]> git.sesse.net Git - x264/blobdiff - encoder/ratecontrol.c
Fix 2pass ratecontrol with --nal-hrd cbr
[x264] / encoder / ratecontrol.c
index f33c63ea2a4663096e029e1c00989d3178dc768f..e0e6761148693490d719f3ccba6fe67c217851fe 100644 (file)
@@ -1,7 +1,7 @@
-/***************************************************-*- coding: iso-8859-1 -*-
- * ratecontrol.c: h264 encoder library (Rate Control)
+/*****************************************************************************
+ * ratecontrol.c: ratecontrol
  *****************************************************************************
- * Copyright (C) 2005-2008 x264 project
+ * Copyright (C) 2005-2010 x264 project
  *
  * Authors: Loren Merritt <lorenm@u.washington.edu>
  *          Michael Niedermayer <michaelni@gmx.at>
  * You should have received a copy of the GNU General Public License
  * along with this program; if not, write to the Free Software
  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02111, USA.
+ *
+ * This program is also available under a commercial proprietary license.
+ * For more information, contact us at licensing@x264.com.
  *****************************************************************************/
 
 #define _ISOC99_SOURCE
 #undef NDEBUG // always check asserts, the speed effect is far too small to disable them
 #include <math.h>
-#include <limits.h>
-#include <assert.h>
 
 #include "common/common.h"
-#include "common/cpu.h"
 #include "ratecontrol.h"
+#include "me.h"
 
 typedef struct
 {
     int pict_type;
+    int frame_type;
     int kept_as_ref;
-    float qscale;
+    double qscale;
     int mv_bits;
     int tex_bits;
     int misc_bits;
     uint64_t expected_bits; /*total expected bits up to the current frame (current one excluded)*/
     double expected_vbv;
-    float new_qscale;
+    double new_qscale;
     int new_qp;
     int i_count;
     int p_count;
     int s_count;
     float blurred_complexity;
     char direct_mode;
+    int16_t weight[2];
+    int16_t i_weight_denom;
+    int refcount[16];
+    int refs;
+    int i_duration;
+    int i_cpb_duration;
 } ratecontrol_entry_t;
 
 typedef struct
@@ -58,6 +66,7 @@ typedef struct
     double coeff;
     double count;
     double decay;
+    double offset;
 } predictor_t;
 
 struct x264_ratecontrol_t
@@ -70,30 +79,35 @@ struct x264_ratecontrol_t
     double fps;
     double bitrate;
     double rate_tolerance;
+    double qcompress;
     int nmb;                    /* number of macroblocks in a frame */
-    int qp_constant[5];
+    int qp_constant[3];
 
     /* current frame */
     ratecontrol_entry_t *rce;
     int qp;                     /* qp for current frame */
-    int qpm;                    /* qp for current macroblock */
-    float f_qpm;                /* qp for current macroblock: precise float for AQ */
+    float qpm;                  /* qp for current macroblock: precise float for AQ */
     float qpa_rc;               /* average of macroblocks' qp before aq */
     float qpa_aq;               /* average of macroblocks' qp after aq */
+    float qp_novbv;             /* QP for the current frame if 1-pass VBV was disabled. */
     int qp_force;
 
     /* VBV stuff */
     double buffer_size;
-    double buffer_fill_final;   /* real buffer as of the last finished frame */
+    int64_t buffer_fill_final;
     double buffer_fill;         /* planned buffer, if all in-progress frames hit their bit budget */
     double buffer_rate;         /* # of bits added to buffer_fill after each frame */
+    double vbv_max_rate;        /* # of bits added to buffer_fill per second */
     predictor_t *pred;          /* predict frame size from satd */
+    int single_frame_vbv;
+    double rate_factor_max_increment; /* Don't allow RF above (CRF + this value). */
 
     /* ABR stuff */
     int    last_satd;
     double last_rceq;
     double cplxr_sum;           /* sum of bits*qscale/rceq */
     double expected_bits_sum;   /* sum of qscale2bits after rceq, ratefactor, and overflow, only includes finished frames */
+    int64_t filler_bits_sum;    /* sum in bits of finished frames' filler data */
     double wanted_bits_window;  /* target bitrate * window */
     double cbr_decay;
     double short_term_cplxsum;
@@ -105,24 +119,34 @@ struct x264_ratecontrol_t
     /* 2pass stuff */
     FILE *p_stat_file_out;
     char *psz_stat_file_tmpname;
+    FILE *p_mbtree_stat_file_out;
+    char *psz_mbtree_stat_file_tmpname;
+    char *psz_mbtree_stat_file_name;
+    FILE *p_mbtree_stat_file_in;
 
     int num_entries;            /* number of ratecontrol_entry_ts */
     ratecontrol_entry_t *entry; /* FIXME: copy needed data and free this once init is done */
     double last_qscale;
-    double last_qscale_for[5];  /* last qscale for a specific pict type, used for max_diff & ipb factor stuff  */
+    double last_qscale_for[3];  /* last qscale for a specific pict type, used for max_diff & ipb factor stuff */
     int last_non_b_pict_type;
     double accum_p_qp;          /* for determining I-frame quant */
     double accum_p_norm;
     double last_accum_p_norm;
-    double lmin[5];             /* min qscale by frame type */
-    double lmax[5];
+    double lmin[3];             /* min qscale by frame type */
+    double lmax[3];
     double lstep;               /* max change (multiply) in qscale per frame */
+    uint16_t *qp_buffer[2];     /* Global buffers for converting MB-tree quantizer data. */
+    int qpbuf_pos;              /* In order to handle pyramid reordering, QP buffer acts as a stack.
+                                 * This value is the current position (0 or 1). */
 
     /* MBRC stuff */
-    double frame_size_estimated;
+    float frame_size_estimated; /* Access to this variable must be atomic: double is
+                                 * not atomic on all arches we care about */
+    double frame_size_maximum;  /* Maximum frame size due to MinCR */
     double frame_size_planned;
-    predictor_t *row_pred;
-    predictor_t row_preds[5];
+    double slice_size_planned;
+    predictor_t (*row_pred)[2];
+    predictor_t row_preds[3][2];
     predictor_t *pred_b_from_p; /* predict B-frame size from P-frame satd */
     int bframes;                /* # consecutive B-frames before this P-frame */
     int bframe_bits;            /* total cost of those frames */
@@ -130,185 +154,431 @@ struct x264_ratecontrol_t
     int i_zones;
     x264_zone_t *zones;
     x264_zone_t *prev_zone;
+
+    /* hrd stuff */
+    int initial_cpb_removal_delay;
+    int initial_cpb_removal_delay_offset;
+    double nrt_first_access_unit; /* nominal removal time */
+    double previous_cpb_final_arrival_time;
+    uint64_t hrd_multiply_denom;
 };
 
 
 static int parse_zones( x264_t *h );
 static int init_pass2(x264_t *);
 static float rate_estimate_qscale( x264_t *h );
-static void update_vbv( x264_t *h, int bits );
-static void update_vbv_plan( x264_t *h );
+static int update_vbv( x264_t *h, int bits );
+static void update_vbv_plan( x264_t *h, int overhead );
 static double predict_size( predictor_t *p, double q, double var );
 static void update_predictor( predictor_t *p, double q, double var, double bits );
 
+#define CMP_OPT_FIRST_PASS( opt, param_val )\
+{\
+    if( ( p = strstr( opts, opt "=" ) ) && sscanf( p, opt "=%d" , &i ) && param_val != i )\
+    {\
+        x264_log( h, X264_LOG_ERROR, "different " opt " setting than first pass (%d vs %d)\n", param_val, i );\
+        return -1;\
+    }\
+}
+
 /* Terminology:
  * qp = h.264's quantizer
  * qscale = linearized quantizer = Lagrange multiplier
  */
-static inline double qp2qscale(double qp)
+static inline double qp2qscale( double qp )
 {
-    return 0.85 * pow(2.0, ( qp - 12.0 ) / 6.0);
+    return 0.85 * pow( 2.0, ( qp - 12.0 ) / 6.0 );
 }
-static inline double qscale2qp(double qscale)
+static inline double qscale2qp( double qscale )
 {
-    return 12.0 + 6.0 * log(qscale/0.85) / log(2.0);
+    return 12.0 + 6.0 * log2( qscale/0.85 );
 }
 
 /* Texture bitrate is not quite inversely proportional to qscale,
  * probably due the the changing number of SKIP blocks.
  * MV bits level off at about qp<=12, because the lambda used
  * for motion estimation is constant there. */
-static inline double qscale2bits(ratecontrol_entry_t *rce, double qscale)
+static inline double qscale2bits( ratecontrol_entry_t *rce, double qscale )
 {
-    if(qscale<0.1)
+    if( qscale<0.1 )
         qscale = 0.1;
     return (rce->tex_bits + .1) * pow( rce->qscale / qscale, 1.1 )
            + rce->mv_bits * pow( X264_MAX(rce->qscale, 1) / X264_MAX(qscale, 1), 0.5 )
            + rce->misc_bits;
 }
 
+static ALWAYS_INLINE uint32_t ac_energy_var( uint64_t sum_ssd, int shift, x264_frame_t *frame, int i )
+{
+    uint32_t sum = sum_ssd;
+    uint32_t ssd = sum_ssd >> 32;
+    frame->i_pixel_sum[i] += sum;
+    frame->i_pixel_ssd[i] += ssd;
+    return ssd - ((uint64_t)sum * sum >> shift);
+}
+
+static ALWAYS_INLINE uint32_t ac_energy_plane( x264_t *h, int mb_x, int mb_y, x264_frame_t *frame, int i )
+{
+    int w = i ? 8 : 16;
+    int stride = frame->i_stride[i];
+    int offset = h->mb.b_interlaced
+        ? 16 * mb_x + w * (mb_y&~1) * stride + (mb_y&1) * stride
+        : 16 * mb_x + w * mb_y * stride;
+    stride <<= h->mb.b_interlaced;
+    if( i )
+    {
+        ALIGNED_ARRAY_16( pixel, pix,[FENC_STRIDE*8] );
+        h->mc.load_deinterleave_8x8x2_fenc( pix, frame->plane[1] + offset, stride );
+        return ac_energy_var( h->pixf.var[PIXEL_8x8]( pix, FENC_STRIDE ), 6, frame, i )
+             + ac_energy_var( h->pixf.var[PIXEL_8x8]( pix+FENC_STRIDE/2, FENC_STRIDE ), 6, frame, i );
+    }
+    else
+        return ac_energy_var( h->pixf.var[PIXEL_16x16]( frame->plane[0] + offset, stride ), 8, frame, i );
+}
+
 // Find the total AC energy of the block in all planes.
-static NOINLINE uint32_t ac_energy_mb( x264_t *h, int mb_x, int mb_y, x264_frame_t *frame )
+static NOINLINE uint32_t x264_ac_energy_mb( x264_t *h, int mb_x, int mb_y, x264_frame_t *frame )
 {
     /* This function contains annoying hacks because GCC has a habit of reordering emms
      * and putting it after floating point ops.  As a result, we put the emms at the end of the
      * function and make sure that its always called before the float math.  Noinline makes
      * sure no reordering goes on. */
-    uint32_t var = 0, i;
-    for( i = 0; i < 3; i++ )
-    {
-        int w = i ? 8 : 16;
-        int stride = frame->i_stride[i];
-        int offset = h->mb.b_interlaced
-            ? w * (mb_x + (mb_y&~1) * stride) + (mb_y&1) * stride
-            : w * (mb_x + mb_y * stride);
-        int pix = i ? PIXEL_8x8 : PIXEL_16x16;
-        stride <<= h->mb.b_interlaced;
-        var += h->pixf.var[pix]( frame->plane[i]+offset, stride );
-    }
+    uint32_t var = ac_energy_plane( h, mb_x, mb_y, frame, 0 );
+    var         += ac_energy_plane( h, mb_x, mb_y, frame, 1 );
     x264_emms();
     return var;
 }
 
-static const float log2_lut[128] = {
-    0.00000, 0.01123, 0.02237, 0.03342, 0.04439, 0.05528, 0.06609, 0.07682,
-    0.08746, 0.09803, 0.10852, 0.11894, 0.12928, 0.13955, 0.14975, 0.15987,
-    0.16993, 0.17991, 0.18982, 0.19967, 0.20945, 0.21917, 0.22882, 0.23840,
-    0.24793, 0.25739, 0.26679, 0.27612, 0.28540, 0.29462, 0.30378, 0.31288,
-    0.32193, 0.33092, 0.33985, 0.34873, 0.35755, 0.36632, 0.37504, 0.38370,
-    0.39232, 0.40088, 0.40939, 0.41785, 0.42626, 0.43463, 0.44294, 0.45121,
-    0.45943, 0.46761, 0.47573, 0.48382, 0.49185, 0.49985, 0.50779, 0.51570,
-    0.52356, 0.53138, 0.53916, 0.54689, 0.55459, 0.56224, 0.56986, 0.57743,
-    0.58496, 0.59246, 0.59991, 0.60733, 0.61471, 0.62205, 0.62936, 0.63662,
-    0.64386, 0.65105, 0.65821, 0.66534, 0.67243, 0.67948, 0.68650, 0.69349,
-    0.70044, 0.70736, 0.71425, 0.72110, 0.72792, 0.73471, 0.74147, 0.74819,
-    0.75489, 0.76155, 0.76818, 0.77479, 0.78136, 0.78790, 0.79442, 0.80090,
-    0.80735, 0.81378, 0.82018, 0.82655, 0.83289, 0.83920, 0.84549, 0.85175,
-    0.85798, 0.86419, 0.87036, 0.87652, 0.88264, 0.88874, 0.89482, 0.90087,
-    0.90689, 0.91289, 0.91886, 0.92481, 0.93074, 0.93664, 0.94251, 0.94837,
-    0.95420, 0.96000, 0.96578, 0.97154, 0.97728, 0.98299, 0.98868, 0.99435,
-};
-
-static const uint8_t exp2_lut[64] = {
-      1,   4,   7,  10,  13,  16,  19,  22,  25,  28,  31,  34,  37,  40,  44,  47,
-     50,  53,  57,  60,  64,  67,  71,  74,  78,  81,  85,  89,  93,  96, 100, 104,
-    108, 112, 116, 120, 124, 128, 132, 137, 141, 145, 150, 154, 159, 163, 168, 172,
-    177, 182, 186, 191, 196, 201, 206, 211, 216, 221, 226, 232, 237, 242, 248, 253,
-};
-
-static ALWAYS_INLINE float x264_log2( uint32_t x )
-{
-    int lz = x264_clz( x );
-    return log2_lut[(x<<lz>>24)&0x7f] + (31 - lz);
-}
-
-static ALWAYS_INLINE int x264_exp2fix8( float x )
-{
-    int i, f;
-    x += 8;
-    if( x <= 0 ) return 0;
-    if( x >= 16 ) return 0xffff;
-    i = x;
-    f = (x-i)*64;
-    return (exp2_lut[f]+256) << i >> 8;
-}
-
-void x264_adaptive_quant_frame( x264_t *h, x264_frame_t *frame )
+void x264_adaptive_quant_frame( x264_t *h, x264_frame_t *frame, float *quant_offsets )
 {
     /* constants chosen to result in approximately the same overall bitrate as without AQ.
      * FIXME: while they're written in 5 significant digits, they're only tuned to 2. */
-    int mb_x, mb_y;
     float strength;
     float avg_adj = 0.f;
-    if( h->param.rc.i_aq_mode == X264_AQ_AUTOVARIANCE )
+    /* Initialize frame stats */
+    for( int i = 0; i < 3; i++ )
     {
-        for( mb_y = 0; mb_y < h->sps->i_mb_height; mb_y++ )
-            for( mb_x = 0; mb_x < h->sps->i_mb_width; mb_x++ )
+        frame->i_pixel_sum[i] = 0;
+        frame->i_pixel_ssd[i] = 0;
+    }
+
+    /* Degenerate cases */
+    if( h->param.rc.i_aq_mode == X264_AQ_NONE || h->param.rc.f_aq_strength == 0 )
+    {
+        /* Need to init it anyways for MB tree */
+        if( h->param.rc.i_aq_mode && h->param.rc.f_aq_strength == 0 )
+        {
+            if( quant_offsets )
+            {
+                for( int mb_xy = 0; mb_xy < h->mb.i_mb_count; mb_xy++ )
+                    frame->f_qp_offset[mb_xy] = frame->f_qp_offset_aq[mb_xy] = quant_offsets[mb_xy];
+                if( h->frames.b_have_lowres )
+                    for( int mb_xy = 0; mb_xy < h->mb.i_mb_count; mb_xy++ )
+                        frame->i_inv_qscale_factor[mb_xy] = x264_exp2fix8( frame->f_qp_offset[mb_xy] );
+            }
+            else
             {
-                uint32_t energy = ac_energy_mb( h, mb_x, mb_y, frame );
-                float qp_adj = x264_log2( energy + 2 );
-                qp_adj *= qp_adj;
-                frame->f_qp_offset[mb_x + mb_y*h->mb.i_mb_stride] = qp_adj;
-                avg_adj += qp_adj;
+                memset( frame->f_qp_offset, 0, h->mb.i_mb_count * sizeof(float) );
+                memset( frame->f_qp_offset_aq, 0, h->mb.i_mb_count * sizeof(float) );
+                if( h->frames.b_have_lowres )
+                    for( int mb_xy = 0; mb_xy < h->mb.i_mb_count; mb_xy++ )
+                        frame->i_inv_qscale_factor[mb_xy] = 256;
             }
-        avg_adj /= h->mb.i_mb_count;
-        strength = h->param.rc.f_aq_strength * avg_adj * (1.f / 6000.f);
+        }
+        /* Need variance data for weighted prediction */
+        if( h->param.analyse.i_weighted_pred == X264_WEIGHTP_FAKE || h->param.analyse.i_weighted_pred == X264_WEIGHTP_SMART )
+        {
+            for( int mb_y = 0; mb_y < h->mb.i_mb_height; mb_y++ )
+                for( int mb_x = 0; mb_x < h->mb.i_mb_width; mb_x++ )
+                    x264_ac_energy_mb( h, mb_x, mb_y, frame );
+        }
+        else
+            return;
     }
+    /* Actual adaptive quantization */
     else
-        strength = h->param.rc.f_aq_strength * 1.0397f;
-    for( mb_y = 0; mb_y < h->sps->i_mb_height; mb_y++ )
-        for( mb_x = 0; mb_x < h->sps->i_mb_width; mb_x++ )
+    {
+        if( h->param.rc.i_aq_mode == X264_AQ_AUTOVARIANCE )
         {
-            float qp_adj;
-            if( h->param.rc.i_aq_mode == X264_AQ_AUTOVARIANCE )
+            float bit_depth_correction = powf(1 << (BIT_DEPTH-8), 0.5f);
+            float avg_adj_pow2 = 0.f;
+            for( int mb_y = 0; mb_y < h->mb.i_mb_height; mb_y++ )
+                for( int mb_x = 0; mb_x < h->mb.i_mb_width; mb_x++ )
+                {
+                    uint32_t energy = x264_ac_energy_mb( h, mb_x, mb_y, frame );
+                    float qp_adj = powf( energy + 1, 0.125f );
+                    frame->f_qp_offset[mb_x + mb_y*h->mb.i_mb_stride] = qp_adj;
+                    avg_adj += qp_adj;
+                    avg_adj_pow2 += qp_adj * qp_adj;
+                }
+            avg_adj /= h->mb.i_mb_count;
+            avg_adj_pow2 /= h->mb.i_mb_count;
+            strength = h->param.rc.f_aq_strength * avg_adj / bit_depth_correction;
+            avg_adj = avg_adj - 0.5f * (avg_adj_pow2 - (14.f * bit_depth_correction)) / avg_adj;
+        }
+        else
+            strength = h->param.rc.f_aq_strength * 1.0397f;
+
+        for( int mb_y = 0; mb_y < h->mb.i_mb_height; mb_y++ )
+            for( int mb_x = 0; mb_x < h->mb.i_mb_width; mb_x++ )
             {
-                qp_adj = frame->f_qp_offset[mb_x + mb_y*h->mb.i_mb_stride];
-                qp_adj = strength * (qp_adj - avg_adj);
+                float qp_adj;
+                int mb_xy = mb_x + mb_y*h->mb.i_mb_stride;
+                if( h->param.rc.i_aq_mode == X264_AQ_AUTOVARIANCE )
+                {
+                    qp_adj = frame->f_qp_offset[mb_xy];
+                    qp_adj = strength * (qp_adj - avg_adj);
+                }
+                else
+                {
+                    uint32_t energy = x264_ac_energy_mb( h, mb_x, mb_y, frame );
+                    qp_adj = strength * (x264_log2( X264_MAX(energy, 1) ) - (14.427f + 2*(BIT_DEPTH-8)));
+                }
+                if( quant_offsets )
+                    qp_adj += quant_offsets[mb_xy];
+                frame->f_qp_offset[mb_xy] =
+                frame->f_qp_offset_aq[mb_xy] = qp_adj;
+                if( h->frames.b_have_lowres )
+                    frame->i_inv_qscale_factor[mb_xy] = x264_exp2fix8(qp_adj);
             }
-            else
+    }
+
+    /* Remove mean from SSD calculation */
+    for( int i = 0; i < 3; i++ )
+    {
+        uint64_t ssd = frame->i_pixel_ssd[i];
+        uint64_t sum = frame->i_pixel_sum[i];
+        int width = h->mb.i_mb_width*16>>!!i;
+        int height = h->mb.i_mb_height*16>>!!i;
+        frame->i_pixel_ssd[i] = ssd - (sum * sum + width * height / 2) / (width * height);
+    }
+}
+
+int x264_macroblock_tree_read( x264_t *h, x264_frame_t *frame, float *quant_offsets )
+{
+    x264_ratecontrol_t *rc = h->rc;
+    uint8_t i_type_actual = rc->entry[frame->i_frame].pict_type;
+
+    if( rc->entry[frame->i_frame].kept_as_ref )
+    {
+        uint8_t i_type;
+        if( rc->qpbuf_pos < 0 )
+        {
+            do
             {
-                uint32_t energy = ac_energy_mb( h, mb_x, mb_y, frame );
-                qp_adj = strength * (x264_log2( X264_MAX(energy, 1) ) - 14.427f);
-            }
-            frame->f_qp_offset[mb_x + mb_y*h->mb.i_mb_stride] = qp_adj;
+                rc->qpbuf_pos++;
+
+                if( !fread( &i_type, 1, 1, rc->p_mbtree_stat_file_in ) )
+                    goto fail;
+                if( fread( rc->qp_buffer[rc->qpbuf_pos], sizeof(uint16_t), h->mb.i_mb_count, rc->p_mbtree_stat_file_in ) != h->mb.i_mb_count )
+                    goto fail;
+
+                if( i_type != i_type_actual && rc->qpbuf_pos == 1 )
+                {
+                    x264_log(h, X264_LOG_ERROR, "MB-tree frametype %d doesn't match actual frametype %d.\n", i_type, i_type_actual);
+                    return -1;
+                }
+            } while( i_type != i_type_actual );
+        }
+
+        for( int i = 0; i < h->mb.i_mb_count; i++ )
+        {
+            frame->f_qp_offset[i] = ((float)(int16_t)endian_fix16( rc->qp_buffer[rc->qpbuf_pos][i] )) * (1/256.0);
             if( h->frames.b_have_lowres )
-                frame->i_inv_qscale_factor[mb_x + mb_y*h->mb.i_mb_stride] = x264_exp2fix8(qp_adj*(-1.f/6.f));
+                frame->i_inv_qscale_factor[i] = x264_exp2fix8(frame->f_qp_offset[i]);
         }
+        rc->qpbuf_pos--;
+    }
+    else
+        x264_stack_align( x264_adaptive_quant_frame, h, frame, quant_offsets );
+    return 0;
+fail:
+    x264_log(h, X264_LOG_ERROR, "Incomplete MB-tree stats file.\n");
+    return -1;
 }
 
+int x264_reference_build_list_optimal( x264_t *h )
+{
+    ratecontrol_entry_t *rce = h->rc->rce;
+    x264_frame_t *frames[16];
+    x264_weight_t weights[16][3];
+    int refcount[16];
 
-/*****************************************************************************
-* x264_adaptive_quant:
- * adjust macroblock QP based on variance (AC energy) of the MB.
- * high variance  = higher QP
- * low variance = lower QP
- * This generally increases SSIM and lowers PSNR.
-*****************************************************************************/
-void x264_adaptive_quant( x264_t *h )
+    if( rce->refs != h->i_ref0 )
+        return -1;
+
+    memcpy( frames, h->fref0, sizeof(frames) );
+    memcpy( refcount, rce->refcount, sizeof(refcount) );
+    memcpy( weights, h->fenc->weight, sizeof(weights) );
+    memset( &h->fenc->weight[1][0], 0, sizeof(x264_weight_t[15][3]) );
+
+    /* For now don't reorder ref 0; it seems to lower quality
+       in most cases due to skips. */
+    for( int ref = 1; ref < h->i_ref0; ref++ )
+    {
+        int max = -1;
+        int bestref = 1;
+
+        for( int i = 1; i < h->i_ref0; i++ )
+            /* Favor lower POC as a tiebreaker. */
+            COPY2_IF_GT( max, refcount[i], bestref, i );
+
+        /* FIXME: If there are duplicates from frames other than ref0 then it is possible
+         * that the optimal ordering doesnt place every duplicate. */
+
+        refcount[bestref] = -1;
+        h->fref0[ref] = frames[bestref];
+        memcpy( h->fenc->weight[ref], weights[bestref], sizeof(weights[bestref]) );
+    }
+
+    return 0;
+}
+
+static char *x264_strcat_filename( char *input, char *suffix )
 {
-    x264_emms();
-    h->mb.i_qp = x264_clip3( h->rc->f_qpm + h->fenc->f_qp_offset[h->mb.i_mb_xy] + .5, h->param.rc.i_qp_min, h->param.rc.i_qp_max );
+    char *output = x264_malloc( strlen( input ) + strlen( suffix ) + 1 );
+    if( !output )
+        return NULL;
+    strcpy( output, input );
+    strcat( output, suffix );
+    return output;
+}
+
+void x264_ratecontrol_init_reconfigurable( x264_t *h, int b_init )
+{
+    x264_ratecontrol_t *rc = h->rc;
+    if( !b_init && rc->b_2pass )
+        return;
+
+    if( h->param.rc.i_rc_method == X264_RC_CRF )
+    {
+        /* Arbitrary rescaling to make CRF somewhat similar to QP.
+         * Try to compensate for MB-tree's effects as well. */
+        double base_cplx = h->mb.i_mb_count * (h->param.i_bframe ? 120 : 80);
+        double mbtree_offset = h->param.rc.b_mb_tree ? (1.0-h->param.rc.f_qcompress)*13.5 : 0;
+        rc->rate_factor_constant = pow( base_cplx, 1 - rc->qcompress )
+                                 / qp2qscale( h->param.rc.f_rf_constant + mbtree_offset );
+    }
+
+    if( h->param.rc.i_vbv_max_bitrate > 0 && h->param.rc.i_vbv_buffer_size > 0 )
+    {
+        if( h->param.rc.i_vbv_buffer_size < (int)(h->param.rc.i_vbv_max_bitrate / rc->fps) )
+        {
+            h->param.rc.i_vbv_buffer_size = h->param.rc.i_vbv_max_bitrate / rc->fps;
+            x264_log( h, X264_LOG_WARNING, "VBV buffer size cannot be smaller than one frame, using %d kbit\n",
+                      h->param.rc.i_vbv_buffer_size );
+        }
+
+        /* We don't support changing the ABR bitrate right now,
+           so if the stream starts as CBR, keep it CBR. */
+        if( rc->b_vbv_min_rate )
+            h->param.rc.i_vbv_max_bitrate = h->param.rc.i_bitrate;
+
+        int vbv_buffer_size = h->param.rc.i_vbv_buffer_size * 1000;
+        int vbv_max_bitrate = h->param.rc.i_vbv_max_bitrate * 1000;
+
+        /* Init HRD */
+        h->sps->vui.hrd.i_bit_rate_unscaled = vbv_max_bitrate;
+        h->sps->vui.hrd.i_cpb_size_unscaled = vbv_buffer_size;
+        if( h->param.i_nal_hrd && b_init )
+        {
+            h->sps->vui.hrd.i_cpb_cnt = 1;
+            h->sps->vui.hrd.b_cbr_hrd = h->param.i_nal_hrd == X264_NAL_HRD_CBR;
+            h->sps->vui.hrd.i_time_offset_length = 0;
+
+            #define BR_SHIFT  6
+            #define CPB_SHIFT 4
+
+            int bitrate = 1000*h->param.rc.i_vbv_max_bitrate;
+            int bufsize = 1000*h->param.rc.i_vbv_buffer_size;
+
+            // normalize HRD size and rate to the value / scale notation
+            h->sps->vui.hrd.i_bit_rate_scale = x264_clip3( x264_ctz( bitrate ) - BR_SHIFT, 0, 15 );
+            h->sps->vui.hrd.i_bit_rate_value = bitrate >> ( h->sps->vui.hrd.i_bit_rate_scale + BR_SHIFT );
+            h->sps->vui.hrd.i_bit_rate_unscaled = h->sps->vui.hrd.i_bit_rate_value << ( h->sps->vui.hrd.i_bit_rate_scale + BR_SHIFT );
+            h->sps->vui.hrd.i_cpb_size_scale = x264_clip3( x264_ctz( bufsize ) - CPB_SHIFT, 0, 15 );
+            h->sps->vui.hrd.i_cpb_size_value = bufsize >> ( h->sps->vui.hrd.i_cpb_size_scale + CPB_SHIFT );
+            h->sps->vui.hrd.i_cpb_size_unscaled = h->sps->vui.hrd.i_cpb_size_value << ( h->sps->vui.hrd.i_cpb_size_scale + CPB_SHIFT );
+
+            #undef CPB_SHIFT
+            #undef BR_SHIFT
+
+            // arbitrary
+            #define MAX_DURATION 0.5
+
+            int max_cpb_output_delay = X264_MIN( h->param.i_keyint_max * MAX_DURATION * h->sps->vui.i_time_scale / h->sps->vui.i_num_units_in_tick, INT_MAX );
+            int max_dpb_output_delay = h->sps->vui.i_max_dec_frame_buffering * MAX_DURATION * h->sps->vui.i_time_scale / h->sps->vui.i_num_units_in_tick;
+            int max_delay = (int)(90000.0 * (double)h->sps->vui.hrd.i_cpb_size_unscaled / h->sps->vui.hrd.i_bit_rate_unscaled + 0.5);
+
+            h->sps->vui.hrd.i_initial_cpb_removal_delay_length = 2 + x264_clip3( 32 - x264_clz( max_delay ), 4, 22 );
+            h->sps->vui.hrd.i_cpb_removal_delay_length = x264_clip3( 32 - x264_clz( max_cpb_output_delay ), 4, 31 );
+            h->sps->vui.hrd.i_dpb_output_delay_length  = x264_clip3( 32 - x264_clz( max_dpb_output_delay ), 4, 31 );
+
+            #undef MAX_DURATION
+
+            vbv_buffer_size = h->sps->vui.hrd.i_cpb_size_unscaled;
+            vbv_max_bitrate = h->sps->vui.hrd.i_bit_rate_unscaled;
+        }
+        else if( h->param.i_nal_hrd && !b_init )
+        {
+            x264_log( h, X264_LOG_WARNING, "VBV parameters cannot be changed when NAL HRD is in use\n" );
+            return;
+        }
+
+        rc->buffer_rate = vbv_max_bitrate / rc->fps;
+        rc->vbv_max_rate = vbv_max_bitrate;
+        rc->buffer_size = vbv_buffer_size;
+        rc->single_frame_vbv = rc->buffer_rate * 1.1 > rc->buffer_size;
+        rc->cbr_decay = 1.0 - rc->buffer_rate / rc->buffer_size
+                      * 0.5 * X264_MAX(0, 1.5 - rc->buffer_rate * rc->fps / rc->bitrate);
+        if( h->param.rc.i_rc_method == X264_RC_CRF && h->param.rc.f_rf_constant_max )
+        {
+            rc->rate_factor_max_increment = h->param.rc.f_rf_constant_max - h->param.rc.f_rf_constant;
+            if( rc->rate_factor_max_increment <= 0 )
+            {
+                x264_log( h, X264_LOG_WARNING, "CRF max must be greater than CRF\n" );
+                rc->rate_factor_max_increment = 0;
+            }
+        }
+        if( b_init )
+        {
+            if( h->param.rc.f_vbv_buffer_init > 1. )
+                h->param.rc.f_vbv_buffer_init = x264_clip3f( h->param.rc.f_vbv_buffer_init / h->param.rc.i_vbv_buffer_size, 0, 1 );
+            h->param.rc.f_vbv_buffer_init = x264_clip3f( X264_MAX( h->param.rc.f_vbv_buffer_init, rc->buffer_rate / rc->buffer_size ), 0, 1);
+            rc->buffer_fill_final = rc->buffer_size * h->param.rc.f_vbv_buffer_init * h->sps->vui.i_time_scale;
+            rc->b_vbv = 1;
+            rc->b_vbv_min_rate = !rc->b_2pass
+                          && h->param.rc.i_rc_method == X264_RC_ABR
+                          && h->param.rc.i_vbv_max_bitrate <= h->param.rc.i_bitrate;
+        }
+    }
 }
 
 int x264_ratecontrol_new( x264_t *h )
 {
     x264_ratecontrol_t *rc;
-    int i;
 
     x264_emms();
 
-    rc = h->rc = x264_malloc( h->param.i_threads * sizeof(x264_ratecontrol_t) );
-    memset( rc, 0, h->param.i_threads * sizeof(x264_ratecontrol_t) );
+    CHECKED_MALLOCZERO( h->rc, h->param.i_threads * sizeof(x264_ratecontrol_t) );
+    rc = h->rc;
 
     rc->b_abr = h->param.rc.i_rc_method != X264_RC_CQP && !h->param.rc.b_stat_read;
     rc->b_2pass = h->param.rc.i_rc_method == X264_RC_ABR && h->param.rc.b_stat_read;
 
     /* FIXME: use integers */
-    if(h->param.i_fps_num > 0 && h->param.i_fps_den > 0)
+    if( h->param.i_fps_num > 0 && h->param.i_fps_den > 0 )
         rc->fps = (float) h->param.i_fps_num / h->param.i_fps_den;
     else
         rc->fps = 25.0;
 
+    if( h->param.rc.b_mb_tree )
+    {
+        h->param.rc.f_pb_factor = 1;
+        rc->qcompress = 1;
+    }
+    else
+        rc->qcompress = h->param.rc.f_qcompress;
+
     rc->bitrate = h->param.rc.i_bitrate * 1000.;
     rc->rate_tolerance = h->param.rc.f_rate_tolerance;
     rc->nmb = h->mb.i_mb_count;
@@ -320,50 +590,27 @@ int x264_ratecontrol_new( x264_t *h )
         x264_log(h, X264_LOG_ERROR, "constant rate-factor is incompatible with 2pass.\n");
         return -1;
     }
-    if( h->param.rc.i_vbv_buffer_size )
-    {
-        if( h->param.rc.i_rc_method == X264_RC_CQP )
-        {
-            x264_log(h, X264_LOG_WARNING, "VBV is incompatible with constant QP, ignored.\n");
-            h->param.rc.i_vbv_max_bitrate = 0;
-            h->param.rc.i_vbv_buffer_size = 0;
-        }
-        else if( h->param.rc.i_vbv_max_bitrate == 0 )
-        {
-            x264_log( h, X264_LOG_DEBUG, "VBV maxrate unspecified, assuming CBR\n" );
-            h->param.rc.i_vbv_max_bitrate = h->param.rc.i_bitrate;
-        }
-    }
-    if( h->param.rc.i_vbv_max_bitrate < h->param.rc.i_bitrate &&
-        h->param.rc.i_vbv_max_bitrate > 0)
-        x264_log(h, X264_LOG_WARNING, "max bitrate less than average bitrate, ignored.\n");
-    else if( h->param.rc.i_vbv_max_bitrate > 0 &&
-             h->param.rc.i_vbv_buffer_size > 0 )
+
+    x264_ratecontrol_init_reconfigurable( h, 1 );
+
+    if( h->param.i_nal_hrd )
     {
-        if( h->param.rc.i_vbv_buffer_size < 3 * h->param.rc.i_vbv_max_bitrate / rc->fps )
+        uint64_t denom = (uint64_t)h->sps->vui.hrd.i_bit_rate_unscaled * h->sps->vui.i_time_scale;
+        uint64_t num = 180000;
+        x264_reduce_fraction64( &num, &denom );
+        rc->hrd_multiply_denom = 180000 / num;
+
+        double bits_required = log2( 180000 / rc->hrd_multiply_denom )
+                             + log2( h->sps->vui.i_time_scale )
+                             + log2( h->sps->vui.hrd.i_cpb_size_unscaled );
+        if( bits_required >= 63 )
         {
-            h->param.rc.i_vbv_buffer_size = 3 * h->param.rc.i_vbv_max_bitrate / rc->fps;
-            x264_log( h, X264_LOG_WARNING, "VBV buffer size too small, using %d kbit\n",
-                      h->param.rc.i_vbv_buffer_size );
+            x264_log( h, X264_LOG_ERROR, "HRD with very large timescale and bufsize not supported\n" );
+            return -1;
         }
-        if( h->param.rc.f_vbv_buffer_init > 1. )
-            h->param.rc.f_vbv_buffer_init = x264_clip3f( h->param.rc.f_vbv_buffer_init / h->param.rc.i_vbv_buffer_size, 0, 1 );
-        rc->buffer_rate = h->param.rc.i_vbv_max_bitrate * 1000. / rc->fps;
-        rc->buffer_size = h->param.rc.i_vbv_buffer_size * 1000.;
-        rc->buffer_fill_final = rc->buffer_size * h->param.rc.f_vbv_buffer_init;
-        rc->cbr_decay = 1.0 - rc->buffer_rate / rc->buffer_size
-                      * 0.5 * X264_MAX(0, 1.5 - rc->buffer_rate * rc->fps / rc->bitrate);
-        rc->b_vbv = 1;
-        rc->b_vbv_min_rate = !rc->b_2pass
-                          && h->param.rc.i_rc_method == X264_RC_ABR
-                          && h->param.rc.i_vbv_max_bitrate <= h->param.rc.i_bitrate;
-    }
-    else if( h->param.rc.i_vbv_max_bitrate )
-    {
-        x264_log(h, X264_LOG_WARNING, "VBV maxrate specified, but no bufsize.\n");
-        h->param.rc.i_vbv_max_bitrate = 0;
     }
-    if(rc->rate_tolerance < 0.01)
+
+    if( rc->rate_tolerance < 0.01 )
     {
         x264_log(h, X264_LOG_WARNING, "bitrate tolerance too small, using .01\n");
         rc->rate_tolerance = 0.01;
@@ -378,40 +625,42 @@ int x264_ratecontrol_new( x264_t *h )
         rc->accum_p_norm = .01;
         rc->accum_p_qp = ABR_INIT_QP * rc->accum_p_norm;
         /* estimated ratio that produces a reasonable QP for the first I-frame */
-        rc->cplxr_sum = .01 * pow( 7.0e5, h->param.rc.f_qcompress ) * pow( h->mb.i_mb_count, 0.5 );
+        rc->cplxr_sum = .01 * pow( 7.0e5, rc->qcompress ) * pow( h->mb.i_mb_count, 0.5 );
         rc->wanted_bits_window = 1.0 * rc->bitrate / rc->fps;
         rc->last_non_b_pict_type = SLICE_TYPE_I;
     }
 
-    if( h->param.rc.i_rc_method == X264_RC_CRF )
-    {
-        /* arbitrary rescaling to make CRF somewhat similar to QP */
-        double base_cplx = h->mb.i_mb_count * (h->param.i_bframe ? 120 : 80);
-        rc->rate_factor_constant = pow( base_cplx, 1 - h->param.rc.f_qcompress )
-                                 / qp2qscale( h->param.rc.f_rf_constant );
-    }
-
-    rc->ip_offset = 6.0 * log(h->param.rc.f_ip_factor) / log(2.0);
-    rc->pb_offset = 6.0 * log(h->param.rc.f_pb_factor) / log(2.0);
+    rc->ip_offset = 6.0 * log2f( h->param.rc.f_ip_factor );
+    rc->pb_offset = 6.0 * log2f( h->param.rc.f_pb_factor );
     rc->qp_constant[SLICE_TYPE_P] = h->param.rc.i_qp_constant;
-    rc->qp_constant[SLICE_TYPE_I] = x264_clip3( h->param.rc.i_qp_constant - rc->ip_offset + 0.5, 0, 51 );
-    rc->qp_constant[SLICE_TYPE_B] = x264_clip3( h->param.rc.i_qp_constant + rc->pb_offset + 0.5, 0, 51 );
+    rc->qp_constant[SLICE_TYPE_I] = x264_clip3( h->param.rc.i_qp_constant - rc->ip_offset + 0.5, 0, QP_MAX );
+    rc->qp_constant[SLICE_TYPE_B] = x264_clip3( h->param.rc.i_qp_constant + rc->pb_offset + 0.5, 0, QP_MAX );
+    h->mb.ip_offset = rc->ip_offset + 0.5;
 
     rc->lstep = pow( 2, h->param.rc.i_qp_step / 6.0 );
-    rc->last_qscale = qp2qscale(26);
-    rc->pred = x264_malloc( 5*sizeof(predictor_t) );
-    rc->pred_b_from_p = x264_malloc( sizeof(predictor_t) );
-    for( i = 0; i < 5; i++ )
+    rc->last_qscale = qp2qscale( 26 );
+    int num_preds = h->param.b_sliced_threads * h->param.i_threads + 1;
+    CHECKED_MALLOC( rc->pred, 5 * sizeof(predictor_t) * num_preds );
+    CHECKED_MALLOC( rc->pred_b_from_p, sizeof(predictor_t) );
+    for( int i = 0; i < 3; i++ )
     {
         rc->last_qscale_for[i] = qp2qscale( ABR_INIT_QP );
         rc->lmin[i] = qp2qscale( h->param.rc.i_qp_min );
         rc->lmax[i] = qp2qscale( h->param.rc.i_qp_max );
-        rc->pred[i].coeff= 2.0;
-        rc->pred[i].count= 1.0;
-        rc->pred[i].decay= 0.5;
-        rc->row_preds[i].coeff= .25;
-        rc->row_preds[i].count= 1.0;
-        rc->row_preds[i].decay= 0.5;
+        for( int j = 0; j < num_preds; j++ )
+        {
+            rc->pred[i+j*5].coeff= 2.0;
+            rc->pred[i+j*5].count= 1.0;
+            rc->pred[i+j*5].decay= 0.5;
+            rc->pred[i+j*5].offset= 0.0;
+        }
+        for( int j = 0; j < 2; j++ )
+        {
+            rc->row_preds[i][j].coeff= .25;
+            rc->row_preds[i][j].count= 1.0;
+            rc->row_preds[i][j].decay= 0.5;
+            rc->row_preds[i][j].offset= 0.0;
+        }
     }
     *rc->pred_b_from_p = rc->pred[0];
 
@@ -434,35 +683,74 @@ int x264_ratecontrol_new( x264_t *h )
             x264_log(h, X264_LOG_ERROR, "ratecontrol_init: can't open stats file\n");
             return -1;
         }
+        if( h->param.rc.b_mb_tree )
+        {
+            char *mbtree_stats_in = x264_strcat_filename( h->param.rc.psz_stat_in, ".mbtree" );
+            if( !mbtree_stats_in )
+                return -1;
+            rc->p_mbtree_stat_file_in = fopen( mbtree_stats_in, "rb" );
+            x264_free( mbtree_stats_in );
+            if( !rc->p_mbtree_stat_file_in )
+            {
+                x264_log(h, X264_LOG_ERROR, "ratecontrol_init: can't open mbtree stats file\n");
+                return -1;
+            }
+        }
 
         /* check whether 1st pass options were compatible with current options */
         if( !strncmp( stats_buf, "#options:", 9 ) )
         {
-            int i;
+            int i, j;
+            uint32_t k, l;
             char *opts = stats_buf;
             stats_in = strchr( stats_buf, '\n' );
             if( !stats_in )
                 return -1;
             *stats_in = '\0';
             stats_in++;
+            if( sscanf( opts, "#options: %dx%d", &i, &j ) != 2 )
+            {
+                x264_log( h, X264_LOG_ERROR, "resolution specified in stats file not valid\n" );
+                return -1;
+            }
+            else if( h->param.rc.b_mb_tree && (i != h->param.i_width || j != h->param.i_height)  )
+            {
+                x264_log( h, X264_LOG_ERROR, "MB-tree doesn't support different resolution than 1st pass (%dx%d vs %dx%d)\n",
+                          h->param.i_width, h->param.i_height, i, j );
+                return -1;
+            }
 
-            if( ( p = strstr( opts, "bframes=" ) ) && sscanf( p, "bframes=%d", &i )
-                && h->param.i_bframe != i )
+            if( ( p = strstr( opts, "timebase=" ) ) && sscanf( p, "timebase=%u/%u", &k, &l ) != 2 )
             {
-                x264_log( h, X264_LOG_ERROR, "different number of B-frames than 1st pass (%d vs %d)\n",
-                          h->param.i_bframe, i );
+                x264_log( h, X264_LOG_ERROR, "timebase specified in stats file not valid\n" );
+                return -1;
+            }
+            if( k != h->param.i_timebase_num || l != h->param.i_timebase_den )
+            {
+                x264_log( h, X264_LOG_ERROR, "timebase mismatch with 1st pass (%u/%u vs %u/%u)\n",
+                          h->param.i_timebase_num, h->param.i_timebase_den, k, l );
                 return -1;
             }
 
-            /* since B-adapt doesn't (yet) take into account B-pyramid,
-             * the converse is not a problem */
-            if( strstr( opts, "b_pyramid=1" ) && !h->param.b_bframe_pyramid )
-                x264_log( h, X264_LOG_WARNING, "1st pass used B-pyramid, 2nd doesn't\n" );
+            CMP_OPT_FIRST_PASS( "weightp", X264_MAX( 0, h->param.analyse.i_weighted_pred ) );
+            CMP_OPT_FIRST_PASS( "bframes", h->param.i_bframe );
+            CMP_OPT_FIRST_PASS( "b_pyramid", h->param.i_bframe_pyramid );
+            CMP_OPT_FIRST_PASS( "intra_refresh", h->param.b_intra_refresh );
+            CMP_OPT_FIRST_PASS( "open_gop", h->param.i_open_gop );
 
-            if( ( p = strstr( opts, "keyint=" ) ) && sscanf( p, "keyint=%d", &i )
-                && h->param.i_keyint_max != i )
-                x264_log( h, X264_LOG_WARNING, "different keyint than 1st pass (%d vs %d)\n",
-                          h->param.i_keyint_max, i );
+            if( (p = strstr( opts, "keyint=" )) )
+            {
+                p += 7;
+                char buf[13] = "infinite ";
+                if( h->param.i_keyint_max != X264_KEYINT_MAX_INFINITE )
+                    sprintf( buf, "%d ", h->param.i_keyint_max );
+                if( strncmp( p, buf, strlen(buf) ) )
+                {
+                    x264_log( h, X264_LOG_ERROR, "different keyint setting than first pass (%.*s vs %.*s)\n",
+                              strlen(buf)-1, buf, strcspn(p, " "), p );
+                    return -1;
+                }
+            }
 
             if( strstr( opts, "qp=0" ) && h->param.rc.i_rc_method == X264_RC_ABR )
                 x264_log( h, X264_LOG_WARNING, "1st pass was lossless, bitrate prediction will be inaccurate\n" );
@@ -480,18 +768,22 @@ int x264_ratecontrol_new( x264_t *h )
                 x264_log( h, X264_LOG_ERROR, "b_adapt method specified in stats file not valid\n" );
                 return -1;
             }
+
+            if( (h->param.rc.b_mb_tree || h->param.rc.i_vbv_buffer_size) && ( p = strstr( opts, "rc_lookahead=" ) ) && sscanf( p, "rc_lookahead=%d", &i ) )
+                h->param.rc.i_lookahead = i;
         }
 
         /* find number of pics */
         p = stats_in;
-        for(i=-1; p; i++)
-            p = strchr(p+1, ';');
-        if(i==0)
+        int num_entries;
+        for( num_entries = -1; p; num_entries++ )
+            p = strchr( p + 1, ';' );
+        if( !num_entries )
         {
             x264_log(h, X264_LOG_ERROR, "empty stats file\n");
             return -1;
         }
-        rc->num_entries = i;
+        rc->num_entries = num_entries;
 
         if( h->param.i_frame_total < rc->num_entries && h->param.i_frame_total > 0 )
         {
@@ -505,22 +797,21 @@ int x264_ratecontrol_new( x264_t *h )
             return -1;
         }
 
-        rc->entry = (ratecontrol_entry_t*) x264_malloc(rc->num_entries * sizeof(ratecontrol_entry_t));
-        memset(rc->entry, 0, rc->num_entries * sizeof(ratecontrol_entry_t));
+        CHECKED_MALLOCZERO( rc->entry, rc->num_entries * sizeof(ratecontrol_entry_t) );
 
         /* init all to skipped p frames */
-        for(i=0; i<rc->num_entries; i++)
+        for( int i = 0; i < rc->num_entries; i++ )
         {
             ratecontrol_entry_t *rce = &rc->entry[i];
             rce->pict_type = SLICE_TYPE_P;
-            rce->qscale = rce->new_qscale = qp2qscale(20);
+            rce->qscale = rce->new_qscale = qp2qscale( 20 );
             rce->misc_bits = rc->nmb + 10;
             rce->new_qp = 0;
         }
 
         /* read stats */
         p = stats_in;
-        for(i=0; i < rc->num_entries; i++)
+        for( int i = 0; i < rc->num_entries; i++ )
         {
             ratecontrol_entry_t *rce;
             int frame_number;
@@ -528,51 +819,89 @@ int x264_ratecontrol_new( x264_t *h )
             int e;
             char *next;
             float qp;
+            int ref;
 
             next= strchr(p, ';');
-            if(next)
-            {
-                (*next)=0; //sscanf is unbelievably slow on long strings
-                next++;
-            }
-            e = sscanf(p, " in:%d ", &frame_number);
+            if( next )
+                *next++ = 0; //sscanf is unbelievably slow on long strings
+            e = sscanf( p, " in:%d ", &frame_number );
 
-            if(frame_number < 0 || frame_number >= rc->num_entries)
+            if( frame_number < 0 || frame_number >= rc->num_entries )
             {
-                x264_log(h, X264_LOG_ERROR, "bad frame number (%d) at stats line %d\n", frame_number, i);
+                x264_log( h, X264_LOG_ERROR, "bad frame number (%d) at stats line %d\n", frame_number, i );
                 return -1;
             }
             rce = &rc->entry[frame_number];
             rce->direct_mode = 0;
 
-            e += sscanf(p, " in:%*d out:%*d type:%c q:%f tex:%d mv:%d misc:%d imb:%d pmb:%d smb:%d d:%c",
-                   &pict_type, &qp, &rce->tex_bits,
+            e += sscanf( p, " in:%*d out:%*d type:%c dur:%d cpbdur:%d q:%f tex:%d mv:%d misc:%d imb:%d pmb:%d smb:%d d:%c",
+                   &pict_type, &rce->i_duration, &rce->i_cpb_duration, &qp, &rce->tex_bits,
                    &rce->mv_bits, &rce->misc_bits, &rce->i_count, &rce->p_count,
-                   &rce->s_count, &rce->direct_mode);
+                   &rce->s_count, &rce->direct_mode );
 
-            switch(pict_type)
+            p = strstr( p, "ref:" );
+            if( !p )
+                goto parse_error;
+            p += 4;
+            for( ref = 0; ref < 16; ref++ )
+            {
+                if( sscanf( p, " %d", &rce->refcount[ref] ) != 1 )
+                    break;
+                p = strchr( p+1, ' ' );
+                if( !p )
+                    goto parse_error;
+            }
+            rce->refs = ref;
+
+            /* find weights */
+            rce->i_weight_denom = -1;
+            char *w = strchr( p, 'w' );
+            if( w )
+                if( sscanf( w, "w:%hd,%hd,%hd", &rce->i_weight_denom, &rce->weight[0], &rce->weight[1] ) != 3 )
+                    rce->i_weight_denom = -1;
+
+            if( pict_type != 'b' )
+                rce->kept_as_ref = 1;
+            switch( pict_type )
             {
-                case 'I': rce->kept_as_ref = 1;
-                case 'i': rce->pict_type = SLICE_TYPE_I; break;
-                case 'P': rce->pict_type = SLICE_TYPE_P; break;
-                case 'B': rce->kept_as_ref = 1;
-                case 'b': rce->pict_type = SLICE_TYPE_B; break;
+                case 'I':
+                    rce->frame_type = X264_TYPE_IDR;
+                    rce->pict_type  = SLICE_TYPE_I;
+                    break;
+                case 'i':
+                    rce->frame_type = X264_TYPE_I;
+                    rce->pict_type  = SLICE_TYPE_I;
+                    break;
+                case 'P':
+                    rce->frame_type = X264_TYPE_P;
+                    rce->pict_type  = SLICE_TYPE_P;
+                    break;
+                case 'B':
+                    rce->frame_type = X264_TYPE_BREF;
+                    rce->pict_type  = SLICE_TYPE_B;
+                    break;
+                case 'b':
+                    rce->frame_type = X264_TYPE_B;
+                    rce->pict_type  = SLICE_TYPE_B;
+                    break;
                 default:  e = -1; break;
             }
-            if(e < 10)
+            if( e < 12 )
             {
-                x264_log(h, X264_LOG_ERROR, "statistics are damaged at line %d, parser out=%d\n", i, e);
+parse_error:
+                x264_log( h, X264_LOG_ERROR, "statistics are damaged at line %d, parser out=%d\n", i, e );
                 return -1;
             }
-            rce->qscale = qp2qscale(qp);
+            rce->qscale = qp2qscale( qp );
             p = next;
         }
 
-        x264_free(stats_buf);
+        x264_free( stats_buf );
 
-        if(h->param.rc.i_rc_method == X264_RC_ABR)
+        if( h->param.rc.i_rc_method == X264_RC_ABR )
         {
-            if(init_pass2(h) < 0) return -1;
+            if( init_pass2( h ) < 0 )
+                return -1;
         } /* else we're using constant quant, so no need to run the bitrate allocation */
     }
 
@@ -582,10 +911,9 @@ int x264_ratecontrol_new( x264_t *h )
     if( h->param.rc.b_stat_write )
     {
         char *p;
-
-        rc->psz_stat_file_tmpname = x264_malloc( strlen(h->param.rc.psz_stat_out) + 6 );
-        strcpy( rc->psz_stat_file_tmpname, h->param.rc.psz_stat_out );
-        strcat( rc->psz_stat_file_tmpname, ".temp" );
+        rc->psz_stat_file_tmpname = x264_strcat_filename( h->param.rc.psz_stat_out, ".temp" );
+        if( !rc->psz_stat_file_tmpname )
+            return -1;
 
         rc->p_stat_file_out = fopen( rc->psz_stat_file_tmpname, "wb" );
         if( rc->p_stat_file_out == NULL )
@@ -595,28 +923,53 @@ int x264_ratecontrol_new( x264_t *h )
         }
 
         p = x264_param2string( &h->param, 1 );
-        fprintf( rc->p_stat_file_out, "#options: %s\n", p );
+        if( p )
+            fprintf( rc->p_stat_file_out, "#options: %s\n", p );
         x264_free( p );
+        if( h->param.rc.b_mb_tree && !h->param.rc.b_stat_read )
+        {
+            rc->psz_mbtree_stat_file_tmpname = x264_strcat_filename( h->param.rc.psz_stat_out, ".mbtree.temp" );
+            rc->psz_mbtree_stat_file_name = x264_strcat_filename( h->param.rc.psz_stat_out, ".mbtree" );
+            if( !rc->psz_mbtree_stat_file_tmpname || !rc->psz_mbtree_stat_file_name )
+                return -1;
+
+            rc->p_mbtree_stat_file_out = fopen( rc->psz_mbtree_stat_file_tmpname, "wb" );
+            if( rc->p_mbtree_stat_file_out == NULL )
+            {
+                x264_log(h, X264_LOG_ERROR, "ratecontrol_init: can't open mbtree stats file\n");
+                return -1;
+            }
+        }
     }
 
-    for( i=0; i<h->param.i_threads; i++ )
+    if( h->param.rc.b_mb_tree && (h->param.rc.b_stat_read || h->param.rc.b_stat_write) )
+    {
+        CHECKED_MALLOC( rc->qp_buffer[0], h->mb.i_mb_count * sizeof(uint16_t) );
+        if( h->param.i_bframe_pyramid && h->param.rc.b_stat_read )
+            CHECKED_MALLOC( rc->qp_buffer[1], h->mb.i_mb_count * sizeof(uint16_t) );
+        rc->qpbuf_pos = -1;
+    }
+
+    for( int i = 0; i<h->param.i_threads; i++ )
     {
         h->thread[i]->rc = rc+i;
         if( i )
         {
             rc[i] = rc[0];
-            memcpy( &h->thread[i]->param, &h->param, sizeof( x264_param_t ) );
+            h->thread[i]->param = h->param;
             h->thread[i]->mb.b_variable_qp = h->mb.b_variable_qp;
         }
     }
 
     return 0;
+fail:
+    return -1;
 }
 
 static int parse_zone( x264_t *h, x264_zone_t *z, char *p )
 {
     int len = 0;
-    char *tok, UNUSED *saveptr;
+    char *tok, UNUSED *saveptr=NULL;
     z->param = NULL;
     z->f_bitrate_factor = 1;
     if( 3 <= sscanf(p, "%u,%u,q=%u%n", &z->i_start, &z->i_end, &z->i_qp, &len) )
@@ -633,8 +986,9 @@ static int parse_zone( x264_t *h, x264_zone_t *z, char *p )
     p += len;
     if( !*p )
         return 0;
-    z->param = x264_malloc( sizeof(x264_param_t) );
+    CHECKED_MALLOC( z->param, sizeof(x264_param_t) );
     memcpy( z->param, &h->param, sizeof(x264_param_t) );
+    z->param->param_free = x264_free;
     while( (tok = strtok_r( p, ",", &saveptr )) )
     {
         char *val = strchr( tok, '=' );
@@ -651,35 +1005,37 @@ static int parse_zone( x264_t *h, x264_zone_t *z, char *p )
         p = NULL;
     }
     return 0;
+fail:
+    return -1;
 }
 
 static int parse_zones( x264_t *h )
 {
     x264_ratecontrol_t *rc = h->rc;
-    int i;
     if( h->param.rc.psz_zones && !h->param.rc.i_zones )
     {
-        char *p, *tok, UNUSED *saveptr;
-        char *psz_zones = x264_malloc( strlen(h->param.rc.psz_zones)+1 );
+        char *psz_zones, *p;
+        CHECKED_MALLOC( psz_zones, strlen( h->param.rc.psz_zones )+1 );
         strcpy( psz_zones, h->param.rc.psz_zones );
         h->param.rc.i_zones = 1;
         for( p = psz_zones; *p; p++ )
             h->param.rc.i_zones += (*p == '/');
-        h->param.rc.zones = x264_malloc( h->param.rc.i_zones * sizeof(x264_zone_t) );
+        CHECKED_MALLOC( h->param.rc.zones, h->param.rc.i_zones * sizeof(x264_zone_t) );
         p = psz_zones;
-        for( i = 0; i < h->param.rc.i_zones; i++ )
+        for( int i = 0; i < h->param.rc.i_zones; i++ )
         {
-            tok = strtok_r( p, "/", &saveptr );
-            if( !tok || parse_zone( h, &h->param.rc.zones[i], tok ) )
+            int i_tok = strcspn( p, "/" );
+            p[i_tok] = 0;
+            if( parse_zone( h, &h->param.rc.zones[i], p ) )
                 return -1;
-            p = NULL;
+            p += i_tok + 1;
         }
         x264_free( psz_zones );
     }
 
     if( h->param.rc.i_zones > 0 )
     {
-        for( i = 0; i < h->param.rc.i_zones; i++ )
+        for( int i = 0; i < h->param.rc.i_zones; i++ )
         {
             x264_zone_t z = h->param.rc.zones[i];
             if( z.i_start < 0 || z.i_start > z.i_end )
@@ -697,7 +1053,7 @@ static int parse_zones( x264_t *h )
         }
 
         rc->i_zones = h->param.rc.i_zones + 1;
-        rc->zones = x264_malloc( rc->i_zones * sizeof(x264_zone_t) );
+        CHECKED_MALLOC( rc->zones, rc->i_zones * sizeof(x264_zone_t) );
         memcpy( rc->zones+1, h->param.rc.zones, (rc->i_zones-1) * sizeof(x264_zone_t) );
 
         // default zone to fall back to if none of the others match
@@ -705,9 +1061,9 @@ static int parse_zones( x264_t *h )
         rc->zones[0].i_end = INT_MAX;
         rc->zones[0].b_force_qp = 0;
         rc->zones[0].f_bitrate_factor = 1;
-        rc->zones[0].param = x264_malloc( sizeof(x264_param_t) );
+        CHECKED_MALLOC( rc->zones[0].param, sizeof(x264_param_t) );
         memcpy( rc->zones[0].param, &h->param, sizeof(x264_param_t) );
-        for( i = 1; i < rc->i_zones; i++ )
+        for( int i = 1; i < rc->i_zones; i++ )
         {
             if( !rc->zones[i].param )
                 rc->zones[i].param = rc->zones[0].param;
@@ -715,12 +1071,13 @@ static int parse_zones( x264_t *h )
     }
 
     return 0;
+fail:
+    return -1;
 }
 
 static x264_zone_t *get_zone( x264_t *h, int frame_num )
 {
-    int i;
-    for( i = h->rc->i_zones-1; i >= 0; i-- )
+    for( int i = h->rc->i_zones - 1; i >= 0; i-- )
     {
         x264_zone_t *z = &h->rc->zones[i];
         if( frame_num >= z->i_start && frame_num <= z->i_end )
@@ -735,21 +1092,23 @@ void x264_ratecontrol_summary( x264_t *h )
     if( rc->b_abr && h->param.rc.i_rc_method == X264_RC_ABR && rc->cbr_decay > .9999 )
     {
         double base_cplx = h->mb.i_mb_count * (h->param.i_bframe ? 120 : 80);
+        double mbtree_offset = h->param.rc.b_mb_tree ? (1.0-h->param.rc.f_qcompress)*13.5 : 0;
         x264_log( h, X264_LOG_INFO, "final ratefactor: %.2f\n",
-                  qscale2qp( pow( base_cplx, 1 - h->param.rc.f_qcompress )
-                             * rc->cplxr_sum / rc->wanted_bits_window ) );
+                  qscale2qp( pow( base_cplx, 1 - rc->qcompress )
+                             * rc->cplxr_sum / rc->wanted_bits_window ) - mbtree_offset );
     }
 }
 
 void x264_ratecontrol_delete( x264_t *h )
 {
     x264_ratecontrol_t *rc = h->rc;
-    int i;
+    int b_regular_file;
 
     if( rc->p_stat_file_out )
     {
+        b_regular_file = x264_is_regular_file( rc->p_stat_file_out );
         fclose( rc->p_stat_file_out );
-        if( h->i_frame >= rc->num_entries )
+        if( h->i_frame >= rc->num_entries && b_regular_file )
             if( rename( rc->psz_stat_file_tmpname, h->param.rc.psz_stat_out ) != 0 )
             {
                 x264_log( h, X264_LOG_ERROR, "failed to rename \"%s\" to \"%s\"\n",
@@ -757,37 +1116,37 @@ void x264_ratecontrol_delete( x264_t *h )
             }
         x264_free( rc->psz_stat_file_tmpname );
     }
+    if( rc->p_mbtree_stat_file_out )
+    {
+        b_regular_file = x264_is_regular_file( rc->p_mbtree_stat_file_out );
+        fclose( rc->p_mbtree_stat_file_out );
+        if( h->i_frame >= rc->num_entries && b_regular_file )
+            if( rename( rc->psz_mbtree_stat_file_tmpname, rc->psz_mbtree_stat_file_name ) != 0 )
+            {
+                x264_log( h, X264_LOG_ERROR, "failed to rename \"%s\" to \"%s\"\n",
+                          rc->psz_mbtree_stat_file_tmpname, rc->psz_mbtree_stat_file_name );
+            }
+        x264_free( rc->psz_mbtree_stat_file_tmpname );
+        x264_free( rc->psz_mbtree_stat_file_name );
+    }
+    if( rc->p_mbtree_stat_file_in )
+        fclose( rc->p_mbtree_stat_file_in );
     x264_free( rc->pred );
     x264_free( rc->pred_b_from_p );
     x264_free( rc->entry );
+    x264_free( rc->qp_buffer[0] );
+    x264_free( rc->qp_buffer[1] );
     if( rc->zones )
     {
         x264_free( rc->zones[0].param );
-        if( h->param.rc.psz_zones )
-            for( i=1; i<rc->i_zones; i++ )
-                if( rc->zones[i].param != rc->zones[0].param )
-                    x264_free( rc->zones[i].param );
+        for( int i = 1; i < rc->i_zones; i++ )
+            if( rc->zones[i].param != rc->zones[0].param && rc->zones[i].param->param_free )
+                rc->zones[i].param->param_free( rc->zones[i].param );
         x264_free( rc->zones );
     }
     x264_free( rc );
 }
 
-void x264_ratecontrol_set_estimated_size( x264_t *h, int bits )
-{
-    x264_pthread_mutex_lock( &h->fenc->mutex );
-    h->rc->frame_size_estimated = bits;
-    x264_pthread_mutex_unlock( &h->fenc->mutex );
-}
-
-int x264_ratecontrol_get_estimated_size( x264_t const *h)
-{
-    int size;
-    x264_pthread_mutex_lock( &h->fenc->mutex );
-    size = h->rc->frame_size_estimated;
-    x264_pthread_mutex_unlock( &h->fenc->mutex );
-    return size;
-}
-
 static void accum_p_qp_update( x264_t *h, float qp )
 {
     x264_ratecontrol_t *rc = h->rc;
@@ -801,7 +1160,7 @@ static void accum_p_qp_update( x264_t *h, float qp )
 }
 
 /* Before encoding a frame, choose a QP for it */
-void x264_ratecontrol_start( x264_t *h, int i_force_qp )
+void x264_ratecontrol_start( x264_t *h, int i_force_qp, int overhead )
 {
     x264_ratecontrol_t *rc = h->rc;
     ratecontrol_entry_t *rce = NULL;
@@ -832,17 +1191,44 @@ void x264_ratecontrol_start( x264_t *h, int i_force_qp )
 
     if( rc->b_vbv )
     {
-        memset( h->fdec->i_row_bits, 0, h->sps->i_mb_height * sizeof(int) );
+        memset( h->fdec->i_row_bits, 0, h->mb.i_mb_height * sizeof(int) );
         rc->row_pred = &rc->row_preds[h->sh.i_type];
-        update_vbv_plan( h );
+        rc->buffer_rate = h->fenc->i_cpb_duration * rc->vbv_max_rate * h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale;
+        update_vbv_plan( h, overhead );
+
+        const x264_level_t *l = x264_levels;
+        while( l->level_idc != 0 && l->level_idc != h->param.i_level_idc )
+            l++;
+
+        int mincr = l->mincr;
+
+        /* Blu-ray requires this */
+        if( l->level_idc == 41 && h->param.i_nal_hrd )
+            mincr = 4;
+
+        /* High 10 doesn't require minCR, so just set the maximum to a large value. */
+        if( h->sps->i_profile_idc == PROFILE_HIGH10 )
+            rc->frame_size_maximum = 1e9;
+        else
+        {
+            /* The spec has a bizarre special case for the first frame. */
+            if( h->i_frame == 0 )
+            {
+                //384 * ( Max( PicSizeInMbs, fR * MaxMBPS ) + MaxMBPS * ( tr( 0 ) - tr,n( 0 ) ) ) / MinCR
+                double fr = 1. / 172;
+                int pic_size_in_mbs = h->mb.i_mb_width * h->mb.i_mb_height;
+                rc->frame_size_maximum = 384 * BIT_DEPTH * X264_MAX( pic_size_in_mbs, fr*l->mbps ) / mincr;
+            }
+            else
+            {
+                //384 * MaxMBPS * ( tr( n ) - tr( n - 1 ) ) / MinCR
+                rc->frame_size_maximum = 384 * BIT_DEPTH * ((double)h->fenc->i_cpb_duration * h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale) * l->mbps / mincr;
+            }
+        }
     }
 
     if( h->sh.i_type != SLICE_TYPE_B )
-    {
-        rc->bframes = 0;
-        while( h->frames.current[rc->bframes] && IS_X264_TYPE_B(h->frames.current[rc->bframes]->i_type) )
-            rc->bframes++;
-    }
+        rc->bframes = h->fenc->i_bframes;
 
     if( i_force_qp )
     {
@@ -869,66 +1255,69 @@ void x264_ratecontrol_start( x264_t *h, int i_force_qp )
             if( zone->b_force_qp )
                 q += zone->i_qp - rc->qp_constant[SLICE_TYPE_P];
             else
-                q -= 6*log(zone->f_bitrate_factor)/log(2);
+                q -= 6*log2f( zone->f_bitrate_factor );
         }
     }
 
+    q = x264_clip3f( q, h->param.rc.i_qp_min, h->param.rc.i_qp_max );
+
     rc->qpa_rc =
     rc->qpa_aq = 0;
+    rc->qp = x264_clip3( (int)(q + 0.5), 0, QP_MAX );
     h->fdec->f_qp_avg_rc =
     h->fdec->f_qp_avg_aq =
-    rc->qpm =
-    rc->qp = x264_clip3( (int)(q + 0.5), 0, 51 );
-    rc->f_qpm = q;
+    rc->qpm = q;
     if( rce )
         rce->new_qp = rc->qp;
 
-    /* accum_p_qp needs to be here so that future frames can benefit from the
-     * data before this frame is done. but this only works because threading
-     * guarantees to not re-encode any frames. so the non-threaded case does
-     * accum_p_qp later. */
-    if( h->param.i_threads > 1 )
-        accum_p_qp_update( h, rc->qp );
+    accum_p_qp_update( h, rc->qpm );
 
     if( h->sh.i_type != SLICE_TYPE_B )
         rc->last_non_b_pict_type = h->sh.i_type;
 }
 
-static double predict_row_size( x264_t *h, int y, int qp )
+static double predict_row_size( x264_t *h, int y, double qp )
 {
     /* average between two predictors:
      * absolute SATD, and scaled bit cost of the colocated row in the previous frame */
     x264_ratecontrol_t *rc = h->rc;
-    double pred_s = predict_size( rc->row_pred, qp2qscale(qp), h->fdec->i_row_satd[y] );
+    double pred_s = predict_size( rc->row_pred[0], qp2qscale( qp ), h->fdec->i_row_satd[y] );
     double pred_t = 0;
-    if( h->sh.i_type != SLICE_TYPE_I
-        && h->fref0[0]->i_type == h->fdec->i_type
-        && h->fref0[0]->i_row_satd[y] > 0
-        && (abs(h->fref0[0]->i_row_satd[y] - h->fdec->i_row_satd[y]) < h->fdec->i_row_satd[y]/2))
+    if( h->sh.i_type == SLICE_TYPE_I || qp >= h->fref0[0]->f_row_qp[y] )
     {
-        pred_t = h->fref0[0]->i_row_bits[y] * h->fdec->i_row_satd[y] / h->fref0[0]->i_row_satd[y]
-                 * qp2qscale(h->fref0[0]->i_row_qp[y]) / qp2qscale(qp);
+        if( h->sh.i_type == SLICE_TYPE_P
+            && h->fref0[0]->i_type == h->fdec->i_type
+            && h->fref0[0]->i_row_satd[y] > 0
+            && (abs(h->fref0[0]->i_row_satd[y] - h->fdec->i_row_satd[y]) < h->fdec->i_row_satd[y]/2))
+        {
+            pred_t = h->fref0[0]->i_row_bits[y] * h->fdec->i_row_satd[y] / h->fref0[0]->i_row_satd[y]
+                     * qp2qscale( h->fref0[0]->f_row_qp[y] ) / qp2qscale( qp );
+        }
+        if( pred_t == 0 )
+            pred_t = pred_s;
+        return (pred_s + pred_t) / 2;
+    }
+    /* Our QP is lower than the reference! */
+    else
+    {
+        double pred_intra = predict_size( rc->row_pred[1], qp2qscale( qp ), h->fdec->i_row_satds[0][0][y] );
+        /* Sum: better to overestimate than underestimate by using only one of the two predictors. */
+        return pred_intra + pred_s;
     }
-    if( pred_t == 0 )
-        pred_t = pred_s;
-
-    return (pred_s + pred_t) / 2;
 }
 
 static double row_bits_so_far( x264_t *h, int y )
 {
-    int i;
     double bits = 0;
-    for( i = 0; i <= y; i++ )
+    for( int i = h->i_threadslice_start; i <= y; i++ )
         bits += h->fdec->i_row_bits[i];
     return bits;
 }
 
-static double predict_row_size_sum( x264_t *h, int y, int qp )
+static double predict_row_size_sum( x264_t *h, int y, double qp )
 {
-    int i;
     double bits = row_bits_so_far(h, y);
-    for( i = y+1; i < h->sps->i_mb_height; i++ )
+    for( int i = y+1; i < h->i_threadslice_end; i++ )
         bits += predict_row_size( h, i, qp );
     return bits;
 }
@@ -942,93 +1331,113 @@ void x264_ratecontrol_mb( x264_t *h, int bits )
     x264_emms();
 
     h->fdec->i_row_bits[y] += bits;
-    rc->qpa_rc += rc->f_qpm;
+    rc->qpa_rc += rc->qpm;
     rc->qpa_aq += h->mb.i_qp;
 
-    if( h->mb.i_mb_x != h->sps->i_mb_width - 1 || !rc->b_vbv)
+    if( h->mb.i_mb_x != h->mb.i_mb_width - 1 || !rc->b_vbv )
         return;
 
-    h->fdec->i_row_qp[y] = rc->qpm;
+    h->fdec->f_row_qp[y] = rc->qpm;
+
+    update_predictor( rc->row_pred[0], qp2qscale( rc->qpm ), h->fdec->i_row_satd[y], h->fdec->i_row_bits[y] );
+    if( h->sh.i_type == SLICE_TYPE_P && rc->qpm < h->fref0[0]->f_row_qp[y] )
+        update_predictor( rc->row_pred[1], qp2qscale( rc->qpm ), h->fdec->i_row_satds[0][0][y], h->fdec->i_row_bits[y] );
 
-    if( h->sh.i_type == SLICE_TYPE_B )
+    /* tweak quality based on difference from predicted size */
+    if( y < h->i_threadslice_end-1 )
     {
-        /* B-frames shouldn't use lower QP than their reference frames.
-         * This code is a bit overzealous in limiting B-frame quantizers, but it helps avoid
-         * underflows due to the fact that B-frames are not explicitly covered by VBV. */
-        if( y < h->sps->i_mb_height-1 )
+        float prev_row_qp = h->fdec->f_row_qp[y];
+        float qp_min = X264_MAX( prev_row_qp - h->param.rc.i_qp_step, h->param.rc.i_qp_min );
+        float qp_absolute_max = h->param.rc.i_qp_max;
+        if( rc->rate_factor_max_increment )
+            qp_absolute_max = X264_MIN( qp_absolute_max, rc->qp_novbv + rc->rate_factor_max_increment );
+        float qp_max = X264_MIN( prev_row_qp + h->param.rc.i_qp_step, qp_absolute_max );
+        float step_size = 0.5;
+
+        /* B-frames shouldn't use lower QP than their reference frames. */
+        if( h->sh.i_type == SLICE_TYPE_B )
         {
-            int i_estimated;
-            int avg_qp = X264_MAX(h->fref0[0]->i_row_qp[y+1], h->fref1[0]->i_row_qp[y+1])
-                       + rc->pb_offset * ((h->fenc->i_type == X264_TYPE_BREF) ? 0.5 : 1);
-            rc->qpm = X264_MIN(X264_MAX( rc->qp, avg_qp), 51); //avg_qp could go higher than 51 due to pb_offset
-            i_estimated = row_bits_so_far(h, y); //FIXME: compute full estimated size
-            if (i_estimated > h->rc->frame_size_planned)
-                x264_ratecontrol_set_estimated_size(h, i_estimated);
+            qp_min = X264_MAX( qp_min, X264_MAX( h->fref0[0]->f_row_qp[y+1], h->fref1[0]->f_row_qp[y+1] ) );
+            rc->qpm = X264_MAX( rc->qpm, qp_min );
         }
-    }
-    else
-    {
-        update_predictor( rc->row_pred, qp2qscale(rc->qpm), h->fdec->i_row_satd[y], h->fdec->i_row_bits[y] );
 
-        /* tweak quality based on difference from predicted size */
-        if( y < h->sps->i_mb_height-1 && h->stat.i_slice_count[h->sh.i_type] > 0 )
+        float buffer_left_planned = rc->buffer_fill - rc->frame_size_planned;
+        float slice_size_planned = h->param.b_sliced_threads ? rc->slice_size_planned : rc->frame_size_planned;
+        float max_frame_error = X264_MAX( 0.05, 1.0 / (h->mb.i_mb_height) );
+        float size_of_other_slices = 0;
+        if( h->param.b_sliced_threads )
         {
-            int prev_row_qp = h->fdec->i_row_qp[y];
-            int b0 = predict_row_size_sum( h, y, rc->qpm );
-            int b1 = b0;
-            int i_qp_max = X264_MIN( prev_row_qp + h->param.rc.i_qp_step, h->param.rc.i_qp_max );
-            int i_qp_min = X264_MAX( prev_row_qp - h->param.rc.i_qp_step, h->param.rc.i_qp_min );
-            float buffer_left_planned = rc->buffer_fill - rc->frame_size_planned;
-            float rc_tol = 1;
-            float headroom = 0;
+            float size_of_other_slices_planned = 0;
+            for( int i = 0; i < h->param.i_threads; i++ )
+                if( h != h->thread[i] )
+                {
+                    size_of_other_slices += h->thread[i]->rc->frame_size_estimated;
+                    size_of_other_slices_planned += h->thread[i]->rc->slice_size_planned;
+                }
+            float weight = rc->slice_size_planned / rc->frame_size_planned;
+            size_of_other_slices = (size_of_other_slices - size_of_other_slices_planned) * weight + size_of_other_slices_planned;
+        }
 
-            /* Don't modify the row QPs until a sufficent amount of the bits of the frame have been processed, in case a flat */
-            /* area at the top of the frame was measured inaccurately. */
-            if(row_bits_so_far(h,y) < 0.05 * rc->frame_size_planned)
-                return;
+        /* More threads means we have to be more cautious in letting ratecontrol use up extra bits. */
+        float rc_tol = buffer_left_planned / h->param.i_threads * rc->rate_tolerance;
+        int b1 = predict_row_size_sum( h, y, rc->qpm ) + size_of_other_slices;
 
-            headroom = buffer_left_planned/rc->buffer_size;
-            if(h->sh.i_type != SLICE_TYPE_I)
-                headroom /= 2;
-            rc_tol += headroom;
+        /* Don't modify the row QPs until a sufficent amount of the bits of the frame have been processed, in case a flat */
+        /* area at the top of the frame was measured inaccurately. */
+        if( row_bits_so_far( h, y ) < 0.05 * slice_size_planned )
+            return;
 
-            if( !rc->b_vbv_min_rate )
-                i_qp_min = X264_MAX( i_qp_min, h->sh.i_qp );
+        if( h->sh.i_type != SLICE_TYPE_I )
+            rc_tol /= 2;
 
-            while( rc->qpm < i_qp_max
-                   && (b1 > rc->frame_size_planned * rc_tol
-                    || (rc->buffer_fill - b1 < buffer_left_planned * 0.5)))
-            {
-                rc->qpm ++;
-                b1 = predict_row_size_sum( h, y, rc->qpm );
-            }
+        if( !rc->b_vbv_min_rate )
+            qp_min = X264_MAX( qp_min, rc->qp_novbv );
 
-            /* avoid VBV underflow */
-            while( (rc->qpm < h->param.rc.i_qp_max)
-                   && (rc->buffer_fill - b1 < rc->buffer_size * 0.005))
-            {
-                rc->qpm ++;
-                b1 = predict_row_size_sum( h, y, rc->qpm );
-            }
+        while( rc->qpm < qp_max
+               && ((b1 > rc->frame_size_planned + rc_tol) ||
+                   (rc->buffer_fill - b1 < buffer_left_planned * 0.5) ||
+                   (b1 > rc->frame_size_planned && rc->qpm < rc->qp_novbv)) )
+        {
+            rc->qpm += step_size;
+            b1 = predict_row_size_sum( h, y, rc->qpm ) + size_of_other_slices;
+        }
 
-            while( rc->qpm > i_qp_min
-                   && rc->qpm > h->fdec->i_row_qp[0]
-                   && ((b1 < rc->frame_size_planned * 0.8 && rc->qpm <= prev_row_qp)
-                     || b1 < (rc->buffer_fill - rc->buffer_size + rc->buffer_rate) * 1.1) )
-            {
-                rc->qpm --;
-                b1 = predict_row_size_sum( h, y, rc->qpm );
-            }
-            x264_ratecontrol_set_estimated_size(h, b1);
+        while( rc->qpm > qp_min
+               && (rc->qpm > h->fdec->f_row_qp[0] || rc->single_frame_vbv)
+               && ((b1 < rc->frame_size_planned * 0.8 && rc->qpm <= prev_row_qp)
+               || b1 < (rc->buffer_fill - rc->buffer_size + rc->buffer_rate) * 1.1) )
+        {
+            rc->qpm -= step_size;
+            b1 = predict_row_size_sum( h, y, rc->qpm ) + size_of_other_slices;
         }
+
+        /* avoid VBV underflow or MinCR violation */
+        while( (rc->qpm < qp_absolute_max)
+               && ((rc->buffer_fill - b1 < rc->buffer_rate * max_frame_error) ||
+                   (rc->frame_size_maximum - b1 < rc->frame_size_maximum * max_frame_error)))
+        {
+            rc->qpm += step_size;
+            b1 = predict_row_size_sum( h, y, rc->qpm ) + size_of_other_slices;
+        }
+
+        h->rc->frame_size_estimated = predict_row_size_sum( h, y, rc->qpm );
     }
-    /* loses the fractional part of the frame-wise qp */
-    rc->f_qpm = rc->qpm;
 }
 
 int x264_ratecontrol_qp( x264_t *h )
 {
-    return h->rc->qpm;
+    x264_emms();
+    return x264_clip3( h->rc->qpm + .5, h->param.rc.i_qp_min, h->param.rc.i_qp_max );
+}
+
+int x264_ratecontrol_mb_qp( x264_t *h )
+{
+    x264_emms();
+    float qp = h->rc->qpm;
+    if( h->param.rc.i_aq_mode )
+        /* MB-tree currently doesn't adjust quantizers in unreferenced frames. */
+        qp += h->fdec->b_kept_as_ref ? h->fenc->f_qp_offset[h->mb.i_mb_xy] : h->fenc->f_qp_offset_aq[h->mb.i_mb_xy];
+    return x264_clip3( qp + .5, h->param.rc.i_qp_min, h->param.rc.i_qp_max );
 }
 
 /* In 2pass, force the same frame types as in the 1st pass */
@@ -1042,20 +1451,18 @@ int x264_ratecontrol_slice_type( x264_t *h, int frame_num )
             /* We could try to initialize everything required for ABR and
              * adaptive B-frames, but that would be complicated.
              * So just calculate the average QP used so far. */
-            int i;
-
-            h->param.rc.i_qp_constant = (h->stat.i_slice_count[SLICE_TYPE_P] == 0) ? 24
-                                      : 1 + h->stat.f_slice_qp[SLICE_TYPE_P] / h->stat.i_slice_count[SLICE_TYPE_P];
-            rc->qp_constant[SLICE_TYPE_P] = x264_clip3( h->param.rc.i_qp_constant, 0, 51 );
-            rc->qp_constant[SLICE_TYPE_I] = x264_clip3( (int)( qscale2qp( qp2qscale( h->param.rc.i_qp_constant ) / fabs( h->param.rc.f_ip_factor )) + 0.5 ), 0, 51 );
-            rc->qp_constant[SLICE_TYPE_B] = x264_clip3( (int)( qscale2qp( qp2qscale( h->param.rc.i_qp_constant ) * fabs( h->param.rc.f_pb_factor )) + 0.5 ), 0, 51 );
+            h->param.rc.i_qp_constant = (h->stat.i_frame_count[SLICE_TYPE_P] == 0) ? 24
+                                      : 1 + h->stat.f_frame_qp[SLICE_TYPE_P] / h->stat.i_frame_count[SLICE_TYPE_P];
+            rc->qp_constant[SLICE_TYPE_P] = x264_clip3( h->param.rc.i_qp_constant, 0, QP_MAX );
+            rc->qp_constant[SLICE_TYPE_I] = x264_clip3( (int)( qscale2qp( qp2qscale( h->param.rc.i_qp_constant ) / fabs( h->param.rc.f_ip_factor )) + 0.5 ), 0, QP_MAX );
+            rc->qp_constant[SLICE_TYPE_B] = x264_clip3( (int)( qscale2qp( qp2qscale( h->param.rc.i_qp_constant ) * fabs( h->param.rc.f_pb_factor )) + 0.5 ), 0, QP_MAX );
 
             x264_log(h, X264_LOG_ERROR, "2nd pass has more frames than 1st pass (%d)\n", rc->num_entries);
             x264_log(h, X264_LOG_ERROR, "continuing anyway, at constant QP=%d\n", h->param.rc.i_qp_constant);
             if( h->param.i_bframe_adaptive )
                 x264_log(h, X264_LOG_ERROR, "disabling adaptive B-frames\n");
 
-            for( i = 0; i < h->param.i_threads; i++ )
+            for( int i = 0; i < h->param.i_threads; i++ )
             {
                 h->thread[i]->rc->b_abr = 0;
                 h->thread[i]->rc->b_2pass = 0;
@@ -1063,43 +1470,39 @@ int x264_ratecontrol_slice_type( x264_t *h, int frame_num )
                 h->thread[i]->param.rc.b_stat_read = 0;
                 h->thread[i]->param.i_bframe_adaptive = 0;
                 h->thread[i]->param.i_scenecut_threshold = 0;
+                h->thread[i]->param.rc.b_mb_tree = 0;
                 if( h->thread[i]->param.i_bframe > 1 )
                     h->thread[i]->param.i_bframe = 1;
             }
             return X264_TYPE_AUTO;
         }
-        switch( rc->entry[frame_num].pict_type )
-        {
-            case SLICE_TYPE_I:
-                return rc->entry[frame_num].kept_as_ref ? X264_TYPE_IDR : X264_TYPE_I;
-
-            case SLICE_TYPE_B:
-                return rc->entry[frame_num].kept_as_ref ? X264_TYPE_BREF : X264_TYPE_B;
-
-            case SLICE_TYPE_P:
-            default:
-                return X264_TYPE_P;
-        }
+        return rc->entry[frame_num].frame_type;
     }
     else
-    {
         return X264_TYPE_AUTO;
-    }
+}
+
+void x264_ratecontrol_set_weights( x264_t *h, x264_frame_t *frm )
+{
+    ratecontrol_entry_t *rce = &h->rc->entry[frm->i_frame];
+    if( h->param.analyse.i_weighted_pred <= 0 )
+        return;
+    if( rce->i_weight_denom >= 0 )
+        SET_WEIGHT( frm->weight[0][0], 1, rce->weight[0], rce->i_weight_denom, rce->weight[1] );
 }
 
 /* After encoding one frame, save stats and update ratecontrol state */
-void x264_ratecontrol_end( x264_t *h, int bits )
+int x264_ratecontrol_end( x264_t *h, int bits, int *filler )
 {
     x264_ratecontrol_t *rc = h->rc;
     const int *mbs = h->stat.frame.i_mb_count;
-    int i;
 
     x264_emms();
 
     h->stat.frame.i_mb_count_skip = mbs[P_SKIP] + mbs[B_SKIP];
     h->stat.frame.i_mb_count_i = mbs[I_16x16] + mbs[I_8x8] + mbs[I_4x4];
     h->stat.frame.i_mb_count_p = mbs[P_L0] + mbs[P_8x8];
-    for( i = B_DIRECT; i < B_8x8; i++ )
+    for( int i = B_DIRECT; i < B_8x8; i++ )
         h->stat.frame.i_mb_count_p += mbs[i];
 
     h->fdec->f_qp_avg_rc = rc->qpa_rc /= h->mb.i_mb_count;
@@ -1116,61 +1519,135 @@ void x264_ratecontrol_end( x264_t *h, int bits )
                         ( dir_frame>0 ? 's' : dir_frame<0 ? 't' :
                           dir_avg>0 ? 's' : dir_avg<0 ? 't' : '-' )
                         : '-';
-        fprintf( rc->p_stat_file_out,
-                 "in:%d out:%d type:%c q:%.2f tex:%d mv:%d misc:%d imb:%d pmb:%d smb:%d d:%c;\n",
+        if( fprintf( rc->p_stat_file_out,
+                 "in:%d out:%d type:%c dur:%d cpbdur:%d q:%.2f tex:%d mv:%d misc:%d imb:%d pmb:%d smb:%d d:%c ref:",
                  h->fenc->i_frame, h->i_frame,
-                 c_type, rc->qpa_rc,
+                 c_type, h->fenc->i_duration,
+                 h->fenc->i_cpb_duration, rc->qpa_rc,
                  h->stat.frame.i_tex_bits,
                  h->stat.frame.i_mv_bits,
                  h->stat.frame.i_misc_bits,
                  h->stat.frame.i_mb_count_i,
                  h->stat.frame.i_mb_count_p,
                  h->stat.frame.i_mb_count_skip,
-                 c_direct);
+                 c_direct) < 0 )
+            goto fail;
+
+        /* Only write information for reference reordering once. */
+        int use_old_stats = h->param.rc.b_stat_read && rc->rce->refs > 1;
+        for( int i = 0; i < (use_old_stats ? rc->rce->refs : h->i_ref0); i++ )
+        {
+            int refcount = use_old_stats         ? rc->rce->refcount[i]
+                         : h->param.b_interlaced ? h->stat.frame.i_mb_count_ref[0][i*2]
+                                                 + h->stat.frame.i_mb_count_ref[0][i*2+1]
+                         :                         h->stat.frame.i_mb_count_ref[0][i];
+            if( fprintf( rc->p_stat_file_out, "%d ", refcount ) < 0 )
+                goto fail;
+        }
+
+        if( h->sh.weight[0][0].weightfn )
+        {
+            if( fprintf( rc->p_stat_file_out, "w:%"PRId32",%"PRId32",%"PRId32, h->sh.weight[0][0].i_denom, h->sh.weight[0][0].i_scale, h->sh.weight[0][0].i_offset ) < 0 )
+                goto fail;
+        }
+
+        if( fprintf( rc->p_stat_file_out, ";\n") < 0 )
+            goto fail;
+
+        /* Don't re-write the data in multi-pass mode. */
+        if( h->param.rc.b_mb_tree && h->fenc->b_kept_as_ref && !h->param.rc.b_stat_read )
+        {
+            uint8_t i_type = h->sh.i_type;
+            /* Values are stored as big-endian FIX8.8 */
+            for( int i = 0; i < h->mb.i_mb_count; i++ )
+                rc->qp_buffer[0][i] = endian_fix16( h->fenc->f_qp_offset[i]*256.0 );
+            if( fwrite( &i_type, 1, 1, rc->p_mbtree_stat_file_out ) < 1 )
+                goto fail;
+            if( fwrite( rc->qp_buffer[0], sizeof(uint16_t), h->mb.i_mb_count, rc->p_mbtree_stat_file_out ) < h->mb.i_mb_count )
+                goto fail;
+        }
     }
 
     if( rc->b_abr )
     {
         if( h->sh.i_type != SLICE_TYPE_B )
-            rc->cplxr_sum += bits * qp2qscale(rc->qpa_rc) / rc->last_rceq;
+            rc->cplxr_sum += bits * qp2qscale( rc->qpa_rc ) / rc->last_rceq;
         else
         {
             /* Depends on the fact that B-frame's QP is an offset from the following P-frame's.
              * Not perfectly accurate with B-refs, but good enough. */
-            rc->cplxr_sum += bits * qp2qscale(rc->qpa_rc) / (rc->last_rceq * fabs(h->param.rc.f_pb_factor));
+            rc->cplxr_sum += bits * qp2qscale( rc->qpa_rc ) / (rc->last_rceq * fabs( h->param.rc.f_pb_factor ));
         }
         rc->cplxr_sum *= rc->cbr_decay;
-        rc->wanted_bits_window += rc->bitrate / rc->fps;
-        rc->wanted_bits_window *= rc->cbr_decay;
+        double frame_duration = (double)h->fenc->i_duration * h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale;
 
-        if( h->param.i_threads == 1 )
-            accum_p_qp_update( h, rc->qpa_rc );
+        rc->wanted_bits_window += frame_duration * rc->bitrate;
+        rc->wanted_bits_window *= rc->cbr_decay;
     }
 
     if( rc->b_2pass )
-    {
-        rc->expected_bits_sum += qscale2bits( rc->rce, qp2qscale(rc->rce->new_qp) );
-    }
+        rc->expected_bits_sum += qscale2bits( rc->rce, qp2qscale( rc->rce->new_qp ) );
 
     if( h->mb.b_variable_qp )
     {
         if( h->sh.i_type == SLICE_TYPE_B )
         {
             rc->bframe_bits += bits;
-            if( !h->frames.current[0] || !IS_X264_TYPE_B(h->frames.current[0]->i_type) )
+            if( h->fenc->b_last_minigop_bframe )
             {
-                update_predictor( rc->pred_b_from_p, qp2qscale(rc->qpa_rc),
+                update_predictor( rc->pred_b_from_p, qp2qscale( rc->qpa_rc ),
                                   h->fref1[h->i_ref1-1]->i_satd, rc->bframe_bits / rc->bframes );
-                /* In some cases, such as completely blank scenes, pred_b_from_p can go nuts */
-                /* Hackily cap the predictor coeff in case this happens. */
-                /* FIXME FIXME FIXME */
-                rc->pred_b_from_p->coeff = X264_MIN( rc->pred_b_from_p->coeff, 10. );
                 rc->bframe_bits = 0;
             }
         }
     }
 
-    update_vbv( h, bits );
+    *filler = update_vbv( h, bits );
+    rc->filler_bits_sum += *filler * 8;
+
+    if( h->sps->vui.b_nal_hrd_parameters_present )
+    {
+        if( h->fenc->i_frame == 0 )
+        {
+            // access unit initialises the HRD
+            h->fenc->hrd_timing.cpb_initial_arrival_time = 0;
+            rc->initial_cpb_removal_delay = h->initial_cpb_removal_delay;
+            rc->initial_cpb_removal_delay_offset = h->initial_cpb_removal_delay_offset;
+            h->fenc->hrd_timing.cpb_removal_time = rc->nrt_first_access_unit = (double)rc->initial_cpb_removal_delay / 90000;
+        }
+        else
+        {
+            h->fenc->hrd_timing.cpb_removal_time = rc->nrt_first_access_unit + (double)h->fenc->i_cpb_delay *
+                                                   h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale;
+
+            double cpb_earliest_arrival_time = h->fenc->hrd_timing.cpb_removal_time - (double)rc->initial_cpb_removal_delay / 90000;
+            if( h->fenc->b_keyframe )
+            {
+                 rc->nrt_first_access_unit = h->fenc->hrd_timing.cpb_removal_time;
+                 rc->initial_cpb_removal_delay = h->initial_cpb_removal_delay;
+                 rc->initial_cpb_removal_delay_offset = h->initial_cpb_removal_delay_offset;
+            }
+            else
+                 cpb_earliest_arrival_time -= (double)rc->initial_cpb_removal_delay_offset / 90000;
+
+            if( h->sps->vui.hrd.b_cbr_hrd )
+                h->fenc->hrd_timing.cpb_initial_arrival_time = rc->previous_cpb_final_arrival_time;
+            else
+                h->fenc->hrd_timing.cpb_initial_arrival_time = X264_MAX( rc->previous_cpb_final_arrival_time, cpb_earliest_arrival_time );
+        }
+        int filler_bits = *filler ? X264_MAX( (FILLER_OVERHEAD - h->param.b_annexb), *filler )*8 : 0;
+        // Equation C-6
+        h->fenc->hrd_timing.cpb_final_arrival_time = rc->previous_cpb_final_arrival_time = h->fenc->hrd_timing.cpb_initial_arrival_time +
+                                                     (double)(bits + filler_bits) / h->sps->vui.hrd.i_bit_rate_unscaled;
+
+        h->fenc->hrd_timing.dpb_output_time = (double)h->fenc->i_dpb_output_delay * h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale +
+                                              h->fenc->hrd_timing.cpb_removal_time;
+    }
+
+    return 0;
+fail:
+    x264_log(h, X264_LOG_ERROR, "ratecontrol_end: stats file could not be written to\n");
+    return -1;
 }
 
 /****************************************************************************
@@ -1183,14 +1660,12 @@ void x264_ratecontrol_end( x264_t *h, int bits )
 static double get_qscale(x264_t *h, ratecontrol_entry_t *rce, double rate_factor, int frame_num)
 {
     x264_ratecontrol_t *rcc= h->rc;
-    double q;
     x264_zone_t *zone = get_zone( h, frame_num );
-
-    q = pow( rce->blurred_complexity, 1 - h->param.rc.f_qcompress );
+    double q = pow( rce->blurred_complexity, 1 - rcc->qcompress );
 
     // avoid NaN's in the rc_eq
-    if(!isfinite(q) || rce->tex_bits + rce->mv_bits == 0)
-        q = rcc->last_qscale;
+    if( !isfinite(q) || rce->tex_bits + rce->mv_bits == 0 )
+        q = rcc->last_qscale_for[rce->pict_type];
     else
     {
         rcc->last_rceq = q;
@@ -1201,7 +1676,7 @@ static double get_qscale(x264_t *h, ratecontrol_entry_t *rce, double rate_factor
     if( zone )
     {
         if( zone->b_force_qp )
-            q = qp2qscale(zone->i_qp);
+            q = qp2qscale( zone->i_qp );
         else
             q /= zone->f_bitrate_factor;
     }
@@ -1247,30 +1722,30 @@ static double get_diff_limited_q(x264_t *h, ratecontrol_entry_t *rce, double q)
     }
 
     /* last qscale / qdiff stuff */
-    if(rcc->last_non_b_pict_type==pict_type
-       && (pict_type!=SLICE_TYPE_I || rcc->last_accum_p_norm < 1))
+    if( rcc->last_non_b_pict_type == pict_type &&
+        (pict_type!=SLICE_TYPE_I || rcc->last_accum_p_norm < 1) )
     {
         double last_q = rcc->last_qscale_for[pict_type];
         double max_qscale = last_q * rcc->lstep;
         double min_qscale = last_q / rcc->lstep;
 
-        if     (q > max_qscale) q = max_qscale;
-        else if(q < min_qscale) q = min_qscale;
+        if     ( q > max_qscale ) q = max_qscale;
+        else if( q < min_qscale ) q = min_qscale;
     }
 
     rcc->last_qscale_for[pict_type] = q;
-    if(pict_type!=SLICE_TYPE_B)
+    if( pict_type != SLICE_TYPE_B )
         rcc->last_non_b_pict_type = pict_type;
-    if(pict_type==SLICE_TYPE_I)
+    if( pict_type == SLICE_TYPE_I )
     {
         rcc->last_accum_p_norm = rcc->accum_p_norm;
         rcc->accum_p_norm = 0;
         rcc->accum_p_qp = 0;
     }
-    if(pict_type==SLICE_TYPE_P)
+    if( pict_type == SLICE_TYPE_P )
     {
         float mask = 1 - pow( (float)rce->i_count / rcc->nmb, 2 );
-        rcc->accum_p_qp   = mask * (qscale2qp(q) + rcc->accum_p_qp);
+        rcc->accum_p_qp   = mask * (qscale2qp( q ) + rcc->accum_p_qp);
         rcc->accum_p_norm = mask * (1 + rcc->accum_p_norm);
     }
     return q;
@@ -1278,57 +1753,105 @@ static double get_diff_limited_q(x264_t *h, ratecontrol_entry_t *rce, double q)
 
 static double predict_size( predictor_t *p, double q, double var )
 {
-     return p->coeff*var / (q*p->count);
+     return (p->coeff*var + p->offset) / (q*p->count);
 }
 
 static void update_predictor( predictor_t *p, double q, double var, double bits )
 {
+    const double range = 1.5;
     if( var < 10 )
         return;
-    p->count *= p->decay;
-    p->coeff *= p->decay;
-    p->count ++;
-    p->coeff += bits*q / var;
+    double old_coeff = p->coeff / p->count;
+    double new_coeff = bits*q / var;
+    double new_coeff_clipped = x264_clip3f( new_coeff, old_coeff/range, old_coeff*range );
+    double new_offset = bits*q - new_coeff_clipped * var;
+    if( new_offset >= 0 )
+        new_coeff = new_coeff_clipped;
+    else
+        new_offset = 0;
+    p->count  *= p->decay;
+    p->coeff  *= p->decay;
+    p->offset *= p->decay;
+    p->count  ++;
+    p->coeff  += new_coeff;
+    p->offset += new_offset;
 }
 
 // update VBV after encoding a frame
-static void update_vbv( x264_t *h, int bits )
+static int update_vbv( x264_t *h, int bits )
 {
+    int filler = 0;
+    int bitrate = h->sps->vui.hrd.i_bit_rate_unscaled;
     x264_ratecontrol_t *rcc = h->rc;
     x264_ratecontrol_t *rct = h->thread[0]->rc;
+    uint64_t buffer_size = (uint64_t)h->sps->vui.hrd.i_cpb_size_unscaled * h->sps->vui.i_time_scale;
 
     if( rcc->last_satd >= h->mb.i_mb_count )
-        update_predictor( &rct->pred[h->sh.i_type], qp2qscale(rcc->qpa_rc), rcc->last_satd, bits );
+        update_predictor( &rct->pred[h->sh.i_type], qp2qscale( rcc->qpa_rc ), rcc->last_satd, bits );
 
     if( !rcc->b_vbv )
-        return;
+        return filler;
+
+    rct->buffer_fill_final -= (uint64_t)bits * h->sps->vui.i_time_scale;
 
-    rct->buffer_fill_final += rct->buffer_rate - bits;
     if( rct->buffer_fill_final < 0 )
-        x264_log( h, X264_LOG_WARNING, "VBV underflow (%.0f bits)\n", rct->buffer_fill_final );
-    rct->buffer_fill_final = x264_clip3f( rct->buffer_fill_final, 0, rct->buffer_size );
+        x264_log( h, X264_LOG_WARNING, "VBV underflow (frame %d, %.0f bits)\n", h->i_frame, (double)rct->buffer_fill_final / h->sps->vui.i_time_scale );
+    rct->buffer_fill_final = X264_MAX( rct->buffer_fill_final, 0 );
+    rct->buffer_fill_final += (uint64_t)bitrate * h->sps->vui.i_num_units_in_tick * h->fenc->i_cpb_duration;
+
+    if( h->sps->vui.hrd.b_cbr_hrd && rct->buffer_fill_final > buffer_size )
+    {
+        filler = ceil( (rct->buffer_fill_final - buffer_size) / (8. * h->sps->vui.i_time_scale) );
+        bits = X264_MAX( (FILLER_OVERHEAD - h->param.b_annexb), filler ) * 8;
+        rct->buffer_fill_final -= (uint64_t)bits * h->sps->vui.i_time_scale;
+    }
+    else
+        rct->buffer_fill_final = X264_MIN( rct->buffer_fill_final, buffer_size );
+
+    return filler;
+}
+
+void x264_hrd_fullness( x264_t *h )
+{
+    x264_ratecontrol_t *rct = h->thread[0]->rc;
+    uint64_t denom = (uint64_t)h->sps->vui.hrd.i_bit_rate_unscaled * h->sps->vui.i_time_scale / rct->hrd_multiply_denom;
+    uint64_t cpb_state = rct->buffer_fill_final;
+    uint64_t cpb_size = (uint64_t)h->sps->vui.hrd.i_cpb_size_unscaled * h->sps->vui.i_time_scale;
+    uint64_t multiply_factor = 180000 / rct->hrd_multiply_denom;
+
+    if( rct->buffer_fill_final < 0 || rct->buffer_fill_final > cpb_size )
+    {
+         x264_log( h, X264_LOG_WARNING, "CPB %s: %.0lf bits in a %.0lf-bit buffer\n",
+                   rct->buffer_fill_final < 0 ? "underflow" : "overflow", (float)rct->buffer_fill_final/denom, (float)cpb_size/denom );
+    }
+
+    h->initial_cpb_removal_delay = (multiply_factor * cpb_state + denom) / (2*denom);
+    h->initial_cpb_removal_delay_offset = (multiply_factor * cpb_size + denom) / (2*denom) - h->initial_cpb_removal_delay;
 }
 
 // provisionally update VBV according to the planned size of all frames currently in progress
-static void update_vbv_plan( x264_t *h )
+static void update_vbv_plan( x264_t *h, int overhead )
 {
     x264_ratecontrol_t *rcc = h->rc;
-    rcc->buffer_fill = h->thread[0]->rc->buffer_fill_final;
-    if( h->param.i_threads > 1 )
+    rcc->buffer_fill = h->thread[0]->rc->buffer_fill_final / h->sps->vui.i_time_scale;
+    if( h->i_thread_frames > 1 )
     {
         int j = h->rc - h->thread[0]->rc;
-        int i;
-        for( i=1; i<h->param.i_threads; i++ )
+        for( int i = 1; i < h->i_thread_frames; i++ )
         {
-            x264_t *t = h->thread[ (j+i)%h->param.i_threads ];
+            x264_t *t = h->thread[ (j+i)%h->i_thread_frames ];
             double bits = t->rc->frame_size_planned;
             if( !t->b_thread_active )
                 continue;
-            bits  = X264_MAX(bits, x264_ratecontrol_get_estimated_size(t));
-            rcc->buffer_fill += rcc->buffer_rate - bits;
-            rcc->buffer_fill = x264_clip3( rcc->buffer_fill, 0, rcc->buffer_size );
+            bits  = X264_MAX(bits, t->rc->frame_size_estimated);
+            rcc->buffer_fill -= bits;
+            rcc->buffer_fill = X264_MAX( rcc->buffer_fill, 0 );
+            rcc->buffer_fill += t->rc->buffer_rate;
+            rcc->buffer_fill = X264_MIN( rcc->buffer_fill, rcc->buffer_size );
         }
     }
+    rcc->buffer_fill = X264_MIN( rcc->buffer_fill, rcc->buffer_size );
+    rcc->buffer_fill -= overhead;
 }
 
 // apply VBV constraints and clip qscale to between lmin and lmax
@@ -1337,52 +1860,122 @@ static double clip_qscale( x264_t *h, int pict_type, double q )
     x264_ratecontrol_t *rcc = h->rc;
     double lmin = rcc->lmin[pict_type];
     double lmax = rcc->lmax[pict_type];
+    if( rcc->rate_factor_max_increment )
+        lmax = X264_MIN( lmax, qp2qscale( rcc->qp_novbv + rcc->rate_factor_max_increment ) );
     double q0 = q;
 
     /* B-frames are not directly subject to VBV,
-     * since they are controlled by the P-frames' QPs.
-     * FIXME: in 2pass we could modify previous frames' QP too,
-     *        instead of waiting for the buffer to fill */
-    if( rcc->b_vbv &&
-        ( pict_type == SLICE_TYPE_P ||
-          ( pict_type == SLICE_TYPE_I && rcc->last_non_b_pict_type == SLICE_TYPE_I ) ) )
-    {
-        if( rcc->buffer_fill/rcc->buffer_size < 0.5 )
-            q /= x264_clip3f( 2.0*rcc->buffer_fill/rcc->buffer_size, 0.5, 1.0 );
-    }
+     * since they are controlled by the P-frames' QPs. */
 
     if( rcc->b_vbv && rcc->last_satd > 0 )
     {
-        /* Now a hard threshold to make sure the frame fits in VBV.
-         * This one is mostly for I-frames. */
+        /* Lookahead VBV: raise the quantizer as necessary such that no frames in
+         * the lookahead overflow and such that the buffer is in a reasonable state
+         * by the end of the lookahead. */
+        if( h->param.rc.i_lookahead )
+        {
+            int terminate = 0;
+
+            /* Avoid an infinite loop. */
+            for( int iterations = 0; iterations < 1000 && terminate != 3; iterations++ )
+            {
+                double frame_q[3];
+                double cur_bits = predict_size( &rcc->pred[h->sh.i_type], q, rcc->last_satd );
+                double buffer_fill_cur = rcc->buffer_fill - cur_bits;
+                double target_fill;
+                double total_duration = 0;
+                frame_q[0] = h->sh.i_type == SLICE_TYPE_I ? q * h->param.rc.f_ip_factor : q;
+                frame_q[1] = frame_q[0] * h->param.rc.f_pb_factor;
+                frame_q[2] = frame_q[0] / h->param.rc.f_ip_factor;
+
+                /* Loop over the planned future frames. */
+                for( int j = 0; buffer_fill_cur >= 0 && buffer_fill_cur <= rcc->buffer_size; j++ )
+                {
+                    total_duration += h->fenc->f_planned_cpb_duration[j];
+                    buffer_fill_cur += rcc->vbv_max_rate * h->fenc->f_planned_cpb_duration[j];
+                    int i_type = h->fenc->i_planned_type[j];
+                    int i_satd = h->fenc->i_planned_satd[j];
+                    if( i_type == X264_TYPE_AUTO )
+                        break;
+                    i_type = IS_X264_TYPE_I( i_type ) ? SLICE_TYPE_I : IS_X264_TYPE_B( i_type ) ? SLICE_TYPE_B : SLICE_TYPE_P;
+                    cur_bits = predict_size( &rcc->pred[i_type], frame_q[i_type], i_satd );
+                    buffer_fill_cur -= cur_bits;
+                }
+                /* Try to get to get the buffer at least 50% filled, but don't set an impossible goal. */
+                target_fill = X264_MIN( rcc->buffer_fill + total_duration * rcc->vbv_max_rate * 0.5, rcc->buffer_size * 0.5 );
+                if( buffer_fill_cur < target_fill )
+                {
+                    q *= 1.01;
+                    terminate |= 1;
+                    continue;
+                }
+                /* Try to get the buffer no more than 80% filled, but don't set an impossible goal. */
+                target_fill = x264_clip3f( rcc->buffer_fill - total_duration * rcc->vbv_max_rate * 0.5, rcc->buffer_size * 0.8, rcc->buffer_size );
+                if( rcc->b_vbv_min_rate && buffer_fill_cur > target_fill )
+                {
+                    q /= 1.01;
+                    terminate |= 2;
+                    continue;
+                }
+                break;
+            }
+        }
+        /* Fallback to old purely-reactive algorithm: no lookahead. */
+        else
+        {
+            if( ( pict_type == SLICE_TYPE_P ||
+                ( pict_type == SLICE_TYPE_I && rcc->last_non_b_pict_type == SLICE_TYPE_I ) ) &&
+                rcc->buffer_fill/rcc->buffer_size < 0.5 )
+            {
+                q /= x264_clip3f( 2.0*rcc->buffer_fill/rcc->buffer_size, 0.5, 1.0 );
+            }
+
+            /* Now a hard threshold to make sure the frame fits in VBV.
+             * This one is mostly for I-frames. */
+            double bits = predict_size( &rcc->pred[h->sh.i_type], q, rcc->last_satd );
+            double qf = 1.0;
+            /* For small VBVs, allow the frame to use up the entire VBV. */
+            double max_fill_factor = h->param.rc.i_vbv_buffer_size >= 5*h->param.rc.i_vbv_max_bitrate / rcc->fps ? 2 : 1;
+            /* For single-frame VBVs, request that the frame use up the entire VBV. */
+            double min_fill_factor = rcc->single_frame_vbv ? 1 : 2;
+
+            if( bits > rcc->buffer_fill/max_fill_factor )
+                qf = x264_clip3f( rcc->buffer_fill/(max_fill_factor*bits), 0.2, 1.0 );
+            q /= qf;
+            bits *= qf;
+            if( bits < rcc->buffer_rate/min_fill_factor )
+                q *= bits*min_fill_factor/rcc->buffer_rate;
+            q = X264_MAX( q0, q );
+        }
+
+        /* Apply MinCR restrictions */
         double bits = predict_size( &rcc->pred[h->sh.i_type], q, rcc->last_satd );
-        double qf = 1.0;
-        if( bits > rcc->buffer_fill/2 )
-            qf = x264_clip3f( rcc->buffer_fill/(2*bits), 0.2, 1.0 );
-        q /= qf;
-        bits *= qf;
-        if( bits < rcc->buffer_rate/2 )
-            q *= bits*2/rcc->buffer_rate;
-        q = X264_MAX( q0, q );
+        if( bits > rcc->frame_size_maximum )
+            q *= bits / rcc->frame_size_maximum;
+        bits = predict_size( &rcc->pred[h->sh.i_type], q, rcc->last_satd );
 
         /* Check B-frame complexity, and use up any bits that would
          * overflow before the next P-frame. */
-        if( h->sh.i_type == SLICE_TYPE_P )
+        if( h->sh.i_type == SLICE_TYPE_P && !rcc->single_frame_vbv )
         {
             int nb = rcc->bframes;
             double pbbits = bits;
             double bbits = predict_size( rcc->pred_b_from_p, q * h->param.rc.f_pb_factor, rcc->last_satd );
             double space;
+            double bframe_cpb_duration = 0;
+            double minigop_cpb_duration;
+            for( int i = 0; i < nb; i++ )
+                bframe_cpb_duration += h->fenc->f_planned_cpb_duration[1+i];
 
-            if( bbits > rcc->buffer_rate )
+            if( bbits * nb > bframe_cpb_duration * rcc->vbv_max_rate )
                 nb = 0;
             pbbits += nb * bbits;
 
-            space = rcc->buffer_fill + (1+nb)*rcc->buffer_rate - rcc->buffer_size;
+            minigop_cpb_duration = bframe_cpb_duration + h->fenc->f_planned_cpb_duration[0];
+            space = rcc->buffer_fill + minigop_cpb_duration*rcc->vbv_max_rate - rcc->buffer_size;
             if( pbbits < space )
             {
-                q *= X264_MAX( pbbits / space,
-                               bits / (0.5 * rcc->buffer_size) );
+                q *= X264_MAX( pbbits / space, bits / (0.5 * rcc->buffer_size) );
             }
             q = X264_MAX( q0-5, q );
         }
@@ -1391,19 +1984,19 @@ static double clip_qscale( x264_t *h, int pict_type, double q )
             q = X264_MAX( q0, q );
     }
 
-    if(lmin==lmax)
+    if( lmin==lmax )
         return lmin;
-    else if(rcc->b_2pass)
+    else if( rcc->b_2pass )
     {
-        double min2 = log(lmin);
-        double max2 = log(lmax);
+        double min2 = log( lmin );
+        double max2 = log( lmax );
         q = (log(q) - min2)/(max2-min2) - 0.5;
-        q = 1.0/(1.0 + exp(-4*q));
+        q = 1.0/(1.0 + exp( -4*q ));
         q = q*(max2-min2) + min2;
-        return exp(q);
+        return exp( q );
     }
     else
-        return x264_clip3f(q, lmin, lmax);
+        return x264_clip3f( q, lmin, lmax );
 }
 
 // update qscale for 1 frame based on actual bits used so far
@@ -1413,19 +2006,18 @@ static float rate_estimate_qscale( x264_t *h )
     x264_ratecontrol_t *rcc = h->rc;
     ratecontrol_entry_t rce;
     int pict_type = h->sh.i_type;
-    double lmin = rcc->lmin[pict_type];
-    double lmax = rcc->lmax[pict_type];
-    int64_t total_bits = 8*(h->stat.i_slice_size[SLICE_TYPE_I]
-                          + h->stat.i_slice_size[SLICE_TYPE_P]
-                          + h->stat.i_slice_size[SLICE_TYPE_B]);
+    int64_t total_bits = 8*(h->stat.i_frame_size[SLICE_TYPE_I]
+                          + h->stat.i_frame_size[SLICE_TYPE_P]
+                          + h->stat.i_frame_size[SLICE_TYPE_B])
+                       - rcc->filler_bits_sum;
 
     if( rcc->b_2pass )
     {
         rce = *rcc->rce;
-        if(pict_type != rce.pict_type)
+        if( pict_type != rce.pict_type )
         {
-            x264_log(h, X264_LOG_ERROR, "slice=%c but 2pass stats say %c\n",
-                     slice_type_to_char[pict_type], slice_type_to_char[rce.pict_type]);
+            x264_log( h, X264_LOG_ERROR, "slice=%c but 2pass stats say %c\n",
+                      slice_type_to_char[pict_type], slice_type_to_char[rce.pict_type] );
         }
     }
 
@@ -1446,24 +2038,31 @@ static float rate_estimate_qscale( x264_t *h )
         if( h->fref1[0]->i_type == X264_TYPE_BREF )
             q1 -= rcc->pb_offset/2;
 
-        if(i0 && i1)
+        if( i0 && i1 )
             q = (q0 + q1) / 2 + rcc->ip_offset;
-        else if(i0)
+        else if( i0 )
             q = q1;
-        else if(i1)
+        else if( i1 )
             q = q0;
         else
             q = (q0*dt1 + q1*dt0) / (dt0 + dt1);
 
-        if(h->fenc->b_kept_as_ref)
+        if( h->fenc->b_kept_as_ref )
             q += rcc->pb_offset/2;
         else
             q += rcc->pb_offset;
 
-        rcc->frame_size_planned = predict_size( rcc->pred_b_from_p, q, h->fref1[h->i_ref1-1]->i_satd );
-        x264_ratecontrol_set_estimated_size(h, rcc->frame_size_planned);
-        rcc->last_satd = 0;
-        return qp2qscale(q);
+        if( rcc->b_2pass && rcc->b_vbv )
+            rcc->frame_size_planned = qscale2bits( &rce, q );
+        else
+            rcc->frame_size_planned = predict_size( rcc->pred_b_from_p, q, h->fref1[h->i_ref1-1]->i_satd );
+        h->rc->frame_size_estimated = rcc->frame_size_planned;
+
+        /* For row SATDs */
+        if( rcc->b_vbv )
+            rcc->last_satd = x264_rc_analyse_slice( h );
+        rcc->qp_novbv = q;
+        return qp2qscale( q );
     }
     else
     {
@@ -1471,57 +2070,66 @@ static float rate_estimate_qscale( x264_t *h )
 
         if( rcc->b_2pass )
         {
-            //FIXME adjust abr_buffer based on distance to the end of the video
+            double lmin = rcc->lmin[pict_type];
+            double lmax = rcc->lmax[pict_type];
             int64_t diff;
             int64_t predicted_bits = total_bits;
 
             if( rcc->b_vbv )
             {
-                if( h->param.i_threads > 1 )
+                if( h->i_thread_frames > 1 )
                 {
                     int j = h->rc - h->thread[0]->rc;
-                    int i;
-                    for( i=1; i<h->param.i_threads; i++ )
+                    for( int i = 1; i < h->i_thread_frames; i++ )
                     {
-                        x264_t *t = h->thread[ (j+i)%h->param.i_threads ];
+                        x264_t *t = h->thread[ (j+i)%h->i_thread_frames ];
                         double bits = t->rc->frame_size_planned;
                         if( !t->b_thread_active )
                             continue;
-                        bits  = X264_MAX(bits, x264_ratecontrol_get_estimated_size(t));
+                        bits  = X264_MAX(bits, t->rc->frame_size_estimated);
                         predicted_bits += (int64_t)bits;
                     }
                 }
             }
             else
             {
-                if( h->fenc->i_frame < h->param.i_threads )
-                    predicted_bits += (int64_t)h->fenc->i_frame * rcc->bitrate / rcc->fps;
+                if( h->i_frame < h->i_thread_frames )
+                    predicted_bits += (int64_t)h->i_frame * rcc->bitrate / rcc->fps;
                 else
-                    predicted_bits += (int64_t)(h->param.i_threads - 1) * rcc->bitrate / rcc->fps;
+                    predicted_bits += (int64_t)(h->i_thread_frames - 1) * rcc->bitrate / rcc->fps;
+            }
+
+            /* Adjust ABR buffer based on distance to the end of the video. */
+            if( rcc->num_entries > h->i_frame )
+            {
+                double final_bits = rcc->entry[rcc->num_entries-1].expected_bits;
+                double video_pos = rce.expected_bits / final_bits;
+                double scale_factor = sqrt( (1 - video_pos) * rcc->num_entries );
+                abr_buffer *= 0.5 * X264_MAX( scale_factor, 0.5 );
             }
 
             diff = predicted_bits - (int64_t)rce.expected_bits;
             q = rce.new_qscale;
             q /= x264_clip3f((double)(abr_buffer - diff) / abr_buffer, .5, 2);
-            if( ((h->fenc->i_frame + 1 - h->param.i_threads) >= rcc->fps) &&
+            if( ((h->i_frame + 1 - h->i_thread_frames) >= rcc->fps) &&
                 (rcc->expected_bits_sum > 0))
             {
                 /* Adjust quant based on the difference between
                  * achieved and expected bitrate so far */
-                double time = (double)h->fenc->i_frame / rcc->num_entries;
-                double w = x264_clip3f( time*100, 0.0, 1.0 );
+                double cur_time = (double)h->i_frame / rcc->num_entries;
+                double w = x264_clip3f( cur_time*100, 0.0, 1.0 );
                 q *= pow( (double)total_bits / rcc->expected_bits_sum, w );
             }
             if( rcc->b_vbv )
             {
                 /* Do not overflow vbv */
-                double expected_size = qscale2bits(&rce, q);
+                double expected_size = qscale2bits( &rce, q );
                 double expected_vbv = rcc->buffer_fill + rcc->buffer_rate - expected_size;
-                double expected_fullness =  rce.expected_vbv / rcc->buffer_size;
+                double expected_fullness = rce.expected_vbv / rcc->buffer_size;
                 double qmax = q*(2 - expected_fullness);
                 double size_constraint = 1 + expected_fullness;
-                qmax = X264_MAX(qmax, rce.new_qscale);
-                if (expected_fullness < .05)
+                qmax = X264_MAX( qmax, rce.new_qscale );
+                if( expected_fullness < .05 )
                     qmax = lmax;
                 qmax = X264_MIN(qmax, lmax);
                 while( ((expected_vbv < rce.expected_vbv/size_constraint) && (q < qmax)) ||
@@ -1531,7 +2139,7 @@ static float rate_estimate_qscale( x264_t *h )
                     expected_size = qscale2bits(&rce, q);
                     expected_vbv = rcc->buffer_fill + rcc->buffer_rate - expected_size;
                 }
-                rcc->last_satd = x264_stack_align( x264_rc_analyse_slice, h );
+                rcc->last_satd = x264_rc_analyse_slice( h );
             }
             q = x264_clip3f( q, lmin, lmax );
         }
@@ -1547,9 +2155,9 @@ static float rate_estimate_qscale( x264_t *h )
              * tradeoff between quality and bitrate precision. But at large
              * tolerances, the bit distribution approaches that of 2pass. */
 
-            double wanted_bits, overflow=1, lmin, lmax;
+            double wanted_bits, overflow = 1;
 
-            rcc->last_satd = x264_stack_align( x264_rc_analyse_slice, h );
+            rcc->last_satd = x264_rc_analyse_slice( h );
             rcc->short_term_cplxsum *= 0.5;
             rcc->short_term_cplxcount *= 0.5;
             rcc->short_term_cplxsum += rcc->last_satd;
@@ -1570,17 +2178,24 @@ static float rate_estimate_qscale( x264_t *h )
             }
             else
             {
-                int i_frame_done = h->fenc->i_frame + 1 - h->param.i_threads;
-
                 q = get_qscale( h, &rce, rcc->wanted_bits_window / rcc->cplxr_sum, h->fenc->i_frame );
 
-                // FIXME is it simpler to keep track of wanted_bits in ratecontrol_end?
-                wanted_bits = i_frame_done * rcc->bitrate / rcc->fps;
-                if( wanted_bits > 0 )
+                /* ABR code can potentially be counterproductive in CBR, so just don't bother.
+                 * Don't run it if the frame complexity is zero either. */
+                if( !rcc->b_vbv_min_rate && rcc->last_satd )
                 {
-                    abr_buffer *= X264_MAX( 1, sqrt(i_frame_done/25) );
-                    overflow = x264_clip3f( 1.0 + (total_bits - wanted_bits) / abr_buffer, .5, 2 );
-                    q *= overflow;
+                    // FIXME is it simpler to keep track of wanted_bits in ratecontrol_end?
+                    int i_frame_done = h->i_frame + 1 - h->i_thread_frames;
+                    double time_done = i_frame_done / rcc->fps;
+                    if( h->param.b_vfr_input && i_frame_done > 0 )
+                        time_done = ((double)(h->fenc->i_reordered_pts - h->i_reordered_pts_delay)) * h->param.i_timebase_num / h->param.i_timebase_den;
+                    wanted_bits = time_done * rcc->bitrate;
+                    if( wanted_bits > 0 )
+                    {
+                        abr_buffer *= X264_MAX( 1, sqrt( time_done ) );
+                        overflow = x264_clip3f( 1.0 + (total_bits - wanted_bits) / abr_buffer, .5, 2 );
+                        q *= overflow;
+                    }
                 }
             }
 
@@ -1595,8 +2210,8 @@ static float rate_estimate_qscale( x264_t *h )
             {
                 /* Asymmetric clipping, because symmetric would prevent
                  * overflow control in areas of rapidly oscillating complexity */
-                lmin = rcc->last_qscale_for[pict_type] / rcc->lstep;
-                lmax = rcc->last_qscale_for[pict_type] * rcc->lstep;
+                double lmin = rcc->last_qscale_for[pict_type] / rcc->lstep;
+                double lmax = rcc->last_qscale_for[pict_type] * rcc->lstep;
                 if( overflow > 1.1 && h->i_frame > 3 )
                     lmax *= rcc->lstep;
                 else if( overflow < 0.9 )
@@ -1604,10 +2219,11 @@ static float rate_estimate_qscale( x264_t *h )
 
                 q = x264_clip3f(q, lmin, lmax);
             }
-            else if( h->param.rc.i_rc_method == X264_RC_CRF )
+            else if( h->param.rc.i_rc_method == X264_RC_CRF && rcc->qcompress != 1 )
             {
                 q = qp2qscale( ABR_INIT_QP ) / fabs( h->param.rc.f_ip_factor );
             }
+            rcc->qp_novbv = qscale2qp( q );
 
             //FIXME use get_diff_limited_q() ?
             q = clip_qscale( h, pict_type, q );
@@ -1617,17 +2233,106 @@ static float rate_estimate_qscale( x264_t *h )
         rcc->last_qscale = q;
 
         if( !(rcc->b_2pass && !rcc->b_vbv) && h->fenc->i_frame == 0 )
-            rcc->last_qscale_for[SLICE_TYPE_P] = q;
+            rcc->last_qscale_for[SLICE_TYPE_P] = q * fabs( h->param.rc.f_ip_factor );
 
-        if( rcc->b_2pass && rcc->b_vbv)
+        if( rcc->b_2pass && rcc->b_vbv )
             rcc->frame_size_planned = qscale2bits(&rce, q);
         else
             rcc->frame_size_planned = predict_size( &rcc->pred[h->sh.i_type], q, rcc->last_satd );
-        x264_ratecontrol_set_estimated_size(h, rcc->frame_size_planned);
+
+        /* Always use up the whole VBV in this case. */
+        if( rcc->single_frame_vbv )
+            rcc->frame_size_planned = rcc->buffer_rate;
+        h->rc->frame_size_estimated = rcc->frame_size_planned;
         return q;
     }
 }
 
+void x264_threads_normalize_predictors( x264_t *h )
+{
+    double totalsize = 0;
+    for( int i = 0; i < h->param.i_threads; i++ )
+        totalsize += h->thread[i]->rc->slice_size_planned;
+    double factor = h->rc->frame_size_planned / totalsize;
+    for( int i = 0; i < h->param.i_threads; i++ )
+        h->thread[i]->rc->slice_size_planned *= factor;
+}
+
+void x264_threads_distribute_ratecontrol( x264_t *h )
+{
+    int row;
+    x264_ratecontrol_t *rc = h->rc;
+
+    /* Initialize row predictors */
+    if( h->i_frame == 0 )
+        for( int i = 0; i < h->param.i_threads; i++ )
+        {
+            x264_ratecontrol_t *t = h->thread[i]->rc;
+            memcpy( t->row_preds, rc->row_preds, sizeof(rc->row_preds) );
+        }
+
+    for( int i = 0; i < h->param.i_threads; i++ )
+    {
+        x264_t *t = h->thread[i];
+        memcpy( t->rc, rc, offsetof(x264_ratecontrol_t, row_pred) );
+        t->rc->row_pred = &t->rc->row_preds[h->sh.i_type];
+        /* Calculate the planned slice size. */
+        if( rc->b_vbv && rc->frame_size_planned )
+        {
+            int size = 0;
+            for( row = t->i_threadslice_start; row < t->i_threadslice_end; row++ )
+                size += h->fdec->i_row_satd[row];
+            t->rc->slice_size_planned = predict_size( &rc->pred[h->sh.i_type + (i+1)*5], rc->qpm, size );
+        }
+        else
+            t->rc->slice_size_planned = 0;
+    }
+    if( rc->b_vbv && rc->frame_size_planned )
+    {
+        x264_threads_normalize_predictors( h );
+
+        if( rc->single_frame_vbv )
+        {
+            /* Compensate for our max frame error threshold: give more bits (proportionally) to smaller slices. */
+            for( int i = 0; i < h->param.i_threads; i++ )
+            {
+                x264_t *t = h->thread[i];
+                float max_frame_error = X264_MAX( 0.05, 1.0 / (t->i_threadslice_end - t->i_threadslice_start) );
+                t->rc->slice_size_planned += 2 * max_frame_error * rc->frame_size_planned;
+            }
+            x264_threads_normalize_predictors( h );
+        }
+
+        for( int i = 0; i < h->param.i_threads; i++ )
+            h->thread[i]->rc->frame_size_estimated = h->thread[i]->rc->slice_size_planned;
+    }
+}
+
+void x264_threads_merge_ratecontrol( x264_t *h )
+{
+    x264_ratecontrol_t *rc = h->rc;
+    x264_emms();
+
+    for( int i = 0; i < h->param.i_threads; i++ )
+    {
+        x264_t *t = h->thread[i];
+        x264_ratecontrol_t *rct = h->thread[i]->rc;
+        if( h->param.rc.i_vbv_buffer_size )
+        {
+            int size = 0;
+            for( int row = t->i_threadslice_start; row < t->i_threadslice_end; row++ )
+                size += h->fdec->i_row_satd[row];
+            int bits = t->stat.frame.i_mv_bits + t->stat.frame.i_tex_bits + t->stat.frame.i_misc_bits;
+            int mb_count = (t->i_threadslice_end - t->i_threadslice_start) * h->mb.i_mb_width;
+            update_predictor( &rc->pred[h->sh.i_type+(i+1)*5], qp2qscale( rct->qpa_rc/mb_count ), size, bits );
+        }
+        if( !i )
+            continue;
+        rc->qpa_rc += rct->qpa_rc;
+        rc->qpa_aq += rct->qpa_aq;
+    }
+}
+
 void x264_thread_sync_ratecontrol( x264_t *cur, x264_t *prev, x264_t *next )
 {
     if( cur != prev )
@@ -1635,8 +2340,7 @@ void x264_thread_sync_ratecontrol( x264_t *cur, x264_t *prev, x264_t *next )
 #define COPY(var) memcpy(&cur->rc->var, &prev->rc->var, sizeof(cur->rc->var))
         /* these vars are updated in x264_ratecontrol_start()
          * so copy them from the context that most recently started (prev)
-         * to the context that's about to start (cur).
-         */
+         * to the context that's about to start (cur). */
         COPY(accum_p_qp);
         COPY(accum_p_norm);
         COPY(last_satd);
@@ -1647,6 +2351,15 @@ void x264_thread_sync_ratecontrol( x264_t *cur, x264_t *prev, x264_t *next )
         COPY(short_term_cplxcount);
         COPY(bframes);
         COPY(prev_zone);
+        COPY(qpbuf_pos);
+        /* these vars can be updated by x264_ratecontrol_init_reconfigurable */
+        COPY(buffer_rate);
+        COPY(buffer_size);
+        COPY(single_frame_vbv);
+        COPY(cbr_decay);
+        COPY(b_vbv_min_rate);
+        COPY(rate_factor_constant);
+        COPY(bitrate);
 #undef COPY
     }
     if( cur != next )
@@ -1654,12 +2367,16 @@ void x264_thread_sync_ratecontrol( x264_t *cur, x264_t *prev, x264_t *next )
 #define COPY(var) next->rc->var = cur->rc->var
         /* these vars are updated in x264_ratecontrol_end()
          * so copy them from the context that most recently ended (cur)
-         * to the context that's about to end (next)
-         */
+         * to the context that's about to end (next) */
         COPY(cplxr_sum);
         COPY(expected_bits_sum);
+        COPY(filler_bits_sum);
         COPY(wanted_bits_window);
         COPY(bframe_bits);
+        COPY(initial_cpb_removal_delay);
+        COPY(initial_cpb_removal_delay_offset);
+        COPY(nrt_first_access_unit);
+        COPY(previous_cpb_final_arrival_time);
 #undef COPY
     }
     //FIXME row_preds[] (not strictly necessary, but would improve prediction)
@@ -1676,40 +2393,40 @@ static int find_underflow( x264_t *h, double *fills, int *t0, int *t1, int over
     const double buffer_max = .9 * rcc->buffer_size;
     double fill = fills[*t0-1];
     double parity = over ? 1. : -1.;
-    int i, start=-1, end=-1;
-    for(i = *t0; i < rcc->num_entries; i++)
+    int start = -1, end = -1;
+    for( int i = *t0; i < rcc->num_entries; i++ )
     {
-        fill += (rcc->buffer_rate - qscale2bits(&rcc->entry[i], rcc->entry[i].new_qscale)) * parity;
+        fill += (rcc->entry[i].i_cpb_duration * rcc->vbv_max_rate * h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale -
+                 qscale2bits( &rcc->entry[i], rcc->entry[i].new_qscale )) * parity;
         fill = x264_clip3f(fill, 0, rcc->buffer_size);
         fills[i] = fill;
-        if(fill <= buffer_min || i == 0)
+        if( fill <= buffer_min || i == 0 )
         {
-            if(end >= 0)
+            if( end >= 0 )
                 break;
             start = i;
         }
-        else if(fill >= buffer_max && start >= 0)
+        else if( fill >= buffer_max && start >= 0 )
             end = i;
     }
     *t0 = start;
     *t1 = end;
-    return start>=0 && end>=0;
+    return start >= 0 && end >= 0;
 }
 
 static int fix_underflow( x264_t *h, int t0, int t1, double adjustment, double qscale_min, double qscale_max)
 {
     x264_ratecontrol_t *rcc = h->rc;
     double qscale_orig, qscale_new;
-    int i;
     int adjusted = 0;
-    if(t0 > 0)
+    if( t0 > 0 )
         t0++;
-    for(i = t0; i <= t1; i++)
+    for( int i = t0; i <= t1; i++ )
     {
         qscale_orig = rcc->entry[i].new_qscale;
-        qscale_orig = x264_clip3f(qscale_orig, qscale_min, qscale_max);
+        qscale_orig = x264_clip3f( qscale_orig, qscale_min, qscale_max );
         qscale_new  = qscale_orig * adjustment;
-        qscale_new  = x264_clip3f(qscale_new, qscale_min, qscale_max);
+        qscale_new  = x264_clip3f( qscale_new, qscale_min, qscale_max );
         rcc->entry[i].new_qscale = qscale_new;
         adjusted = adjusted || (qscale_new != qscale_orig);
     }
@@ -1720,17 +2437,16 @@ static double count_expected_bits( x264_t *h )
 {
     x264_ratecontrol_t *rcc = h->rc;
     double expected_bits = 0;
-    int i;
-    for(i = 0; i < rcc->num_entries; i++)
+    for( int i = 0; i < rcc->num_entries; i++ )
     {
         ratecontrol_entry_t *rce = &rcc->entry[i];
         rce->expected_bits = expected_bits;
-        expected_bits += qscale2bits(rce, rce->new_qscale);
+        expected_bits += qscale2bits( rce, rce->new_qscale );
     }
     return expected_bits;
 }
 
-static void vbv_pass2( x264_t *h )
+static int vbv_pass2( x264_t *h, double all_available_bits )
 {
     /* for each interval of buffer_full .. underflow, uniformly increase the qp of all
      * frames in the interval until either buffer is full at some intermediate frame or the
@@ -1738,16 +2454,16 @@ static void vbv_pass2( x264_t *h )
      * Then do the converse to put bits back into overflow areas until target size is met */
 
     x264_ratecontrol_t *rcc = h->rc;
-    double *fills = x264_malloc((rcc->num_entries+1)*sizeof(double));
-    double all_available_bits = h->param.rc.i_bitrate * 1000. * rcc->num_entries / rcc->fps;
+    double *fills;
     double expected_bits = 0;
     double adjustment;
     double prev_bits = 0;
-    int i, t0, t1;
-    double qscale_min = qp2qscale(h->param.rc.i_qp_min);
-    double qscale_max = qp2qscale(h->param.rc.i_qp_max);
+    int t0, t1;
+    double qscale_min = qp2qscale( h->param.rc.i_qp_min );
+    double qscale_max = qp2qscale( h->param.rc.i_qp_max );
     int iterations = 0;
     int adj_min, adj_max;
+    CHECKED_MALLOC( fills, (rcc->num_entries+1)*sizeof(double) );
 
     fills++;
 
@@ -1757,16 +2473,16 @@ static void vbv_pass2( x264_t *h )
         iterations++;
         prev_bits = expected_bits;
 
-        if(expected_bits != 0)
+        if( expected_bits )
         {   /* not first iteration */
             adjustment = X264_MAX(X264_MIN(expected_bits / all_available_bits, 0.999), 0.9);
             fills[-1] = rcc->buffer_size * h->param.rc.f_vbv_buffer_init;
             t0 = 0;
             /* fix overflows */
             adj_min = 1;
-            while(adj_min && find_underflow(h, fills, &t0, &t1, 1))
+            while(adj_min && find_underflow( h, fills, &t0, &t1, 1 ))
             {
-                adj_min = fix_underflow(h, t0, t1, adjustment, qscale_min, qscale_max);
+                adj_min = fix_underflow( h, t0, t1, adjustment, qscale_min, qscale_max );
                 t0 = t1;
             }
         }
@@ -1775,37 +2491,44 @@ static void vbv_pass2( x264_t *h )
         t0 = 0;
         /* fix underflows -- should be done after overflow, as we'd better undersize target than underflowing VBV */
         adj_max = 1;
-        while(adj_max && find_underflow(h, fills, &t0, &t1, 0))
-            adj_max = fix_underflow(h, t0, t1, 1.001, qscale_min, qscale_max);
+        while( adj_max && find_underflow( h, fills, &t0, &t1, 0 ) )
+            adj_max = fix_underflow( h, t0, t1, 1.001, qscale_min, qscale_max );
 
-        expected_bits = count_expected_bits(h);
-    } while((expected_bits < .995*all_available_bits) && ((int)(expected_bits+.5) > (int)(prev_bits+.5)) );
+        expected_bits = count_expected_bits( h );
+    } while( (expected_bits < .995*all_available_bits) && ((int64_t)(expected_bits+.5) > (int64_t)(prev_bits+.5)) );
 
-    if (!adj_max)
+    if( !adj_max )
         x264_log( h, X264_LOG_WARNING, "vbv-maxrate issue, qpmax or vbv-maxrate too low\n");
 
     /* store expected vbv filling values for tracking when encoding */
-    for(i = 0; i < rcc->num_entries; i++)
+    for( int i = 0; i < rcc->num_entries; i++ )
         rcc->entry[i].expected_vbv = rcc->buffer_size - fills[i];
 
-    x264_free(fills-1);
+    x264_free( fills-1 );
+    return 0;
+fail:
+    return -1;
 }
 
 static int init_pass2( x264_t *h )
 {
     x264_ratecontrol_t *rcc = h->rc;
     uint64_t all_const_bits = 0;
-    uint64_t all_available_bits = (uint64_t)(h->param.rc.i_bitrate * 1000. * rcc->num_entries / rcc->fps);
-    double rate_factor, step, step_mult;
+    double duration = 0;
+    for( int i = 0; i < rcc->num_entries; i++ )
+        duration += rcc->entry[i].i_duration;
+    duration *= (double)h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale;
+    uint64_t all_available_bits = h->param.rc.i_bitrate * 1000. * duration;
+    double rate_factor, step_mult;
     double qblur = h->param.rc.f_qblur;
     double cplxblur = h->param.rc.f_complexity_blur;
     const int filter_size = (int)(qblur*4) | 1;
     double expected_bits;
     double *qscale, *blurred_qscale;
-    int i;
+    double base_cplx = h->mb.i_mb_count * (h->param.i_bframe ? 120 : 80);
 
     /* find total/average complexity & const_bits */
-    for(i=0; i<rcc->num_entries; i++)
+    for( int i = 0; i < rcc->num_entries; i++ )
     {
         ratecontrol_entry_t *rce = &rcc->entry[i];
         all_const_bits += rce->misc_bits;
@@ -1813,8 +2536,8 @@ static int init_pass2( x264_t *h )
 
     if( all_available_bits < all_const_bits)
     {
-        x264_log(h, X264_LOG_ERROR, "requested bitrate is too low. estimated minimum is %d kbps\n",
-                 (int)(all_const_bits * rcc->fps / (rcc->num_entries * 1000.)));
+        x264_log( h, X264_LOG_ERROR, "requested bitrate is too low. estimated minimum is %d kbps\n",
+                 (int)(all_const_bits * rcc->fps / (rcc->num_entries * 1000.)) );
         return -1;
     }
 
@@ -1822,43 +2545,42 @@ static int init_pass2( x264_t *h )
      * We don't blur the QPs directly, because then one very simple frame
      * could drag down the QP of a nearby complex frame and give it more
      * bits than intended. */
-    for(i=0; i<rcc->num_entries; i++)
+    for( int i = 0; i < rcc->num_entries; i++ )
     {
         ratecontrol_entry_t *rce = &rcc->entry[i];
         double weight_sum = 0;
         double cplx_sum = 0;
         double weight = 1.0;
         double gaussian_weight;
-        int j;
         /* weighted average of cplx of future frames */
-        for(j=1; j<cplxblur*2 && j<rcc->num_entries-i; j++)
+        for( int j = 1; j < cplxblur*2 && j < rcc->num_entries-i; j++ )
         {
             ratecontrol_entry_t *rcj = &rcc->entry[i+j];
             weight *= 1 - pow( (float)rcj->i_count / rcc->nmb, 2 );
-            if(weight < .0001)
+            if( weight < .0001 )
                 break;
-            gaussian_weight = weight * exp(-j*j/200.0);
+            gaussian_weight = weight * exp( -j*j/200.0 );
             weight_sum += gaussian_weight;
             cplx_sum += gaussian_weight * (qscale2bits(rcj, 1) - rcj->misc_bits);
         }
         /* weighted average of cplx of past frames */
         weight = 1.0;
-        for(j=0; j<=cplxblur*2 && j<=i; j++)
+        for( int j = 0; j <= cplxblur*2 && j <= i; j++ )
         {
             ratecontrol_entry_t *rcj = &rcc->entry[i-j];
-            gaussian_weight = weight * exp(-j*j/200.0);
+            gaussian_weight = weight * exp( -j*j/200.0 );
             weight_sum += gaussian_weight;
-            cplx_sum += gaussian_weight * (qscale2bits(rcj, 1) - rcj->misc_bits);
+            cplx_sum += gaussian_weight * (qscale2bits( rcj, 1 ) - rcj->misc_bits);
             weight *= 1 - pow( (float)rcj->i_count / rcc->nmb, 2 );
-            if(weight < .0001)
+            if( weight < .0001 )
                 break;
         }
         rce->blurred_complexity = cplx_sum / weight_sum;
     }
 
-    qscale = x264_malloc(sizeof(double)*rcc->num_entries);
-    if(filter_size > 1)
-        blurred_qscale = x264_malloc(sizeof(double)*rcc->num_entries);
+    CHECKED_MALLOC( qscale, sizeof(double)*rcc->num_entries );
+    if( filter_size > 1 )
+        CHECKED_MALLOC( blurred_qscale, sizeof(double)*rcc->num_entries );
     else
         blurred_qscale = qscale;
 
@@ -1870,12 +2592,16 @@ static int init_pass2( x264_t *h )
      * The search range is probably overkill, but speed doesn't matter here. */
 
     expected_bits = 1;
-    for(i=0; i<rcc->num_entries; i++)
-        expected_bits += qscale2bits(&rcc->entry[i], get_qscale(h, &rcc->entry[i], 1.0, i));
+    for( int i = 0; i < rcc->num_entries; i++ )
+    {
+        double q = get_qscale(h, &rcc->entry[i], 1.0, i);
+        expected_bits += qscale2bits(&rcc->entry[i], q);
+        rcc->last_qscale_for[rcc->entry[i].pict_type] = q;
+    }
     step_mult = all_available_bits / expected_bits;
 
     rate_factor = 0;
-    for(step = 1E4 * step_mult; step > 1E-7 * step_mult; step *= 0.5)
+    for( double step = 1E4 * step_mult; step > 1E-7 * step_mult; step *= 0.5)
     {
         expected_bits = 0;
         rate_factor += step;
@@ -1884,39 +2610,43 @@ static int init_pass2( x264_t *h )
         rcc->last_accum_p_norm = 1;
         rcc->accum_p_norm = 0;
 
+        rcc->last_qscale_for[0] =
+        rcc->last_qscale_for[1] =
+        rcc->last_qscale_for[2] = pow( base_cplx, 1 - rcc->qcompress ) / rate_factor;
+
         /* find qscale */
-        for(i=0; i<rcc->num_entries; i++)
+        for( int i = 0; i < rcc->num_entries; i++ )
         {
-            qscale[i] = get_qscale(h, &rcc->entry[i], rate_factor, i);
+            qscale[i] = get_qscale( h, &rcc->entry[i], rate_factor, i );
+            rcc->last_qscale_for[rcc->entry[i].pict_type] = qscale[i];
         }
 
         /* fixed I/B qscale relative to P */
-        for(i=rcc->num_entries-1; i>=0; i--)
+        for( int i = rcc->num_entries-1; i >= 0; i-- )
         {
-            qscale[i] = get_diff_limited_q(h, &rcc->entry[i], qscale[i]);
+            qscale[i] = get_diff_limited_q( h, &rcc->entry[i], qscale[i] );
             assert(qscale[i] >= 0);
         }
 
         /* smooth curve */
-        if(filter_size > 1)
+        if( filter_size > 1 )
         {
-            assert(filter_size%2==1);
-            for(i=0; i<rcc->num_entries; i++)
+            assert( filter_size%2 == 1 );
+            for( int i = 0; i < rcc->num_entries; i++ )
             {
                 ratecontrol_entry_t *rce = &rcc->entry[i];
-                int j;
-                double q=0.0, sum=0.0;
+                double q = 0.0, sum = 0.0;
 
-                for(j=0; j<filter_size; j++)
+                for( int j = 0; j < filter_size; j++ )
                 {
-                    int index = i+j-filter_size/2;
-                    double d = index-i;
-                    double coeff = qblur==0 ? 1.0 : exp(-d*d/(qblur*qblur));
-                    if(index < 0 || index >= rcc->num_entries)
+                    int idx = i+j-filter_size/2;
+                    double d = idx-i;
+                    double coeff = qblur==0 ? 1.0 : exp( -d*d/(qblur*qblur) );
+                    if( idx < 0 || idx >= rcc->num_entries )
                         continue;
-                    if(rce->pict_type != rcc->entry[index].pict_type)
+                    if( rce->pict_type != rcc->entry[idx].pict_type )
                         continue;
-                    q += qscale[index] * coeff;
+                    q += qscale[idx] * coeff;
                     sum += coeff;
                 }
                 blurred_qscale[i] = q/sum;
@@ -1924,57 +2654,59 @@ static int init_pass2( x264_t *h )
         }
 
         /* find expected bits */
-        for(i=0; i<rcc->num_entries; i++)
+        for( int i = 0; i < rcc->num_entries; i++ )
         {
             ratecontrol_entry_t *rce = &rcc->entry[i];
-            rce->new_qscale = clip_qscale(h, rce->pict_type, blurred_qscale[i]);
+            rce->new_qscale = clip_qscale( h, rce->pict_type, blurred_qscale[i] );
             assert(rce->new_qscale >= 0);
-            expected_bits += qscale2bits(rce, rce->new_qscale);
+            expected_bits += qscale2bits( rce, rce->new_qscale );
         }
 
-        if(expected_bits > all_available_bits) rate_factor -= step;
+        if( expected_bits > all_available_bits )
+            rate_factor -= step;
     }
 
-    x264_free(qscale);
-    if(filter_size > 1)
-        x264_free(blurred_qscale);
+    x264_free( qscale );
+    if( filter_size > 1 )
+        x264_free( blurred_qscale );
 
-    if(rcc->b_vbv)
-        vbv_pass2(h);
-    expected_bits = count_expected_bits(h);
+    if( rcc->b_vbv )
+        if( vbv_pass2( h, all_available_bits ) )
+            return -1;
+    expected_bits = count_expected_bits( h );
 
-    if(fabs(expected_bits/all_available_bits - 1.0) > 0.01)
+    if( fabs( expected_bits/all_available_bits - 1.0 ) > 0.01 )
     {
         double avgq = 0;
-        for(i=0; i<rcc->num_entries; i++)
+        for( int i = 0; i < rcc->num_entries; i++ )
             avgq += rcc->entry[i].new_qscale;
-        avgq = qscale2qp(avgq / rcc->num_entries);
-
-        if ((expected_bits > all_available_bits) || (!rcc->b_vbv))
-            x264_log(h, X264_LOG_WARNING, "Error: 2pass curve failed to converge\n");
-        x264_log(h, X264_LOG_WARNING, "target: %.2f kbit/s, expected: %.2f kbit/s, avg QP: %.4f\n",
-                 (float)h->param.rc.i_bitrate,
-                 expected_bits * rcc->fps / (rcc->num_entries * 1000.),
-                 avgq);
-        if(expected_bits < all_available_bits && avgq < h->param.rc.i_qp_min + 2)
-        {
-            if(h->param.rc.i_qp_min > 0)
-                x264_log(h, X264_LOG_WARNING, "try reducing target bitrate or reducing qp_min (currently %d)\n", h->param.rc.i_qp_min);
+        avgq = qscale2qp( avgq / rcc->num_entries );
+
+        if( expected_bits > all_available_bits || !rcc->b_vbv )
+            x264_log( h, X264_LOG_WARNING, "Error: 2pass curve failed to converge\n" );
+        x264_log( h, X264_LOG_WARNING, "target: %.2f kbit/s, expected: %.2f kbit/s, avg QP: %.4f\n",
+                  (float)h->param.rc.i_bitrate,
+                  expected_bits * rcc->fps / (rcc->num_entries * 1000.),
+                  avgq );
+        if( expected_bits < all_available_bits && avgq < h->param.rc.i_qp_min + 2 )
+        {
+            if( h->param.rc.i_qp_min > 0 )
+                x264_log( h, X264_LOG_WARNING, "try reducing target bitrate or reducing qp_min (currently %d)\n", h->param.rc.i_qp_min );
             else
-                x264_log(h, X264_LOG_WARNING, "try reducing target bitrate\n");
+                x264_log( h, X264_LOG_WARNING, "try reducing target bitrate\n" );
         }
-        else if(expected_bits > all_available_bits && avgq > h->param.rc.i_qp_max - 2)
+        else if( expected_bits > all_available_bits && avgq > h->param.rc.i_qp_max - 2 )
         {
-            if(h->param.rc.i_qp_max < 51)
-                x264_log(h, X264_LOG_WARNING, "try increasing target bitrate or increasing qp_max (currently %d)\n", h->param.rc.i_qp_max);
+            if( h->param.rc.i_qp_max < QP_MAX )
+                x264_log( h, X264_LOG_WARNING, "try increasing target bitrate or increasing qp_max (currently %d)\n", h->param.rc.i_qp_max );
             else
-                x264_log(h, X264_LOG_WARNING, "try increasing target bitrate\n");
+                x264_log( h, X264_LOG_WARNING, "try increasing target bitrate\n");
         }
-        else if(!(rcc->b_2pass && rcc->b_vbv))
-            x264_log(h, X264_LOG_WARNING, "internal error\n");
+        else if( !(rcc->b_2pass && rcc->b_vbv) )
+            x264_log( h, X264_LOG_WARNING, "internal error\n" );
     }
 
     return 0;
+fail:
+    return -1;
 }
-
-