]> git.sesse.net Git - ffmpeg/blobdiff - libavcodec/aac.c
Multiply table by -1. This avoid doing this calculation (that was introduced
[ffmpeg] / libavcodec / aac.c
index f8e2a9de01e8035726fd9604e30c58426e953b8f..c59a663bec85e07be63388016e346760c05cff29 100644 (file)
@@ -79,6 +79,7 @@
 #include "avcodec.h"
 #include "bitstream.h"
 #include "dsputil.h"
+#include "lpc.h"
 
 #include "aac.h"
 #include "aactab.h"
 #include <math.h>
 #include <string.h>
 
-#ifndef CONFIG_HARDCODED_TABLES
-    static float ff_aac_ivquant_tab[IVQUANT_SIZE];
-    static float ff_aac_pow2sf_tab[316];
-#endif /* CONFIG_HARDCODED_TABLES */
-
 static VLC vlc_scalefactors;
 static VLC vlc_spectral[11];
 
 
+/**
+ * Configure output channel order based on the current program configuration element.
+ *
+ * @param   che_pos current channel position configuration
+ * @param   new_che_pos New channel position configuration - we only do something if it differs from the current one.
+ *
+ * @return  Returns error status. 0 - OK, !0 - error
+ */
+static int output_configure(AACContext *ac, enum ChannelPosition che_pos[4][MAX_ELEM_ID],
+        enum ChannelPosition new_che_pos[4][MAX_ELEM_ID]) {
+    AVCodecContext *avctx = ac->avccontext;
+    int i, type, channels = 0;
+
+    if(!memcmp(che_pos, new_che_pos, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0])))
+        return 0; /* no change */
+
+    memcpy(che_pos, new_che_pos, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
+
+    /* Allocate or free elements depending on if they are in the
+     * current program configuration.
+     *
+     * Set up default 1:1 output mapping.
+     *
+     * For a 5.1 stream the output order will be:
+     *    [ Center ] [ Front Left ] [ Front Right ] [ LFE ] [ Surround Left ] [ Surround Right ]
+     */
+
+    for(i = 0; i < MAX_ELEM_ID; i++) {
+        for(type = 0; type < 4; type++) {
+            if(che_pos[type][i]) {
+                if(!ac->che[type][i] && !(ac->che[type][i] = av_mallocz(sizeof(ChannelElement))))
+                    return AVERROR(ENOMEM);
+                if(type != TYPE_CCE) {
+                    ac->output_data[channels++] = ac->che[type][i]->ch[0].ret;
+                    if(type == TYPE_CPE) {
+                        ac->output_data[channels++] = ac->che[type][i]->ch[1].ret;
+                    }
+                }
+            } else
+                av_freep(&ac->che[type][i]);
+        }
+    }
+
+    avctx->channels = channels;
+    return 0;
+}
+
 /**
  * Decode an array of 4 bit element IDs, optionally interleaved with a stereo/mono switching bit.
  *
@@ -209,6 +252,17 @@ static int set_default_channel_config(AACContext *ac, enum ChannelPosition new_c
     return 0;
 }
 
+/**
+ * Decode GA "General Audio" specific configuration; reference: table 4.1.
+ *
+ * @return  Returns error status. 0 - OK, !0 - error
+ */
+static int decode_ga_specific_config(AACContext * ac, GetBitContext * gb, int channel_config) {
+    enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
+    int extension_flag, ret;
+
+    if(get_bits1(gb)) {  // frameLengthFlag
+        av_log_missing_feature(ac->avccontext, "960/120 MDCT window is", 1);
         return -1;
     }
 
@@ -289,6 +343,17 @@ static int decode_audio_specific_config(AACContext * ac, void *data, int data_si
     return 0;
 }
 
+/**
+ * linear congruential pseudorandom number generator
+ *
+ * @param   previous_val    pointer to the current state of the generator
+ *
+ * @return  Returns a 32-bit pseudorandom integer
+ */
+static av_always_inline int lcg_random(int previous_val) {
+    return previous_val * 1664525 + 1013904223;
+}
+
 static av_cold int aac_decode_init(AVCodecContext * avccontext) {
     AACContext * ac = avccontext->priv_data;
     int i;
@@ -334,8 +399,6 @@ static av_cold int aac_decode_init(AVCodecContext * avccontext) {
     }
 
 #ifndef CONFIG_HARDCODED_TABLES
-    for (i = 1 - IVQUANT_SIZE/2; i < IVQUANT_SIZE/2; i++)
-        ff_aac_ivquant_tab[i + IVQUANT_SIZE/2 - 1] =  cbrt(fabs(i)) * i;
     for (i = 0; i < 316; i++)
         ff_aac_pow2sf_tab[i] = pow(2, (i - 200)/4.);
 #endif /* CONFIG_HARDCODED_TABLES */
@@ -347,6 +410,12 @@ static av_cold int aac_decode_init(AVCodecContext * avccontext) {
 
     ff_mdct_init(&ac->mdct, 11, 1);
     ff_mdct_init(&ac->mdct_small, 8, 1);
+    // window initialization
+    ff_kbd_window_init(ff_aac_kbd_long_1024, 4.0, 1024);
+    ff_kbd_window_init(ff_aac_kbd_short_128, 6.0, 128);
+    ff_sine_window_init(ff_sine_1024, 1024);
+    ff_sine_window_init(ff_sine_128, 128);
+
     return 0;
 }
 
@@ -380,21 +449,43 @@ static int decode_ics_info(AACContext * ac, IndividualChannelStream * ics, GetBi
     ics->use_kb_window[0] = get_bits1(gb);
     ics->num_window_groups = 1;
     ics->group_len[0] = 1;
+    if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
+        int i;
+        ics->max_sfb = get_bits(gb, 4);
+        for (i = 0; i < 7; i++) {
+            if (get_bits1(gb)) {
+                ics->group_len[ics->num_window_groups-1]++;
+            } else {
+                ics->num_window_groups++;
+                ics->group_len[ics->num_window_groups-1] = 1;
+            }
+        }
+        ics->num_windows   = 8;
+        ics->swb_offset    =      swb_offset_128[ac->m4ac.sampling_index];
+        ics->num_swb       =  ff_aac_num_swb_128[ac->m4ac.sampling_index];
+        ics->tns_max_bands =   tns_max_bands_128[ac->m4ac.sampling_index];
+    } else {
+        ics->max_sfb       = get_bits(gb, 6);
+        ics->num_windows   = 1;
+        ics->swb_offset    =     swb_offset_1024[ac->m4ac.sampling_index];
+        ics->num_swb       = ff_aac_num_swb_1024[ac->m4ac.sampling_index];
+        ics->tns_max_bands =  tns_max_bands_1024[ac->m4ac.sampling_index];
+        if (get_bits1(gb)) {
+            av_log_missing_feature(ac->avccontext, "Predictor bit set but LTP is", 1);
+            memset(ics, 0, sizeof(IndividualChannelStream));
+            return -1;
+        }
+    }
 
-    return 0;
-}
+    if(ics->max_sfb > ics->num_swb) {
+        av_log(ac->avccontext, AV_LOG_ERROR,
+            "Number of scalefactor bands in group (%d) exceeds limit (%d).\n",
+            ics->max_sfb, ics->num_swb);
+        memset(ics, 0, sizeof(IndividualChannelStream));
+        return -1;
+    }
 
-/**
- * inverse quantization
- *
- * @param   a   quantized value to be dequantized
- * @return  Returns dequantized value.
- */
-static inline float ivquant(int a) {
-    if (a + (unsigned int)IVQUANT_SIZE/2 - 1 < (unsigned int)IVQUANT_SIZE - 1)
-        return ff_aac_ivquant_tab[a + IVQUANT_SIZE/2 - 1];
-    else
-        return cbrtf(fabsf(a)) * a;
+    return 0;
 }
 
 /**
@@ -428,6 +519,10 @@ static int decode_band_types(AACContext * ac, enum BandType band_type[120],
                     sect_len, ics->max_sfb);
                 return -1;
             }
+            for (; k < sect_len; k++) {
+                band_type        [idx]   = sect_band_type;
+                band_type_run_end[idx++] = sect_len;
+            }
         }
     }
     return 0;
@@ -451,7 +546,6 @@ static int decode_scalefactors(AACContext * ac, float sf[120], GetBitContext * g
     int offset[3] = { global_gain, global_gain - 90, 100 };
     int noise_flag = 1;
     static const char *sf_str[3] = { "Global gain", "Noise gain", "Intensity stereo position" };
-    ics->intensity_present = 0;
     for (g = 0; g < ics->num_window_groups; g++) {
         for (i = 0; i < ics->max_sfb;) {
             int run_end = band_type_run_end[idx];
@@ -459,7 +553,6 @@ static int decode_scalefactors(AACContext * ac, float sf[120], GetBitContext * g
                 for(; i < run_end; i++, idx++)
                     sf[idx] = 0.;
             }else if((band_type[idx] == INTENSITY_BT) || (band_type[idx] == INTENSITY_BT2)) {
-                ics->intensity_present = 1;
                 for(; i < run_end; i++, idx++) {
                     offset[2] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
                     if(offset[2] > 255U) {
@@ -501,16 +594,54 @@ static int decode_scalefactors(AACContext * ac, float sf[120], GetBitContext * g
 /**
  * Decode pulse data; reference: table 4.7.
  */
-static void decode_pulses(Pulse * pulse, GetBitContext * gb) {
+static void decode_pulses(Pulse * pulse, GetBitContext * gb, const uint16_t * swb_offset) {
     int i;
     pulse->num_pulse = get_bits(gb, 2) + 1;
-    pulse->start = get_bits(gb, 6);
-    for (i = 0; i < pulse->num_pulse; i++) {
-        pulse->offset[i] = get_bits(gb, 5);
-        pulse->amp   [i] = get_bits(gb, 4);
+    pulse->pos[0]    = get_bits(gb, 5) + swb_offset[get_bits(gb, 6)];
+    pulse->amp[0]    = get_bits(gb, 4);
+    for (i = 1; i < pulse->num_pulse; i++) {
+        pulse->pos[i] = get_bits(gb, 5) + pulse->pos[i-1];
+        pulse->amp[i] = get_bits(gb, 4);
     }
 }
 
+/**
+ * Decode Temporal Noise Shaping data; reference: table 4.48.
+ *
+ * @return  Returns error status. 0 - OK, !0 - error
+ */
+static int decode_tns(AACContext * ac, TemporalNoiseShaping * tns,
+        GetBitContext * gb, const IndividualChannelStream * ics) {
+    int w, filt, i, coef_len, coef_res, coef_compress;
+    const int is8 = ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE;
+    const int tns_max_order = is8 ? 7 : ac->m4ac.object_type == AOT_AAC_MAIN ? 20 : 12;
+    for (w = 0; w < ics->num_windows; w++) {
+        if ((tns->n_filt[w] = get_bits(gb, 2 - is8))) {
+            coef_res = get_bits1(gb);
+
+            for (filt = 0; filt < tns->n_filt[w]; filt++) {
+                int tmp2_idx;
+                tns->length[w][filt] = get_bits(gb, 6 - 2*is8);
+
+                if ((tns->order[w][filt] = get_bits(gb, 5 - 2*is8)) > tns_max_order) {
+                    av_log(ac->avccontext, AV_LOG_ERROR, "TNS filter order %d is greater than maximum %d.",
+                           tns->order[w][filt], tns_max_order);
+                    tns->order[w][filt] = 0;
+                    return -1;
+                }
+                tns->direction[w][filt] = get_bits1(gb);
+                coef_compress = get_bits1(gb);
+                coef_len = coef_res + 3 - coef_compress;
+                tmp2_idx = 2*coef_compress + coef_res;
+
+                for (i = 0; i < tns->order[w][filt]; i++)
+                    tns->coef[w][filt][i] = tns_tmp2_map[tmp2_idx][get_bits(gb, coef_len)];
+            }
+        }
+    }
+    return 0;
+}
+
 /**
  * Decode Mid/Side data; reference: table 4.54.
  *
@@ -520,21 +651,113 @@ static void decode_pulses(Pulse * pulse, GetBitContext * gb) {
  */
 static void decode_mid_side_stereo(ChannelElement * cpe, GetBitContext * gb,
         int ms_present) {
+    int idx;
+    if (ms_present == 1) {
+        for (idx = 0; idx < cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb; idx++)
+            cpe->ms_mask[idx] = get_bits1(gb);
+    } else if (ms_present == 2) {
+        memset(cpe->ms_mask, 1, cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb * sizeof(cpe->ms_mask[0]));
+    }
+}
 
 /**
- * Add pulses with particular amplitudes to the quantized spectral data; reference: 4.6.3.3.
+ * Decode spectral data; reference: table 4.50.
+ * Dequantize and scale spectral data; reference: 4.6.3.3.
+ *
+ * @param   coef            array of dequantized, scaled spectral data
+ * @param   sf              array of scalefactors or intensity stereo positions
+ * @param   pulse_present   set if pulses are present
+ * @param   pulse           pointer to pulse data struct
+ * @param   band_type       array of the used band type
  *
- * @param   pulse   pointer to pulse data struct
- * @param   icoef   array of quantized spectral data
+ * @return  Returns error status. 0 - OK, !0 - error
  */
-static void add_pulses(int icoef[1024], const Pulse * pulse, const IndividualChannelStream * ics) {
-    int i, off = ics->swb_offset[pulse->start];
-    for (i = 0; i < pulse->num_pulse; i++) {
-        int ic;
-        off += pulse->offset[i];
-        ic = (icoef[off] - 1)>>31;
-        icoef[off] += (pulse->amp[i]^ic) - ic;
+static int decode_spectrum_and_dequant(AACContext * ac, float coef[1024], GetBitContext * gb, float sf[120],
+        int pulse_present, const Pulse * pulse, const IndividualChannelStream * ics, enum BandType band_type[120]) {
+    int i, k, g, idx = 0;
+    const int c = 1024/ics->num_windows;
+    const uint16_t * offsets = ics->swb_offset;
+    float *coef_base = coef;
+
+    for (g = 0; g < ics->num_windows; g++)
+        memset(coef + g * 128 + offsets[ics->max_sfb], 0, sizeof(float)*(c - offsets[ics->max_sfb]));
+
+    for (g = 0; g < ics->num_window_groups; g++) {
+        for (i = 0; i < ics->max_sfb; i++, idx++) {
+            const int cur_band_type = band_type[idx];
+            const int dim = cur_band_type >= FIRST_PAIR_BT ? 2 : 4;
+            const int is_cb_unsigned = IS_CODEBOOK_UNSIGNED(cur_band_type);
+            int group;
+            if (cur_band_type == ZERO_BT) {
+                for (group = 0; group < ics->group_len[g]; group++) {
+                    memset(coef + group * 128 + offsets[i], 0, (offsets[i+1] - offsets[i])*sizeof(float));
+                }
+            }else if (cur_band_type == NOISE_BT) {
+                const float scale = sf[idx] / ((offsets[i+1] - offsets[i]) * PNS_MEAN_ENERGY);
+                for (group = 0; group < ics->group_len[g]; group++) {
+                    for (k = offsets[i]; k < offsets[i+1]; k++) {
+                        ac->random_state  = lcg_random(ac->random_state);
+                        coef[group*128+k] = ac->random_state * scale;
+                    }
+                }
+            }else if (cur_band_type != INTENSITY_BT2 && cur_band_type != INTENSITY_BT) {
+                for (group = 0; group < ics->group_len[g]; group++) {
+                    for (k = offsets[i]; k < offsets[i+1]; k += dim) {
+                        const int index = get_vlc2(gb, vlc_spectral[cur_band_type - 1].table, 6, 3);
+                        const int coef_tmp_idx = (group << 7) + k;
+                        const float *vq_ptr;
+                        int j;
+                        if(index >= ff_aac_spectral_sizes[cur_band_type - 1]) {
+                            av_log(ac->avccontext, AV_LOG_ERROR,
+                                "Read beyond end of ff_aac_codebook_vectors[%d][]. index %d >= %d\n",
+                                cur_band_type - 1, index, ff_aac_spectral_sizes[cur_band_type - 1]);
+                            return -1;
+                        }
+                        vq_ptr = &ff_aac_codebook_vectors[cur_band_type - 1][index * dim];
+                        if (is_cb_unsigned) {
+                            for (j = 0; j < dim; j++)
+                                if (vq_ptr[j])
+                                    coef[coef_tmp_idx + j] = 1 - 2*(int)get_bits1(gb);
+                        }else {
+                            for (j = 0; j < dim; j++)
+                                coef[coef_tmp_idx + j] = 1.0f;
+                        }
+                        if (cur_band_type == ESC_BT) {
+                            for (j = 0; j < 2; j++) {
+                                if (vq_ptr[j] == 64.0f) {
+                                    int n = 4;
+                                    /* The total length of escape_sequence must be < 22 bits according
+                                       to the specification (i.e. max is 11111111110xxxxxxxxxx). */
+                                    while (get_bits1(gb) && n < 15) n++;
+                                    if(n == 15) {
+                                        av_log(ac->avccontext, AV_LOG_ERROR, "error in spectral data, ESC overflow\n");
+                                        return -1;
+                                    }
+                                    n = (1<<n) + get_bits(gb, n);
+                                    coef[coef_tmp_idx + j] *= cbrtf(fabsf(n)) * n;
+                                }else
+                                    coef[coef_tmp_idx + j] *= vq_ptr[j];
+                            }
+                        }else
+                            for (j = 0; j < dim; j++)
+                                coef[coef_tmp_idx + j] *= vq_ptr[j];
+                        for (j = 0; j < dim; j++)
+                            coef[coef_tmp_idx + j] *= sf[idx];
+                    }
+                }
+            }
+        }
+        coef += ics->group_len[g]<<7;
+    }
+
+    if (pulse_present) {
+        for(i = 0; i < pulse->num_pulse; i++){
+            float co  = coef_base[ pulse->pos[i] ];
+            float ico = co / sqrtf(sqrtf(fabsf(co))) + pulse->amp[i];
+            coef_base[ pulse->pos[i] ] = cbrtf(fabsf(ico)) * ico;
+        }
     }
+    return 0;
 }
 
 /**
@@ -546,18 +769,16 @@ static void add_pulses(int icoef[1024], const Pulse * pulse, const IndividualCha
  * @return  Returns error status. 0 - OK, !0 - error
  */
 static int decode_ics(AACContext * ac, SingleChannelElement * sce, GetBitContext * gb, int common_window, int scale_flag) {
-    int icoeffs[1024];
     Pulse pulse;
     TemporalNoiseShaping * tns = &sce->tns;
     IndividualChannelStream * ics = &sce->ics;
     float * out = sce->coeffs;
     int global_gain, pulse_present = 0;
 
-    /* These two assignments are to silence some GCC warnings about the
-     * variables being used uninitialised when in fact they always are.
+    /* This assignment is to silence a GCC warning about the variable being used
+     * uninitialized when in fact it always is.
      */
     pulse.num_pulse = 0;
-    pulse.start     = 0;
 
     global_gain = get_bits(gb, 8);
 
@@ -578,7 +799,7 @@ static int decode_ics(AACContext * ac, SingleChannelElement * sce, GetBitContext
                 av_log(ac->avccontext, AV_LOG_ERROR, "Pulse tool not allowed in eight short sequence.\n");
                 return -1;
             }
-            decode_pulses(&pulse, gb);
+            decode_pulses(&pulse, gb, ics->swb_offset);
         }
         if ((tns->present = get_bits1(gb)) && decode_tns(ac, tns, gb, ics))
             return -1;
@@ -588,14 +809,77 @@ static int decode_ics(AACContext * ac, SingleChannelElement * sce, GetBitContext
         }
     }
 
-    if (decode_spectrum(ac, icoeffs, gb, ics, sce->band_type) < 0)
+    if (decode_spectrum_and_dequant(ac, out, gb, sce->sf, pulse_present, &pulse, ics, sce->band_type) < 0)
         return -1;
-    if (pulse_present)
-        add_pulses(icoeffs, &pulse, ics);
-    dequant(ac, out, icoeffs, sce->sf, ics, sce->band_type);
     return 0;
 }
 
+/**
+ * Mid/Side stereo decoding; reference: 4.6.8.1.3.
+ */
+static void apply_mid_side_stereo(ChannelElement * cpe) {
+    const IndividualChannelStream * ics = &cpe->ch[0].ics;
+    float *ch0 = cpe->ch[0].coeffs;
+    float *ch1 = cpe->ch[1].coeffs;
+    int g, i, k, group, idx = 0;
+    const uint16_t * offsets = ics->swb_offset;
+    for (g = 0; g < ics->num_window_groups; g++) {
+        for (i = 0; i < ics->max_sfb; i++, idx++) {
+            if (cpe->ms_mask[idx] &&
+                cpe->ch[0].band_type[idx] < NOISE_BT && cpe->ch[1].band_type[idx] < NOISE_BT) {
+                for (group = 0; group < ics->group_len[g]; group++) {
+                    for (k = offsets[i]; k < offsets[i+1]; k++) {
+                        float tmp = ch0[group*128 + k] - ch1[group*128 + k];
+                        ch0[group*128 + k] += ch1[group*128 + k];
+                        ch1[group*128 + k] = tmp;
+                    }
+                }
+            }
+        }
+        ch0 += ics->group_len[g]*128;
+        ch1 += ics->group_len[g]*128;
+    }
+}
+
+/**
+ * intensity stereo decoding; reference: 4.6.8.2.3
+ *
+ * @param   ms_present  Indicates mid/side stereo presence. [0] mask is all 0s;
+ *                      [1] mask is decoded from bitstream; [2] mask is all 1s;
+ *                      [3] reserved for scalable AAC
+ */
+static void apply_intensity_stereo(ChannelElement * cpe, int ms_present) {
+    const IndividualChannelStream * ics = &cpe->ch[1].ics;
+    SingleChannelElement * sce1 = &cpe->ch[1];
+    float *coef0 = cpe->ch[0].coeffs, *coef1 = cpe->ch[1].coeffs;
+    const uint16_t * offsets = ics->swb_offset;
+    int g, group, i, k, idx = 0;
+    int c;
+    float scale;
+    for (g = 0; g < ics->num_window_groups; g++) {
+        for (i = 0; i < ics->max_sfb;) {
+            if (sce1->band_type[idx] == INTENSITY_BT || sce1->band_type[idx] == INTENSITY_BT2) {
+                const int bt_run_end = sce1->band_type_run_end[idx];
+                for (; i < bt_run_end; i++, idx++) {
+                    c = -1 + 2 * (sce1->band_type[idx] - 14);
+                    if (ms_present)
+                        c *= 1 - 2 * cpe->ms_mask[idx];
+                    scale = c * sce1->sf[idx];
+                    for (group = 0; group < ics->group_len[g]; group++)
+                        for (k = offsets[i]; k < offsets[i+1]; k++)
+                            coef1[group*128 + k] = scale * coef0[group*128 + k];
+                }
+            } else {
+                int bt_run_end = sce1->band_type_run_end[idx];
+                idx += bt_run_end - i;
+                i    = bt_run_end;
+            }
+        }
+        coef0 += ics->group_len[g]*128;
+        coef1 += ics->group_len[g]*128;
+    }
+}
+
 /**
  * Decode a channel_pair_element; reference: table 4.4.
  *
@@ -630,8 +914,80 @@ static int decode_cpe(AACContext * ac, GetBitContext * gb, int elem_id) {
     if (common_window && ms_present)
         apply_mid_side_stereo(cpe);
 
-    if (cpe->ch[1].ics.intensity_present)
-        apply_intensity_stereo(cpe, ms_present);
+    apply_intensity_stereo(cpe, ms_present);
+    return 0;
+}
+
+/**
+ * Decode coupling_channel_element; reference: table 4.8.
+ *
+ * @param   elem_id Identifies the instance of a syntax element.
+ *
+ * @return  Returns error status. 0 - OK, !0 - error
+ */
+static int decode_cce(AACContext * ac, GetBitContext * gb, ChannelElement * che) {
+    int num_gain = 0;
+    int c, g, sfb, ret, idx = 0;
+    int sign;
+    float scale;
+    SingleChannelElement * sce = &che->ch[0];
+    ChannelCoupling * coup     = &che->coup;
+
+    coup->coupling_point = 2*get_bits1(gb);
+    coup->num_coupled = get_bits(gb, 3);
+    for (c = 0; c <= coup->num_coupled; c++) {
+        num_gain++;
+        coup->type[c] = get_bits1(gb) ? TYPE_CPE : TYPE_SCE;
+        coup->id_select[c] = get_bits(gb, 4);
+        if (coup->type[c] == TYPE_CPE) {
+            coup->ch_select[c] = get_bits(gb, 2);
+            if (coup->ch_select[c] == 3)
+                num_gain++;
+        } else
+            coup->ch_select[c] = 1;
+    }
+    coup->coupling_point += get_bits1(gb);
+
+    if (coup->coupling_point == 2) {
+        av_log(ac->avccontext, AV_LOG_ERROR,
+            "Independently switched CCE with 'invalid' domain signalled.\n");
+        memset(coup, 0, sizeof(ChannelCoupling));
+        return -1;
+    }
+
+    sign = get_bits(gb, 1);
+    scale = pow(2., pow(2., get_bits(gb, 2) - 3));
+
+    if ((ret = decode_ics(ac, sce, gb, 0, 0)))
+        return ret;
+
+    for (c = 0; c < num_gain; c++) {
+        int cge = 1;
+        int gain = 0;
+        float gain_cache = 1.;
+        if (c) {
+            cge = coup->coupling_point == AFTER_IMDCT ? 1 : get_bits1(gb);
+            gain = cge ? get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60: 0;
+            gain_cache = pow(scale, gain);
+        }
+        for (g = 0; g < sce->ics.num_window_groups; g++)
+            for (sfb = 0; sfb < sce->ics.max_sfb; sfb++, idx++)
+                if (sce->band_type[idx] != ZERO_BT) {
+                    if (!cge) {
+                        int t = get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
+                        if (t) {
+                            int s = 1;
+                            if (sign) {
+                                s  -= 2 * (t & 0x1);
+                                t >>= 1;
+                            }
+                            gain += t;
+                            gain_cache = pow(scale, gain) * s;
+                        }
+                    }
+                    coup->gain[c][idx] = gain_cache;
+                }
+    }
     return 0;
 }
 
@@ -650,6 +1006,23 @@ static int decode_sbr_extension(AACContext * ac, GetBitContext * gb, int crc, in
     return cnt;
 }
 
+/**
+ * Parse whether channels are to be excluded from Dynamic Range Compression; reference: table 4.53.
+ *
+ * @return  Returns number of bytes consumed.
+ */
+static int decode_drc_channel_exclusions(DynamicRangeControl *che_drc, GetBitContext * gb) {
+    int i;
+    int num_excl_chan = 0;
+
+    do {
+        for (i = 0; i < 7; i++)
+            che_drc->exclude_mask[num_excl_chan++] = get_bits1(gb);
+    } while (num_excl_chan < MAX_CHANNELS - 7 && get_bits1(gb));
+
+    return num_excl_chan / 7;
+}
+
 /**
  * Decode dynamic range information; reference: table 4.52.
  *
@@ -731,6 +1104,49 @@ static int decode_extension_payload(AACContext * ac, GetBitContext * gb, int cnt
     return res;
 }
 
+/**
+ * Decode Temporal Noise Shaping filter coefficients and apply all-pole filters; reference: 4.6.9.3.
+ *
+ * @param   decode  1 if tool is used normally, 0 if tool is used in LTP.
+ * @param   coef    spectral coefficients
+ */
+static void apply_tns(float coef[1024], TemporalNoiseShaping * tns, IndividualChannelStream * ics, int decode) {
+    const int mmm = FFMIN(ics->tns_max_bands,  ics->max_sfb);
+    int w, filt, m, i;
+    int bottom, top, order, start, end, size, inc;
+    float lpc[TNS_MAX_ORDER];
+
+    for (w = 0; w < ics->num_windows; w++) {
+        bottom = ics->num_swb;
+        for (filt = 0; filt < tns->n_filt[w]; filt++) {
+            top    = bottom;
+            bottom = FFMAX(0, top - tns->length[w][filt]);
+            order  = tns->order[w][filt];
+            if (order == 0)
+                continue;
+
+            // tns_decode_coef
+            compute_lpc_coefs(tns->coef[w][filt], order, lpc, 0, 0, 0);
+
+            start = ics->swb_offset[FFMIN(bottom, mmm)];
+            end   = ics->swb_offset[FFMIN(   top, mmm)];
+            if ((size = end - start) <= 0)
+                continue;
+            if (tns->direction[w][filt]) {
+                inc = -1; start = end - 1;
+            } else {
+                inc = 1;
+            }
+            start += w * 128;
+
+            // ar filter
+            for (m = 0; m < size; m++, start += inc)
+                for (i = 1; i <= FFMIN(m, order); i++)
+                    coef[start] -= coef[start - i*inc] * lpc[i-1];
+        }
+    }
+}
+
 /**
  * Conduct IMDCT and windowing.
  */
@@ -739,13 +1155,67 @@ static void imdct_and_windowing(AACContext * ac, SingleChannelElement * sce) {
     float * in = sce->coeffs;
     float * out = sce->ret;
     float * saved = sce->saved;
-    const float * lwindow      = ics->use_kb_window[0] ? ff_aac_kbd_long_1024 : ff_aac_sine_long_1024;
-    const float * swindow      = ics->use_kb_window[0] ? ff_aac_kbd_short_128 : ff_aac_sine_short_128;
-    const float * lwindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_aac_sine_long_1024;
-    const float * swindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_short_128 : ff_aac_sine_short_128;
+    const float * swindow      = ics->use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
+    const float * lwindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024;
+    const float * swindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128;
     float * buf = ac->buf_mdct;
+    DECLARE_ALIGNED(16, float, temp[128]);
     int i;
 
+    // imdct
+    if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
+        if (ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE)
+            av_log(ac->avccontext, AV_LOG_WARNING,
+                   "Transition from an ONLY_LONG or LONG_STOP to an EIGHT_SHORT sequence detected. "
+                   "If you heard an audible artifact, please submit the sample to the FFmpeg developers.\n");
+        for (i = 0; i < 1024; i += 128)
+            ff_imdct_half(&ac->mdct_small, buf + i, in + i);
+    } else
+        ff_imdct_half(&ac->mdct, buf, in);
+
+    /* window overlapping
+     * NOTE: To simplify the overlapping code, all 'meaningless' short to long
+     * and long to short transitions are considered to be short to short
+     * transitions. This leaves just two cases (long to long and short to short)
+     * with a little special sauce for EIGHT_SHORT_SEQUENCE.
+     */
+    if ((ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE) &&
+        (ics->window_sequence[0] == ONLY_LONG_SEQUENCE || ics->window_sequence[0] == LONG_START_SEQUENCE)) {
+        ac->dsp.vector_fmul_window(    out,               saved,            buf,         lwindow_prev, ac->add_bias, 512);
+    } else {
+        for (i = 0; i < 448; i++)
+            out[i] = saved[i] + ac->add_bias;
+
+        if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
+            ac->dsp.vector_fmul_window(out + 448 + 0*128, saved + 448,      buf + 0*128, swindow_prev, ac->add_bias, 64);
+            ac->dsp.vector_fmul_window(out + 448 + 1*128, buf + 0*128 + 64, buf + 1*128, swindow,      ac->add_bias, 64);
+            ac->dsp.vector_fmul_window(out + 448 + 2*128, buf + 1*128 + 64, buf + 2*128, swindow,      ac->add_bias, 64);
+            ac->dsp.vector_fmul_window(out + 448 + 3*128, buf + 2*128 + 64, buf + 3*128, swindow,      ac->add_bias, 64);
+            ac->dsp.vector_fmul_window(temp,              buf + 3*128 + 64, buf + 4*128, swindow,      ac->add_bias, 64);
+            memcpy(                    out + 448 + 4*128, temp, 64 * sizeof(float));
+        } else {
+            ac->dsp.vector_fmul_window(out + 448,         saved + 448,      buf,         swindow_prev, ac->add_bias, 64);
+            for (i = 576; i < 1024; i++)
+                out[i] = buf[i-512] + ac->add_bias;
+        }
+    }
+
+    // buffer update
+    if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
+        for (i = 0; i < 64; i++)
+            saved[i] = temp[64 + i] - ac->add_bias;
+        ac->dsp.vector_fmul_window(saved + 64,  buf + 4*128 + 64, buf + 5*128, swindow, 0, 64);
+        ac->dsp.vector_fmul_window(saved + 192, buf + 5*128 + 64, buf + 6*128, swindow, 0, 64);
+        ac->dsp.vector_fmul_window(saved + 320, buf + 6*128 + 64, buf + 7*128, swindow, 0, 64);
+        memcpy(                    saved + 448, buf + 7*128 + 64,  64 * sizeof(float));
+    } else if (ics->window_sequence[0] == LONG_START_SEQUENCE) {
+        memcpy(                    saved,       buf + 512,        448 * sizeof(float));
+        memcpy(                    saved + 448, buf + 7*128 + 64,  64 * sizeof(float));
+    } else { // LONG_STOP or ONLY_LONG
+        memcpy(                    saved,       buf + 512,        512 * sizeof(float));
+    }
+}
+
 /**
  * Apply dependent channel coupling (applied before IMDCT).
  *
@@ -789,10 +1259,147 @@ static void apply_independent_coupling(AACContext * ac, SingleChannelElement * s
         sce->ret[i] += cc->coup.gain[index][0] * (cc->ch[0].ret[i] - ac->add_bias);
 }
 
+/**
+ * channel coupling transformation interface
+ *
+ * @param   index   index into coupling gain array
+ * @param   apply_coupling_method   pointer to (in)dependent coupling function
+ */
+static void apply_channel_coupling(AACContext * ac, ChannelElement * cc,
+        void (*apply_coupling_method)(AACContext * ac, SingleChannelElement * sce, ChannelElement * cc, int index))
+{
+    int c;
+    int index = 0;
+    ChannelCoupling * coup = &cc->coup;
+    for (c = 0; c <= coup->num_coupled; c++) {
+        if (ac->che[coup->type[c]][coup->id_select[c]]) {
+            if (coup->ch_select[c] != 2) {
+                apply_coupling_method(ac, &ac->che[coup->type[c]][coup->id_select[c]]->ch[0], cc, index);
+                if (coup->ch_select[c] != 0)
+                    index++;
+            }
+            if (coup->ch_select[c] != 1)
+                apply_coupling_method(ac, &ac->che[coup->type[c]][coup->id_select[c]]->ch[1], cc, index++);
+        } else {
+            av_log(ac->avccontext, AV_LOG_ERROR,
+                   "coupling target %sE[%d] not available\n",
+                   coup->type[c] == TYPE_CPE ? "CP" : "SC", coup->id_select[c]);
+            break;
+        }
+    }
+}
+
+/**
+ * Convert spectral data to float samples, applying all supported tools as appropriate.
+ */
+static void spectral_to_sample(AACContext * ac) {
+    int i, type;
+    for (i = 0; i < MAX_ELEM_ID; i++) {
+        for(type = 0; type < 4; type++) {
+            ChannelElement *che = ac->che[type][i];
+            if(che) {
+                if(che->coup.coupling_point == BEFORE_TNS)
+                    apply_channel_coupling(ac, che, apply_dependent_coupling);
+                if(che->ch[0].tns.present)
+                    apply_tns(che->ch[0].coeffs, &che->ch[0].tns, &che->ch[0].ics, 1);
+                if(che->ch[1].tns.present)
+                    apply_tns(che->ch[1].coeffs, &che->ch[1].tns, &che->ch[1].ics, 1);
+                if(che->coup.coupling_point == BETWEEN_TNS_AND_IMDCT)
+                    apply_channel_coupling(ac, che, apply_dependent_coupling);
+                imdct_and_windowing(ac, &che->ch[0]);
+                if(type == TYPE_CPE)
+                    imdct_and_windowing(ac, &che->ch[1]);
+                if(che->coup.coupling_point == AFTER_IMDCT)
+                    apply_channel_coupling(ac, che, apply_independent_coupling);
+            }
+        }
+    }
+}
+
+static int aac_decode_frame(AVCodecContext * avccontext, void * data, int * data_size, const uint8_t * buf, int buf_size) {
+    AACContext * ac = avccontext->priv_data;
+    GetBitContext gb;
+    enum RawDataBlockType elem_type;
+    int err, elem_id, data_size_tmp;
+
+    init_get_bits(&gb, buf, buf_size*8);
+
+    // parse
+    while ((elem_type = get_bits(&gb, 3)) != TYPE_END) {
+        elem_id = get_bits(&gb, 4);
+        err = -1;
+
+        if(elem_type == TYPE_SCE && elem_id == 1 &&
+                !ac->che[TYPE_SCE][elem_id] && ac->che[TYPE_LFE][0]) {
+            /* Some streams incorrectly code 5.1 audio as SCE[0] CPE[0] CPE[1] SCE[1]
+               instead of SCE[0] CPE[0] CPE[0] LFE[0]. If we seem to have
+               encountered such a stream, transfer the LFE[0] element to SCE[1] */
+            ac->che[TYPE_SCE][elem_id] = ac->che[TYPE_LFE][0];
+            ac->che[TYPE_LFE][0] = NULL;
+        }
+        if(elem_type < TYPE_DSE) {
+            if(!ac->che[elem_type][elem_id])
+                return -1;
+            if(elem_type != TYPE_CCE)
+                ac->che[elem_type][elem_id]->coup.coupling_point = 4;
+        }
+
+        switch (elem_type) {
+
+        case TYPE_SCE:
+            err = decode_ics(ac, &ac->che[TYPE_SCE][elem_id]->ch[0], &gb, 0, 0);
+            break;
+
+        case TYPE_CPE:
+            err = decode_cpe(ac, &gb, elem_id);
+            break;
+
+        case TYPE_CCE:
+            err = decode_cce(ac, &gb, ac->che[TYPE_CCE][elem_id]);
+            break;
+
+        case TYPE_LFE:
+            err = decode_ics(ac, &ac->che[TYPE_LFE][elem_id]->ch[0], &gb, 0, 0);
+            break;
+
+        case TYPE_DSE:
+            skip_data_stream_element(&gb);
+            err = 0;
+            break;
+
+        case TYPE_PCE:
+        {
+            enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
+            memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
+            if((err = decode_pce(ac, new_che_pos, &gb)))
+                break;
+            err = output_configure(ac, ac->che_pos, new_che_pos);
+            break;
+        }
+
+        case TYPE_FIL:
+            if (elem_id == 15)
+                elem_id += get_bits(&gb, 8) - 1;
+            while (elem_id > 0)
+                elem_id -= decode_extension_payload(ac, &gb, elem_id);
+            err = 0; /* FIXME */
+            break;
+
+        default:
+            err = -1; /* should not happen, but keeps compiler happy */
+            break;
+        }
+
+        if(err)
+            return err;
+    }
+
+    spectral_to_sample(ac);
+
     if (!ac->is_saved) {
         ac->is_saved = 1;
         *data_size = 0;
-        return 0;
+        return buf_size;
     }
 
     data_size_tmp = 1024 * avccontext->channels * sizeof(int16_t);