]> git.sesse.net Git - ffmpeg/blobdiff - libavcodec/aaccoder.c
Merge commit 'bbf71d46db3417b43bcbd745cbf235e8e2ff69ae'
[ffmpeg] / libavcodec / aaccoder.c
index 86d598f0214f8ba6a60ebe02f4e668cb4b036865..10ea14b1410380490c9eb2c38398ea742fed7112 100644 (file)
 #include "aacenc_tns.h"
 #include "aacenc_pred.h"
 
+#include "libavcodec/aaccoder_twoloop.h"
+
 /** Frequency in Hz for lower limit of noise substitution **/
-#define NOISE_LOW_LIMIT 4500
+#define NOISE_LOW_LIMIT 4000
+
+/* Parameter of f(x) = a*(lambda/100), defines the maximum fourier spread
+ * beyond which no PNS is used (since the SFBs contain tone rather than noise) */
+#define NOISE_SPREAD_THRESHOLD 0.5073f
 
-/* Energy spread threshold value below which no PNS is used, this corresponds to
- * typically around 17Khz, after which PNS usage decays ending at 19Khz */
-#define NOISE_SPREAD_THRESHOLD 0.5f
+/* Parameter of f(x) = a*(100/lambda), defines how much PNS is allowed to
+ * replace low energy non zero bands */
+#define NOISE_LAMBDA_REPLACE 1.948f
 
-/* This constant gets divided by lambda to return ~1.65 which when multiplied
- * by the band->threshold and compared to band->energy is the boundary between
- * excessive PNS and little PNS usage. */
-#define NOISE_LAMBDA_NUMERATOR 252.1f
+#include "libavcodec/aaccoder_trellis.h"
 
 /**
  * structure used in optimal codebook search
@@ -182,137 +185,6 @@ static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce
     }
 }
 
-static void codebook_trellis_rate(AACEncContext *s, SingleChannelElement *sce,
-                                  int win, int group_len, const float lambda)
-{
-    BandCodingPath path[120][CB_TOT_ALL];
-    int w, swb, cb, start, size;
-    int i, j;
-    const int max_sfb  = sce->ics.max_sfb;
-    const int run_bits = sce->ics.num_windows == 1 ? 5 : 3;
-    const int run_esc  = (1 << run_bits) - 1;
-    int idx, ppos, count;
-    int stackrun[120], stackcb[120], stack_len;
-    float next_minbits = INFINITY;
-    int next_mincb = 0;
-
-    abs_pow34_v(s->scoefs, sce->coeffs, 1024);
-    start = win*128;
-    for (cb = 0; cb < CB_TOT_ALL; cb++) {
-        path[0][cb].cost     = run_bits+4;
-        path[0][cb].prev_idx = -1;
-        path[0][cb].run      = 0;
-    }
-    for (swb = 0; swb < max_sfb; swb++) {
-        size = sce->ics.swb_sizes[swb];
-        if (sce->zeroes[win*16 + swb]) {
-            float cost_stay_here = path[swb][0].cost;
-            float cost_get_here  = next_minbits + run_bits + 4;
-            if (   run_value_bits[sce->ics.num_windows == 8][path[swb][0].run]
-                != run_value_bits[sce->ics.num_windows == 8][path[swb][0].run+1])
-                cost_stay_here += run_bits;
-            if (cost_get_here < cost_stay_here) {
-                path[swb+1][0].prev_idx = next_mincb;
-                path[swb+1][0].cost     = cost_get_here;
-                path[swb+1][0].run      = 1;
-            } else {
-                path[swb+1][0].prev_idx = 0;
-                path[swb+1][0].cost     = cost_stay_here;
-                path[swb+1][0].run      = path[swb][0].run + 1;
-            }
-            next_minbits = path[swb+1][0].cost;
-            next_mincb = 0;
-            for (cb = 1; cb < CB_TOT_ALL; cb++) {
-                path[swb+1][cb].cost = 61450;
-                path[swb+1][cb].prev_idx = -1;
-                path[swb+1][cb].run = 0;
-            }
-        } else {
-            float minbits = next_minbits;
-            int mincb = next_mincb;
-            int startcb = sce->band_type[win*16+swb];
-            startcb = aac_cb_in_map[startcb];
-            next_minbits = INFINITY;
-            next_mincb = 0;
-            for (cb = 0; cb < startcb; cb++) {
-                path[swb+1][cb].cost = 61450;
-                path[swb+1][cb].prev_idx = -1;
-                path[swb+1][cb].run = 0;
-            }
-            for (cb = startcb; cb < CB_TOT_ALL; cb++) {
-                float cost_stay_here, cost_get_here;
-                float bits = 0.0f;
-                if (cb >= 12 && sce->band_type[win*16+swb] != aac_cb_out_map[cb]) {
-                    path[swb+1][cb].cost = 61450;
-                    path[swb+1][cb].prev_idx = -1;
-                    path[swb+1][cb].run = 0;
-                    continue;
-                }
-                for (w = 0; w < group_len; w++) {
-                    bits += quantize_band_cost(s, &sce->coeffs[start + w*128],
-                                               &s->scoefs[start + w*128], size,
-                                               sce->sf_idx[win*16+swb],
-                                               aac_cb_out_map[cb],
-                                               0, INFINITY, NULL, 0);
-                }
-                cost_stay_here = path[swb][cb].cost + bits;
-                cost_get_here  = minbits            + bits + run_bits + 4;
-                if (   run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run]
-                    != run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1])
-                    cost_stay_here += run_bits;
-                if (cost_get_here < cost_stay_here) {
-                    path[swb+1][cb].prev_idx = mincb;
-                    path[swb+1][cb].cost     = cost_get_here;
-                    path[swb+1][cb].run      = 1;
-                } else {
-                    path[swb+1][cb].prev_idx = cb;
-                    path[swb+1][cb].cost     = cost_stay_here;
-                    path[swb+1][cb].run      = path[swb][cb].run + 1;
-                }
-                if (path[swb+1][cb].cost < next_minbits) {
-                    next_minbits = path[swb+1][cb].cost;
-                    next_mincb = cb;
-                }
-            }
-        }
-        start += sce->ics.swb_sizes[swb];
-    }
-
-    //convert resulting path from backward-linked list
-    stack_len = 0;
-    idx       = 0;
-    for (cb = 1; cb < CB_TOT_ALL; cb++)
-        if (path[max_sfb][cb].cost < path[max_sfb][idx].cost)
-            idx = cb;
-    ppos = max_sfb;
-    while (ppos > 0) {
-        av_assert1(idx >= 0);
-        cb = idx;
-        stackrun[stack_len] = path[ppos][cb].run;
-        stackcb [stack_len] = cb;
-        idx = path[ppos-path[ppos][cb].run+1][cb].prev_idx;
-        ppos -= path[ppos][cb].run;
-        stack_len++;
-    }
-    //perform actual band info encoding
-    start = 0;
-    for (i = stack_len - 1; i >= 0; i--) {
-        cb = aac_cb_out_map[stackcb[i]];
-        put_bits(&s->pb, 4, cb);
-        count = stackrun[i];
-        memset(sce->zeroes + win*16 + start, !cb, count);
-        //XXX: memset when band_type is also uint8_t
-        for (j = 0; j < count; j++) {
-            sce->band_type[win*16 + start] = cb;
-            start++;
-        }
-        while (count >= run_esc) {
-            put_bits(&s->pb, run_bits, run_esc);
-            count -= run_esc;
-        }
-        put_bits(&s->pb, run_bits, count);
-    }
-}
 
 typedef struct TrellisPath {
     float cost;
@@ -332,11 +204,11 @@ static void set_special_band_scalefactors(AACEncContext *s, SingleChannelElement
         start = 0;
         for (g = 0;  g < sce->ics.num_swb; g++) {
             if (sce->band_type[w*16+g] == INTENSITY_BT || sce->band_type[w*16+g] == INTENSITY_BT2) {
-                sce->sf_idx[w*16+g] = av_clip(ceilf(log2f(sce->is_ener[w*16+g])*2), -155, 100);
+                sce->sf_idx[w*16+g] = av_clip(roundf(log2f(sce->is_ener[w*16+g])*2), -155, 100);
                 minscaler_i = FFMIN(minscaler_i, sce->sf_idx[w*16+g]);
                 bands++;
             } else if (sce->band_type[w*16+g] == NOISE_BT) {
-                sce->sf_idx[w*16+g] = av_clip(4+log2f(sce->pns_ener[w*16+g])*2, -100, 155);
+                sce->sf_idx[w*16+g] = av_clip(3+ceilf(log2f(sce->pns_ener[w*16+g])*2), -100, 155);
                 minscaler_n = FFMIN(minscaler_n, sce->sf_idx[w*16+g]);
                 bands++;
             }
@@ -509,155 +381,6 @@ static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s,
                 sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
 }
 
-/**
- * two-loop quantizers search taken from ISO 13818-7 Appendix C
- */
-static void search_for_quantizers_twoloop(AVCodecContext *avctx,
-                                          AACEncContext *s,
-                                          SingleChannelElement *sce,
-                                          const float lambda)
-{
-    int start = 0, i, w, w2, g;
-    int destbits = avctx->bit_rate * 1024.0 / avctx->sample_rate / avctx->channels * (lambda / 120.f);
-    float dists[128] = { 0 }, uplims[128] = { 0 };
-    float maxvals[128];
-    int fflag, minscaler;
-    int its  = 0;
-    int allz = 0;
-    float minthr = INFINITY;
-
-    // for values above this the decoder might end up in an endless loop
-    // due to always having more bits than what can be encoded.
-    destbits = FFMIN(destbits, 5800);
-    //XXX: some heuristic to determine initial quantizers will reduce search time
-    //determine zero bands and upper limits
-    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
-        for (g = 0;  g < sce->ics.num_swb; g++) {
-            int nz = 0;
-            float uplim = 0.0f, energy = 0.0f;
-            for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
-                FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
-                uplim  += band->threshold;
-                energy += band->energy;
-                if (band->energy <= band->threshold || band->threshold == 0.0f) {
-                    sce->zeroes[(w+w2)*16+g] = 1;
-                    continue;
-                }
-                nz = 1;
-            }
-            uplims[w*16+g] = uplim *512;
-            sce->zeroes[w*16+g] = !nz;
-            if (nz)
-                minthr = FFMIN(minthr, uplim);
-            allz |= nz;
-        }
-    }
-    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
-        for (g = 0;  g < sce->ics.num_swb; g++) {
-            if (sce->zeroes[w*16+g]) {
-                sce->sf_idx[w*16+g] = SCALE_ONE_POS;
-                continue;
-            }
-            sce->sf_idx[w*16+g] = SCALE_ONE_POS + FFMIN(log2f(uplims[w*16+g]/minthr)*4,59);
-        }
-    }
-
-    if (!allz)
-        return;
-    abs_pow34_v(s->scoefs, sce->coeffs, 1024);
-
-    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
-        start = w*128;
-        for (g = 0;  g < sce->ics.num_swb; g++) {
-            const float *scaled = s->scoefs + start;
-            maxvals[w*16+g] = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], scaled);
-            start += sce->ics.swb_sizes[g];
-        }
-    }
-
-    //perform two-loop search
-    //outer loop - improve quality
-    do {
-        int tbits, qstep;
-        minscaler = sce->sf_idx[0];
-        //inner loop - quantize spectrum to fit into given number of bits
-        qstep = its ? 1 : 32;
-        do {
-            int prev = -1;
-            tbits = 0;
-            for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
-                start = w*128;
-                for (g = 0;  g < sce->ics.num_swb; g++) {
-                    const float *coefs = &sce->coeffs[start];
-                    const float *scaled = &s->scoefs[start];
-                    int bits = 0;
-                    int cb;
-                    float dist = 0.0f;
-
-                    if (sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218) {
-                        start += sce->ics.swb_sizes[g];
-                        continue;
-                    }
-                    minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]);
-                    cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
-                    for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
-                        int b;
-                        dist += quantize_band_cost(s, coefs + w2*128,
-                                                   scaled + w2*128,
-                                                   sce->ics.swb_sizes[g],
-                                                   sce->sf_idx[w*16+g],
-                                                   cb,
-                                                   1.0f,
-                                                   INFINITY,
-                                                   &b,
-                                                   0);
-                        bits += b;
-                    }
-                    dists[w*16+g] = dist - bits;
-                    if (prev != -1) {
-                        bits += ff_aac_scalefactor_bits[sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO];
-                    }
-                    tbits += bits;
-                    start += sce->ics.swb_sizes[g];
-                    prev = sce->sf_idx[w*16+g];
-                }
-            }
-            if (tbits > destbits) {
-                for (i = 0; i < 128; i++)
-                    if (sce->sf_idx[i] < 218 - qstep)
-                        sce->sf_idx[i] += qstep;
-            } else {
-                for (i = 0; i < 128; i++)
-                    if (sce->sf_idx[i] > 60 - qstep)
-                        sce->sf_idx[i] -= qstep;
-            }
-            qstep >>= 1;
-            if (!qstep && tbits > destbits*1.02 && sce->sf_idx[0] < 217)
-                qstep = 1;
-        } while (qstep);
-
-        fflag = 0;
-        minscaler = av_clip(minscaler, 60, 255 - SCALE_MAX_DIFF);
-
-        for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
-            for (g = 0; g < sce->ics.num_swb; g++) {
-                int prevsc = sce->sf_idx[w*16+g];
-                if (dists[w*16+g] > uplims[w*16+g] && sce->sf_idx[w*16+g] > 60) {
-                    if (find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]-1))
-                        sce->sf_idx[w*16+g]--;
-                    else //Try to make sure there is some energy in every band
-                        sce->sf_idx[w*16+g]-=2;
-                }
-                sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler, minscaler + SCALE_MAX_DIFF);
-                sce->sf_idx[w*16+g] = FFMIN(sce->sf_idx[w*16+g], 219);
-                if (sce->sf_idx[w*16+g] != prevsc)
-                    fflag = 1;
-                sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
-            }
-        }
-        its++;
-    } while (fflag && its < 10);
-}
 
 static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s,
                                        SingleChannelElement *sce,
@@ -863,32 +586,78 @@ static void search_for_quantizers_fast(AVCodecContext *avctx, AACEncContext *s,
 
 static void search_for_pns(AACEncContext *s, AVCodecContext *avctx, SingleChannelElement *sce)
 {
-    int start = 0, w, w2, g;
+    FFPsyBand *band;
+    int w, g, w2, i;
+    float *PNS = &s->scoefs[0*128], *PNS34 = &s->scoefs[1*128];
+    float *NOR34 = &s->scoefs[3*128];
     const float lambda = s->lambda;
     const float freq_mult = avctx->sample_rate/(1024.0f/sce->ics.num_windows)/2.0f;
-    const float spread_threshold = NOISE_SPREAD_THRESHOLD*(lambda/120.f);
-    const float thr_mult = NOISE_LAMBDA_NUMERATOR/lambda;
+    const float thr_mult = NOISE_LAMBDA_REPLACE*(100.0f/lambda);
+    const float spread_threshold = NOISE_SPREAD_THRESHOLD*FFMAX(0.5f, lambda/100.f);
 
+    memcpy(sce->band_alt, sce->band_type, sizeof(sce->band_type));
     for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
-        start = 0;
+        int wstart = w*128;
         for (g = 0;  g < sce->ics.num_swb; g++) {
-            if (start*freq_mult > NOISE_LOW_LIMIT*(lambda/170.0f)) {
-                float energy = 0.0f, threshold = 0.0f, spread = 0.0f;
-                for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
-                    FFPsyBand *band = &s->psy.ch[s->cur_channel+0].psy_bands[(w+w2)*16+g];
-                    energy += band->energy;
-                    threshold += band->threshold;
-                    spread += band->spread;
-                }
-                if (spread > spread_threshold*sce->ics.group_len[w] &&
-                    ((sce->zeroes[w*16+g] && energy >= threshold) ||
-                    energy < threshold*thr_mult*sce->ics.group_len[w])) {
-                    sce->band_type[w*16+g] = NOISE_BT;
-                    sce->pns_ener[w*16+g] = energy / sce->ics.group_len[w];
-                    sce->zeroes[w*16+g] = 0;
-                }
+            int noise_sfi;
+            float dist1 = 0.0f, dist2 = 0.0f, noise_amp;
+            float pns_energy = 0.0f, pns_tgt_energy, energy_ratio, dist_thresh;
+            float sfb_energy = 0.0f, threshold = 0.0f, spread = 0.0f;
+            const int start = wstart+sce->ics.swb_offset[g];
+            const float freq = (start-wstart)*freq_mult;
+            const float freq_boost = FFMAX(0.88f*freq/NOISE_LOW_LIMIT, 1.0f);
+            if (freq < NOISE_LOW_LIMIT || avctx->cutoff && freq >= avctx->cutoff)
+                continue;
+            for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
+                band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
+                sfb_energy += band->energy;
+                spread     += band->spread;
+                threshold  += band->threshold;
+            }
+
+            /* Ramps down at ~8000Hz and loosens the dist threshold */
+            dist_thresh = FFMIN(2.5f*NOISE_LOW_LIMIT/freq, 2.5f);
+
+            /* zero and energy close to threshold usually means hole avoidance,
+             * we do want to remain avoiding holes with PNS
+             */
+            if (((sce->zeroes[w*16+g] || !sce->band_alt[w*16+g]) && sfb_energy < threshold*sqrtf(1.5f/freq_boost)) || spread < spread_threshold ||
+                (sce->band_alt[w*16+g] && sfb_energy > threshold*thr_mult*freq_boost)) {
+                sce->pns_ener[w*16+g] = sfb_energy;
+                continue;
+            }
+
+            pns_tgt_energy = sfb_energy*spread*spread/sce->ics.group_len[w];
+            noise_sfi = av_clip(roundf(log2f(pns_tgt_energy)*2), -100, 155); /* Quantize */
+            noise_amp = -ff_aac_pow2sf_tab[noise_sfi + POW_SF2_ZERO];    /* Dequantize */
+            for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
+                float band_energy, scale, pns_senergy;
+                const int start_c = (w+w2)*128+sce->ics.swb_offset[g];
+                band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
+                for (i = 0; i < sce->ics.swb_sizes[g]; i++)
+                    PNS[i] = s->random_state = lcg_random(s->random_state);
+                band_energy = s->fdsp->scalarproduct_float(PNS, PNS, sce->ics.swb_sizes[g]);
+                scale = noise_amp/sqrtf(band_energy);
+                s->fdsp->vector_fmul_scalar(PNS, PNS, scale, sce->ics.swb_sizes[g]);
+                pns_senergy = s->fdsp->scalarproduct_float(PNS, PNS, sce->ics.swb_sizes[g]);
+                pns_energy += pns_senergy;
+                abs_pow34_v(NOR34, &sce->coeffs[start_c], sce->ics.swb_sizes[g]);
+                abs_pow34_v(PNS34, PNS, sce->ics.swb_sizes[g]);
+                dist1 += quantize_band_cost(s, &sce->coeffs[start_c],
+                                            NOR34,
+                                            sce->ics.swb_sizes[g],
+                                            sce->sf_idx[(w+w2)*16+g],
+                                            sce->band_alt[(w+w2)*16+g],
+                                            lambda/band->threshold, INFINITY, NULL, 0);
+                /* Estimate rd on average as 9 bits for CB and sf + spread energy * lambda/thr */
+                dist2 += 9+band->energy/(band->spread*band->spread)*lambda/band->threshold;
+            }
+            energy_ratio = pns_tgt_energy/pns_energy; /* Compensates for quantization error */
+            sce->pns_ener[w*16+g] = energy_ratio*pns_tgt_energy;
+            if (energy_ratio > 0.85f && energy_ratio < 1.25f && (sce->zeroes[w*16+g] || !sce->band_alt[w*16+g] || dist2*dist_thresh < dist1)) {
+                sce->band_type[w*16+g] = NOISE_BT;
+                sce->zeroes[w*16+g] = 0;
             }
-            start += sce->ics.swb_sizes[g];
         }
     }
 }