 31 );
+
+            #undef MAX_DURATION
+
+            vbv_buffer_size = h->sps->vui.hrd.i_cpb_size_unscaled;
+            vbv_max_bitrate = h->sps->vui.hrd.i_bit_rate_unscaled;
+        }
+        else if( h->param.i_nal_hrd && !b_init )
+        {
+            x264_log( h, X264_LOG_WARNING, "VBV parameters cannot be changed when NAL HRD is in use\n" );
+            return;
+        }
+        h->sps->vui.hrd.i_bit_rate_unscaled = vbv_max_bitrate;
+        h->sps->vui.hrd.i_cpb_size_unscaled = vbv_buffer_size;
+
         if( rc->b_vbv_min_rate )
-            h->param.rc.i_vbv_max_bitrate = h->param.rc.i_bitrate;
-        rc->buffer_rate = h->param.rc.i_vbv_max_bitrate * 1000. / rc->fps;
-        rc->buffer_size = h->param.rc.i_vbv_buffer_size * 1000.;
+            rc->bitrate = h->param.rc.i_bitrate * 1000.;
+        rc->buffer_rate = vbv_max_bitrate / rc->fps;
+        rc->vbv_max_rate = vbv_max_bitrate;
+        rc->buffer_size = vbv_buffer_size;
         rc->single_frame_vbv = rc->buffer_rate * 1.1 > rc->buffer_size;
         rc->cbr_decay = 1.0 - rc->buffer_rate / rc->buffer_size
                       * 0.5 * X264_MAX(0, 1.5 - rc->buffer_rate * rc->fps / rc->bitrate);
+        if( h->param.rc.i_rc_method == X264_RC_CRF && h->param.rc.f_rf_constant_max )
+        {
+            rc->rate_factor_max_increment = h->param.rc.f_rf_constant_max - h->param.rc.f_rf_constant;
+            if( rc->rate_factor_max_increment <= 0 )
+            {
+                x264_log( h, X264_LOG_WARNING, "CRF max must be greater than CRF\n" );
+                rc->rate_factor_max_increment = 0;
+            }
+        }
         if( b_init )
         {
             if( h->param.rc.f_vbv_buffer_init > 1. )
                 h->param.rc.f_vbv_buffer_init = x264_clip3f( h->param.rc.f_vbv_buffer_init / h->param.rc.i_vbv_buffer_size, 0, 1 );
-            h->param.rc.f_vbv_buffer_init = X264_MAX( h->param.rc.f_vbv_buffer_init, rc->buffer_rate / rc->buffer_size );
-            rc->buffer_fill_final = rc->buffer_size * h->param.rc.f_vbv_buffer_init;
+            h->param.rc.f_vbv_buffer_init = x264_clip3f( X264_MAX( h->param.rc.f_vbv_buffer_init, rc->buffer_rate / rc->buffer_size ), 0, 1);
+            rc->buffer_fill_final = rc->buffer_size * h->param.rc.f_vbv_buffer_init * h->sps->vui.i_time_scale;
             rc->b_vbv = 1;
             rc->b_vbv_min_rate = !rc->b_2pass
                           && h->param.rc.i_rc_method == X264_RC_ABR
                           && h->param.rc.i_vbv_max_bitrate <= h->param.rc.i_bitrate;
         }
     }
-    if( h->param.rc.i_rc_method == X264_RC_CRF )
-    {
-        /* Arbitrary rescaling to make CRF somewhat similar to QP.
-         * Try to compensate for MB-tree's effects as well. */
-        double base_cplx = h->mb.i_mb_count * (h->param.i_bframe ? 120 : 80);
-        double mbtree_offset = h->param.rc.b_mb_tree ? (1.0-h->param.rc.f_qcompress)*13.5 : 0;
-        rc->rate_factor_constant = pow( base_cplx, 1 - rc->qcompress )
-                                 / qp2qscale( h->param.rc.f_rf_constant + mbtree_offset );
-    }
 }
 
 int x264_ratecontrol_new( x264_t *h )
 {
     x264_ratecontrol_t *rc;
-    int i, j;
 
     x264_emms();
 
@@ -451,7 +604,7 @@ int x264_ratecontrol_new( x264_t *h )
     rc->b_2pass = h->param.rc.i_rc_method == X264_RC_ABR && h->param.rc.b_stat_read;
 
     /* FIXME: use integers */
-    if(h->param.i_fps_num > 0 && h->param.i_fps_den > 0)
+    if( h->param.i_fps_num > 0 && h->param.i_fps_den > 0 )
         rc->fps = (float) h->param.i_fps_num / h->param.i_fps_den;
     else
         rc->fps = 25.0;
@@ -472,15 +625,32 @@ int x264_ratecontrol_new( x264_t *h )
 
     if( h->param.rc.i_rc_method == X264_RC_CRF && h->param.rc.b_stat_read )
     {
-        x264_log(h, X264_LOG_ERROR, "constant rate-factor is incompatible with 2pass.\n");
+        x264_log( h, X264_LOG_ERROR, "constant rate-factor is incompatible with 2pass.\n" );
         return -1;
     }
 
     x264_ratecontrol_init_reconfigurable( h, 1 );
 
+    if( h->param.i_nal_hrd )
+    {
+        uint64_t denom = (uint64_t)h->sps->vui.hrd.i_bit_rate_unscaled * h->sps->vui.i_time_scale;
+        uint64_t num = 180000;
+        x264_reduce_fraction64( &num, &denom );
+        rc->hrd_multiply_denom = 180000 / num;
+
+        double bits_required = log2( 180000 / rc->hrd_multiply_denom )
+                             + log2( h->sps->vui.i_time_scale )
+                             + log2( h->sps->vui.hrd.i_cpb_size_unscaled );
+        if( bits_required >= 63 )
+        {
+            x264_log( h, X264_LOG_ERROR, "HRD with very large timescale and bufsize not supported\n" );
+            return -1;
+        }
+    }
+
     if( rc->rate_tolerance < 0.01 )
     {
-        x264_log(h, X264_LOG_WARNING, "bitrate tolerance too small, using .01\n");
+        x264_log( h, X264_LOG_WARNING, "bitrate tolerance too small, using .01\n" );
         rc->rate_tolerance = 0.01;
     }
 
@@ -489,7 +659,7 @@ int x264_ratecontrol_new( x264_t *h )
     if( rc->b_abr )
     {
         /* FIXME ABR_INIT_QP is actually used only in CRF */
-#define ABR_INIT_QP ( h->param.rc.i_rc_method == X264_RC_CRF ? h->param.rc.f_rf_constant : 24 )
+#define ABR_INIT_QP (( h->param.rc.i_rc_method == X264_RC_CRF ? h->param.rc.f_rf_constant : 24 ) + QP_BD_OFFSET)
         rc->accum_p_norm = .01;
         rc->accum_p_qp = ABR_INIT_QP * rc->accum_p_norm;
         /* estimated ratio that produces a reasonable QP for the first I-frame */
@@ -498,31 +668,31 @@ int x264_ratecontrol_new( x264_t *h )
         rc->last_non_b_pict_type = SLICE_TYPE_I;
     }
 
-    rc->ip_offset = 6.0 * log(h->param.rc.f_ip_factor) / log(2.0);
-    rc->pb_offset = 6.0 * log(h->param.rc.f_pb_factor) / log(2.0);
+    rc->ip_offset = 6.0 * log2f( h->param.rc.f_ip_factor );
+    rc->pb_offset = 6.0 * log2f( h->param.rc.f_pb_factor );
     rc->qp_constant[SLICE_TYPE_P] = h->param.rc.i_qp_constant;
-    rc->qp_constant[SLICE_TYPE_I] = x264_clip3( h->param.rc.i_qp_constant - rc->ip_offset + 0.5, 0, 51 );
-    rc->qp_constant[SLICE_TYPE_B] = x264_clip3( h->param.rc.i_qp_constant + rc->pb_offset + 0.5, 0, 51 );
+    rc->qp_constant[SLICE_TYPE_I] = x264_clip3( h->param.rc.i_qp_constant - rc->ip_offset + 0.5, 0, QP_MAX );
+    rc->qp_constant[SLICE_TYPE_B] = x264_clip3( h->param.rc.i_qp_constant + rc->pb_offset + 0.5, 0, QP_MAX );
     h->mb.ip_offset = rc->ip_offset + 0.5;
 
     rc->lstep = pow( 2, h->param.rc.i_qp_step / 6.0 );
-    rc->last_qscale = qp2qscale(26);
+    rc->last_qscale = qp2qscale( 26 );
     int num_preds = h->param.b_sliced_threads * h->param.i_threads + 1;
     CHECKED_MALLOC( rc->pred, 5 * sizeof(predictor_t) * num_preds );
     CHECKED_MALLOC( rc->pred_b_from_p, sizeof(predictor_t) );
-    for( i = 0; i < 5; i++ )
+    for( int i = 0; i < 3; i++ )
     {
         rc->last_qscale_for[i] = qp2qscale( ABR_INIT_QP );
         rc->lmin[i] = qp2qscale( h->param.rc.i_qp_min );
         rc->lmax[i] = qp2qscale( h->param.rc.i_qp_max );
-        for( j = 0; j < num_preds; j++ )
+        for( int j = 0; j < num_preds; j++ )
         {
             rc->pred[i+j*5].coeff= 2.0;
             rc->pred[i+j*5].count= 1.0;
             rc->pred[i+j*5].decay= 0.5;
             rc->pred[i+j*5].offset= 0.0;
         }
-        for( j = 0; j < 2; j++ )
+        for( int j = 0; j < 2; j++ )
         {
             rc->row_preds[i][j].coeff= .25;
             rc->row_preds[i][j].count= 1.0;
@@ -548,7 +718,7 @@ int x264_ratecontrol_new( x264_t *h )
         stats_buf = stats_in = x264_slurp_file( h->param.rc.psz_stat_in );
         if( !stats_buf )
         {
-            x264_log(h, X264_LOG_ERROR, "ratecontrol_init: can't open stats file\n");
+            x264_log( h, X264_LOG_ERROR, "ratecontrol_init: can't open stats file\n" );
             return -1;
         }
         if( h->param.rc.b_mb_tree )
@@ -560,15 +730,22 @@ int x264_ratecontrol_new( x264_t *h )
             x264_free( mbtree_stats_in );
             if( !rc->p_mbtree_stat_file_in )
             {
-                x264_log(h, X264_LOG_ERROR, "ratecontrol_init: can't open mbtree stats file\n");
+                x264_log( h, X264_LOG_ERROR, "ratecontrol_init: can't open mbtree stats file\n" );
                 return -1;
             }
         }
 
         /* check whether 1st pass options were compatible with current options */
-        if( !strncmp( stats_buf, "#options:", 9 ) )
+        if( strncmp( stats_buf, "#options:", 9 ) )
+        {
+            x264_log( h, X264_LOG_ERROR, "options list in stats file not valid\n" );
+            return -1;
+        }
+
+        float res_factor, res_factor_bits;
         {
             int i, j;
+            uint32_t k, l;
             char *opts = stats_buf;
             stats_in = strchr( stats_buf, '\n' );
             if( !stats_in )
@@ -586,12 +763,56 @@ int x264_ratecontrol_new( x264_t *h )
                           h->param.i_width, h->param.i_height, i, j );
                 return -1;
             }
+            res_factor = (float)h->param.i_width * h->param.i_height / (i*j);
+            /* Change in bits relative to resolution isn't quite linear on typical sources,
+             * so we'll at least try to roughly approximate this effect. */
+            res_factor_bits = powf( res_factor, 0.7 );
 
-            CMP_OPT_FIRST_PASS( "wpredp", X264_MAX( 0, h->param.analyse.i_weighted_pred ) );
+            if( ( p = strstr( opts, "timebase=" ) ) && sscanf( p, "timebase=%u/%u", &k, &l ) != 2 )
+            {
+                x264_log( h, X264_LOG_ERROR, "timebase specified in stats file not valid\n" );
+                return -1;
+            }
+            if( k != h->param.i_timebase_num || l != h->param.i_timebase_den )
+            {
+                x264_log( h, X264_LOG_ERROR, "timebase mismatch with 1st pass (%u/%u vs %u/%u)\n",
+                          h->param.i_timebase_num, h->param.i_timebase_den, k, l );
+                return -1;
+            }
+
+            CMP_OPT_FIRST_PASS( "bitdepth", BIT_DEPTH );
+            CMP_OPT_FIRST_PASS( "weightp", X264_MAX( 0, h->param.analyse.i_weighted_pred ) );
             CMP_OPT_FIRST_PASS( "bframes", h->param.i_bframe );
             CMP_OPT_FIRST_PASS( "b_pyramid", h->param.i_bframe_pyramid );
             CMP_OPT_FIRST_PASS( "intra_refresh", h->param.b_intra_refresh );
-            CMP_OPT_FIRST_PASS( "keyint", h->param.i_keyint_max );
+            CMP_OPT_FIRST_PASS( "open_gop", h->param.b_open_gop );
+            CMP_OPT_FIRST_PASS( "bluray_compat", h->param.b_bluray_compat );
+
+            if( (p = strstr( opts, "interlaced=" )) )
+            {
+                char *current = h->param.b_interlaced ? h->param.b_tff ? "tff" : "bff" : h->param.b_fake_interlaced ? "fake" : "0";
+                char buf[5];
+                sscanf( p, "interlaced=%4s", buf );
+                if( strcmp( current, buf ) )
+                {
+                    x264_log( h, X264_LOG_ERROR, "different interlaced setting than first pass (%s vs %s)\n", current, buf );
+                    return -1;
+                }
+            }
+
+            if( (p = strstr( opts, "keyint=" )) )
+            {
+                p += 7;
+                char buf[13] = "infinite ";
+                if( h->param.i_keyint_max != X264_KEYINT_MAX_INFINITE )
+                    sprintf( buf, "%d ", h->param.i_keyint_max );
+                if( strncmp( p, buf, strlen(buf) ) )
+                {
+                    x264_log( h, X264_LOG_ERROR, "different keyint setting than first pass (%.*s vs %.*s)\n",
+                              strlen(buf)-1, buf, strcspn(p, " "), p );
+                    return -1;
+                }
+            }
 
             if( strstr( opts, "qp=0" ) && h->param.rc.i_rc_method == X264_RC_ABR )
                 x264_log( h, X264_LOG_WARNING, "1st pass was lossless, bitrate prediction will be inaccurate\n" );
@@ -610,20 +831,21 @@ int x264_ratecontrol_new( x264_t *h )
                 return -1;
             }
 
-            if( h->param.rc.b_mb_tree && ( p = strstr( opts, "rc_lookahead=" ) ) && sscanf( p, "rc_lookahead=%d", &i ) )
+            if( (h->param.rc.b_mb_tree || h->param.rc.i_vbv_buffer_size) && ( p = strstr( opts, "rc_lookahead=" ) ) && sscanf( p, "rc_lookahead=%d", &i ) )
                 h->param.rc.i_lookahead = i;
         }
 
         /* find number of pics */
         p = stats_in;
-        for(i=-1; p; i++)
-            p = strchr(p+1, ';');
-        if(i==0)
+        int num_entries;
+        for( num_entries = -1; p; num_entries++ )
+            p = strchr( p + 1, ';' );
+        if( !num_entries )
         {
-            x264_log(h, X264_LOG_ERROR, "empty stats file\n");
+            x264_log( h, X264_LOG_ERROR, "empty stats file\n" );
             return -1;
         }
-        rc->num_entries = i;
+        rc->num_entries = num_entries;
 
         if( h->param.i_frame_total < rc->num_entries && h->param.i_frame_total > 0 )
         {
@@ -640,18 +862,18 @@ int x264_ratecontrol_new( x264_t *h )
         CHECKED_MALLOCZERO( rc->entry, rc->num_entries * sizeof(ratecontrol_entry_t) );
 
         /* init all to skipped p frames */
-        for(i=0; i<rc->num_entries; i++)
+        for( int i = 0; i < rc->num_entries; i++ )
         {
             ratecontrol_entry_t *rce = &rc->entry[i];
             rce->pict_type = SLICE_TYPE_P;
-            rce->qscale = rce->new_qscale = qp2qscale(20);
+            rce->qscale = rce->new_qscale = qp2qscale( 20 );
             rce->misc_bits = rc->nmb + 10;
             rce->new_qp = 0;
         }
 
         /* read stats */
         p = stats_in;
-        for(i=0; i < rc->num_entries; i++)
+        for( int i = 0; i < rc->num_entries; i++ )
         {
             ratecontrol_entry_t *rce;
             int frame_number;
@@ -662,25 +884,28 @@ int x264_ratecontrol_new( x264_t *h )
             int ref;
 
             next= strchr(p, ';');
-            if(next)
-            {
-                (*next)=0; //sscanf is unbelievably slow on long strings
-                next++;
-            }
-            e = sscanf(p, " in:%d ", &frame_number);
+            if( next )
+                *next++ = 0; //sscanf is unbelievably slow on long strings
+            e = sscanf( p, " in:%d ", &frame_number );
 
-            if(frame_number < 0 || frame_number >= rc->num_entries)
+            if( frame_number < 0 || frame_number >= rc->num_entries )
             {
-                x264_log(h, X264_LOG_ERROR, "bad frame number (%d) at stats line %d\n", frame_number, i);
+                x264_log( h, X264_LOG_ERROR, "bad frame number (%d) at stats line %d\n", frame_number, i );
                 return -1;
             }
             rce = &rc->entry[frame_number];
             rce->direct_mode = 0;
 
-            e += sscanf(p, " in:%*d out:%*d type:%c q:%f tex:%d mv:%d misc:%d imb:%d pmb:%d smb:%d d:%c",
-                   &pict_type, &qp, &rce->tex_bits,
+            e += sscanf( p, " in:%*d out:%*d type:%c dur:%"SCNd64" cpbdur:%"SCNd64" q:%f tex:%d mv:%d misc:%d imb:%d pmb:%d smb:%d d:%c",
+                   &pict_type, &rce->i_duration, &rce->i_cpb_duration, &qp, &rce->tex_bits,
                    &rce->mv_bits, &rce->misc_bits, &rce->i_count, &rce->p_count,
-                   &rce->s_count, &rce->direct_mode);
+                   &rce->s_count, &rce->direct_mode );
+            rce->tex_bits  *= res_factor_bits;
+            rce->mv_bits   *= res_factor_bits;
+            rce->misc_bits *= res_factor_bits;
+            rce->i_count   *= res_factor;
+            rce->p_count   *= res_factor;
+            rce->s_count   *= res_factor;
 
             p = strstr( p, "ref:" );
             if( !p )
@@ -697,11 +922,19 @@ int x264_ratecontrol_new( x264_t *h )
             rce->refs = ref;
 
             /* find weights */
-            rce->i_weight_denom = -1;
+            rce->i_weight_denom[0] = rce->i_weight_denom[1] = -1;
             char *w = strchr( p, 'w' );
             if( w )
-                if( sscanf( w, "w:%hd,%hd,%hd", &rce->i_weight_denom, &rce->weight[0], &rce->weight[1] ) != 3 )
-                    rce->i_weight_denom = -1;
+            {
+                int count = sscanf( w, "w:%hd,%hd,%hd,%hd,%hd,%hd,%hd,%hd",
+                                    &rce->i_weight_denom[0], &rce->weight[0][0], &rce->weight[0][1],
+                                    &rce->i_weight_denom[1], &rce->weight[1][0], &rce->weight[1][1],
+                                    &rce->weight[2][0], &rce->weight[2][1] );
+                if( count == 3 )
+                    rce->i_weight_denom[1] = -1;
+                else if ( count != 8 )
+                    rce->i_weight_denom[0] = rce->i_weight_denom[1] = -1;
+            }
 
             if( pict_type != 'b' )
                 rce->kept_as_ref = 1;
@@ -729,21 +962,22 @@ int x264_ratecontrol_new( x264_t *h )
                     break;
                 default:  e = -1; break;
             }
-            if(e < 10)
+            if( e < 12 )
             {
 parse_error:
-                x264_log(h, X264_LOG_ERROR, "statistics are damaged at line %d, parser out=%d\n", i, e);
+                x264_log( h, X264_LOG_ERROR, "statistics are damaged at line %d, parser out=%d\n", i, e );
                 return -1;
             }
-            rce->qscale = qp2qscale(qp);
+            rce->qscale = qp2qscale( qp );
             p = next;
         }
 
-        x264_free(stats_buf);
+        x264_free( stats_buf );
 
-        if(h->param.rc.i_rc_method == X264_RC_ABR)
+        if( h->param.rc.i_rc_method == X264_RC_ABR )
         {
-            if(init_pass2(h) < 0) return -1;
+            if( init_pass2( h ) < 0 )
+                return -1;
         } /* else we're using constant quant, so no need to run the bitrate allocation */
     }
 
@@ -760,7 +994,7 @@ parse_error:
         rc->p_stat_file_out = fopen( rc->psz_stat_file_tmpname, "wb" );
         if( rc->p_stat_file_out == NULL )
         {
-            x264_log(h, X264_LOG_ERROR, "ratecontrol_init: can't open stats file\n");
+            x264_log( h, X264_LOG_ERROR, "ratecontrol_init: can't open stats file\n" );
             return -1;
         }
 
@@ -778,7 +1012,7 @@ parse_error:
             rc->p_mbtree_stat_file_out = fopen( rc->psz_mbtree_stat_file_tmpname, "wb" );
             if( rc->p_mbtree_stat_file_out == NULL )
             {
-                x264_log(h, X264_LOG_ERROR, "ratecontrol_init: can't open mbtree stats file\n");
+                x264_log( h, X264_LOG_ERROR, "ratecontrol_init: can't open mbtree stats file\n" );
                 return -1;
             }
         }
@@ -792,7 +1026,7 @@ parse_error:
         rc->qpbuf_pos = -1;
     }
 
-    for( i=0; i<h->param.i_threads; i++ )
+    for( int i = 0; i<h->param.i_threads; i++ )
     {
         h->thread[i]->rc = rc+i;
         if( i )
@@ -800,6 +1034,7 @@ parse_error:
             rc[i] = rc[0];
             h->thread[i]->param = h->param;
             h->thread[i]->mb.b_variable_qp = h->mb.b_variable_qp;
+            h->thread[i]->mb.ip_offset = h->mb.ip_offset;
         }
     }
 
@@ -814,11 +1049,11 @@ static int parse_zone( x264_t *h, x264_zone_t *z, char *p )
     char *tok, UNUSED *saveptr=NULL;
     z->param = NULL;
     z->f_bitrate_factor = 1;
-    if( 3 <= sscanf(p, "%u,%u,q=%u%n", &z->i_start, &z->i_end, &z->i_qp, &len) )
+    if( 3 <= sscanf(p, "%d,%d,q=%d%n", &z->i_start, &z->i_end, &z->i_qp, &len) )
         z->b_force_qp = 1;
-    else if( 3 <= sscanf(p, "%u,%u,b=%f%n", &z->i_start, &z->i_end, &z->f_bitrate_factor, &len) )
+    else if( 3 <= sscanf(p, "%d,%d,b=%f%n", &z->i_start, &z->i_end, &z->f_bitrate_factor, &len) )
         z->b_force_qp = 0;
-    else if( 2 <= sscanf(p, "%u,%u%n", &z->i_start, &z->i_end, &len) )
+    else if( 2 <= sscanf(p, "%d,%d%n", &z->i_start, &z->i_end, &len) )
         z->b_force_qp = 0;
     else
     {
@@ -854,7 +1089,6 @@ fail:
 static int parse_zones( x264_t *h )
 {
     x264_ratecontrol_t *rc = h->rc;
-    int i;
     if( h->param.rc.psz_zones && !h->param.rc.i_zones )
     {
         char *psz_zones, *p;
@@ -865,7 +1099,7 @@ static int parse_zones( x264_t *h )
             h->param.rc.i_zones += (*p == '/');
         CHECKED_MALLOC( h->param.rc.zones, h->param.rc.i_zones * sizeof(x264_zone_t) );
         p = psz_zones;
-        for( i = 0; i < h->param.rc.i_zones; i++ )
+        for( int i = 0; i < h->param.rc.i_zones; i++ )
         {
             int i_tok = strcspn( p, "/" );
             p[i_tok] = 0;
@@ -878,7 +1112,7 @@ static int parse_zones( x264_t *h )
 
     if( h->param.rc.i_zones > 0 )
     {
-        for( i = 0; i < h->param.rc.i_zones; i++ )
+        for( int i = 0; i < h->param.rc.i_zones; i++ )
         {
             x264_zone_t z = h->param.rc.zones[i];
             if( z.i_start < 0 || z.i_start > z.i_end )
@@ -906,7 +1140,7 @@ static int parse_zones( x264_t *h )
         rc->zones[0].f_bitrate_factor = 1;
         CHECKED_MALLOC( rc->zones[0].param, sizeof(x264_param_t) );
         memcpy( rc->zones[0].param, &h->param, sizeof(x264_param_t) );
-        for( i = 1; i < rc->i_zones; i++ )
+        for( int i = 1; i < rc->i_zones; i++ )
         {
             if( !rc->zones[i].param )
                 rc->zones[i].param = rc->zones[0].param;
@@ -920,8 +1154,7 @@ fail:
 
 static x264_zone_t *get_zone( x264_t *h, int frame_num )
 {
-    int i;
-    for( i = h->rc->i_zones-1; i >= 0; i-- )
+    for( int i = h->rc->i_zones - 1; i >= 0; i-- )
     {
         x264_zone_t *z = &h->rc->zones[i];
         if( frame_num >= z->i_start && frame_num <= z->i_end )
@@ -939,14 +1172,13 @@ void x264_ratecontrol_summary( x264_t *h )
         double mbtree_offset = h->param.rc.b_mb_tree ? (1.0-h->param.rc.f_qcompress)*13.5 : 0;
         x264_log( h, X264_LOG_INFO, "final ratefactor: %.2f\n",
                   qscale2qp( pow( base_cplx, 1 - rc->qcompress )
-                             * rc->cplxr_sum / rc->wanted_bits_window ) - mbtree_offset );
+                             * rc->cplxr_sum / rc->wanted_bits_window ) - mbtree_offset - QP_BD_OFFSET );
     }
 }
 
 void x264_ratecontrol_delete( x264_t *h )
 {
     x264_ratecontrol_t *rc = h->rc;
-    int i;
     int b_regular_file;
 
     if( rc->p_stat_file_out )
@@ -984,7 +1216,7 @@ void x264_ratecontrol_delete( x264_t *h )
     if( rc->zones )
     {
         x264_free( rc->zones[0].param );
-        for( i=1; i<rc->i_zones; i++ )
+        for( int i = 1; i < rc->i_zones; i++ )
             if( rc->zones[i].param != rc->zones[0].param && rc->zones[i].param->param_free )
                 rc->zones[i].param->param_free( rc->zones[i].param );
         x264_free( rc->zones );
@@ -1018,8 +1250,6 @@ void x264_ratecontrol_start( x264_t *h, int i_force_qp, int overhead )
         x264_encoder_reconfig( h, zone->param );
     rc->prev_zone = zone;
 
-    rc->qp_force = i_force_qp;
-
     if( h->param.rc.b_stat_read )
     {
         int frame = h->fenc->i_frame;
@@ -1036,19 +1266,47 @@ void x264_ratecontrol_start( x264_t *h, int i_force_qp, int overhead )
 
     if( rc->b_vbv )
     {
-        memset( h->fdec->i_row_bits, 0, h->sps->i_mb_height * sizeof(int) );
+        memset( h->fdec->i_row_bits, 0, h->mb.i_mb_height * sizeof(int) );
+        memset( h->fdec->f_row_qp, 0, h->mb.i_mb_height * sizeof(float) );
+        memset( h->fdec->f_row_qscale, 0, h->mb.i_mb_height * sizeof(float) );
         rc->row_pred = &rc->row_preds[h->sh.i_type];
+        rc->buffer_rate = h->fenc->i_cpb_duration * rc->vbv_max_rate * h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale;
         update_vbv_plan( h, overhead );
+
+        const x264_level_t *l = x264_levels;
+        while( l->level_idc != 0 && l->level_idc != h->param.i_level_idc )
+            l++;
+
+        int mincr = l->mincr;
+
+        if( h->param.b_bluray_compat )
+            mincr = 4;
+
+        /* Profiles above High don't require minCR, so just set the maximum to a large value. */
+        if( h->sps->i_profile_idc > PROFILE_HIGH )
+            rc->frame_size_maximum = 1e9;
+        else
+        {
+            /* The spec has a bizarre special case for the first frame. */
+            if( h->i_frame == 0 )
+            {
+                //384 * ( Max( PicSizeInMbs, fR * MaxMBPS ) + MaxMBPS * ( tr( 0 ) - tr,n( 0 ) ) ) / MinCR
+                double fr = 1. / 172;
+                int pic_size_in_mbs = h->mb.i_mb_width * h->mb.i_mb_height;
+                rc->frame_size_maximum = 384 * BIT_DEPTH * X264_MAX( pic_size_in_mbs, fr*l->mbps ) / mincr;
+            }
+            else
+            {
+                //384 * MaxMBPS * ( tr( n ) - tr( n - 1 ) ) / MinCR
+                rc->frame_size_maximum = 384 * BIT_DEPTH * ((double)h->fenc->i_cpb_duration * h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale) * l->mbps / mincr;
+            }
+        }
     }
 
     if( h->sh.i_type != SLICE_TYPE_B )
         rc->bframes = h->fenc->i_bframes;
 
-    if( i_force_qp )
-    {
-        q = i_force_qp - 1;
-    }
-    else if( rc->b_abr )
+    if( rc->b_abr )
     {
         q = qscale2qp( rate_estimate_qscale( h ) );
     }
@@ -1069,175 +1327,211 @@ void x264_ratecontrol_start( x264_t *h, int i_force_qp, int overhead )
             if( zone->b_force_qp )
                 q += zone->i_qp - rc->qp_constant[SLICE_TYPE_P];
             else
-                q -= 6*log(zone->f_bitrate_factor)/log(2);
+                q -= 6*log2f( zone->f_bitrate_factor );
         }
     }
+    if( i_force_qp != X264_QP_AUTO )
+        q = i_force_qp - 1;
 
     q = x264_clip3f( q, h->param.rc.i_qp_min, h->param.rc.i_qp_max );
 
     rc->qpa_rc =
     rc->qpa_aq = 0;
+    rc->qp = x264_clip3( q + 0.5f, 0, QP_MAX );
     h->fdec->f_qp_avg_rc =
     h->fdec->f_qp_avg_aq =
-    rc->qpm =
-    rc->qp = x264_clip3( (int)(q + 0.5), 0, 51 );
-    rc->f_qpm = q;
+    rc->qpm = q;
     if( rce )
         rce->new_qp = rc->qp;
 
-    accum_p_qp_update( h, rc->qp );
+    accum_p_qp_update( h, rc->qpm );
 
     if( h->sh.i_type != SLICE_TYPE_B )
         rc->last_non_b_pict_type = h->sh.i_type;
 }
 
-static double predict_row_size( x264_t *h, int y, int qp )
+static float predict_row_size( x264_t *h, int y, float qscale )
 {
     /* average between two predictors:
      * absolute SATD, and scaled bit cost of the colocated row in the previous frame */
     x264_ratecontrol_t *rc = h->rc;
-    double pred_s = predict_size( rc->row_pred[0], qp2qscale(qp), h->fdec->i_row_satd[y] );
-    double pred_t = 0;
-    if( h->sh.i_type == SLICE_TYPE_I || qp >= h->fref0[0]->i_row_qp[y] )
+    float pred_s = predict_size( rc->row_pred[0], qscale, h->fdec->i_row_satd[y] );
+    if( h->sh.i_type == SLICE_TYPE_I || qscale >= h->fref[0][0]->f_row_qscale[y] )
     {
         if( h->sh.i_type == SLICE_TYPE_P
-            && h->fref0[0]->i_type == h->fdec->i_type
-            && h->fref0[0]->i_row_satd[y] > 0
-            && (abs(h->fref0[0]->i_row_satd[y] - h->fdec->i_row_satd[y]) < h->fdec->i_row_satd[y]/2))
+            && h->fref[0][0]->i_type == h->fdec->i_type
+            && h->fref[0][0]->f_row_qscale[y] > 0
+            && h->fref[0][0]->i_row_satd[y] > 0
+            && (abs(h->fref[0][0]->i_row_satd[y] - h->fdec->i_row_satd[y]) < h->fdec->i_row_satd[y]/2))
         {
-            pred_t = h->fref0[0]->i_row_bits[y] * h->fdec->i_row_satd[y] / h->fref0[0]->i_row_satd[y]
-                     * qp2qscale(h->fref0[0]->i_row_qp[y]) / qp2qscale(qp);
+            float pred_t = h->fref[0][0]->i_row_bits[y] * h->fdec->i_row_satd[y] / h->fref[0][0]->i_row_satd[y]
+                         * h->fref[0][0]->f_row_qscale[y] / qscale;
+            return (pred_s + pred_t) * 0.5f;
         }
-        if( pred_t == 0 )
-            pred_t = pred_s;
-        return (pred_s + pred_t) / 2;
+        return pred_s;
     }
     /* Our QP is lower than the reference! */
     else
     {
-        double pred_intra = predict_size( rc->row_pred[1], qp2qscale(qp), h->fdec->i_row_satds[0][0][y] );
+        float pred_intra = predict_size( rc->row_pred[1], qscale, h->fdec->i_row_satds[0][0][y] );
         /* Sum: better to overestimate than underestimate by using only one of the two predictors. */
         return pred_intra + pred_s;
     }
 }
 
-static double row_bits_so_far( x264_t *h, int y )
+static int row_bits_so_far( x264_t *h, int y )
 {
-    int i;
-    double bits = 0;
-    for( i = h->i_threadslice_start; i <= y; i++ )
+    int bits = 0;
+    for( int i = h->i_threadslice_start; i <= y; i++ )
         bits += h->fdec->i_row_bits[i];
     return bits;
 }
 
-static double predict_row_size_sum( x264_t *h, int y, int qp )
+static float predict_row_size_sum( x264_t *h, int y, float qp )
 {
-    int i;
-    double bits = row_bits_so_far(h, y);
-    for( i = y+1; i < h->i_threadslice_end; i++ )
-        bits += predict_row_size( h, i, qp );
+    float qscale = qp2qscale( qp );
+    float bits = row_bits_so_far( h, y );
+    for( int i = y+1; i < h->i_threadslice_end; i++ )
+        bits += predict_row_size( h, i, qscale );
     return bits;
 }
 
-
+/* TODO:
+ *  eliminate all use of qp in row ratecontrol: make it entirely qscale-based.
+ *  make this function stop being needlessly O(N^2)
+ *  update more often than once per row? */
 void x264_ratecontrol_mb( x264_t *h, int bits )
 {
     x264_ratecontrol_t *rc = h->rc;
     const int y = h->mb.i_mb_y;
 
-    x264_emms();
-
     h->fdec->i_row_bits[y] += bits;
-    rc->qpa_rc += rc->f_qpm;
     rc->qpa_aq += h->mb.i_qp;
 
-    if( h->mb.i_mb_x != h->sps->i_mb_width - 1 || !rc->b_vbv )
+    if( h->mb.i_mb_x != h->mb.i_mb_width - 1 )
+        return;
+
+    x264_emms();
+    rc->qpa_rc += rc->qpm * h->mb.i_mb_width;
+
+    if( !rc->b_vbv )
         return;
 
-    h->fdec->i_row_qp[y] = rc->qpm;
+    float qscale = qp2qscale( rc->qpm );
+    h->fdec->f_row_qp[y] = rc->qpm;
+    h->fdec->f_row_qscale[y] = qscale;
 
-    update_predictor( rc->row_pred[0], qp2qscale(rc->qpm), h->fdec->i_row_satd[y], h->fdec->i_row_bits[y] );
-    if( h->sh.i_type == SLICE_TYPE_P && rc->qpm < h->fref0[0]->i_row_qp[y] )
-        update_predictor( rc->row_pred[1], qp2qscale(rc->qpm), h->fdec->i_row_satds[0][0][y], h->fdec->i_row_bits[y] );
+    update_predictor( rc->row_pred[0], qscale, h->fdec->i_row_satd[y], h->fdec->i_row_bits[y] );
+    if( h->sh.i_type == SLICE_TYPE_P && rc->qpm < h->fref[0][0]->f_row_qp[y] )
+        update_predictor( rc->row_pred[1], qscale, h->fdec->i_row_satds[0][0][y], h->fdec->i_row_bits[y] );
+
+    /* update ratecontrol per-mbpair in MBAFF */
+    if( SLICE_MBAFF && !(y&1) )
+        return;
 
     /* tweak quality based on difference from predicted size */
     if( y < h->i_threadslice_end-1 )
     {
-        int i;
-        int prev_row_qp = h->fdec->i_row_qp[y];
-        int i_qp_max = X264_MIN( prev_row_qp + h->param.rc.i_qp_step, h->param.rc.i_qp_max );
-        int i_qp_min = X264_MAX( prev_row_qp - h->param.rc.i_qp_step, h->param.rc.i_qp_min );
+        float prev_row_qp = h->fdec->f_row_qp[y];
+        float qp_min = X264_MAX( prev_row_qp - h->param.rc.i_qp_step, h->param.rc.i_qp_min );
+        float qp_absolute_max = h->param.rc.i_qp_max;
+        if( rc->rate_factor_max_increment )
+            qp_absolute_max = X264_MIN( qp_absolute_max, rc->qp_novbv + rc->rate_factor_max_increment );
+        float qp_max = X264_MIN( prev_row_qp + h->param.rc.i_qp_step, qp_absolute_max );
+        float step_size = 0.5f;
 
         /* B-frames shouldn't use lower QP than their reference frames. */
         if( h->sh.i_type == SLICE_TYPE_B )
         {
-            i_qp_min = X264_MAX( i_qp_min, X264_MAX( h->fref0[0]->i_row_qp[y+1], h->fref1[0]->i_row_qp[y+1] ) );
-            rc->qpm = X264_MAX( rc->qpm, i_qp_min );
+            qp_min = X264_MAX( qp_min, X264_MAX( h->fref[0][0]->f_row_qp[y+1], h->fref[1][0]->f_row_qp[y+1] ) );
+            rc->qpm = X264_MAX( rc->qpm, qp_min );
         }
 
         float buffer_left_planned = rc->buffer_fill - rc->frame_size_planned;
         float slice_size_planned = h->param.b_sliced_threads ? rc->slice_size_planned : rc->frame_size_planned;
+        float max_frame_error = X264_MAX( 0.05f, 1.0f / h->mb.i_mb_height );
         float size_of_other_slices = 0;
         if( h->param.b_sliced_threads )
         {
-            for( i = 0; i < h->param.i_threads; i++ )
+            float size_of_other_slices_planned = 0;
+            for( int i = 0; i < h->param.i_threads; i++ )
                 if( h != h->thread[i] )
+                {
                     size_of_other_slices += h->thread[i]->rc->frame_size_estimated;
+                    size_of_other_slices_planned += h->thread[i]->rc->slice_size_planned;
+                }
+            float weight = rc->slice_size_planned / rc->frame_size_planned;
+            size_of_other_slices = (size_of_other_slices - size_of_other_slices_planned) * weight + size_of_other_slices_planned;
         }
-        else
-            rc->max_frame_error = X264_MAX( 0.05, 1.0 / (h->sps->i_mb_width) );
 
         /* More threads means we have to be more cautious in letting ratecontrol use up extra bits. */
         float rc_tol = buffer_left_planned / h->param.i_threads * rc->rate_tolerance;
-        int b1 = predict_row_size_sum( h, y, rc->qpm ) + size_of_other_slices;
+        float b1 = predict_row_size_sum( h, y, rc->qpm ) + size_of_other_slices;
 
         /* Don't modify the row QPs until a sufficent amount of the bits of the frame have been processed, in case a flat */
         /* area at the top of the frame was measured inaccurately. */
-        if( row_bits_so_far( h, y ) < 0.05 * slice_size_planned )
+        if( row_bits_so_far( h, y ) < 0.05f * slice_size_planned )
             return;
 
         if( h->sh.i_type != SLICE_TYPE_I )
-            rc_tol /= 2;
+            rc_tol *= 0.5f;
 
         if( !rc->b_vbv_min_rate )
-            i_qp_min = X264_MAX( i_qp_min, h->sh.i_qp );
+            qp_min = X264_MAX( qp_min, rc->qp_novbv );
 
-        while( rc->qpm < i_qp_max
+        while( rc->qpm < qp_max
                && ((b1 > rc->frame_size_planned + rc_tol) ||
-                   (rc->buffer_fill - b1 < buffer_left_planned * 0.5) ||
+                   (rc->buffer_fill - b1 < buffer_left_planned * 0.5f) ||
                    (b1 > rc->frame_size_planned && rc->qpm < rc->qp_novbv)) )
         {
-            rc->qpm ++;
+            rc->qpm += step_size;
             b1 = predict_row_size_sum( h, y, rc->qpm ) + size_of_other_slices;
         }
 
-        while( rc->qpm > i_qp_min
-               && (rc->qpm > h->fdec->i_row_qp[0] || rc->single_frame_vbv)
-               && ((b1 < rc->frame_size_planned * 0.8 && rc->qpm <= prev_row_qp)
-               || b1 < (rc->buffer_fill - rc->buffer_size + rc->buffer_rate) * 1.1) )
+        while( rc->qpm > qp_min
+               && (rc->qpm > h->fdec->f_row_qp[0] || rc->single_frame_vbv)
+               && ((b1 < rc->frame_size_planned * 0.8f && rc->qpm <= prev_row_qp)
+               || b1 < (rc->buffer_fill - rc->buffer_size + rc->buffer_rate) * 1.1f) )
         {
-            rc->qpm --;
+            rc->qpm -= step_size;
             b1 = predict_row_size_sum( h, y, rc->qpm ) + size_of_other_slices;
         }
 
-        /* avoid VBV underflow */
-        while( (rc->qpm < h->param.rc.i_qp_max)
-               && (rc->buffer_fill - b1 < rc->buffer_rate * rc->max_frame_error) )
+        /* avoid VBV underflow or MinCR violation */
+        while( (rc->qpm < qp_absolute_max)
+               && ((rc->buffer_fill - b1 < rc->buffer_rate * max_frame_error) ||
+                   (rc->frame_size_maximum - b1 < rc->frame_size_maximum * max_frame_error)))
         {
-            rc->qpm ++;
+            rc->qpm += step_size;
             b1 = predict_row_size_sum( h, y, rc->qpm ) + size_of_other_slices;
         }
 
-        h->rc->frame_size_estimated = predict_row_size_sum( h, y, rc->qpm );
+        h->rc->frame_size_estimated = b1 - size_of_other_slices;
     }
-
-    /* loses the fractional part of the frame-wise qp */
-    rc->f_qpm = rc->qpm;
+    else
+        h->rc->frame_size_estimated = predict_row_size_sum( h, y, rc->qpm );
 }
 
 int x264_ratecontrol_qp( x264_t *h )
 {
-    return h->rc->qpm;
+    x264_emms();
+    return x264_clip3( h->rc->qpm + 0.5f, h->param.rc.i_qp_min, h->param.rc.i_qp_max );
+}
+
+int x264_ratecontrol_mb_qp( x264_t *h )
+{
+    x264_emms();
+    float qp = h->rc->qpm;
+    if( h->param.rc.i_aq_mode )
+    {
+         /* MB-tree currently doesn't adjust quantizers in unreferenced frames. */
+        float qp_offset = h->fdec->b_kept_as_ref ? h->fenc->f_qp_offset[h->mb.i_mb_xy] : h->fenc->f_qp_offset_aq[h->mb.i_mb_xy];
+        /* Scale AQ's effect towards zero in emergency mode. */
+        if( qp > QP_MAX_SPEC )
+            qp_offset *= (QP_MAX - qp) / (QP_MAX - QP_MAX_SPEC);
+        qp += qp_offset;
+    }
+    return x264_clip3( qp + 0.5f, h->param.rc.i_qp_min, h->param.rc.i_qp_max );
 }
 
 /* In 2pass, force the same frame types as in the 1st pass */
@@ -1251,20 +1545,18 @@ int x264_ratecontrol_slice_type( x264_t *h, int frame_num )
             /* We could try to initialize everything required for ABR and
              * adaptive B-frames, but that would be complicated.
              * So just calculate the average QP used so far. */
-            int i;
-
-            h->param.rc.i_qp_constant = (h->stat.i_frame_count[SLICE_TYPE_P] == 0) ? 24
+            h->param.rc.i_qp_constant = (h->stat.i_frame_count[SLICE_TYPE_P] == 0) ? 24 + QP_BD_OFFSET
                                       : 1 + h->stat.f_frame_qp[SLICE_TYPE_P] / h->stat.i_frame_count[SLICE_TYPE_P];
-            rc->qp_constant[SLICE_TYPE_P] = x264_clip3( h->param.rc.i_qp_constant, 0, 51 );
-            rc->qp_constant[SLICE_TYPE_I] = x264_clip3( (int)( qscale2qp( qp2qscale( h->param.rc.i_qp_constant ) / fabs( h->param.rc.f_ip_factor )) + 0.5 ), 0, 51 );
-            rc->qp_constant[SLICE_TYPE_B] = x264_clip3( (int)( qscale2qp( qp2qscale( h->param.rc.i_qp_constant ) * fabs( h->param.rc.f_pb_factor )) + 0.5 ), 0, 51 );
+            rc->qp_constant[SLICE_TYPE_P] = x264_clip3( h->param.rc.i_qp_constant, 0, QP_MAX );
+            rc->qp_constant[SLICE_TYPE_I] = x264_clip3( (int)( qscale2qp( qp2qscale( h->param.rc.i_qp_constant ) / fabs( h->param.rc.f_ip_factor )) + 0.5 ), 0, QP_MAX );
+            rc->qp_constant[SLICE_TYPE_B] = x264_clip3( (int)( qscale2qp( qp2qscale( h->param.rc.i_qp_constant ) * fabs( h->param.rc.f_pb_factor )) + 0.5 ), 0, QP_MAX );
 
-            x264_log(h, X264_LOG_ERROR, "2nd pass has more frames than 1st pass (%d)\n", rc->num_entries);
-            x264_log(h, X264_LOG_ERROR, "continuing anyway, at constant QP=%d\n", h->param.rc.i_qp_constant);
+            x264_log( h, X264_LOG_ERROR, "2nd pass has more frames than 1st pass (%d)\n", rc->num_entries );
+            x264_log( h, X264_LOG_ERROR, "continuing anyway, at constant QP=%d\n", h->param.rc.i_qp_constant );
             if( h->param.i_bframe_adaptive )
-                x264_log(h, X264_LOG_ERROR, "disabling adaptive B-frames\n");
+                x264_log( h, X264_LOG_ERROR, "disabling adaptive B-frames\n" );
 
-            for( i = 0; i < h->param.i_threads; i++ )
+            for( int i = 0; i < h->param.i_threads; i++ )
             {
                 h->thread[i]->rc->b_abr = 0;
                 h->thread[i]->rc->b_2pass = 0;
@@ -1289,27 +1581,33 @@ void x264_ratecontrol_set_weights( x264_t *h, x264_frame_t *frm )
     ratecontrol_entry_t *rce = &h->rc->entry[frm->i_frame];
     if( h->param.analyse.i_weighted_pred <= 0 )
         return;
-    if( rce->i_weight_denom >= 0 )
-        SET_WEIGHT( frm->weight[0][0], 1, rce->weight[0], rce->i_weight_denom, rce->weight[1] );
+
+    if( rce->i_weight_denom[0] >= 0 )
+        SET_WEIGHT( frm->weight[0][0], 1, rce->weight[0][0], rce->i_weight_denom[0], rce->weight[0][1] );
+
+    if( rce->i_weight_denom[1] >= 0 )
+    {
+        SET_WEIGHT( frm->weight[0][1], 1, rce->weight[1][0], rce->i_weight_denom[1], rce->weight[1][1] );
+        SET_WEIGHT( frm->weight[0][2], 1, rce->weight[2][0], rce->i_weight_denom[1], rce->weight[2][1] );
+    }
 }
 
 /* After encoding one frame, save stats and update ratecontrol state */
-int x264_ratecontrol_end( x264_t *h, int bits )
+int x264_ratecontrol_end( x264_t *h, int bits, int *filler )
 {
     x264_ratecontrol_t *rc = h->rc;
     const int *mbs = h->stat.frame.i_mb_count;
-    int i;
 
     x264_emms();
 
     h->stat.frame.i_mb_count_skip = mbs[P_SKIP] + mbs[B_SKIP];
     h->stat.frame.i_mb_count_i = mbs[I_16x16] + mbs[I_8x8] + mbs[I_4x4];
     h->stat.frame.i_mb_count_p = mbs[P_L0] + mbs[P_8x8];
-    for( i = B_DIRECT; i < B_8x8; i++ )
+    for( int i = B_DIRECT; i < B_8x8; i++ )
         h->stat.frame.i_mb_count_p += mbs[i];
 
     h->fdec->f_qp_avg_rc = rc->qpa_rc /= h->mb.i_mb_count;
-    h->fdec->f_qp_avg_aq = rc->qpa_aq /= h->mb.i_mb_count;
+    h->fdec->f_qp_avg_aq = (float)rc->qpa_aq / h->mb.i_mb_count;
 
     if( h->param.rc.b_stat_write )
     {
@@ -1323,9 +1621,10 @@ int x264_ratecontrol_end( x264_t *h, int bits )
                           dir_avg>0 ? 's' : dir_avg<0 ? 't' : '-' )
                         : '-';
         if( fprintf( rc->p_stat_file_out,
-                 "in:%d out:%d type:%c q:%.2f tex:%d mv:%d misc:%d imb:%d pmb:%d smb:%d d:%c ref:",
+                 "in:%d out:%d type:%c dur:%"PRId64" cpbdur:%"PRId64" q:%.2f tex:%d mv:%d misc:%d imb:%d pmb:%d smb:%d d:%c ref:",
                  h->fenc->i_frame, h->i_frame,
-                 c_type, rc->qpa_rc,
+                 c_type, h->fenc->i_duration,
+                 h->fenc->i_cpb_duration, rc->qpa_rc,
                  h->stat.frame.i_tex_bits,
                  h->stat.frame.i_mv_bits,
                  h->stat.frame.i_misc_bits,
@@ -1337,19 +1636,29 @@ int x264_ratecontrol_end( x264_t *h, int bits )
 
         /* Only write information for reference reordering once. */
         int use_old_stats = h->param.rc.b_stat_read && rc->rce->refs > 1;
-        for( i = 0; i < (use_old_stats ? rc->rce->refs : h->i_ref0); i++ )
+        for( int i = 0; i < (use_old_stats ? rc->rce->refs : h->i_ref[0]); i++ )
         {
             int refcount = use_old_stats         ? rc->rce->refcount[i]
-                         : h->param.b_interlaced ? h->stat.frame.i_mb_count_ref[0][i*2]
+                         : PARAM_INTERLACED      ? h->stat.frame.i_mb_count_ref[0][i*2]
                                                  + h->stat.frame.i_mb_count_ref[0][i*2+1]
                          :                         h->stat.frame.i_mb_count_ref[0][i];
             if( fprintf( rc->p_stat_file_out, "%d ", refcount ) < 0 )
                 goto fail;
         }
 
-        if( h->sh.weight[0][0].weightfn )
+        if( h->param.analyse.i_weighted_pred >= X264_WEIGHTP_SIMPLE && h->sh.weight[0][0].weightfn )
         {
-            if( fprintf( rc->p_stat_file_out, "w:%"PRId32",%"PRId32",%"PRId32, h->sh.weight[0][0].i_denom, h->sh.weight[0][0].i_scale, h->sh.weight[0][0].i_offset ) < 0 )
+            if( fprintf( rc->p_stat_file_out, "w:%d,%d,%d",
+                         h->sh.weight[0][0].i_denom, h->sh.weight[0][0].i_scale, h->sh.weight[0][0].i_offset ) < 0 )
+                goto fail;
+            if( h->sh.weight[0][1].weightfn || h->sh.weight[0][2].weightfn )
+            {
+                if( fprintf( rc->p_stat_file_out, ",%d,%d,%d,%d,%d ",
+                             h->sh.weight[0][1].i_denom, h->sh.weight[0][1].i_scale, h->sh.weight[0][1].i_offset,
+                             h->sh.weight[0][2].i_scale, h->sh.weight[0][2].i_offset ) < 0 )
+                    goto fail;
+            }
+            else if( fprintf( rc->p_stat_file_out, " " ) < 0 )
                 goto fail;
         }
 
@@ -1360,9 +1669,8 @@ int x264_ratecontrol_end( x264_t *h, int bits )
         if( h->param.rc.b_mb_tree && h->fenc->b_kept_as_ref && !h->param.rc.b_stat_read )
         {
             uint8_t i_type = h->sh.i_type;
-            int i;
             /* Values are stored as big-endian FIX8.8 */
-            for( i = 0; i < h->mb.i_mb_count; i++ )
+            for( int i = 0; i < h->mb.i_mb_count; i++ )
                 rc->qp_buffer[0][i] = endian_fix16( h->fenc->f_qp_offset[i]*256.0 );
             if( fwrite( &i_type, 1, 1, rc->p_mbtree_stat_file_out ) < 1 )
                 goto fail;
@@ -1374,22 +1682,20 @@ int x264_ratecontrol_end( x264_t *h, int bits )
     if( rc->b_abr )
     {
         if( h->sh.i_type != SLICE_TYPE_B )
-            rc->cplxr_sum += bits * qp2qscale(rc->qpa_rc) / rc->last_rceq;
+            rc->cplxr_sum += bits * qp2qscale( rc->qpa_rc ) / rc->last_rceq;
         else
         {
             /* Depends on the fact that B-frame's QP is an offset from the following P-frame's.
              * Not perfectly accurate with B-refs, but good enough. */
-            rc->cplxr_sum += bits * qp2qscale(rc->qpa_rc) / (rc->last_rceq * fabs(h->param.rc.f_pb_factor));
+            rc->cplxr_sum += bits * qp2qscale( rc->qpa_rc ) / (rc->last_rceq * fabs( h->param.rc.f_pb_factor ));
         }
         rc->cplxr_sum *= rc->cbr_decay;
-        rc->wanted_bits_window += rc->bitrate / rc->fps;
+        rc->wanted_bits_window += h->fenc->f_duration * rc->bitrate;
         rc->wanted_bits_window *= rc->cbr_decay;
     }
 
     if( rc->b_2pass )
-    {
-        rc->expected_bits_sum += qscale2bits( rc->rce, qp2qscale(rc->rce->new_qp) );
-    }
+        rc->expected_bits_sum += qscale2bits( rc->rce, qp2qscale( rc->rce->new_qp ) );
 
     if( h->mb.b_variable_qp )
     {
@@ -1398,17 +1704,58 @@ int x264_ratecontrol_end( x264_t *h, int bits )
             rc->bframe_bits += bits;
             if( h->fenc->b_last_minigop_bframe )
             {
-                update_predictor( rc->pred_b_from_p, qp2qscale(rc->qpa_rc),
-                                  h->fref1[h->i_ref1-1]->i_satd, rc->bframe_bits / rc->bframes );
+                update_predictor( rc->pred_b_from_p, qp2qscale( rc->qpa_rc ),
+                                  h->fref[1][h->i_ref[1]-1]->i_satd, rc->bframe_bits / rc->bframes );
                 rc->bframe_bits = 0;
             }
         }
     }
 
-    update_vbv( h, bits );
+    *filler = update_vbv( h, bits );
+    rc->filler_bits_sum += *filler * 8;
+
+    if( h->sps->vui.b_nal_hrd_parameters_present )
+    {
+        if( h->fenc->i_frame == 0 )
+        {
+            // access unit initialises the HRD
+            h->fenc->hrd_timing.cpb_initial_arrival_time = 0;
+            rc->initial_cpb_removal_delay = h->initial_cpb_removal_delay;
+            rc->initial_cpb_removal_delay_offset = h->initial_cpb_removal_delay_offset;
+            h->fenc->hrd_timing.cpb_removal_time = rc->nrt_first_access_unit = (double)rc->initial_cpb_removal_delay / 90000;
+        }
+        else
+        {
+            h->fenc->hrd_timing.cpb_removal_time = rc->nrt_first_access_unit + (double)(h->fenc->i_cpb_delay - h->i_cpb_delay_pir_offset) *
+                                                   h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale;
+
+            double cpb_earliest_arrival_time = h->fenc->hrd_timing.cpb_removal_time - (double)rc->initial_cpb_removal_delay / 90000;
+            if( h->fenc->b_keyframe )
+            {
+                 rc->nrt_first_access_unit = h->fenc->hrd_timing.cpb_removal_time;
+                 rc->initial_cpb_removal_delay = h->initial_cpb_removal_delay;
+                 rc->initial_cpb_removal_delay_offset = h->initial_cpb_removal_delay_offset;
+            }
+            else
+                 cpb_earliest_arrival_time -= (double)rc->initial_cpb_removal_delay_offset / 90000;
+
+            if( h->sps->vui.hrd.b_cbr_hrd )
+                h->fenc->hrd_timing.cpb_initial_arrival_time = rc->previous_cpb_final_arrival_time;
+            else
+                h->fenc->hrd_timing.cpb_initial_arrival_time = X264_MAX( rc->previous_cpb_final_arrival_time, cpb_earliest_arrival_time );
+        }
+        int filler_bits = *filler ? X264_MAX( (FILLER_OVERHEAD - h->param.b_annexb), *filler )*8 : 0;
+        // Equation C-6
+        h->fenc->hrd_timing.cpb_final_arrival_time = rc->previous_cpb_final_arrival_time = h->fenc->hrd_timing.cpb_initial_arrival_time +
+                                                     (double)(bits + filler_bits) / h->sps->vui.hrd.i_bit_rate_unscaled;
+
+        h->fenc->hrd_timing.dpb_output_time = (double)h->fenc->i_dpb_output_delay * h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale +
+                                              h->fenc->hrd_timing.cpb_removal_time;
+    }
+
     return 0;
 fail:
-    x264_log(h, X264_LOG_ERROR, "ratecontrol_end: stats file could not be written to\n");
+    x264_log( h, X264_LOG_ERROR, "ratecontrol_end: stats file could not be written to\n" );
     return -1;
 }
 
@@ -1422,13 +1769,18 @@ fail:
 static double get_qscale(x264_t *h, ratecontrol_entry_t *rce, double rate_factor, int frame_num)
 {
     x264_ratecontrol_t *rcc= h->rc;
-    double q;
     x264_zone_t *zone = get_zone( h, frame_num );
-
-    q = pow( rce->blurred_complexity, 1 - rcc->qcompress );
+    double q;
+    if( h->param.rc.b_mb_tree )
+    {
+        double timescale = (double)h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale;
+        q = pow( BASE_FRAME_DURATION / CLIP_DURATION(rce->i_duration * timescale), 1 - h->param.rc.f_qcompress );
+    }
+    else
+        q = pow( rce->blurred_complexity, 1 - rcc->qcompress );
 
     // avoid NaN's in the rc_eq
-    if(!isfinite(q) || rce->tex_bits + rce->mv_bits == 0)
+    if( !isfinite(q) || rce->tex_bits + rce->mv_bits == 0 )
         q = rcc->last_qscale_for[rce->pict_type];
     else
     {
@@ -1440,7 +1792,7 @@ static double get_qscale(x264_t *h, ratecontrol_entry_t *rce, double rate_factor
     if( zone )
     {
         if( zone->b_force_qp )
-            q = qp2qscale(zone->i_qp);
+            q = qp2qscale( zone->i_qp );
         else
             q /= zone->f_bitrate_factor;
     }
@@ -1448,10 +1800,11 @@ static double get_qscale(x264_t *h, ratecontrol_entry_t *rce, double rate_factor
     return q;
 }
 
-static double get_diff_limited_q(x264_t *h, ratecontrol_entry_t *rce, double q)
+static double get_diff_limited_q(x264_t *h, ratecontrol_entry_t *rce, double q, int frame_num)
 {
     x264_ratecontrol_t *rcc = h->rc;
     const int pict_type = rce->pict_type;
+    x264_zone_t *zone = get_zone( h, frame_num );
 
     // force I/B quants as a function of P quants
     const double last_p_q    = rcc->last_qscale_for[SLICE_TYPE_P];
@@ -1486,49 +1839,58 @@ static double get_diff_limited_q(x264_t *h, ratecontrol_entry_t *rce, double q)
     }
 
     /* last qscale / qdiff stuff */
-    if(rcc->last_non_b_pict_type==pict_type
-       && (pict_type!=SLICE_TYPE_I || rcc->last_accum_p_norm < 1))
+    if( rcc->last_non_b_pict_type == pict_type &&
+        (pict_type!=SLICE_TYPE_I || rcc->last_accum_p_norm < 1) )
     {
         double last_q = rcc->last_qscale_for[pict_type];
         double max_qscale = last_q * rcc->lstep;
         double min_qscale = last_q / rcc->lstep;
 
-        if     (q > max_qscale) q = max_qscale;
-        else if(q < min_qscale) q = min_qscale;
+        if     ( q > max_qscale ) q = max_qscale;
+        else if( q < min_qscale ) q = min_qscale;
     }
 
     rcc->last_qscale_for[pict_type] = q;
-    if(pict_type!=SLICE_TYPE_B)
+    if( pict_type != SLICE_TYPE_B )
         rcc->last_non_b_pict_type = pict_type;
-    if(pict_type==SLICE_TYPE_I)
+    if( pict_type == SLICE_TYPE_I )
     {
         rcc->last_accum_p_norm = rcc->accum_p_norm;
         rcc->accum_p_norm = 0;
         rcc->accum_p_qp = 0;
     }
-    if(pict_type==SLICE_TYPE_P)
+    if( pict_type == SLICE_TYPE_P )
     {
         float mask = 1 - pow( (float)rce->i_count / rcc->nmb, 2 );
-        rcc->accum_p_qp   = mask * (qscale2qp(q) + rcc->accum_p_qp);
+        rcc->accum_p_qp   = mask * (qscale2qp( q ) + rcc->accum_p_qp);
         rcc->accum_p_norm = mask * (1 + rcc->accum_p_norm);
     }
+
+    if( zone )
+    {
+        if( zone->b_force_qp )
+            q = qp2qscale( zone->i_qp );
+        else
+            q /= zone->f_bitrate_factor;
+    }
+
     return q;
 }
 
-static double predict_size( predictor_t *p, double q, double var )
+static float predict_size( predictor_t *p, float q, float var )
 {
-     return (p->coeff*var + p->offset) / (q*p->count);
+    return (p->coeff*var + p->offset) / (q*p->count);
 }
 
-static void update_predictor( predictor_t *p, double q, double var, double bits )
+static void update_predictor( predictor_t *p, float q, float var, float bits )
 {
-    const double range = 1.5;
+    float range = 1.5;
     if( var < 10 )
         return;
-    double old_coeff = p->coeff / p->count;
-    double new_coeff = bits*q / var;
-    double new_coeff_clipped = x264_clip3f( new_coeff, old_coeff/range, old_coeff*range );
-    double new_offset = bits*q - new_coeff_clipped * var;
+    float old_coeff = p->coeff / p->count;
+    float new_coeff = bits*q / var;
+    float new_coeff_clipped = x264_clip3f( new_coeff, old_coeff/range, old_coeff*range );
+    float new_offset = bits*q - new_coeff_clipped * var;
     if( new_offset >= 0 )
         new_coeff = new_coeff_clipped;
     else
@@ -1542,44 +1904,76 @@ static void update_predictor( predictor_t *p, double q, double var, double bits
 }
 
 // update VBV after encoding a frame
-static void update_vbv( x264_t *h, int bits )
+static int update_vbv( x264_t *h, int bits )
 {
+    int filler = 0;
+    int bitrate = h->sps->vui.hrd.i_bit_rate_unscaled;
     x264_ratecontrol_t *rcc = h->rc;
     x264_ratecontrol_t *rct = h->thread[0]->rc;
+    uint64_t buffer_size = (uint64_t)h->sps->vui.hrd.i_cpb_size_unscaled * h->sps->vui.i_time_scale;
 
     if( rcc->last_satd >= h->mb.i_mb_count )
-        update_predictor( &rct->pred[h->sh.i_type], qp2qscale(rcc->qpa_rc), rcc->last_satd, bits );
+        update_predictor( &rct->pred[h->sh.i_type], qp2qscale( rcc->qpa_rc ), rcc->last_satd, bits );
 
     if( !rcc->b_vbv )
-        return;
+        return filler;
+
+    rct->buffer_fill_final -= (uint64_t)bits * h->sps->vui.i_time_scale;
 
-    rct->buffer_fill_final -= bits;
     if( rct->buffer_fill_final < 0 )
-        x264_log( h, X264_LOG_WARNING, "VBV underflow (frame %d, %.0f bits)\n", h->i_frame, rct->buffer_fill_final );
+        x264_log( h, X264_LOG_WARNING, "VBV underflow (frame %d, %.0f bits)\n", h->i_frame, (double)rct->buffer_fill_final / h->sps->vui.i_time_scale );
     rct->buffer_fill_final = X264_MAX( rct->buffer_fill_final, 0 );
-    rct->buffer_fill_final += rcc->buffer_rate;
-    rct->buffer_fill_final = X264_MIN( rct->buffer_fill_final, rcc->buffer_size );
+    rct->buffer_fill_final += (uint64_t)bitrate * h->sps->vui.i_num_units_in_tick * h->fenc->i_cpb_duration;
+
+    if( h->sps->vui.hrd.b_cbr_hrd && rct->buffer_fill_final > buffer_size )
+    {
+        int64_t scale = (int64_t)h->sps->vui.i_time_scale * 8;
+        filler = (rct->buffer_fill_final - buffer_size + scale - 1) / scale;
+        bits = X264_MAX( (FILLER_OVERHEAD - h->param.b_annexb), filler ) * 8;
+        rct->buffer_fill_final -= (uint64_t)bits * h->sps->vui.i_time_scale;
+    }
+    else
+        rct->buffer_fill_final = X264_MIN( rct->buffer_fill_final, buffer_size );
+
+    return filler;
+}
+
+void x264_hrd_fullness( x264_t *h )
+{
+    x264_ratecontrol_t *rct = h->thread[0]->rc;
+    uint64_t denom = (uint64_t)h->sps->vui.hrd.i_bit_rate_unscaled * h->sps->vui.i_time_scale / rct->hrd_multiply_denom;
+    uint64_t cpb_state = rct->buffer_fill_final;
+    uint64_t cpb_size = (uint64_t)h->sps->vui.hrd.i_cpb_size_unscaled * h->sps->vui.i_time_scale;
+    uint64_t multiply_factor = 180000 / rct->hrd_multiply_denom;
+
+    if( rct->buffer_fill_final < 0 || rct->buffer_fill_final > cpb_size )
+    {
+         x264_log( h, X264_LOG_WARNING, "CPB %s: %.0lf bits in a %.0lf-bit buffer\n",
+                   rct->buffer_fill_final < 0 ? "underflow" : "overflow", (float)rct->buffer_fill_final/denom, (float)cpb_size/denom );
+    }
+
+    h->initial_cpb_removal_delay = (multiply_factor * cpb_state + denom) / (2*denom);
+    h->initial_cpb_removal_delay_offset = (multiply_factor * cpb_size + denom) / (2*denom) - h->initial_cpb_removal_delay;
 }
 
 // provisionally update VBV according to the planned size of all frames currently in progress
 static void update_vbv_plan( x264_t *h, int overhead )
 {
     x264_ratecontrol_t *rcc = h->rc;
-    rcc->buffer_fill = h->thread[0]->rc->buffer_fill_final;
+    rcc->buffer_fill = h->thread[0]->rc->buffer_fill_final / h->sps->vui.i_time_scale;
     if( h->i_thread_frames > 1 )
     {
         int j = h->rc - h->thread[0]->rc;
-        int i;
-        for( i=1; i<h->i_thread_frames; i++ )
+        for( int i = 1; i < h->i_thread_frames; i++ )
         {
             x264_t *t = h->thread[ (j+i)%h->i_thread_frames ];
             double bits = t->rc->frame_size_planned;
             if( !t->b_thread_active )
                 continue;
-            bits  = X264_MAX(bits, t->rc->frame_size_estimated);
+            bits = X264_MAX(bits, t->rc->frame_size_estimated);
             rcc->buffer_fill -= bits;
             rcc->buffer_fill = X264_MAX( rcc->buffer_fill, 0 );
-            rcc->buffer_fill += rcc->buffer_rate;
+            rcc->buffer_fill += t->rc->buffer_rate;
             rcc->buffer_fill = X264_MIN( rcc->buffer_fill, rcc->buffer_size );
         }
     }
@@ -1593,6 +1987,8 @@ static double clip_qscale( x264_t *h, int pict_type, double q )
     x264_ratecontrol_t *rcc = h->rc;
     double lmin = rcc->lmin[pict_type];
     double lmax = rcc->lmax[pict_type];
+    if( rcc->rate_factor_max_increment )
+        lmax = X264_MIN( lmax, qp2qscale( rcc->qp_novbv + rcc->rate_factor_max_increment ) );
     double q0 = q;
 
     /* B-frames are not directly subject to VBV,
@@ -1605,23 +2001,25 @@ static double clip_qscale( x264_t *h, int pict_type, double q )
          * by the end of the lookahead. */
         if( h->param.rc.i_lookahead )
         {
-            int j, iterations, terminate = 0;
+            int terminate = 0;
 
             /* Avoid an infinite loop. */
-            for( iterations = 0; iterations < 1000 && terminate != 3; iterations++ )
+            for( int iterations = 0; iterations < 1000 && terminate != 3; iterations++ )
             {
                 double frame_q[3];
                 double cur_bits = predict_size( &rcc->pred[h->sh.i_type], q, rcc->last_satd );
                 double buffer_fill_cur = rcc->buffer_fill - cur_bits;
                 double target_fill;
+                double total_duration = 0;
                 frame_q[0] = h->sh.i_type == SLICE_TYPE_I ? q * h->param.rc.f_ip_factor : q;
                 frame_q[1] = frame_q[0] * h->param.rc.f_pb_factor;
                 frame_q[2] = frame_q[0] / h->param.rc.f_ip_factor;
 
                 /* Loop over the planned future frames. */
-                for( j = 0; buffer_fill_cur >= 0 && buffer_fill_cur <= rcc->buffer_size; j++ )
+                for( int j = 0; buffer_fill_cur >= 0 && buffer_fill_cur <= rcc->buffer_size; j++ )
                 {
-                    buffer_fill_cur += rcc->buffer_rate;
+                    total_duration += h->fenc->f_planned_cpb_duration[j];
+                    buffer_fill_cur += rcc->vbv_max_rate * h->fenc->f_planned_cpb_duration[j];
                     int i_type = h->fenc->i_planned_type[j];
                     int i_satd = h->fenc->i_planned_satd[j];
                     if( i_type == X264_TYPE_AUTO )
@@ -1631,7 +2029,7 @@ static double clip_qscale( x264_t *h, int pict_type, double q )
                     buffer_fill_cur -= cur_bits;
                 }
                 /* Try to get to get the buffer at least 50% filled, but don't set an impossible goal. */
-                target_fill = X264_MIN( rcc->buffer_fill + j * rcc->buffer_rate * 0.5, rcc->buffer_size * 0.5 );
+                target_fill = X264_MIN( rcc->buffer_fill + total_duration * rcc->vbv_max_rate * 0.5, rcc->buffer_size * 0.5 );
                 if( buffer_fill_cur < target_fill )
                 {
                     q *= 1.01;
@@ -1639,7 +2037,7 @@ static double clip_qscale( x264_t *h, int pict_type, double q )
                     continue;
                 }
                 /* Try to get the buffer no more than 80% filled, but don't set an impossible goal. */
-                target_fill = x264_clip3f( rcc->buffer_fill - j * rcc->buffer_rate * 0.5, rcc->buffer_size * 0.8, rcc->buffer_size );
+                target_fill = x264_clip3f( rcc->buffer_fill - total_duration * rcc->vbv_max_rate * 0.5, rcc->buffer_size * 0.8, rcc->buffer_size );
                 if( rcc->b_vbv_min_rate && buffer_fill_cur > target_fill )
                 {
                     q /= 1.01;
@@ -1677,44 +2075,55 @@ static double clip_qscale( x264_t *h, int pict_type, double q )
             q = X264_MAX( q0, q );
         }
 
+        /* Apply MinCR restrictions */
+        double bits = predict_size( &rcc->pred[h->sh.i_type], q, rcc->last_satd );
+        if( bits > rcc->frame_size_maximum )
+            q *= bits / rcc->frame_size_maximum;
+        bits = predict_size( &rcc->pred[h->sh.i_type], q, rcc->last_satd );
+
         /* Check B-frame complexity, and use up any bits that would
          * overflow before the next P-frame. */
         if( h->sh.i_type == SLICE_TYPE_P && !rcc->single_frame_vbv )
         {
             int nb = rcc->bframes;
-            double bits = predict_size( &rcc->pred[h->sh.i_type], q, rcc->last_satd );
             double pbbits = bits;
             double bbits = predict_size( rcc->pred_b_from_p, q * h->param.rc.f_pb_factor, rcc->last_satd );
             double space;
-            if( bbits > rcc->buffer_rate  )
+            double bframe_cpb_duration = 0;
+            double minigop_cpb_duration;
+            for( int i = 0; i < nb; i++ )
+                bframe_cpb_duration += h->fenc->f_planned_cpb_duration[1+i];
+
+            if( bbits * nb > bframe_cpb_duration * rcc->vbv_max_rate )
                 nb = 0;
             pbbits += nb * bbits;
 
-            space = rcc->buffer_fill + (1+nb)*rcc->buffer_rate - rcc->buffer_size;
+            minigop_cpb_duration = bframe_cpb_duration + h->fenc->f_planned_cpb_duration[0];
+            space = rcc->buffer_fill + minigop_cpb_duration*rcc->vbv_max_rate - rcc->buffer_size;
             if( pbbits < space )
             {
                 q *= X264_MAX( pbbits / space, bits / (0.5 * rcc->buffer_size) );
             }
-            q = X264_MAX( q0-5, q );
+            q = X264_MAX( q0/2, q );
         }
 
         if( !rcc->b_vbv_min_rate )
             q = X264_MAX( q0, q );
     }
 
-    if(lmin==lmax)
+    if( lmin==lmax )
         return lmin;
-    else if(rcc->b_2pass)
+    else if( rcc->b_2pass )
     {
-        double min2 = log(lmin);
-        double max2 = log(lmax);
+        double min2 = log( lmin );
+        double max2 = log( lmax );
         q = (log(q) - min2)/(max2-min2) - 0.5;
-        q = 1.0/(1.0 + exp(-4*q));
+        q = 1.0/(1.0 + exp( -4*q ));
         q = q*(max2-min2) + min2;
-        return exp(q);
+        return exp( q );
     }
     else
-        return x264_clip3f(q, lmin, lmax);
+        return x264_clip3f( q, lmin, lmax );
 }
 
 // update qscale for 1 frame based on actual bits used so far
@@ -1722,21 +2131,20 @@ static float rate_estimate_qscale( x264_t *h )
 {
     float q;
     x264_ratecontrol_t *rcc = h->rc;
-    ratecontrol_entry_t rce;
+    ratecontrol_entry_t UNINIT(rce);
     int pict_type = h->sh.i_type;
-    double lmin = rcc->lmin[pict_type];
-    double lmax = rcc->lmax[pict_type];
     int64_t total_bits = 8*(h->stat.i_frame_size[SLICE_TYPE_I]
                           + h->stat.i_frame_size[SLICE_TYPE_P]
-                          + h->stat.i_frame_size[SLICE_TYPE_B]);
+                          + h->stat.i_frame_size[SLICE_TYPE_B])
+                       - rcc->filler_bits_sum;
 
     if( rcc->b_2pass )
     {
         rce = *rcc->rce;
-        if(pict_type != rce.pict_type)
+        if( pict_type != rce.pict_type )
         {
-            x264_log(h, X264_LOG_ERROR, "slice=%c but 2pass stats say %c\n",
-                     slice_type_to_char[pict_type], slice_type_to_char[rce.pict_type]);
+            x264_log( h, X264_LOG_ERROR, "slice=%c but 2pass stats say %c\n",
+                      slice_type_to_char[pict_type], slice_type_to_char[rce.pict_type] );
         }
     }
 
@@ -1745,42 +2153,46 @@ static float rate_estimate_qscale( x264_t *h )
         /* B-frames don't have independent ratecontrol, but rather get the
          * average QP of the two adjacent P-frames + an offset */
 
-        int i0 = IS_X264_TYPE_I(h->fref0[0]->i_type);
-        int i1 = IS_X264_TYPE_I(h->fref1[0]->i_type);
-        int dt0 = abs(h->fenc->i_poc - h->fref0[0]->i_poc);
-        int dt1 = abs(h->fenc->i_poc - h->fref1[0]->i_poc);
-        float q0 = h->fref0[0]->f_qp_avg_rc;
-        float q1 = h->fref1[0]->f_qp_avg_rc;
+        int i0 = IS_X264_TYPE_I(h->fref_nearest[0]->i_type);
+        int i1 = IS_X264_TYPE_I(h->fref_nearest[1]->i_type);
+        int dt0 = abs(h->fenc->i_poc - h->fref_nearest[0]->i_poc);
+        int dt1 = abs(h->fenc->i_poc - h->fref_nearest[1]->i_poc);
+        float q0 = h->fref_nearest[0]->f_qp_avg_rc;
+        float q1 = h->fref_nearest[1]->f_qp_avg_rc;
 
-        if( h->fref0[0]->i_type == X264_TYPE_BREF )
+        if( h->fref_nearest[0]->i_type == X264_TYPE_BREF )
             q0 -= rcc->pb_offset/2;
-        if( h->fref1[0]->i_type == X264_TYPE_BREF )
+        if( h->fref_nearest[1]->i_type == X264_TYPE_BREF )
             q1 -= rcc->pb_offset/2;
 
-        if(i0 && i1)
+        if( i0 && i1 )
             q = (q0 + q1) / 2 + rcc->ip_offset;
-        else if(i0)
+        else if( i0 )
             q = q1;
-        else if(i1)
+        else if( i1 )
             q = q0;
         else
             q = (q0*dt1 + q1*dt0) / (dt0 + dt1);
 
-        if(h->fenc->b_kept_as_ref)
+        if( h->fenc->b_kept_as_ref )
             q += rcc->pb_offset/2;
         else
             q += rcc->pb_offset;
 
         if( rcc->b_2pass && rcc->b_vbv )
-            rcc->frame_size_planned = qscale2bits( &rce, q );
+            rcc->frame_size_planned = qscale2bits( &rce, qp2qscale( q ) );
         else
-            rcc->frame_size_planned = predict_size( rcc->pred_b_from_p, q, h->fref1[h->i_ref1-1]->i_satd );
+            rcc->frame_size_planned = predict_size( rcc->pred_b_from_p, qp2qscale( q ), h->fref[1][h->i_ref[1]-1]->i_satd );
+        /* Limit planned size by MinCR */
+        if( rcc->b_vbv )
+            rcc->frame_size_planned = X264_MIN( rcc->frame_size_planned, rcc->frame_size_maximum );
         h->rc->frame_size_estimated = rcc->frame_size_planned;
 
         /* For row SATDs */
         if( rcc->b_vbv )
             rcc->last_satd = x264_rc_analyse_slice( h );
-        return qp2qscale(q);
+        rcc->qp_novbv = q;
+        return qp2qscale( q );
     }
     else
     {
@@ -1788,59 +2200,66 @@ static float rate_estimate_qscale( x264_t *h )
 
         if( rcc->b_2pass )
         {
+            double lmin = rcc->lmin[pict_type];
+            double lmax = rcc->lmax[pict_type];
             int64_t diff;
             int64_t predicted_bits = total_bits;
-            /* Adjust ABR buffer based on distance to the end of the video. */
-            if( rcc->num_entries > h->fenc->i_frame )
-                abr_buffer *= 0.5 * sqrt( rcc->num_entries - h->fenc->i_frame );
 
             if( rcc->b_vbv )
             {
                 if( h->i_thread_frames > 1 )
                 {
                     int j = h->rc - h->thread[0]->rc;
-                    int i;
-                    for( i=1; i<h->i_thread_frames; i++ )
+                    for( int i = 1; i < h->i_thread_frames; i++ )
                     {
                         x264_t *t = h->thread[ (j+i)%h->i_thread_frames ];
                         double bits = t->rc->frame_size_planned;
                         if( !t->b_thread_active )
                             continue;
-                        bits  = X264_MAX(bits, t->rc->frame_size_estimated);
+                        bits = X264_MAX(bits, t->rc->frame_size_estimated);
                         predicted_bits += (int64_t)bits;
                     }
                 }
             }
             else
             {
-                if( h->fenc->i_frame < h->i_thread_frames )
-                    predicted_bits += (int64_t)h->fenc->i_frame * rcc->bitrate / rcc->fps;
+                if( h->i_frame < h->i_thread_frames )
+                    predicted_bits += (int64_t)h->i_frame * rcc->bitrate / rcc->fps;
                 else
                     predicted_bits += (int64_t)(h->i_thread_frames - 1) * rcc->bitrate / rcc->fps;
             }
 
+            /* Adjust ABR buffer based on distance to the end of the video. */
+            if( rcc->num_entries > h->i_frame )
+            {
+                double final_bits = rcc->entry[rcc->num_entries-1].expected_bits;
+                double video_pos = rce.expected_bits / final_bits;
+                double scale_factor = sqrt( (1 - video_pos) * rcc->num_entries );
+                abr_buffer *= 0.5 * X264_MAX( scale_factor, 0.5 );
+            }
+
             diff = predicted_bits - (int64_t)rce.expected_bits;
             q = rce.new_qscale;
             q /= x264_clip3f((double)(abr_buffer - diff) / abr_buffer, .5, 2);
-            if( ((h->fenc->i_frame + 1 - h->i_thread_frames) >= rcc->fps) &&
+            if( ((h->i_frame + 1 - h->i_thread_frames) >= rcc->fps) &&
                 (rcc->expected_bits_sum > 0))
             {
                 /* Adjust quant based on the difference between
                  * achieved and expected bitrate so far */
-                double time = (double)h->fenc->i_frame / rcc->num_entries;
-                double w = x264_clip3f( time*100, 0.0, 1.0 );
+                double cur_time = (double)h->i_frame / rcc->num_entries;
+                double w = x264_clip3f( cur_time*100, 0.0, 1.0 );
                 q *= pow( (double)total_bits / rcc->expected_bits_sum, w );
             }
             if( rcc->b_vbv )
             {
                 /* Do not overflow vbv */
-                double expected_size = qscale2bits(&rce, q);
+                double expected_size = qscale2bits( &rce, q );
                 double expected_vbv = rcc->buffer_fill + rcc->buffer_rate - expected_size;
-                double expected_fullness =  rce.expected_vbv / rcc->buffer_size;
+                double expected_fullness = rce.expected_vbv / rcc->buffer_size;
                 double qmax = q*(2 - expected_fullness);
                 double size_constraint = 1 + expected_fullness;
-                qmax = X264_MAX(qmax, rce.new_qscale);
-                if (expected_fullness < .05)
+                qmax = X264_MAX( qmax, rce.new_qscale );
+                if( expected_fullness < .05 )
                     qmax = lmax;
                 qmax = X264_MIN(qmax, lmax);
                 while( ((expected_vbv < rce.expected_vbv/size_constraint) && (q < qmax)) ||
@@ -1866,12 +2285,12 @@ static float rate_estimate_qscale( x264_t *h )
              * tradeoff between quality and bitrate precision. But at large
              * tolerances, the bit distribution approaches that of 2pass. */
 
-            double wanted_bits, overflow=1, lmin, lmax;
+            double wanted_bits, overflow = 1;
 
             rcc->last_satd = x264_rc_analyse_slice( h );
             rcc->short_term_cplxsum *= 0.5;
             rcc->short_term_cplxcount *= 0.5;
-            rcc->short_term_cplxsum += rcc->last_satd;
+            rcc->short_term_cplxsum += rcc->last_satd / (CLIP_DURATION(h->fenc->f_duration) / BASE_FRAME_DURATION);
             rcc->short_term_cplxcount ++;
 
             rce.tex_bits = rcc->last_satd;
@@ -1882,6 +2301,7 @@ static float rate_estimate_qscale( x264_t *h )
             rce.s_count = 0;
             rce.qscale = 1;
             rce.pict_type = pict_type;
+            rce.i_duration = h->fenc->i_duration;
 
             if( h->param.rc.i_rc_method == X264_RC_CRF )
             {
@@ -1889,17 +2309,24 @@ static float rate_estimate_qscale( x264_t *h )
             }
             else
             {
-                int i_frame_done = h->fenc->i_frame + 1 - h->i_thread_frames;
-
                 q = get_qscale( h, &rce, rcc->wanted_bits_window / rcc->cplxr_sum, h->fenc->i_frame );
 
-                // FIXME is it simpler to keep track of wanted_bits in ratecontrol_end?
-                wanted_bits = i_frame_done * rcc->bitrate / rcc->fps;
-                if( wanted_bits > 0 )
+                /* ABR code can potentially be counterproductive in CBR, so just don't bother.
+                 * Don't run it if the frame complexity is zero either. */
+                if( !rcc->b_vbv_min_rate && rcc->last_satd )
                 {
-                    abr_buffer *= X264_MAX( 1, sqrt(i_frame_done/25) );
-                    overflow = x264_clip3f( 1.0 + (total_bits - wanted_bits) / abr_buffer, .5, 2 );
-                    q *= overflow;
+                    // FIXME is it simpler to keep track of wanted_bits in ratecontrol_end?
+                    int i_frame_done = h->i_frame + 1 - h->i_thread_frames;
+                    double time_done = i_frame_done / rcc->fps;
+                    if( h->param.b_vfr_input && i_frame_done > 0 )
+                        time_done = ((double)(h->fenc->i_reordered_pts - h->i_reordered_pts_delay)) * h->param.i_timebase_num / h->param.i_timebase_den;
+                    wanted_bits = time_done * rcc->bitrate;
+                    if( wanted_bits > 0 )
+                    {
+                        abr_buffer *= X264_MAX( 1, sqrt( time_done ) );
+                        overflow = x264_clip3f( 1.0 + (total_bits - wanted_bits) / abr_buffer, .5, 2 );
+                        q *= overflow;
+                    }
                 }
             }
 
@@ -1912,22 +2339,25 @@ static float rate_estimate_qscale( x264_t *h )
             }
             else if( h->i_frame > 0 )
             {
-                /* Asymmetric clipping, because symmetric would prevent
-                 * overflow control in areas of rapidly oscillating complexity */
-                lmin = rcc->last_qscale_for[pict_type] / rcc->lstep;
-                lmax = rcc->last_qscale_for[pict_type] * rcc->lstep;
-                if( overflow > 1.1 && h->i_frame > 3 )
-                    lmax *= rcc->lstep;
-                else if( overflow < 0.9 )
-                    lmin /= rcc->lstep;
-
-                q = x264_clip3f(q, lmin, lmax);
+                if( h->param.rc.i_rc_method != X264_RC_CRF )
+                {
+                    /* Asymmetric clipping, because symmetric would prevent
+                     * overflow control in areas of rapidly oscillating complexity */
+                    double lmin = rcc->last_qscale_for[pict_type] / rcc->lstep;
+                    double lmax = rcc->last_qscale_for[pict_type] * rcc->lstep;
+                    if( overflow > 1.1 && h->i_frame > 3 )
+                        lmax *= rcc->lstep;
+                    else if( overflow < 0.9 )
+                        lmin /= rcc->lstep;
+
+                    q = x264_clip3f(q, lmin, lmax);
+                }
             }
             else if( h->param.rc.i_rc_method == X264_RC_CRF && rcc->qcompress != 1 )
             {
                 q = qp2qscale( ABR_INIT_QP ) / fabs( h->param.rc.f_ip_factor );
             }
-            rcc->qp_novbv = qscale2qp(q);
+            rcc->qp_novbv = qscale2qp( q );
 
             //FIXME use get_diff_limited_q() ?
             q = clip_qscale( h, pict_type, q );
@@ -1947,36 +2377,38 @@ static float rate_estimate_qscale( x264_t *h )
         /* Always use up the whole VBV in this case. */
         if( rcc->single_frame_vbv )
             rcc->frame_size_planned = rcc->buffer_rate;
+        /* Limit planned size by MinCR */
+        if( rcc->b_vbv )
+            rcc->frame_size_planned = X264_MIN( rcc->frame_size_planned, rcc->frame_size_maximum );
         h->rc->frame_size_estimated = rcc->frame_size_planned;
         return q;
     }
 }
 
-void x264_threads_normalize_predictors( x264_t *h )
+static void x264_threads_normalize_predictors( x264_t *h )
 {
-    int i;
     double totalsize = 0;
-    for( i = 0; i < h->param.i_threads; i++ )
+    for( int i = 0; i < h->param.i_threads; i++ )
         totalsize += h->thread[i]->rc->slice_size_planned;
     double factor = h->rc->frame_size_planned / totalsize;
-    for( i = 0; i < h->param.i_threads; i++ )
+    for( int i = 0; i < h->param.i_threads; i++ )
         h->thread[i]->rc->slice_size_planned *= factor;
 }
 
 void x264_threads_distribute_ratecontrol( x264_t *h )
 {
-    int i, row;
+    int row;
     x264_ratecontrol_t *rc = h->rc;
 
     /* Initialize row predictors */
     if( h->i_frame == 0 )
-        for( i = 0; i < h->param.i_threads; i++ )
+        for( int i = 0; i < h->param.i_threads; i++ )
         {
             x264_ratecontrol_t *t = h->thread[i]->rc;
             memcpy( t->row_preds, rc->row_preds, sizeof(rc->row_preds) );
         }
 
-    for( i = 0; i < h->param.i_threads; i++ )
+    for( int i = 0; i < h->param.i_threads; i++ )
     {
         x264_t *t = h->thread[i];
         memcpy( t->rc, rc, offsetof(x264_ratecontrol_t, row_pred) );
@@ -1999,38 +2431,37 @@ void x264_threads_distribute_ratecontrol( x264_t *h )
         if( rc->single_frame_vbv )
         {
             /* Compensate for our max frame error threshold: give more bits (proportionally) to smaller slices. */
-            for( i = 0; i < h->param.i_threads; i++ )
+            for( int i = 0; i < h->param.i_threads; i++ )
             {
                 x264_t *t = h->thread[i];
-                t->rc->max_frame_error = X264_MAX( 0.05, 1.0 / (t->i_threadslice_end - t->i_threadslice_start) );
-                t->rc->slice_size_planned += 2 * t->rc->max_frame_error * rc->frame_size_planned;
+                float max_frame_error = X264_MAX( 0.05, 1.0 / (t->i_threadslice_end - t->i_threadslice_start) );
+                t->rc->slice_size_planned += 2 * max_frame_error * rc->frame_size_planned;
             }
             x264_threads_normalize_predictors( h );
         }
 
-        for( i = 0; i < h->param.i_threads; i++ )
+        for( int i = 0; i < h->param.i_threads; i++ )
             h->thread[i]->rc->frame_size_estimated = h->thread[i]->rc->slice_size_planned;
     }
 }
 
 void x264_threads_merge_ratecontrol( x264_t *h )
 {
-    int i, row;
     x264_ratecontrol_t *rc = h->rc;
     x264_emms();
 
-    for( i = 0; i < h->param.i_threads; i++ )
+    for( int i = 0; i < h->param.i_threads; i++ )
     {
         x264_t *t = h->thread[i];
         x264_ratecontrol_t *rct = h->thread[i]->rc;
         if( h->param.rc.i_vbv_buffer_size )
         {
             int size = 0;
-            for( row = t->i_threadslice_start; row < t->i_threadslice_end; row++ )
+            for( int row = t->i_threadslice_start; row < t->i_threadslice_end; row++ )
                 size += h->fdec->i_row_satd[row];
             int bits = t->stat.frame.i_mv_bits + t->stat.frame.i_tex_bits + t->stat.frame.i_misc_bits;
-            int mb_count = (t->i_threadslice_end - t->i_threadslice_start) * h->sps->i_mb_width;
-            update_predictor( &rc->pred[h->sh.i_type+5*i], qp2qscale(rct->qpa_rc/mb_count), size, bits );
+            int mb_count = (t->i_threadslice_end - t->i_threadslice_start) * h->mb.i_mb_width;
+            update_predictor( &rc->pred[h->sh.i_type+(i+1)*5], qp2qscale( rct->qpa_rc/mb_count ), size, bits );
         }
         if( !i )
             continue;
@@ -2059,13 +2490,14 @@ void x264_thread_sync_ratecontrol( x264_t *cur, x264_t *prev, x264_t *next )
         COPY(prev_zone);
         COPY(qpbuf_pos);
         /* these vars can be updated by x264_ratecontrol_init_reconfigurable */
-        COPY(buffer_rate);
+        COPY(bitrate);
         COPY(buffer_size);
+        COPY(buffer_rate);
+        COPY(vbv_max_rate);
         COPY(single_frame_vbv);
         COPY(cbr_decay);
-        COPY(b_vbv_min_rate);
         COPY(rate_factor_constant);
-        COPY(bitrate);
+        COPY(rate_factor_max_increment);
 #undef COPY
     }
     if( cur != next )
@@ -2076,8 +2508,13 @@ void x264_thread_sync_ratecontrol( x264_t *cur, x264_t *prev, x264_t *next )
          * to the context that's about to end (next) */
         COPY(cplxr_sum);
         COPY(expected_bits_sum);
+        COPY(filler_bits_sum);
         COPY(wanted_bits_window);
         COPY(bframe_bits);
+        COPY(initial_cpb_removal_delay);
+        COPY(initial_cpb_removal_delay_offset);
+        COPY(nrt_first_access_unit);
+        COPY(previous_cpb_final_arrival_time);
 #undef COPY
     }
     //FIXME row_preds[] (not strictly necessary, but would improve prediction)
@@ -2094,40 +2531,40 @@ static int find_underflow( x264_t *h, double *fills, int *t0, int *t1, int over
     const double buffer_max = .9 * rcc->buffer_size;
     double fill = fills[*t0-1];
     double parity = over ? 1. : -1.;
-    int i, start=-1, end=-1;
-    for(i = *t0; i < rcc->num_entries; i++)
+    int start = -1, end = -1;
+    for( int i = *t0; i < rcc->num_entries; i++ )
     {
-        fill += (rcc->buffer_rate - qscale2bits(&rcc->entry[i], rcc->entry[i].new_qscale)) * parity;
+        fill += (rcc->entry[i].i_cpb_duration * rcc->vbv_max_rate * h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale -
+                 qscale2bits( &rcc->entry[i], rcc->entry[i].new_qscale )) * parity;
         fill = x264_clip3f(fill, 0, rcc->buffer_size);
         fills[i] = fill;
-        if(fill <= buffer_min || i == 0)
+        if( fill <= buffer_min || i == 0 )
         {
-            if(end >= 0)
+            if( end >= 0 )
                 break;
             start = i;
         }
-        else if(fill >= buffer_max && start >= 0)
+        else if( fill >= buffer_max && start >= 0 )
             end = i;
     }
     *t0 = start;
     *t1 = end;
-    return start>=0 && end>=0;
+    return start >= 0 && end >= 0;
 }
 
 static int fix_underflow( x264_t *h, int t0, int t1, double adjustment, double qscale_min, double qscale_max)
 {
     x264_ratecontrol_t *rcc = h->rc;
     double qscale_orig, qscale_new;
-    int i;
     int adjusted = 0;
-    if(t0 > 0)
+    if( t0 > 0 )
         t0++;
-    for(i = t0; i <= t1; i++)
+    for( int i = t0; i <= t1; i++ )
     {
         qscale_orig = rcc->entry[i].new_qscale;
-        qscale_orig = x264_clip3f(qscale_orig, qscale_min, qscale_max);
+        qscale_orig = x264_clip3f( qscale_orig, qscale_min, qscale_max );
         qscale_new  = qscale_orig * adjustment;
-        qscale_new  = x264_clip3f(qscale_new, qscale_min, qscale_max);
+        qscale_new  = x264_clip3f( qscale_new, qscale_min, qscale_max );
         rcc->entry[i].new_qscale = qscale_new;
         adjusted = adjusted || (qscale_new != qscale_orig);
     }
@@ -2138,17 +2575,16 @@ static double count_expected_bits( x264_t *h )
 {
     x264_ratecontrol_t *rcc = h->rc;
     double expected_bits = 0;
-    int i;
-    for(i = 0; i < rcc->num_entries; i++)
+    for( int i = 0; i < rcc->num_entries; i++ )
     {
         ratecontrol_entry_t *rce = &rcc->entry[i];
         rce->expected_bits = expected_bits;
-        expected_bits += qscale2bits(rce, rce->new_qscale);
+        expected_bits += qscale2bits( rce, rce->new_qscale );
     }
     return expected_bits;
 }
 
-static int vbv_pass2( x264_t *h )
+static int vbv_pass2( x264_t *h, double all_available_bits )
 {
     /* for each interval of buffer_full .. underflow, uniformly increase the qp of all
      * frames in the interval until either buffer is full at some intermediate frame or the
@@ -2157,13 +2593,12 @@ static int vbv_pass2( x264_t *h )
 
     x264_ratecontrol_t *rcc = h->rc;
     double *fills;
-    double all_available_bits = h->param.rc.i_bitrate * 1000. * rcc->num_entries / rcc->fps;
     double expected_bits = 0;
     double adjustment;
     double prev_bits = 0;
-    int i, t0, t1;
-    double qscale_min = qp2qscale(h->param.rc.i_qp_min);
-    double qscale_max = qp2qscale(h->param.rc.i_qp_max);
+    int t0, t1;
+    double qscale_min = qp2qscale( h->param.rc.i_qp_min );
+    double qscale_max = qp2qscale( h->param.rc.i_qp_max );
     int iterations = 0;
     int adj_min, adj_max;
     CHECKED_MALLOC( fills, (rcc->num_entries+1)*sizeof(double) );
@@ -2176,16 +2611,16 @@ static int vbv_pass2( x264_t *h )
         iterations++;
         prev_bits = expected_bits;
 
-        if(expected_bits != 0)
+        if( expected_bits )
         {   /* not first iteration */
             adjustment = X264_MAX(X264_MIN(expected_bits / all_available_bits, 0.999), 0.9);
             fills[-1] = rcc->buffer_size * h->param.rc.f_vbv_buffer_init;
             t0 = 0;
             /* fix overflows */
             adj_min = 1;
-            while(adj_min && find_underflow(h, fills, &t0, &t1, 1))
+            while(adj_min && find_underflow( h, fills, &t0, &t1, 1 ))
             {
-                adj_min = fix_underflow(h, t0, t1, adjustment, qscale_min, qscale_max);
+                adj_min = fix_underflow( h, t0, t1, adjustment, qscale_min, qscale_max );
                 t0 = t1;
             }
         }
@@ -2194,20 +2629,20 @@ static int vbv_pass2( x264_t *h )
         t0 = 0;
         /* fix underflows -- should be done after overflow, as we'd better undersize target than underflowing VBV */
         adj_max = 1;
-        while(adj_max && find_underflow(h, fills, &t0, &t1, 0))
-            adj_max = fix_underflow(h, t0, t1, 1.001, qscale_min, qscale_max);
+        while( adj_max && find_underflow( h, fills, &t0, &t1, 0 ) )
+            adj_max = fix_underflow( h, t0, t1, 1.001, qscale_min, qscale_max );
 
-        expected_bits = count_expected_bits(h);
-    } while((expected_bits < .995*all_available_bits) && ((int64_t)(expected_bits+.5) > (int64_t)(prev_bits+.5)) );
+        expected_bits = count_expected_bits( h );
+    } while( (expected_bits < .995*all_available_bits) && ((int64_t)(expected_bits+.5) > (int64_t)(prev_bits+.5)) );
 
-    if (!adj_max)
+    if( !adj_max )
         x264_log( h, X264_LOG_WARNING, "vbv-maxrate issue, qpmax or vbv-maxrate too low\n");
 
     /* store expected vbv filling values for tracking when encoding */
-    for(i = 0; i < rcc->num_entries; i++)
+    for( int i = 0; i < rcc->num_entries; i++ )
         rcc->entry[i].expected_vbv = rcc->buffer_size - fills[i];
 
-    x264_free(fills-1);
+    x264_free( fills-1 );
     return 0;
 fail:
     return -1;
@@ -2217,17 +2652,22 @@ static int init_pass2( x264_t *h )
 {
     x264_ratecontrol_t *rcc = h->rc;
     uint64_t all_const_bits = 0;
-    uint64_t all_available_bits = (uint64_t)(h->param.rc.i_bitrate * 1000. * rcc->num_entries / rcc->fps);
-    double rate_factor, step, step_mult;
+    double timescale = (double)h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale;
+    double duration = 0;
+    for( int i = 0; i < rcc->num_entries; i++ )
+        duration += rcc->entry[i].i_duration;
+    duration *= timescale;
+    uint64_t all_available_bits = h->param.rc.i_bitrate * 1000. * duration;
+    double rate_factor, step_mult;
     double qblur = h->param.rc.f_qblur;
     double cplxblur = h->param.rc.f_complexity_blur;
     const int filter_size = (int)(qblur*4) | 1;
     double expected_bits;
     double *qscale, *blurred_qscale;
-    int i;
+    double base_cplx = h->mb.i_mb_count * (h->param.i_bframe ? 120 : 80);
 
     /* find total/average complexity & const_bits */
-    for(i=0; i<rcc->num_entries; i++)
+    for( int i = 0; i < rcc->num_entries; i++ )
     {
         ratecontrol_entry_t *rce = &rcc->entry[i];
         all_const_bits += rce->misc_bits;
@@ -2235,8 +2675,8 @@ static int init_pass2( x264_t *h )
 
     if( all_available_bits < all_const_bits)
     {
-        x264_log(h, X264_LOG_ERROR, "requested bitrate is too low. estimated minimum is %d kbps\n",
-                 (int)(all_const_bits * rcc->fps / (rcc->num_entries * 1000.)));
+        x264_log( h, X264_LOG_ERROR, "requested bitrate is too low. estimated minimum is %d kbps\n",
+                 (int)(all_const_bits * rcc->fps / (rcc->num_entries * 1000.)) );
         return -1;
     }
 
@@ -2244,35 +2684,36 @@ static int init_pass2( x264_t *h )
      * We don't blur the QPs directly, because then one very simple frame
      * could drag down the QP of a nearby complex frame and give it more
      * bits than intended. */
-    for(i=0; i<rcc->num_entries; i++)
+    for( int i = 0; i < rcc->num_entries; i++ )
     {
         ratecontrol_entry_t *rce = &rcc->entry[i];
         double weight_sum = 0;
         double cplx_sum = 0;
         double weight = 1.0;
         double gaussian_weight;
-        int j;
         /* weighted average of cplx of future frames */
-        for(j=1; j<cplxblur*2 && j<rcc->num_entries-i; j++)
+        for( int j = 1; j < cplxblur*2 && j < rcc->num_entries-i; j++ )
         {
             ratecontrol_entry_t *rcj = &rcc->entry[i+j];
+            double frame_duration = CLIP_DURATION(rcj->i_duration * timescale) / BASE_FRAME_DURATION;
             weight *= 1 - pow( (float)rcj->i_count / rcc->nmb, 2 );
-            if(weight < .0001)
+            if( weight < .0001 )
                 break;
-            gaussian_weight = weight * exp(-j*j/200.0);
+            gaussian_weight = weight * exp( -j*j/200.0 );
             weight_sum += gaussian_weight;
-            cplx_sum += gaussian_weight * (qscale2bits(rcj, 1) - rcj->misc_bits);
+            cplx_sum += gaussian_weight * (qscale2bits( rcj, 1 ) - rcj->misc_bits) / frame_duration;
         }
         /* weighted average of cplx of past frames */
         weight = 1.0;
-        for(j=0; j<=cplxblur*2 && j<=i; j++)
+        for( int j = 0; j <= cplxblur*2 && j <= i; j++ )
         {
             ratecontrol_entry_t *rcj = &rcc->entry[i-j];
-            gaussian_weight = weight * exp(-j*j/200.0);
+            double frame_duration = CLIP_DURATION(rcj->i_duration * timescale) / BASE_FRAME_DURATION;
+            gaussian_weight = weight * exp( -j*j/200.0 );
             weight_sum += gaussian_weight;
-            cplx_sum += gaussian_weight * (qscale2bits(rcj, 1) - rcj->misc_bits);
+            cplx_sum += gaussian_weight * (qscale2bits( rcj, 1 ) - rcj->misc_bits) / frame_duration;
             weight *= 1 - pow( (float)rcj->i_count / rcc->nmb, 2 );
-            if(weight < .0001)
+            if( weight < .0001 )
                 break;
         }
         rce->blurred_complexity = cplx_sum / weight_sum;
@@ -2292,7 +2733,7 @@ static int init_pass2( x264_t *h )
      * The search range is probably overkill, but speed doesn't matter here. */
 
     expected_bits = 1;
-    for(i=0; i<rcc->num_entries; i++)
+    for( int i = 0; i < rcc->num_entries; i++ )
     {
         double q = get_qscale(h, &rcc->entry[i], 1.0, i);
         expected_bits += qscale2bits(&rcc->entry[i], q);
@@ -2301,7 +2742,7 @@ static int init_pass2( x264_t *h )
     step_mult = all_available_bits / expected_bits;
 
     rate_factor = 0;
-    for(step = 1E4 * step_mult; step > 1E-7 * step_mult; step *= 0.5)
+    for( double step = 1E4 * step_mult; step > 1E-7 * step_mult; step *= 0.5)
     {
         expected_bits = 0;
         rate_factor += step;
@@ -2310,40 +2751,43 @@ static int init_pass2( x264_t *h )
         rcc->last_accum_p_norm = 1;
         rcc->accum_p_norm = 0;
 
+        rcc->last_qscale_for[0] =
+        rcc->last_qscale_for[1] =
+        rcc->last_qscale_for[2] = pow( base_cplx, 1 - rcc->qcompress ) / rate_factor;
+
         /* find qscale */
-        for(i=0; i<rcc->num_entries; i++)
+        for( int i = 0; i < rcc->num_entries; i++ )
         {
-            qscale[i] = get_qscale(h, &rcc->entry[i], rate_factor, i);
+            qscale[i] = get_qscale( h, &rcc->entry[i], rate_factor, -1 );
             rcc->last_qscale_for[rcc->entry[i].pict_type] = qscale[i];
         }
 
         /* fixed I/B qscale relative to P */
-        for(i=rcc->num_entries-1; i>=0; i--)
+        for( int i = rcc->num_entries-1; i >= 0; i-- )
         {
-            qscale[i] = get_diff_limited_q(h, &rcc->entry[i], qscale[i]);
+            qscale[i] = get_diff_limited_q( h, &rcc->entry[i], qscale[i], i );
             assert(qscale[i] >= 0);
         }
 
         /* smooth curve */
-        if(filter_size > 1)
+        if( filter_size > 1 )
         {
-            assert(filter_size%2==1);
-            for(i=0; i<rcc->num_entries; i++)
+            assert( filter_size%2 == 1 );
+            for( int i = 0; i < rcc->num_entries; i++ )
             {
                 ratecontrol_entry_t *rce = &rcc->entry[i];
-                int j;
-                double q=0.0, sum=0.0;
+                double q = 0.0, sum = 0.0;
 
-                for(j=0; j<filter_size; j++)
+                for( int j = 0; j < filter_size; j++ )
                 {
-                    int index = i+j-filter_size/2;
-                    double d = index-i;
-                    double coeff = qblur==0 ? 1.0 : exp(-d*d/(qblur*qblur));
-                    if(index < 0 || index >= rcc->num_entries)
+                    int idx = i+j-filter_size/2;
+                    double d = idx-i;
+                    double coeff = qblur==0 ? 1.0 : exp( -d*d/(qblur*qblur) );
+                    if( idx < 0 || idx >= rcc->num_entries )
                         continue;
-                    if(rce->pict_type != rcc->entry[index].pict_type)
+                    if( rce->pict_type != rcc->entry[idx].pict_type )
                         continue;
-                    q += qscale[index] * coeff;
+                    q += qscale[idx] * coeff;
                     sum += coeff;
                 }
                 blurred_qscale[i] = q/sum;
@@ -2351,55 +2795,56 @@ static int init_pass2( x264_t *h )
         }
 
         /* find expected bits */
-        for(i=0; i<rcc->num_entries; i++)
+        for( int i = 0; i < rcc->num_entries; i++ )
         {
             ratecontrol_entry_t *rce = &rcc->entry[i];
-            rce->new_qscale = clip_qscale(h, rce->pict_type, blurred_qscale[i]);
+            rce->new_qscale = clip_qscale( h, rce->pict_type, blurred_qscale[i] );
             assert(rce->new_qscale >= 0);
-            expected_bits += qscale2bits(rce, rce->new_qscale);
+            expected_bits += qscale2bits( rce, rce->new_qscale );
         }
 
-        if(expected_bits > all_available_bits) rate_factor -= step;
+        if( expected_bits > all_available_bits )
+            rate_factor -= step;
     }
 
-    x264_free(qscale);
-    if(filter_size > 1)
-        x264_free(blurred_qscale);
+    x264_free( qscale );
+    if( filter_size > 1 )
+        x264_free( blurred_qscale );
 
-    if(rcc->b_vbv)
-        if( vbv_pass2( h ) )
+    if( rcc->b_vbv )
+        if( vbv_pass2( h, all_available_bits ) )
             return -1;
-    expected_bits = count_expected_bits(h);
+    expected_bits = count_expected_bits( h );
 
-    if(fabs(expected_bits/all_available_bits - 1.0) > 0.01)
+    if( fabs( expected_bits/all_available_bits - 1.0 ) > 0.01 )
     {
         double avgq = 0;
-        for(i=0; i<rcc->num_entries; i++)
+        for( int i = 0; i < rcc->num_entries; i++ )
             avgq += rcc->entry[i].new_qscale;
-        avgq = qscale2qp(avgq / rcc->num_entries);
-
-        if ((expected_bits > all_available_bits) || (!rcc->b_vbv))
-            x264_log(h, X264_LOG_WARNING, "Error: 2pass curve failed to converge\n");
-        x264_log(h, X264_LOG_WARNING, "target: %.2f kbit/s, expected: %.2f kbit/s, avg QP: %.4f\n",
-                 (float)h->param.rc.i_bitrate,
-                 expected_bits * rcc->fps / (rcc->num_entries * 1000.),
-                 avgq);
-        if(expected_bits < all_available_bits && avgq < h->param.rc.i_qp_min + 2)
-        {
-            if(h->param.rc.i_qp_min > 0)
-                x264_log(h, X264_LOG_WARNING, "try reducing target bitrate or reducing qp_min (currently %d)\n", h->param.rc.i_qp_min);
+        avgq = qscale2qp( avgq / rcc->num_entries );
+
+        if( expected_bits > all_available_bits || !rcc->b_vbv )
+            x264_log( h, X264_LOG_WARNING, "Error: 2pass curve failed to converge\n" );
+        x264_log( h, X264_LOG_WARNING, "target: %.2f kbit/s, expected: %.2f kbit/s, avg QP: %.4f\n",
+                  (float)h->param.rc.i_bitrate,
+                  expected_bits * rcc->fps / (rcc->num_entries * 1000.),
+                  avgq );
+        if( expected_bits < all_available_bits && avgq < h->param.rc.i_qp_min + 2 )
+        {
+            if( h->param.rc.i_qp_min > 0 )
+                x264_log( h, X264_LOG_WARNING, "try reducing target bitrate or reducing qp_min (currently %d)\n", h->param.rc.i_qp_min );
             else
-                x264_log(h, X264_LOG_WARNING, "try reducing target bitrate\n");
+                x264_log( h, X264_LOG_WARNING, "try reducing target bitrate\n" );
         }
-        else if(expected_bits > all_available_bits && avgq > h->param.rc.i_qp_max - 2)
+        else if( expected_bits > all_available_bits && avgq > h->param.rc.i_qp_max - 2 )
         {
-            if(h->param.rc.i_qp_max < 51)
-                x264_log(h, X264_LOG_WARNING, "try increasing target bitrate or increasing qp_max (currently %d)\n", h->param.rc.i_qp_max);
+            if( h->param.rc.i_qp_max < QP_MAX )
+                x264_log( h, X264_LOG_WARNING, "try increasing target bitrate or increasing qp_max (currently %d)\n", h->param.rc.i_qp_max );
             else
-                x264_log(h, X264_LOG_WARNING, "try increasing target bitrate\n");
+                x264_log( h, X264_LOG_WARNING, "try increasing target bitrate\n");
         }
-        else if(!(rcc->b_2pass && rcc->b_vbv))
-            x264_log(h, X264_LOG_WARNING, "internal error\n");
+        else if( !(rcc->b_2pass && rcc->b_vbv) )
+            x264_log( h, X264_LOG_WARNING, "internal error\n" );
     }
 
     return 0;