]> git.sesse.net Git - ffmpeg/blobdiff - libavcodec/aaccoder.c
avcodec/adpcm: increase max channels for ADPCM PSX to 8
[ffmpeg] / libavcodec / aaccoder.c
index 10ea14b1410380490c9eb2c38398ea742fed7112..fd9785e26a46b91b076360b0867021dbb15f3dfe 100644 (file)
@@ -33,7 +33,9 @@
 #include "libavutil/libm.h" // brought forward to work around cygwin header breakage
 
 #include <float.h>
+
 #include "libavutil/mathematics.h"
+#include "mathops.h"
 #include "avcodec.h"
 #include "put_bits.h"
 #include "aac.h"
 
 #include "aacenc_is.h"
 #include "aacenc_tns.h"
+#include "aacenc_ltp.h"
 #include "aacenc_pred.h"
 
 #include "libavcodec/aaccoder_twoloop.h"
 
-/** Frequency in Hz for lower limit of noise substitution **/
-#define NOISE_LOW_LIMIT 4000
-
 /* Parameter of f(x) = a*(lambda/100), defines the maximum fourier spread
  * beyond which no PNS is used (since the SFBs contain tone rather than noise) */
 #define NOISE_SPREAD_THRESHOLD 0.5073f
@@ -124,7 +124,7 @@ static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce
                     rd += quantize_band_cost(s, &sce->coeffs[start + w*128],
                                              &s->scoefs[start + w*128], size,
                                              sce->sf_idx[(win+w)*16+swb], aac_cb_out_map[cb],
-                                             lambda / band->threshold, INFINITY, NULL, 0);
+                                             lambda / band->threshold, INFINITY, NULL, NULL, 0);
                 }
                 cost_stay_here = path[swb][cb].cost + rd;
                 cost_get_here  = minrd              + rd + run_bits + 4;
@@ -335,7 +335,7 @@ static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s,
                     for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
                         FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
                         dist += quantize_band_cost(s, coefs + w2*128, s->scoefs + start + w2*128, sce->ics.swb_sizes[g],
-                                                   q + q0, cb, lambda / band->threshold, INFINITY, NULL, 0);
+                                                   q + q0, cb, lambda / band->threshold, INFINITY, NULL, NULL, 0);
                     }
                     minrd = FFMIN(minrd, dist);
 
@@ -499,7 +499,7 @@ static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s,
                                                ESC_BT,
                                                lambda,
                                                INFINITY,
-                                               &b,
+                                               &b, NULL,
                                                0);
                     dist -= b;
                 }
@@ -588,12 +588,36 @@ static void search_for_pns(AACEncContext *s, AVCodecContext *avctx, SingleChanne
 {
     FFPsyBand *band;
     int w, g, w2, i;
+    int wlen = 1024 / sce->ics.num_windows;
+    int bandwidth, cutoff;
     float *PNS = &s->scoefs[0*128], *PNS34 = &s->scoefs[1*128];
     float *NOR34 = &s->scoefs[3*128];
     const float lambda = s->lambda;
-    const float freq_mult = avctx->sample_rate/(1024.0f/sce->ics.num_windows)/2.0f;
+    const float freq_mult = avctx->sample_rate*0.5f/wlen;
     const float thr_mult = NOISE_LAMBDA_REPLACE*(100.0f/lambda);
-    const float spread_threshold = NOISE_SPREAD_THRESHOLD*FFMAX(0.5f, lambda/100.f);
+    const float spread_threshold = FFMIN(0.75f, NOISE_SPREAD_THRESHOLD*FFMAX(0.5f, lambda/100.f));
+    const float dist_bias = av_clipf(4.f * 120 / lambda, 0.25f, 4.0f);
+    const float pns_transient_energy_r = FFMIN(0.7f, lambda / 140.f);
+
+    int refbits = avctx->bit_rate * 1024.0 / avctx->sample_rate
+        / ((avctx->flags & CODEC_FLAG_QSCALE) ? 2.0f : avctx->channels)
+        * (lambda / 120.f);
+
+    /** Keep this in sync with twoloop's cutoff selection */
+    float rate_bandwidth_multiplier = 1.5f;
+    int frame_bit_rate = (avctx->flags & CODEC_FLAG_QSCALE)
+        ? (refbits * rate_bandwidth_multiplier * avctx->sample_rate / 1024)
+        : (avctx->bit_rate / avctx->channels);
+
+    frame_bit_rate *= 1.15f;
+
+    if (avctx->cutoff > 0) {
+        bandwidth = avctx->cutoff;
+    } else {
+        bandwidth = FFMAX(3000, AAC_CUTOFF_FROM_BITRATE(frame_bit_rate, 1, avctx->sample_rate));
+    }
+
+    cutoff = bandwidth * 2 * wlen / avctx->sample_rate;
 
     memcpy(sce->band_alt, sce->band_type, sizeof(sce->band_type));
     for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
@@ -602,32 +626,44 @@ static void search_for_pns(AACEncContext *s, AVCodecContext *avctx, SingleChanne
             int noise_sfi;
             float dist1 = 0.0f, dist2 = 0.0f, noise_amp;
             float pns_energy = 0.0f, pns_tgt_energy, energy_ratio, dist_thresh;
-            float sfb_energy = 0.0f, threshold = 0.0f, spread = 0.0f;
+            float sfb_energy = 0.0f, threshold = 0.0f, spread = 2.0f;
+            float min_energy = -1.0f, max_energy = 0.0f;
             const int start = wstart+sce->ics.swb_offset[g];
             const float freq = (start-wstart)*freq_mult;
             const float freq_boost = FFMAX(0.88f*freq/NOISE_LOW_LIMIT, 1.0f);
-            if (freq < NOISE_LOW_LIMIT || avctx->cutoff && freq >= avctx->cutoff)
+            if (freq < NOISE_LOW_LIMIT || (start-wstart) >= cutoff)
                 continue;
             for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
                 band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
                 sfb_energy += band->energy;
-                spread     += band->spread;
+                spread     = FFMIN(spread, band->spread);
                 threshold  += band->threshold;
+                if (!w2) {
+                    min_energy = max_energy = band->energy;
+                } else {
+                    min_energy = FFMIN(min_energy, band->energy);
+                    max_energy = FFMAX(max_energy, band->energy);
+                }
             }
 
             /* Ramps down at ~8000Hz and loosens the dist threshold */
-            dist_thresh = FFMIN(2.5f*NOISE_LOW_LIMIT/freq, 2.5f);
-
-            /* zero and energy close to threshold usually means hole avoidance,
-             * we do want to remain avoiding holes with PNS
+            dist_thresh = av_clipf(2.5f*NOISE_LOW_LIMIT/freq, 0.5f, 2.5f) * dist_bias;
+
+            /* PNS is acceptable when all of these are true:
+             * 1. high spread energy (noise-like band)
+             * 2. near-threshold energy (high PE means the random nature of PNS content will be noticed)
+             * 3. on short window groups, all windows have similar energy (variations in energy would be destroyed by PNS)
+             *
+             * At this stage, point 2 is relaxed for zeroed bands near the noise threshold (hole avoidance is more important)
              */
             if (((sce->zeroes[w*16+g] || !sce->band_alt[w*16+g]) && sfb_energy < threshold*sqrtf(1.5f/freq_boost)) || spread < spread_threshold ||
-                (sce->band_alt[w*16+g] && sfb_energy > threshold*thr_mult*freq_boost)) {
+                (!sce->zeroes[w*16+g] && sce->band_alt[w*16+g] && sfb_energy > threshold*thr_mult*freq_boost) ||
+                min_energy < pns_transient_energy_r * max_energy ) {
                 sce->pns_ener[w*16+g] = sfb_energy;
                 continue;
             }
 
-            pns_tgt_energy = sfb_energy*spread*spread/sce->ics.group_len[w];
+            pns_tgt_energy = sfb_energy*FFMIN(1.0f, spread*spread);
             noise_sfi = av_clip(roundf(log2f(pns_tgt_energy)*2), -100, 155); /* Quantize */
             noise_amp = -ff_aac_pow2sf_tab[noise_sfi + POW_SF2_ZERO];    /* Dequantize */
             for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
@@ -648,13 +684,18 @@ static void search_for_pns(AACEncContext *s, AVCodecContext *avctx, SingleChanne
                                             sce->ics.swb_sizes[g],
                                             sce->sf_idx[(w+w2)*16+g],
                                             sce->band_alt[(w+w2)*16+g],
-                                            lambda/band->threshold, INFINITY, NULL, 0);
-                /* Estimate rd on average as 9 bits for CB and sf + spread energy * lambda/thr */
-                dist2 += 9+band->energy/(band->spread*band->spread)*lambda/band->threshold;
+                                            lambda/band->threshold, INFINITY, NULL, NULL, 0);
+                /* Estimate rd on average as 5 bits for SF, 4 for the CB, plus spread energy * lambda/thr */
+                dist2 += band->energy/(band->spread*band->spread)*lambda*dist_thresh/band->threshold;
+            }
+            if (g && sce->sf_idx[(w+w2)*16+g-1] == NOISE_BT) {
+                dist2 += 5;
+            } else {
+                dist2 += 9;
             }
             energy_ratio = pns_tgt_energy/pns_energy; /* Compensates for quantization error */
             sce->pns_ener[w*16+g] = energy_ratio*pns_tgt_energy;
-            if (energy_ratio > 0.85f && energy_ratio < 1.25f && (sce->zeroes[w*16+g] || !sce->band_alt[w*16+g] || dist2*dist_thresh < dist1)) {
+            if (sce->zeroes[w*16+g] || !sce->band_alt[w*16+g] || (energy_ratio > 0.85f && energy_ratio < 1.25f && dist2 < dist1)) {
                 sce->band_type[w*16+g] = NOISE_BT;
                 sce->zeroes[w*16+g] = 0;
             }
@@ -662,62 +703,203 @@ static void search_for_pns(AACEncContext *s, AVCodecContext *avctx, SingleChanne
     }
 }
 
+static void mark_pns(AACEncContext *s, AVCodecContext *avctx, SingleChannelElement *sce)
+{
+    FFPsyBand *band;
+    int w, g, w2;
+    int wlen = 1024 / sce->ics.num_windows;
+    int bandwidth, cutoff;
+    const float lambda = s->lambda;
+    const float freq_mult = avctx->sample_rate*0.5f/wlen;
+    const float spread_threshold = FFMIN(0.75f, NOISE_SPREAD_THRESHOLD*FFMAX(0.5f, lambda/100.f));
+    const float pns_transient_energy_r = FFMIN(0.7f, lambda / 140.f);
+
+    int refbits = avctx->bit_rate * 1024.0 / avctx->sample_rate
+        / ((avctx->flags & CODEC_FLAG_QSCALE) ? 2.0f : avctx->channels)
+        * (lambda / 120.f);
+
+    /** Keep this in sync with twoloop's cutoff selection */
+    float rate_bandwidth_multiplier = 1.5f;
+    int frame_bit_rate = (avctx->flags & CODEC_FLAG_QSCALE)
+        ? (refbits * rate_bandwidth_multiplier * avctx->sample_rate / 1024)
+        : (avctx->bit_rate / avctx->channels);
+
+    frame_bit_rate *= 1.15f;
+
+    if (avctx->cutoff > 0) {
+        bandwidth = avctx->cutoff;
+    } else {
+        bandwidth = FFMAX(3000, AAC_CUTOFF_FROM_BITRATE(frame_bit_rate, 1, avctx->sample_rate));
+    }
+
+    cutoff = bandwidth * 2 * wlen / avctx->sample_rate;
+
+    memcpy(sce->band_alt, sce->band_type, sizeof(sce->band_type));
+    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
+        for (g = 0;  g < sce->ics.num_swb; g++) {
+            float sfb_energy = 0.0f, threshold = 0.0f, spread = 2.0f;
+            float min_energy = -1.0f, max_energy = 0.0f;
+            const int start = sce->ics.swb_offset[g];
+            const float freq = start*freq_mult;
+            const float freq_boost = FFMAX(0.88f*freq/NOISE_LOW_LIMIT, 1.0f);
+            if (freq < NOISE_LOW_LIMIT || start >= cutoff) {
+                sce->can_pns[w*16+g] = 0;
+                continue;
+            }
+            for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
+                band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
+                sfb_energy += band->energy;
+                spread     = FFMIN(spread, band->spread);
+                threshold  += band->threshold;
+                if (!w2) {
+                    min_energy = max_energy = band->energy;
+                } else {
+                    min_energy = FFMIN(min_energy, band->energy);
+                    max_energy = FFMAX(max_energy, band->energy);
+                }
+            }
+
+            /* PNS is acceptable when all of these are true:
+             * 1. high spread energy (noise-like band)
+             * 2. near-threshold energy (high PE means the random nature of PNS content will be noticed)
+             * 3. on short window groups, all windows have similar energy (variations in energy would be destroyed by PNS)
+             */
+            sce->pns_ener[w*16+g] = sfb_energy;
+            if (sfb_energy < threshold*sqrtf(1.5f/freq_boost) || spread < spread_threshold || min_energy < pns_transient_energy_r * max_energy) {
+                sce->can_pns[w*16+g] = 0;
+            } else {
+                sce->can_pns[w*16+g] = 1;
+            }
+        }
+    }
+}
+
 static void search_for_ms(AACEncContext *s, ChannelElement *cpe)
 {
-    int start = 0, i, w, w2, g;
+    int start = 0, i, w, w2, g, sid_sf_boost;
     float M[128], S[128];
     float *L34 = s->scoefs, *R34 = s->scoefs + 128, *M34 = s->scoefs + 128*2, *S34 = s->scoefs + 128*3;
     const float lambda = s->lambda;
+    const float mslambda = FFMIN(1.0f, lambda / 120.f);
     SingleChannelElement *sce0 = &cpe->ch[0];
     SingleChannelElement *sce1 = &cpe->ch[1];
     if (!cpe->common_window)
         return;
     for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) {
+        int min_sf_idx_mid = SCALE_MAX_POS;
+        int min_sf_idx_side = SCALE_MAX_POS;
+        for (g = 0; g < sce0->ics.num_swb; g++) {
+            if (!sce0->zeroes[w*16+g] && sce0->band_type[w*16+g] < RESERVED_BT)
+                min_sf_idx_mid = FFMIN(min_sf_idx_mid, sce0->sf_idx[w*16+g]);
+            if (!sce1->zeroes[w*16+g] && sce1->band_type[w*16+g] < RESERVED_BT)
+                min_sf_idx_side = FFMIN(min_sf_idx_side, sce1->sf_idx[w*16+g]);
+        }
+
         start = 0;
         for (g = 0;  g < sce0->ics.num_swb; g++) {
+            float bmax = bval2bmax(g * 17.0f / sce0->ics.num_swb) / 0.0045f;
+            cpe->ms_mask[w*16+g] = 0;
             if (!cpe->ch[0].zeroes[w*16+g] && !cpe->ch[1].zeroes[w*16+g]) {
-                float dist1 = 0.0f, dist2 = 0.0f;
+                float Mmax = 0.0f, Smax = 0.0f;
+
+                /* Must compute mid/side SF and book for the whole window group */
                 for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
-                    FFPsyBand *band0 = &s->psy.ch[s->cur_channel+0].psy_bands[(w+w2)*16+g];
-                    FFPsyBand *band1 = &s->psy.ch[s->cur_channel+1].psy_bands[(w+w2)*16+g];
-                    float minthr = FFMIN(band0->threshold, band1->threshold);
-                    float maxthr = FFMAX(band0->threshold, band1->threshold);
                     for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
                         M[i] = (sce0->coeffs[start+(w+w2)*128+i]
                               + sce1->coeffs[start+(w+w2)*128+i]) * 0.5;
                         S[i] =  M[i]
                               - sce1->coeffs[start+(w+w2)*128+i];
                     }
-                    abs_pow34_v(L34, sce0->coeffs+start+(w+w2)*128, sce0->ics.swb_sizes[g]);
-                    abs_pow34_v(R34, sce1->coeffs+start+(w+w2)*128, sce0->ics.swb_sizes[g]);
-                    abs_pow34_v(M34, M,                         sce0->ics.swb_sizes[g]);
-                    abs_pow34_v(S34, S,                         sce0->ics.swb_sizes[g]);
-                    dist1 += quantize_band_cost(s, &sce0->coeffs[start + (w+w2)*128],
-                                                L34,
-                                                sce0->ics.swb_sizes[g],
-                                                sce0->sf_idx[(w+w2)*16+g],
-                                                sce0->band_type[(w+w2)*16+g],
-                                                lambda / band0->threshold, INFINITY, NULL, 0);
-                    dist1 += quantize_band_cost(s, &sce1->coeffs[start + (w+w2)*128],
-                                                R34,
-                                                sce1->ics.swb_sizes[g],
-                                                sce1->sf_idx[(w+w2)*16+g],
-                                                sce1->band_type[(w+w2)*16+g],
-                                                lambda / band1->threshold, INFINITY, NULL, 0);
-                    dist2 += quantize_band_cost(s, M,
-                                                M34,
-                                                sce0->ics.swb_sizes[g],
-                                                sce0->sf_idx[(w+w2)*16+g],
-                                                sce0->band_type[(w+w2)*16+g],
-                                                lambda / maxthr, INFINITY, NULL, 0);
-                    dist2 += quantize_band_cost(s, S,
-                                                S34,
-                                                sce1->ics.swb_sizes[g],
-                                                sce1->sf_idx[(w+w2)*16+g],
-                                                sce1->band_type[(w+w2)*16+g],
-                                                lambda / minthr, INFINITY, NULL, 0);
+                    abs_pow34_v(M34, M, sce0->ics.swb_sizes[g]);
+                    abs_pow34_v(S34, S, sce0->ics.swb_sizes[g]);
+                    for (i = 0; i < sce0->ics.swb_sizes[g]; i++ ) {
+                        Mmax = FFMAX(Mmax, M34[i]);
+                        Smax = FFMAX(Smax, S34[i]);
+                    }
+                }
+
+                for (sid_sf_boost = 0; sid_sf_boost < 4; sid_sf_boost++) {
+                    float dist1 = 0.0f, dist2 = 0.0f;
+                    int B0 = 0, B1 = 0;
+                    int minidx;
+                    int mididx, sididx;
+                    int midcb, sidcb;
+
+                    minidx = FFMIN(sce0->sf_idx[w*16+g], sce1->sf_idx[w*16+g]);
+                    mididx = av_clip(minidx, min_sf_idx_mid, min_sf_idx_mid + SCALE_MAX_DIFF);
+                    sididx = av_clip(minidx - sid_sf_boost * 3, min_sf_idx_side, min_sf_idx_side + SCALE_MAX_DIFF);
+                    midcb = find_min_book(Mmax, mididx);
+                    sidcb = find_min_book(Smax, sididx);
+
+                    if ((mididx > minidx) || (sididx > minidx)) {
+                        /* scalefactor range violation, bad stuff, will decrease quality unacceptably */
+                        continue;
+                    }
+
+                    /* No CB can be zero */
+                    midcb = FFMAX(1,midcb);
+                    sidcb = FFMAX(1,sidcb);
+
+                    for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
+                        FFPsyBand *band0 = &s->psy.ch[s->cur_channel+0].psy_bands[(w+w2)*16+g];
+                        FFPsyBand *band1 = &s->psy.ch[s->cur_channel+1].psy_bands[(w+w2)*16+g];
+                        float minthr = FFMIN(band0->threshold, band1->threshold);
+                        int b1,b2,b3,b4;
+                        for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
+                            M[i] = (sce0->coeffs[start+(w+w2)*128+i]
+                                  + sce1->coeffs[start+(w+w2)*128+i]) * 0.5;
+                            S[i] =  M[i]
+                                  - sce1->coeffs[start+(w+w2)*128+i];
+                        }
+
+                        abs_pow34_v(L34, sce0->coeffs+start+(w+w2)*128, sce0->ics.swb_sizes[g]);
+                        abs_pow34_v(R34, sce1->coeffs+start+(w+w2)*128, sce0->ics.swb_sizes[g]);
+                        abs_pow34_v(M34, M,                         sce0->ics.swb_sizes[g]);
+                        abs_pow34_v(S34, S,                         sce0->ics.swb_sizes[g]);
+                        dist1 += quantize_band_cost(s, &sce0->coeffs[start + (w+w2)*128],
+                                                    L34,
+                                                    sce0->ics.swb_sizes[g],
+                                                    sce0->sf_idx[(w+w2)*16+g],
+                                                    sce0->band_type[(w+w2)*16+g],
+                                                    lambda / band0->threshold, INFINITY, &b1, NULL, 0);
+                        dist1 += quantize_band_cost(s, &sce1->coeffs[start + (w+w2)*128],
+                                                    R34,
+                                                    sce1->ics.swb_sizes[g],
+                                                    sce1->sf_idx[(w+w2)*16+g],
+                                                    sce1->band_type[(w+w2)*16+g],
+                                                    lambda / band1->threshold, INFINITY, &b2, NULL, 0);
+                        dist2 += quantize_band_cost(s, M,
+                                                    M34,
+                                                    sce0->ics.swb_sizes[g],
+                                                    sce0->sf_idx[(w+w2)*16+g],
+                                                    sce0->band_type[(w+w2)*16+g],
+                                                    lambda / minthr, INFINITY, &b3, NULL, 0);
+                        dist2 += quantize_band_cost(s, S,
+                                                    S34,
+                                                    sce1->ics.swb_sizes[g],
+                                                    sce1->sf_idx[(w+w2)*16+g],
+                                                    sce1->band_type[(w+w2)*16+g],
+                                                    mslambda / (minthr * bmax), INFINITY, &b4, NULL, 0);
+                        B0 += b1+b2;
+                        B1 += b3+b4;
+                        dist1 -= B0;
+                        dist2 -= B1;
+                    }
+                    cpe->ms_mask[w*16+g] = dist2 <= dist1 && B1 < B0;
+                    if (cpe->ms_mask[w*16+g]) {
+                        /* Setting the M/S mask is useful with I/S, but only the flag */
+                        if (!cpe->is_mask[w*16+g]) {
+                            sce0->sf_idx[w*16+g] = mididx;
+                            sce1->sf_idx[w*16+g] = sididx;
+                            sce0->band_type[w*16+g] = midcb;
+                            sce1->band_type[w*16+g] = sidcb;
+                        }
+                        break;
+                    } else if (B1 > B0) {
+                        /* More boost won't fix this */
+                        break;
+                    }
                 }
-                cpe->ms_mask[w*16+g] = dist2 < dist1;
             }
             start += sce0->ics.swb_sizes[g];
         }
@@ -730,13 +912,19 @@ AACCoefficientsEncoder ff_aac_coders[AAC_CODER_NB] = {
         encode_window_bands_info,
         quantize_and_encode_band,
         ff_aac_encode_tns_info,
+        ff_aac_encode_ltp_info,
         ff_aac_encode_main_pred,
-        ff_aac_adjust_common_prediction,
+        ff_aac_adjust_common_pred,
+        ff_aac_adjust_common_ltp,
         ff_aac_apply_main_pred,
         ff_aac_apply_tns,
+        ff_aac_update_ltp,
+        ff_aac_ltp_insert_new_frame,
         set_special_band_scalefactors,
         search_for_pns,
+        mark_pns,
         ff_aac_search_for_tns,
+        ff_aac_search_for_ltp,
         search_for_ms,
         ff_aac_search_for_is,
         ff_aac_search_for_pred,
@@ -746,13 +934,19 @@ AACCoefficientsEncoder ff_aac_coders[AAC_CODER_NB] = {
         encode_window_bands_info,
         quantize_and_encode_band,
         ff_aac_encode_tns_info,
+        ff_aac_encode_ltp_info,
         ff_aac_encode_main_pred,
-        ff_aac_adjust_common_prediction,
+        ff_aac_adjust_common_pred,
+        ff_aac_adjust_common_ltp,
         ff_aac_apply_main_pred,
         ff_aac_apply_tns,
+        ff_aac_update_ltp,
+        ff_aac_ltp_insert_new_frame,
         set_special_band_scalefactors,
         search_for_pns,
+        mark_pns,
         ff_aac_search_for_tns,
+        ff_aac_search_for_ltp,
         search_for_ms,
         ff_aac_search_for_is,
         ff_aac_search_for_pred,
@@ -762,13 +956,19 @@ AACCoefficientsEncoder ff_aac_coders[AAC_CODER_NB] = {
         codebook_trellis_rate,
         quantize_and_encode_band,
         ff_aac_encode_tns_info,
+        ff_aac_encode_ltp_info,
         ff_aac_encode_main_pred,
-        ff_aac_adjust_common_prediction,
+        ff_aac_adjust_common_pred,
+        ff_aac_adjust_common_ltp,
         ff_aac_apply_main_pred,
         ff_aac_apply_tns,
+        ff_aac_update_ltp,
+        ff_aac_ltp_insert_new_frame,
         set_special_band_scalefactors,
         search_for_pns,
+        mark_pns,
         ff_aac_search_for_tns,
+        ff_aac_search_for_ltp,
         search_for_ms,
         ff_aac_search_for_is,
         ff_aac_search_for_pred,
@@ -778,13 +978,19 @@ AACCoefficientsEncoder ff_aac_coders[AAC_CODER_NB] = {
         encode_window_bands_info,
         quantize_and_encode_band,
         ff_aac_encode_tns_info,
+        ff_aac_encode_ltp_info,
         ff_aac_encode_main_pred,
-        ff_aac_adjust_common_prediction,
+        ff_aac_adjust_common_pred,
+        ff_aac_adjust_common_ltp,
         ff_aac_apply_main_pred,
         ff_aac_apply_tns,
+        ff_aac_update_ltp,
+        ff_aac_ltp_insert_new_frame,
         set_special_band_scalefactors,
         search_for_pns,
+        mark_pns,
         ff_aac_search_for_tns,
+        ff_aac_search_for_ltp,
         search_for_ms,
         ff_aac_search_for_is,
         ff_aac_search_for_pred,