]> git.sesse.net Git - ffmpeg/blobdiff - libavcodec/aaccoder.c
Merge commit 'e94e651c762f90ac5fd2dc9bd3ba1336a77d5b5c'
[ffmpeg] / libavcodec / aaccoder.c
index 8d5ea77e8178d330acab363268957f0ba78984fc..10ea14b1410380490c9eb2c38398ea742fed7112 100644 (file)
@@ -593,19 +593,18 @@ static void search_for_pns(AACEncContext *s, AVCodecContext *avctx, SingleChanne
     const float lambda = s->lambda;
     const float freq_mult = avctx->sample_rate/(1024.0f/sce->ics.num_windows)/2.0f;
     const float thr_mult = NOISE_LAMBDA_REPLACE*(100.0f/lambda);
-    const float spread_threshold = NOISE_SPREAD_THRESHOLD*(lambda/100.f);
-
-    if (sce->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE)
-        return;
+    const float spread_threshold = NOISE_SPREAD_THRESHOLD*FFMAX(0.5f, lambda/100.f);
 
+    memcpy(sce->band_alt, sce->band_type, sizeof(sce->band_type));
     for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
+        int wstart = w*128;
         for (g = 0;  g < sce->ics.num_swb; g++) {
             int noise_sfi;
             float dist1 = 0.0f, dist2 = 0.0f, noise_amp;
-            float pns_energy = 0.0f, energy_ratio, dist_thresh;
+            float pns_energy = 0.0f, pns_tgt_energy, energy_ratio, dist_thresh;
             float sfb_energy = 0.0f, threshold = 0.0f, spread = 0.0f;
-            const int start = sce->ics.swb_offset[w*16+g];
-            const float freq = start*freq_mult;
+            const int start = wstart+sce->ics.swb_offset[g];
+            const float freq = (start-wstart)*freq_mult;
             const float freq_boost = FFMAX(0.88f*freq/NOISE_LOW_LIMIT, 1.0f);
             if (freq < NOISE_LOW_LIMIT || avctx->cutoff && freq >= avctx->cutoff)
                 continue;
@@ -617,26 +616,31 @@ static void search_for_pns(AACEncContext *s, AVCodecContext *avctx, SingleChanne
             }
 
             /* Ramps down at ~8000Hz and loosens the dist threshold */
-            dist_thresh = FFMIN(2.5f*NOISE_LOW_LIMIT/freq, 1.27f);
+            dist_thresh = FFMIN(2.5f*NOISE_LOW_LIMIT/freq, 2.5f);
 
-            if (sce->zeroes[w*16+g] || spread < spread_threshold ||
-                sfb_energy > threshold*thr_mult*freq_boost) {
+            /* zero and energy close to threshold usually means hole avoidance,
+             * we do want to remain avoiding holes with PNS
+             */
+            if (((sce->zeroes[w*16+g] || !sce->band_alt[w*16+g]) && sfb_energy < threshold*sqrtf(1.5f/freq_boost)) || spread < spread_threshold ||
+                (sce->band_alt[w*16+g] && sfb_energy > threshold*thr_mult*freq_boost)) {
                 sce->pns_ener[w*16+g] = sfb_energy;
                 continue;
             }
 
-            noise_sfi = av_clip(roundf(log2f(sfb_energy)*2), -100, 155); /* Quantize */
+            pns_tgt_energy = sfb_energy*spread*spread/sce->ics.group_len[w];
+            noise_sfi = av_clip(roundf(log2f(pns_tgt_energy)*2), -100, 155); /* Quantize */
             noise_amp = -ff_aac_pow2sf_tab[noise_sfi + POW_SF2_ZERO];    /* Dequantize */
             for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
-                float band_energy, scale;
-                const int start_c = sce->ics.swb_offset[(w+w2)*16+g];
+                float band_energy, scale, pns_senergy;
+                const int start_c = (w+w2)*128+sce->ics.swb_offset[g];
                 band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
                 for (i = 0; i < sce->ics.swb_sizes[g]; i++)
                     PNS[i] = s->random_state = lcg_random(s->random_state);
                 band_energy = s->fdsp->scalarproduct_float(PNS, PNS, sce->ics.swb_sizes[g]);
                 scale = noise_amp/sqrtf(band_energy);
                 s->fdsp->vector_fmul_scalar(PNS, PNS, scale, sce->ics.swb_sizes[g]);
-                pns_energy += s->fdsp->scalarproduct_float(PNS, PNS, sce->ics.swb_sizes[g]);
+                pns_senergy = s->fdsp->scalarproduct_float(PNS, PNS, sce->ics.swb_sizes[g]);
+                pns_energy += pns_senergy;
                 abs_pow34_v(NOR34, &sce->coeffs[start_c], sce->ics.swb_sizes[g]);
                 abs_pow34_v(PNS34, PNS, sce->ics.swb_sizes[g]);
                 dist1 += quantize_band_cost(s, &sce->coeffs[start_c],
@@ -645,23 +649,14 @@ static void search_for_pns(AACEncContext *s, AVCodecContext *avctx, SingleChanne
                                             sce->sf_idx[(w+w2)*16+g],
                                             sce->band_alt[(w+w2)*16+g],
                                             lambda/band->threshold, INFINITY, NULL, 0);
-                dist2 += quantize_band_cost(s, PNS,
-                                            PNS34,
-                                            sce->ics.swb_sizes[g],
-                                            noise_sfi,
-                                            NOISE_BT,
-                                            lambda/band->threshold, INFINITY, NULL, 0);
+                /* Estimate rd on average as 9 bits for CB and sf + spread energy * lambda/thr */
+                dist2 += 9+band->energy/(band->spread*band->spread)*lambda/band->threshold;
             }
-            energy_ratio = sfb_energy/pns_energy; /* Compensates for quantization error */
-            sce->pns_ener[w*16+g] = energy_ratio*sfb_energy;
-            if (energy_ratio > 0.85f && energy_ratio < 1.25f && dist1/dist2 > dist_thresh) {
+            energy_ratio = pns_tgt_energy/pns_energy; /* Compensates for quantization error */
+            sce->pns_ener[w*16+g] = energy_ratio*pns_tgt_energy;
+            if (energy_ratio > 0.85f && energy_ratio < 1.25f && (sce->zeroes[w*16+g] || !sce->band_alt[w*16+g] || dist2*dist_thresh < dist1)) {
                 sce->band_type[w*16+g] = NOISE_BT;
                 sce->zeroes[w*16+g] = 0;
-                if (sce->band_type[w*16+g-1] != NOISE_BT && /* Prevent holes */
-                    sce->band_type[w*16+g-2] == NOISE_BT) {
-                    sce->band_type[w*16+g-1] = NOISE_BT;
-                    sce->zeroes[w*16+g-1] = 0;
-                }
             }
         }
     }