]> git.sesse.net Git - nageru/blobdiff - futatabi/flow.h
Move everything into a separate futatabi/ subdir, for the upcoming merge with Nageru.
[nageru] / futatabi / flow.h
diff --git a/futatabi/flow.h b/futatabi/flow.h
new file mode 100644 (file)
index 0000000..08b2590
--- /dev/null
@@ -0,0 +1,568 @@
+#ifndef _FLOW_H
+#define _FLOW_H 1
+
+// Code for computing optical flow between two images, and using it to interpolate
+// in-between frames. The main user interface is the DISComputeFlow and Interpolate
+// classes (also GrayscaleConversion can be useful).
+
+#include <array>
+#include <epoxy/gl.h>
+#include <map>
+#include <mutex>
+#include <stdint.h>
+#include <utility>
+#include <vector>
+
+class ScopedTimer;
+
+// Predefined operating points from the paper.
+struct OperatingPoint {
+       unsigned coarsest_level;  // TODO: Adjust dynamically based on the resolution?
+       unsigned finest_level;
+       unsigned search_iterations;  // Halved from the paper.
+       unsigned patch_size_pixels;
+       float patch_overlap_ratio;
+       bool variational_refinement;
+
+       // Not part of the original paper; used for interpolation.
+       // NOTE: Values much larger than 1.0 seems to trigger Haswell's “PMA stall”;
+       // the problem is not present on Broadwell and higher (there's a mitigation
+       // in the hardware, but Mesa doesn't enable it at the time of writing).
+       // Since we have hole filling, the holes from 1.0 are not critical,
+       // but larger values seem to do better than hole filling for large
+       // motion, blurs etc. since we have more candidates.
+       float splat_size;
+};
+
+// Operating point 1 (600 Hz on CPU, excluding preprocessing).
+static constexpr OperatingPoint operating_point1 = {
+       5,      // Coarsest level.
+       3,      // Finest level.
+       8,      // Search iterations.
+       8,      // Patch size (pixels).
+       0.30f,  // Overlap ratio.
+       false,  // Variational refinement.
+       1.0f    // Splat size (pixels).
+};
+
+// Operating point 2 (300 Hz on CPU, excluding preprocessing).
+static constexpr OperatingPoint operating_point2 = {
+       5,      // Coarsest level.
+       3,      // Finest level.
+       6,      // Search iterations.
+       8,      // Patch size (pixels).
+       0.40f,  // Overlap ratio.
+       true,   // Variational refinement.
+       1.0f    // Splat size (pixels).
+};
+
+// Operating point 3 (10 Hz on CPU, excluding preprocessing).
+// This is the only one that has been thorougly tested.
+static constexpr OperatingPoint operating_point3 = {
+       5,      // Coarsest level.
+       1,      // Finest level.
+       8,      // Search iterations.
+       12,     // Patch size (pixels).
+       0.75f,  // Overlap ratio.
+       true,   // Variational refinement.
+       4.0f    // Splat size (pixels).
+};
+
+// Operating point 4 (0.5 Hz on CPU, excluding preprocessing).
+static constexpr OperatingPoint operating_point4 = {
+       5,      // Coarsest level.
+       0,      // Finest level.
+       128,    // Search iterations.
+       12,     // Patch size (pixels).
+       0.75f,  // Overlap ratio.
+       true,   // Variational refinement.
+       8.0f    // Splat size (pixels).
+};
+
+int find_num_levels(int width, int height);
+
+// A class that caches FBOs that render to a given set of textures.
+// It never frees anything, so it is only suitable for rendering to
+// the same (small) set of textures over and over again.
+template<size_t num_elements>
+class PersistentFBOSet {
+public:
+       void render_to(const std::array<GLuint, num_elements> &textures);
+
+       // Convenience wrappers.
+       void render_to(GLuint texture0) {
+               render_to({{texture0}});
+       }
+
+       void render_to(GLuint texture0, GLuint texture1) {
+               render_to({{texture0, texture1}});
+       }
+
+       void render_to(GLuint texture0, GLuint texture1, GLuint texture2) {
+               render_to({{texture0, texture1, texture2}});
+       }
+
+       void render_to(GLuint texture0, GLuint texture1, GLuint texture2, GLuint texture3) {
+               render_to({{texture0, texture1, texture2, texture3}});
+       }
+
+private:
+       // TODO: Delete these on destruction.
+       std::map<std::array<GLuint, num_elements>, GLuint> fbos;
+};
+
+// Same, but with a depth texture.
+template<size_t num_elements>
+class PersistentFBOSetWithDepth {
+public:
+       void render_to(GLuint depth_rb, const std::array<GLuint, num_elements> &textures);
+
+       // Convenience wrappers.
+       void render_to(GLuint depth_rb, GLuint texture0) {
+               render_to(depth_rb, {{texture0}});
+       }
+
+       void render_to(GLuint depth_rb, GLuint texture0, GLuint texture1) {
+               render_to(depth_rb, {{texture0, texture1}});
+       }
+
+       void render_to(GLuint depth_rb, GLuint texture0, GLuint texture1, GLuint texture2) {
+               render_to(depth_rb, {{texture0, texture1, texture2}});
+       }
+
+       void render_to(GLuint depth_rb, GLuint texture0, GLuint texture1, GLuint texture2, GLuint texture3) {
+               render_to(depth_rb, {{texture0, texture1, texture2, texture3}});
+       }
+
+private:
+       // TODO: Delete these on destruction.
+       std::map<std::pair<GLuint, std::array<GLuint, num_elements>>, GLuint> fbos;
+};
+
+// Convert RGB to grayscale, using Rec. 709 coefficients.
+class GrayscaleConversion {
+public:
+       GrayscaleConversion();
+       void exec(GLint tex, GLint gray_tex, int width, int height, int num_layers);
+
+private:
+       PersistentFBOSet<1> fbos;
+       GLuint gray_vs_obj;
+       GLuint gray_fs_obj;
+       GLuint gray_program;
+       GLuint gray_vao;
+
+       GLuint uniform_tex;
+};
+
+// Compute gradients in every point, used for the motion search.
+// The DIS paper doesn't actually mention how these are computed,
+// but seemingly, a 3x3 Sobel operator is used here (at least in
+// later versions of the code), while a [1 -8 0 8 -1] kernel is
+// used for all the derivatives in the variational refinement part
+// (which borrows code from DeepFlow). This is inconsistent,
+// but I guess we're better off with staying with the original
+// decisions until we actually know having different ones would be better.
+class Sobel {
+public:
+       Sobel();
+       void exec(GLint tex_view, GLint grad_tex, int level_width, int level_height, int num_layers);
+
+private:
+       PersistentFBOSet<1> fbos;
+       GLuint sobel_vs_obj;
+       GLuint sobel_fs_obj;
+       GLuint sobel_program;
+
+       GLuint uniform_tex;
+};
+
+// Motion search to find the initial flow. See motion_search.frag for documentation.
+class MotionSearch {
+public:
+       MotionSearch(const OperatingPoint &op);
+       void exec(GLuint tex_view, GLuint grad_tex, GLuint flow_tex, GLuint flow_out_tex, int level_width, int level_height, int prev_level_width, int prev_level_height, int width_patches, int height_patches, int num_layers);
+
+private:
+       const OperatingPoint op;
+       PersistentFBOSet<1> fbos;
+
+       GLuint motion_vs_obj;
+       GLuint motion_fs_obj;
+       GLuint motion_search_program;
+
+       GLuint uniform_inv_image_size, uniform_inv_prev_level_size, uniform_out_flow_size;
+       GLuint uniform_image_tex, uniform_grad_tex, uniform_flow_tex;
+       GLuint uniform_patch_size, uniform_num_iterations;
+};
+
+// Do “densification”, ie., upsampling of the flow patches to the flow field
+// (the same size as the image at this level). We draw one quad per patch
+// over its entire covered area (using instancing in the vertex shader),
+// and then weight the contributions in the pixel shader by post-warp difference.
+// This is equation (3) in the paper.
+//
+// We accumulate the flow vectors in the R/G channels (for u/v) and the total
+// weight in the B channel. Dividing R and G by B gives the normalized values.
+class Densify {
+public:
+       Densify(const OperatingPoint &op);
+       void exec(GLuint tex_view, GLuint flow_tex, GLuint dense_flow_tex, int level_width, int level_height, int width_patches, int height_patches, int num_layers);
+
+private:
+       OperatingPoint op;
+       PersistentFBOSet<1> fbos;
+
+       GLuint densify_vs_obj;
+       GLuint densify_fs_obj;
+       GLuint densify_program;
+
+       GLuint uniform_patch_size;
+       GLuint uniform_image_tex, uniform_flow_tex;
+};
+
+// Warp I_1 to I_w, and then compute the mean (I) and difference (I_t) of
+// I_0 and I_w. The prewarping is what enables us to solve the variational
+// flow for du,dv instead of u,v.
+//
+// Also calculates the normalized flow, ie. divides by z (this is needed because
+// Densify works by additive blending) and multiplies by the image size.
+//
+// See variational_refinement.txt for more information.
+class Prewarp {
+public:
+       Prewarp();
+       void exec(GLuint tex_view, GLuint flow_tex, GLuint normalized_flow_tex, GLuint I_tex, GLuint I_t_tex, int level_width, int level_height, int num_layers);
+
+private:
+       PersistentFBOSet<3> fbos;
+
+       GLuint prewarp_vs_obj;
+       GLuint prewarp_fs_obj;
+       GLuint prewarp_program;
+
+       GLuint uniform_image_tex, uniform_flow_tex;
+};
+
+// From I, calculate the partial derivatives I_x and I_y. We use a four-tap
+// central difference filter, since apparently, that's tradition (I haven't
+// measured quality versus a more normal 0.5 (I[x+1] - I[x-1]).)
+// The coefficients come from
+//
+//   https://en.wikipedia.org/wiki/Finite_difference_coefficient
+//
+// Also computes β_0, since it depends only on I_x and I_y.
+class Derivatives {
+public:
+       Derivatives();
+       void exec(GLuint input_tex, GLuint I_x_y_tex, GLuint beta_0_tex, int level_width, int level_height, int num_layers);
+
+private:
+       PersistentFBOSet<2> fbos;
+
+       GLuint derivatives_vs_obj;
+       GLuint derivatives_fs_obj;
+       GLuint derivatives_program;
+
+       GLuint uniform_tex;
+};
+
+// Calculate the diffusivity for each pixels, g(x,y). Smoothness (s) will
+// be calculated in the shaders on-the-fly by sampling in-between two
+// neighboring g(x,y) pixels, plus a border tweak to make sure we get
+// zero smoothness at the border.
+//
+// See variational_refinement.txt for more information.
+class ComputeDiffusivity {
+public:
+       ComputeDiffusivity();
+       void exec(GLuint flow_tex, GLuint diff_flow_tex, GLuint diffusivity_tex, int level_width, int level_height, bool zero_diff_flow, int num_layers);
+
+private:
+       PersistentFBOSet<1> fbos;
+
+       GLuint diffusivity_vs_obj;
+       GLuint diffusivity_fs_obj;
+       GLuint diffusivity_program;
+
+       GLuint uniform_flow_tex, uniform_diff_flow_tex;
+       GLuint uniform_alpha, uniform_zero_diff_flow;
+};
+
+// Set up the equations set (two equations in two unknowns, per pixel).
+// We store five floats; the three non-redundant elements of the 2x2 matrix (A)
+// as 32-bit floats, and the two elements on the right-hand side (b) as 16-bit
+// floats. (Actually, we store the inverse of the diagonal elements, because
+// we only ever need to divide by them.) This fits into four u32 values;
+// R, G, B for the matrix (the last element is symmetric) and A for the two b values.
+// All the values of the energy term (E_I, E_G, E_S), except the smoothness
+// terms that depend on other pixels, are calculated in one pass.
+//
+// The equation set is split in two; one contains only the pixels needed for
+// the red pass, and one only for the black pass (see sor.frag). This reduces
+// the amount of data the SOR shader has to pull in, at the cost of some
+// complexity when the equation texture ends up with half the size and we need
+// to adjust texture coordinates.  The contraction is done along the horizontal
+// axis, so that on even rows (0, 2, 4, ...), the “red” texture will contain
+// pixels 0, 2, 4, 6, etc., and on odd rows 1, 3, 5, etc..
+//
+// See variational_refinement.txt for more information about the actual
+// equations in use.
+class SetupEquations {
+public:
+       SetupEquations();
+       void exec(GLuint I_x_y_tex, GLuint I_t_tex, GLuint diff_flow_tex, GLuint flow_tex, GLuint beta_0_tex, GLuint diffusivity_tex, GLuint equation_red_tex, GLuint equation_black_tex, int level_width, int level_height, bool zero_diff_flow, int num_layers);
+
+private:
+       PersistentFBOSet<2> fbos;
+
+       GLuint equations_vs_obj;
+       GLuint equations_fs_obj;
+       GLuint equations_program;
+
+       GLuint uniform_I_x_y_tex, uniform_I_t_tex;
+       GLuint uniform_diff_flow_tex, uniform_base_flow_tex;
+       GLuint uniform_beta_0_tex;
+       GLuint uniform_diffusivity_tex;
+       GLuint uniform_gamma, uniform_delta, uniform_zero_diff_flow;
+};
+
+// Actually solve the equation sets made by SetupEquations, by means of
+// successive over-relaxation (SOR).
+//
+// See variational_refinement.txt for more information.
+class SOR {
+public:
+       SOR();
+       void exec(GLuint diff_flow_tex, GLuint equation_red_tex, GLuint equation_black_tex, GLuint diffusivity_tex, int level_width, int level_height, int num_iterations, bool zero_diff_flow, int num_layers, ScopedTimer *sor_timer);
+
+private:
+       PersistentFBOSet<1> fbos;
+
+       GLuint sor_vs_obj;
+       GLuint sor_fs_obj;
+       GLuint sor_program;
+
+       GLuint uniform_diff_flow_tex;
+       GLuint uniform_equation_red_tex, uniform_equation_black_tex;
+       GLuint uniform_diffusivity_tex;
+       GLuint uniform_phase, uniform_num_nonzero_phases;
+};
+
+// Simply add the differential flow found by the variational refinement to the base flow.
+// The output is in base_flow_tex; we don't need to make a new texture.
+class AddBaseFlow {
+public:
+       AddBaseFlow();
+       void exec(GLuint base_flow_tex, GLuint diff_flow_tex, int level_width, int level_height, int num_layers);
+
+private:
+       PersistentFBOSet<1> fbos;
+
+       GLuint add_flow_vs_obj;
+       GLuint add_flow_fs_obj;
+       GLuint add_flow_program;
+
+       GLuint uniform_diff_flow_tex;
+};
+
+// Take a copy of the flow, bilinearly interpolated and scaled up.
+class ResizeFlow {
+public:
+       ResizeFlow();
+       void exec(GLuint in_tex, GLuint out_tex, int input_width, int input_height, int output_width, int output_height, int num_layers);
+
+private:
+       PersistentFBOSet<1> fbos;
+
+       GLuint resize_flow_vs_obj;
+       GLuint resize_flow_fs_obj;
+       GLuint resize_flow_program;
+
+       GLuint uniform_flow_tex;
+       GLuint uniform_scale_factor;
+};
+
+// All operations, except construction and destruction, are thread-safe.
+class TexturePool {
+public:
+       GLuint get_texture(GLenum format, GLuint width, GLuint height, GLuint num_layers = 0);
+       void release_texture(GLuint tex_num);
+       GLuint get_renderbuffer(GLenum format, GLuint width, GLuint height);
+       void release_renderbuffer(GLuint tex_num);
+
+private:
+       struct Texture {
+               GLuint tex_num;
+               GLenum format;
+               GLuint width, height, num_layers;
+               bool in_use = false;
+               bool is_renderbuffer = false;
+       };
+       std::mutex mu;
+       std::vector<Texture> textures;  // Under mu.
+};
+
+class DISComputeFlow {
+public:
+       DISComputeFlow(int width, int height, const OperatingPoint &op);
+
+       enum FlowDirection {
+               FORWARD,
+               FORWARD_AND_BACKWARD
+       };
+       enum ResizeStrategy {
+               DO_NOT_RESIZE_FLOW,
+               RESIZE_FLOW_TO_FULL_SIZE
+       };
+
+       // The texture must have two layers (first and second frame).
+       // Returns a texture that must be released with release_texture()
+       // after use.
+       GLuint exec(GLuint tex, FlowDirection flow_direction, ResizeStrategy resize_strategy);
+
+       void release_texture(GLuint tex)
+       {
+               pool.release_texture(tex);
+       }
+
+private:
+       int width, height;
+       GLuint initial_flow_tex;
+       GLuint vertex_vbo, vao;
+       TexturePool pool;
+       const OperatingPoint op;
+
+       // The various passes.
+       Sobel sobel;
+       MotionSearch motion_search;
+       Densify densify;
+       Prewarp prewarp;
+       Derivatives derivatives;
+       ComputeDiffusivity compute_diffusivity;
+       SetupEquations setup_equations;
+       SOR sor;
+       AddBaseFlow add_base_flow;
+       ResizeFlow resize_flow;
+};
+
+// Forward-warp the flow half-way (or rather, by alpha). A non-zero “splatting”
+// radius fills most of the holes.
+class Splat {
+public:
+       Splat(const OperatingPoint &op);
+
+       // alpha is the time of the interpolated frame (0..1).
+       void exec(GLuint gray_tex, GLuint bidirectional_flow_tex, GLuint flow_tex, GLuint depth_rb, int width, int height, float alpha);
+
+private:
+       const OperatingPoint op;
+       PersistentFBOSetWithDepth<1> fbos;
+
+       GLuint splat_vs_obj;
+       GLuint splat_fs_obj;
+       GLuint splat_program;
+
+       GLuint uniform_splat_size, uniform_alpha;
+       GLuint uniform_gray_tex, uniform_flow_tex;
+       GLuint uniform_inv_flow_size;
+};
+
+// Doing good and fast hole-filling on a GPU is nontrivial. We choose an option
+// that's fairly simple (given that most holes are really small) and also hopefully
+// cheap should the holes not be so small. Conceptually, we look for the first
+// non-hole to the left of us (ie., shoot a ray until we hit something), then
+// the first non-hole to the right of us, then up and down, and then average them
+// all together. It's going to create “stars” if the holes are big, but OK, that's
+// a tradeoff.
+//
+// Our implementation here is efficient assuming that the hierarchical Z-buffer is
+// on even for shaders that do discard (this typically kills early Z, but hopefully
+// not hierarchical Z); we set up Z so that only holes are written to, which means
+// that as soon as a hole is filled, the rasterizer should just skip it. Most of the
+// fullscreen quads should just be discarded outright, really.
+class HoleFill {
+public:
+       HoleFill();
+
+       // Output will be in flow_tex, temp_tex[0, 1, 2], representing the filling
+       // from the down, left, right and up, respectively. Use HoleBlend to merge
+       // them into one.
+       void exec(GLuint flow_tex, GLuint depth_rb, GLuint temp_tex[3], int width, int height);
+
+private:
+       PersistentFBOSetWithDepth<1> fbos;
+
+       GLuint fill_vs_obj;
+       GLuint fill_fs_obj;
+       GLuint fill_program;
+
+       GLuint uniform_tex;
+       GLuint uniform_z, uniform_sample_offset;
+};
+
+// Blend the four directions from HoleFill into one pixel, so that single-pixel
+// holes become the average of their four neighbors.
+class HoleBlend {
+public:
+       HoleBlend();
+
+       void exec(GLuint flow_tex, GLuint depth_rb, GLuint temp_tex[3], int width, int height);
+
+private:
+       PersistentFBOSetWithDepth<1> fbos;
+
+       GLuint blend_vs_obj;
+       GLuint blend_fs_obj;
+       GLuint blend_program;
+
+       GLuint uniform_left_tex, uniform_right_tex, uniform_up_tex, uniform_down_tex;
+       GLuint uniform_z, uniform_sample_offset;
+};
+
+class Blend {
+public:
+       Blend(bool split_ycbcr_output);
+
+       // output2_tex is only used if split_ycbcr_output was true.
+       void exec(GLuint image_tex, GLuint flow_tex, GLuint output_tex, GLuint output2_tex, int width, int height, float alpha);
+
+private:
+       bool split_ycbcr_output;
+       PersistentFBOSet<1> fbos;
+       PersistentFBOSet<2> fbos_split;
+       GLuint blend_vs_obj;
+       GLuint blend_fs_obj;
+       GLuint blend_program;
+
+       GLuint uniform_image_tex, uniform_flow_tex;
+       GLuint uniform_alpha, uniform_flow_consistency_tolerance;
+};
+
+class Interpolate {
+public:
+       Interpolate(const OperatingPoint &op, bool split_ycbcr_output);
+
+       // Returns a texture (or two, if split_ycbcr_output is true) that must
+       // be released with release_texture() after use. image_tex must be a
+       // two-layer RGBA8 texture with mipmaps (unless flow_level == 0).
+       std::pair<GLuint, GLuint> exec(GLuint image_tex, GLuint gray_tex, GLuint bidirectional_flow_tex, GLuint width, GLuint height, float alpha);
+
+       void release_texture(GLuint tex)
+       {
+               pool.release_texture(tex);
+       }
+
+private:
+       int flow_level;
+       GLuint vertex_vbo, vao;
+       TexturePool pool;
+       const bool split_ycbcr_output;
+
+       Splat splat;
+       HoleFill hole_fill;
+       HoleBlend hole_blend;
+       Blend blend;
+};
+
+#endif  // !defined(_FLOW_H)