]> git.sesse.net Git - ffmpeg/blobdiff - libavcodec/ac3dec.c
dv: Initialize encoder tables during encoder init.
[ffmpeg] / libavcodec / ac3dec.c
index a81286c375c4bd0053730ad6f19aabddb2b93b21..3056403dcf8c653d8207d9a79b75d06e1ff7a64c 100644 (file)
@@ -1,29 +1,26 @@
 /*
  * AC-3 Audio Decoder
- * This code is developed as part of Google Summer of Code 2006 Program.
+ * This code was developed as part of Google Summer of Code 2006.
+ * E-AC-3 support was added as part of Google Summer of Code 2007.
  *
- * Copyright (c) 2006 Kartikey Mahendra BHATT (bhattkm at gmail dot com).
- * Copyright (c) 2007 Justin Ruggles
+ * Copyright (c) 2006 Kartikey Mahendra BHATT (bhattkm at gmail dot com)
+ * Copyright (c) 2007-2008 Bartlomiej Wolowiec <bartek.wolowiec@gmail.com>
+ * Copyright (c) 2007 Justin Ruggles <justin.ruggles@gmail.com>
  *
- * Portions of this code are derived from liba52
- * http://liba52.sourceforge.net
- * Copyright (C) 2000-2003 Michel Lespinasse <walken@zoy.org>
- * Copyright (C) 1999-2000 Aaron Holtzman <aholtzma@ess.engr.uvic.ca>
+ * This file is part of Libav.
  *
- * This file is part of FFmpeg.
- *
- * FFmpeg is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public
+ * Libav is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
  * License as published by the Free Software Foundation; either
- * version 2 of the License, or (at your option) any later version.
+ * version 2.1 of the License, or (at your option) any later version.
  *
- * FFmpeg is distributed in the hope that it will be useful,
+ * Libav is distributed in the hope that it will be useful,
  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
- * General Public License for more details.
+ * Lesser General Public License for more details.
  *
- * You should have received a copy of the GNU General Public
- * License along with FFmpeg; if not, write to the Free Software
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with Libav; if not, write to the Free Software
  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  */
 
 #include <math.h>
 #include <string.h>
 
-#include "avcodec.h"
+#include "libavutil/crc.h"
+#include "libavutil/opt.h"
+#include "internal.h"
+#include "aac_ac3_parser.h"
 #include "ac3_parser.h"
-#include "bitstream.h"
-#include "crc.h"
-#include "dsputil.h"
-#include "random.h"
+#include "ac3dec.h"
+#include "ac3dec_data.h"
+#include "kbdwin.h"
 
 /**
- * Table of bin locations for rematrixing bands
- * reference: Section 7.5.2 Rematrixing : Frequency Band Definitions
+ * table for ungrouping 3 values in 7 bits.
+ * used for exponents and bap=2 mantissas
  */
-static const uint8_t rematrix_band_tab[5] = { 13, 25, 37, 61, 253 };
-
-/**
- * table for exponent to scale_factor mapping
- * scale_factors[i] = 2 ^ -i
- */
-static float scale_factors[25];
-
-/** table for grouping exponents */
-static uint8_t exp_ungroup_tab[128][3];
-
+static uint8_t ungroup_3_in_7_bits_tab[128][3];
 
 /** tables for ungrouping mantissas */
-static float b1_mantissas[32][3];
-static float b2_mantissas[128][3];
-static float b3_mantissas[8];
-static float b4_mantissas[128][2];
-static float b5_mantissas[16];
+static int b1_mantissas[32][3];
+static int b2_mantissas[128][3];
+static int b3_mantissas[8];
+static int b4_mantissas[128][2];
+static int b5_mantissas[16];
 
 /**
  * Quantization table: levels for symmetric. bits for asymmetric.
@@ -75,182 +64,72 @@ static const uint8_t quantization_tab[16] = {
 static float dynamic_range_tab[256];
 
 /** Adjustments in dB gain */
-#define LEVEL_MINUS_3DB         0.7071067811865476
-#define LEVEL_MINUS_4POINT5DB   0.5946035575013605
-#define LEVEL_MINUS_6DB         0.5000000000000000
-#define LEVEL_MINUS_9DB         0.3535533905932738
-#define LEVEL_ZERO              0.0000000000000000
-#define LEVEL_ONE               1.0000000000000000
-
-static const float gain_levels[6] = {
-    LEVEL_ZERO,
+static const float gain_levels[9] = {
+    LEVEL_PLUS_3DB,
+    LEVEL_PLUS_1POINT5DB,
     LEVEL_ONE,
+    LEVEL_MINUS_1POINT5DB,
     LEVEL_MINUS_3DB,
     LEVEL_MINUS_4POINT5DB,
     LEVEL_MINUS_6DB,
+    LEVEL_ZERO,
     LEVEL_MINUS_9DB
 };
 
-/**
- * Table for center mix levels
- * reference: Section 5.4.2.4 cmixlev
- */
-static const uint8_t center_levels[4] = { 2, 3, 4, 3 };
-
-/**
- * Table for surround mix levels
- * reference: Section 5.4.2.5 surmixlev
- */
-static const uint8_t surround_levels[4] = { 2, 4, 0, 4 };
-
 /**
  * Table for default stereo downmixing coefficients
  * reference: Section 7.8.2 Downmixing Into Two Channels
  */
 static const uint8_t ac3_default_coeffs[8][5][2] = {
-    { { 1, 0 }, { 0, 1 },                               },
-    { { 2, 2 },                                         },
-    { { 1, 0 }, { 0, 1 },                               },
-    { { 1, 0 }, { 3, 3 }, { 0, 1 },                     },
-    { { 1, 0 }, { 0, 1 }, { 4, 4 },                     },
-    { { 1, 0 }, { 3, 3 }, { 0, 1 }, { 5, 5 },           },
-    { { 1, 0 }, { 0, 1 }, { 4, 0 }, { 0, 4 },           },
-    { { 1, 0 }, { 3, 3 }, { 0, 1 }, { 4, 0 }, { 0, 4 }, },
+    { { 2, 7 }, { 7, 2 },                               },
+    { { 4, 4 },                                         },
+    { { 2, 7 }, { 7, 2 },                               },
+    { { 2, 7 }, { 5, 5 }, { 7, 2 },                     },
+    { { 2, 7 }, { 7, 2 }, { 6, 6 },                     },
+    { { 2, 7 }, { 5, 5 }, { 7, 2 }, { 8, 8 },           },
+    { { 2, 7 }, { 7, 2 }, { 6, 7 }, { 7, 6 },           },
+    { { 2, 7 }, { 5, 5 }, { 7, 2 }, { 6, 7 }, { 7, 6 }, },
 };
 
-/* override ac3.h to include coupling channel */
-#undef AC3_MAX_CHANNELS
-#define AC3_MAX_CHANNELS 7
-#define CPL_CH 0
-
-#define AC3_OUTPUT_LFEON  8
-
-typedef struct {
-    int channel_mode;                       ///< channel mode (acmod)
-    int block_switch[AC3_MAX_CHANNELS];     ///< block switch flags
-    int dither_flag[AC3_MAX_CHANNELS];      ///< dither flags
-    int dither_all;                         ///< true if all channels are dithered
-    int cpl_in_use;                         ///< coupling in use
-    int channel_in_cpl[AC3_MAX_CHANNELS];   ///< channel in coupling
-    int phase_flags_in_use;                 ///< phase flags in use
-    int phase_flags[18];                    ///< phase flags
-    int cpl_band_struct[18];                ///< coupling band structure
-    int num_rematrixing_bands;              ///< number of rematrixing bands
-    int rematrixing_flags[4];               ///< rematrixing flags
-    int exp_strategy[AC3_MAX_CHANNELS];     ///< exponent strategies
-    int snr_offset[AC3_MAX_CHANNELS];       ///< signal-to-noise ratio offsets
-    int fast_gain[AC3_MAX_CHANNELS];        ///< fast gain values (signal-to-mask ratio)
-    int dba_mode[AC3_MAX_CHANNELS];         ///< delta bit allocation mode
-    int dba_nsegs[AC3_MAX_CHANNELS];        ///< number of delta segments
-    uint8_t dba_offsets[AC3_MAX_CHANNELS][8]; ///< delta segment offsets
-    uint8_t dba_lengths[AC3_MAX_CHANNELS][8]; ///< delta segment lengths
-    uint8_t dba_values[AC3_MAX_CHANNELS][8];  ///< delta values for each segment
-
-    int sample_rate;                        ///< sample frequency, in Hz
-    int bit_rate;                           ///< stream bit rate, in bits-per-second
-    int frame_size;                         ///< current frame size, in bytes
-
-    int channels;                           ///< number of total channels
-    int fbw_channels;                       ///< number of full-bandwidth channels
-    int lfe_on;                             ///< lfe channel in use
-    int lfe_ch;                             ///< index of LFE channel
-    int output_mode;                        ///< output channel configuration
-    int out_channels;                       ///< number of output channels
-
-    int center_mix_level;                   ///< Center mix level index
-    int surround_mix_level;                 ///< Surround mix level index
-    float downmix_coeffs[AC3_MAX_CHANNELS][2];  ///< stereo downmix coefficients
-    float dynamic_range[2];                 ///< dynamic range
-    float cpl_coords[AC3_MAX_CHANNELS][18]; ///< coupling coordinates
-    int   num_cpl_bands;                    ///< number of coupling bands
-    int   num_cpl_subbands;                 ///< number of coupling sub bands
-    int   start_freq[AC3_MAX_CHANNELS];     ///< start frequency bin
-    int   end_freq[AC3_MAX_CHANNELS];       ///< end frequency bin
-    AC3BitAllocParameters bit_alloc_params; ///< bit allocation parameters
-
-    int8_t  dexps[AC3_MAX_CHANNELS][256];   ///< decoded exponents
-    uint8_t bap[AC3_MAX_CHANNELS][256];     ///< bit allocation pointers
-    int16_t psd[AC3_MAX_CHANNELS][256];     ///< scaled exponents
-    int16_t band_psd[AC3_MAX_CHANNELS][50]; ///< interpolated exponents
-    int16_t mask[AC3_MAX_CHANNELS][50];     ///< masking curve values
-
-    DECLARE_ALIGNED_16(float, transform_coeffs[AC3_MAX_CHANNELS][256]);  ///< transform coefficients
-
-    /* For IMDCT. */
-    MDCTContext imdct_512;                  ///< for 512 sample IMDCT
-    MDCTContext imdct_256;                  ///< for 256 sample IMDCT
-    DSPContext  dsp;                        ///< for optimization
-    float       add_bias;                   ///< offset for float_to_int16 conversion
-    float       mul_bias;                   ///< scaling for float_to_int16 conversion
-
-    DECLARE_ALIGNED_16(float, output[AC3_MAX_CHANNELS-1][256]);     ///< output after imdct transform and windowing
-    DECLARE_ALIGNED_16(short, int_output[AC3_MAX_CHANNELS-1][256]); ///< final 16-bit integer output
-    DECLARE_ALIGNED_16(float, delay[AC3_MAX_CHANNELS-1][256]);      ///< delay - added to the next block
-    DECLARE_ALIGNED_16(float, tmp_imdct[256]);                      ///< temporary storage for imdct transform
-    DECLARE_ALIGNED_16(float, tmp_output[512]);                     ///< temporary storage for output before windowing
-    DECLARE_ALIGNED_16(float, window[256]);                         ///< window coefficients
-
-    /* Miscellaneous. */
-    GetBitContext gbc;                      ///< bitstream reader
-    AVRandomState dith_state;               ///< for dither generation
-    AVCodecContext *avctx;                  ///< parent context
-} AC3DecodeContext;
-
-/**
- * Generate a Kaiser-Bessel Derived Window.
- */
-static void ac3_window_init(float *window)
-{
-   int i, j;
-   double sum = 0.0, bessel, tmp;
-   double local_window[256];
-   double alpha2 = (5.0 * M_PI / 256.0) * (5.0 * M_PI / 256.0);
-
-   for (i = 0; i < 256; i++) {
-       tmp = i * (256 - i) * alpha2;
-       bessel = 1.0;
-       for (j = 100; j > 0; j--) /* default to 100 iterations */
-           bessel = bessel * tmp / (j * j) + 1;
-       sum += bessel;
-       local_window[i] = sum;
-   }
-
-   sum++;
-   for (i = 0; i < 256; i++)
-       window[i] = sqrt(local_window[i] / sum);
-}
-
 /**
  * Symmetrical Dequantization
  * reference: Section 7.3.3 Expansion of Mantissas for Symmetrical Quantization
  *            Tables 7.19 to 7.23
  */
-static inline float
+static inline int
 symmetric_dequant(int code, int levels)
 {
-    return (code - (levels >> 1)) * (2.0f / levels);
+    return ((code - (levels >> 1)) << 24) / levels;
 }
 
 /*
  * Initialize tables at runtime.
  */
-static void ac3_tables_init(void)
+static av_cold void ac3_tables_init(void)
 {
     int i;
 
+    /* generate table for ungrouping 3 values in 7 bits
+       reference: Section 7.1.3 Exponent Decoding */
+    for (i = 0; i < 128; i++) {
+        ungroup_3_in_7_bits_tab[i][0] =  i / 25;
+        ungroup_3_in_7_bits_tab[i][1] = (i % 25) / 5;
+        ungroup_3_in_7_bits_tab[i][2] = (i % 25) % 5;
+    }
+
     /* generate grouped mantissa tables
        reference: Section 7.3.5 Ungrouping of Mantissas */
-    for(i=0; i<32; i++) {
+    for (i = 0; i < 32; i++) {
         /* bap=1 mantissas */
-        b1_mantissas[i][0] = symmetric_dequant( i / 9     , 3);
-        b1_mantissas[i][1] = symmetric_dequant((i % 9) / 3, 3);
-        b1_mantissas[i][2] = symmetric_dequant((i % 9) % 3, 3);
+        b1_mantissas[i][0] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][0], 3);
+        b1_mantissas[i][1] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][1], 3);
+        b1_mantissas[i][2] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][2], 3);
     }
-    for(i=0; i<128; i++) {
+    for (i = 0; i < 128; i++) {
         /* bap=2 mantissas */
-        b2_mantissas[i][0] = symmetric_dequant( i / 25     , 5);
-        b2_mantissas[i][1] = symmetric_dequant((i % 25) / 5, 5);
-        b2_mantissas[i][2] = symmetric_dequant((i % 25) % 5, 5);
+        b2_mantissas[i][0] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][0], 5);
+        b2_mantissas[i][1] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][1], 5);
+        b2_mantissas[i][2] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][2], 5);
 
         /* bap=4 mantissas */
         b4_mantissas[i][0] = symmetric_dequant(i / 11, 11);
@@ -258,60 +137,48 @@ static void ac3_tables_init(void)
     }
     /* generate ungrouped mantissa tables
        reference: Tables 7.21 and 7.23 */
-    for(i=0; i<7; i++) {
+    for (i = 0; i < 7; i++) {
         /* bap=3 mantissas */
         b3_mantissas[i] = symmetric_dequant(i, 7);
     }
-    for(i=0; i<15; i++) {
+    for (i = 0; i < 15; i++) {
         /* bap=5 mantissas */
         b5_mantissas[i] = symmetric_dequant(i, 15);
     }
 
     /* generate dynamic range table
        reference: Section 7.7.1 Dynamic Range Control */
-    for(i=0; i<256; i++) {
+    for (i = 0; i < 256; i++) {
         int v = (i >> 5) - ((i >> 7) << 3) - 5;
         dynamic_range_tab[i] = powf(2.0f, v) * ((i & 0x1F) | 0x20);
     }
-
-    /* generate scale factors for exponents and asymmetrical dequantization
-       reference: Section 7.3.2 Expansion of Mantissas for Asymmetric Quantization */
-    for (i = 0; i < 25; i++)
-        scale_factors[i] = pow(2.0, -i);
-
-    /* generate exponent tables
-       reference: Section 7.1.3 Exponent Decoding */
-    for(i=0; i<128; i++) {
-        exp_ungroup_tab[i][0] =  i / 25;
-        exp_ungroup_tab[i][1] = (i % 25) / 5;
-        exp_ungroup_tab[i][2] = (i % 25) % 5;
-    }
 }
 
-
 /**
  * AVCodec initialization
  */
-static int ac3_decode_init(AVCodecContext *avctx)
+static av_cold int ac3_decode_init(AVCodecContext *avctx)
 {
     AC3DecodeContext *s = avctx->priv_data;
     s->avctx = avctx;
 
-    ac3_common_init();
+    ff_ac3_common_init();
     ac3_tables_init();
-    ff_mdct_init(&s->imdct_256, 8, 1);
-    ff_mdct_init(&s->imdct_512, 9, 1);
-    ac3_window_init(s->window);
-    dsputil_init(&s->dsp, avctx);
-    av_init_random(0, &s->dith_state);
-
-    /* set bias values for float to int16 conversion */
-    if(s->dsp.float_to_int16 == ff_float_to_int16_c) {
-        s->add_bias = 385.0f;
+    ff_mdct_init(&s->imdct_256, 8, 1, 1.0);
+    ff_mdct_init(&s->imdct_512, 9, 1, 1.0);
+    ff_kbd_window_init(s->window, 5.0, 256);
+    ff_dsputil_init(&s->dsp, avctx);
+    ff_ac3dsp_init(&s->ac3dsp, avctx->flags & CODEC_FLAG_BITEXACT);
+    ff_fmt_convert_init(&s->fmt_conv, avctx);
+    av_lfg_init(&s->dith_state, 0);
+
+    /* set scale value for float to int16 conversion */
+    if (avctx->request_sample_fmt == AV_SAMPLE_FMT_FLT) {
         s->mul_bias = 1.0f;
+        avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
     } else {
-        s->add_bias = 0.0f;
         s->mul_bias = 32767.0f;
+        avctx->sample_fmt = AV_SAMPLE_FMT_S16;
     }
 
     /* allow downmixing to stereo or mono */
@@ -320,6 +187,10 @@ static int ac3_decode_init(AVCodecContext *avctx)
             avctx->request_channels <= 2) {
         avctx->channels = avctx->request_channels;
     }
+    s->downmixed = 1;
+
+    avcodec_get_frame_defaults(&s->frame);
+    avctx->coded_frame = &s->frame;
 
     return 0;
 }
@@ -327,60 +198,15 @@ static int ac3_decode_init(AVCodecContext *avctx)
 /**
  * Parse the 'sync info' and 'bit stream info' from the AC-3 bitstream.
  * GetBitContext within AC3DecodeContext must point to
- * start of the synchronized ac3 bitstream.
+ * the start of the synchronized AC-3 bitstream.
  */
 static int ac3_parse_header(AC3DecodeContext *s)
 {
-    AC3HeaderInfo hdr;
     GetBitContext *gbc = &s->gbc;
-    int err, i;
-
-    err = ff_ac3_parse_header(gbc->buffer, &hdr);
-    if(err)
-        return err;
-
-    if(hdr.bitstream_id > 10)
-        return AC3_PARSE_ERROR_BSID;
-
-    /* get decoding parameters from header info */
-    s->bit_alloc_params.sr_code     = hdr.sr_code;
-    s->channel_mode                 = hdr.channel_mode;
-    s->lfe_on                       = hdr.lfe_on;
-    s->bit_alloc_params.sr_shift    = hdr.sr_shift;
-    s->sample_rate                  = hdr.sample_rate;
-    s->bit_rate                     = hdr.bit_rate;
-    s->channels                     = hdr.channels;
-    s->fbw_channels                 = s->channels - s->lfe_on;
-    s->lfe_ch                       = s->fbw_channels + 1;
-    s->frame_size                   = hdr.frame_size;
-
-    /* set default output to all source channels */
-    s->out_channels = s->channels;
-    s->output_mode = s->channel_mode;
-    if(s->lfe_on)
-        s->output_mode |= AC3_OUTPUT_LFEON;
-
-    /* set default mix levels */
-    s->center_mix_level   = 3;  // -4.5dB
-    s->surround_mix_level = 4;  // -6.0dB
-
-    /* skip over portion of header which has already been read */
-    skip_bits(gbc, 16); // skip the sync_word
-    skip_bits(gbc, 16); // skip crc1
-    skip_bits(gbc, 8);  // skip fscod and frmsizecod
-    skip_bits(gbc, 11); // skip bsid, bsmod, and acmod
-    if(s->channel_mode == AC3_CHMODE_STEREO) {
-        skip_bits(gbc, 2); // skip dsurmod
-    } else {
-        if((s->channel_mode & 1) && s->channel_mode != AC3_CHMODE_MONO)
-            s->center_mix_level = center_levels[get_bits(gbc, 2)];
-        if(s->channel_mode & 4)
-            s->surround_mix_level = surround_levels[get_bits(gbc, 2)];
-    }
-    skip_bits1(gbc); // skip lfeon
+    int i;
 
     /* read the rest of the bsi. read twice for dual mono mode. */
-    i = !(s->channel_mode);
+    i = !s->channel_mode;
     do {
         skip_bits(gbc, 5); // skip dialog normalization
         if (get_bits1(gbc))
@@ -405,12 +231,71 @@ static int ac3_parse_header(AC3DecodeContext *s)
         i = get_bits(gbc, 6);
         do {
             skip_bits(gbc, 8);
-        } while(i--);
+        } while (i--);
     }
 
     return 0;
 }
 
+/**
+ * Common function to parse AC-3 or E-AC-3 frame header
+ */
+static int parse_frame_header(AC3DecodeContext *s)
+{
+    AC3HeaderInfo hdr;
+    int err;
+
+    err = avpriv_ac3_parse_header(&s->gbc, &hdr);
+    if (err)
+        return err;
+
+    /* get decoding parameters from header info */
+    s->bit_alloc_params.sr_code     = hdr.sr_code;
+    s->bitstream_mode               = hdr.bitstream_mode;
+    s->channel_mode                 = hdr.channel_mode;
+    s->channel_layout               = hdr.channel_layout;
+    s->lfe_on                       = hdr.lfe_on;
+    s->bit_alloc_params.sr_shift    = hdr.sr_shift;
+    s->sample_rate                  = hdr.sample_rate;
+    s->bit_rate                     = hdr.bit_rate;
+    s->channels                     = hdr.channels;
+    s->fbw_channels                 = s->channels - s->lfe_on;
+    s->lfe_ch                       = s->fbw_channels + 1;
+    s->frame_size                   = hdr.frame_size;
+    s->center_mix_level             = hdr.center_mix_level;
+    s->surround_mix_level           = hdr.surround_mix_level;
+    s->num_blocks                   = hdr.num_blocks;
+    s->frame_type                   = hdr.frame_type;
+    s->substreamid                  = hdr.substreamid;
+
+    if (s->lfe_on) {
+        s->start_freq[s->lfe_ch]     = 0;
+        s->end_freq[s->lfe_ch]       = 7;
+        s->num_exp_groups[s->lfe_ch] = 2;
+        s->channel_in_cpl[s->lfe_ch] = 0;
+    }
+
+    if (hdr.bitstream_id <= 10) {
+        s->eac3                  = 0;
+        s->snr_offset_strategy   = 2;
+        s->block_switch_syntax   = 1;
+        s->dither_flag_syntax    = 1;
+        s->bit_allocation_syntax = 1;
+        s->fast_gain_syntax      = 0;
+        s->first_cpl_leak        = 0;
+        s->dba_syntax            = 1;
+        s->skip_syntax           = 1;
+        memset(s->channel_uses_aht, 0, sizeof(s->channel_uses_aht));
+        return ac3_parse_header(s);
+    } else if (CONFIG_EAC3_DECODER) {
+        s->eac3 = 1;
+        return ff_eac3_parse_header(s);
+    } else {
+        av_log(s->avctx, AV_LOG_ERROR, "E-AC-3 support not compiled in\n");
+        return -1;
+    }
+}
+
 /**
  * Set stereo downmixing coefficients based on frame header info.
  * reference: Section 7.8.2 Downmixing Into Two Channels
@@ -418,32 +303,52 @@ static int ac3_parse_header(AC3DecodeContext *s)
 static void set_downmix_coeffs(AC3DecodeContext *s)
 {
     int i;
-    float cmix = gain_levels[s->center_mix_level];
+    float cmix = gain_levels[s->  center_mix_level];
     float smix = gain_levels[s->surround_mix_level];
+    float norm0, norm1;
 
-    for(i=0; i<s->fbw_channels; i++) {
+    for (i = 0; i < s->fbw_channels; i++) {
         s->downmix_coeffs[i][0] = gain_levels[ac3_default_coeffs[s->channel_mode][i][0]];
         s->downmix_coeffs[i][1] = gain_levels[ac3_default_coeffs[s->channel_mode][i][1]];
     }
-    if(s->channel_mode > 1 && s->channel_mode & 1) {
+    if (s->channel_mode > 1 && s->channel_mode & 1) {
         s->downmix_coeffs[1][0] = s->downmix_coeffs[1][1] = cmix;
     }
-    if(s->channel_mode == AC3_CHMODE_2F1R || s->channel_mode == AC3_CHMODE_3F1R) {
+    if (s->channel_mode == AC3_CHMODE_2F1R || s->channel_mode == AC3_CHMODE_3F1R) {
         int nf = s->channel_mode - 2;
         s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf][1] = smix * LEVEL_MINUS_3DB;
     }
-    if(s->channel_mode == AC3_CHMODE_2F2R || s->channel_mode == AC3_CHMODE_3F2R) {
+    if (s->channel_mode == AC3_CHMODE_2F2R || s->channel_mode == AC3_CHMODE_3F2R) {
         int nf = s->channel_mode - 4;
         s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf+1][1] = smix;
     }
+
+    /* renormalize */
+    norm0 = norm1 = 0.0;
+    for (i = 0; i < s->fbw_channels; i++) {
+        norm0 += s->downmix_coeffs[i][0];
+        norm1 += s->downmix_coeffs[i][1];
+    }
+    norm0 = 1.0f / norm0;
+    norm1 = 1.0f / norm1;
+    for (i = 0; i < s->fbw_channels; i++) {
+        s->downmix_coeffs[i][0] *= norm0;
+        s->downmix_coeffs[i][1] *= norm1;
+    }
+
+    if (s->output_mode == AC3_CHMODE_MONO) {
+        for (i = 0; i < s->fbw_channels; i++)
+            s->downmix_coeffs[i][0] = (s->downmix_coeffs[i][0] +
+                                       s->downmix_coeffs[i][1]) * LEVEL_MINUS_3DB;
+    }
 }
 
 /**
  * Decode the grouped exponents according to exponent strategy.
  * reference: Section 7.1.3 Exponent Decoding
  */
-static void decode_exponents(GetBitContext *gbc, int exp_strategy, int ngrps,
-                             uint8_t absexp, int8_t *dexps)
+static int decode_exponents(GetBitContext *gbc, int exp_strategy, int ngrps,
+                            uint8_t absexp, int8_t *dexps)
 {
     int i, j, grp, group_size;
     int dexp[256];
@@ -451,21 +356,27 @@ static void decode_exponents(GetBitContext *gbc, int exp_strategy, int ngrps,
 
     /* unpack groups */
     group_size = exp_strategy + (exp_strategy == EXP_D45);
-    for(grp=0,i=0; grp<ngrps; grp++) {
+    for (grp = 0, i = 0; grp < ngrps; grp++) {
         expacc = get_bits(gbc, 7);
-        dexp[i++] = exp_ungroup_tab[expacc][0];
-        dexp[i++] = exp_ungroup_tab[expacc][1];
-        dexp[i++] = exp_ungroup_tab[expacc][2];
+        dexp[i++] = ungroup_3_in_7_bits_tab[expacc][0];
+        dexp[i++] = ungroup_3_in_7_bits_tab[expacc][1];
+        dexp[i++] = ungroup_3_in_7_bits_tab[expacc][2];
     }
 
     /* convert to absolute exps and expand groups */
     prevexp = absexp;
-    for(i=0; i<ngrps*3; i++) {
-        prevexp = av_clip(prevexp + dexp[i]-2, 0, 24);
-        for(j=0; j<group_size; j++) {
-            dexps[(i*group_size)+j] = prevexp;
+    for (i = 0, j = 0; i < ngrps * 3; i++) {
+        prevexp += dexp[i] - 2;
+        if (prevexp > 24U)
+            return -1;
+        switch (group_size) {
+        case 4: dexps[j++] = prevexp;
+                dexps[j++] = prevexp;
+        case 2: dexps[j++] = prevexp;
+        case 1: dexps[j++] = prevexp;
         }
     }
+    return 0;
 }
 
 /**
@@ -473,26 +384,28 @@ static void decode_exponents(GetBitContext *gbc, int exp_strategy, int ngrps,
  * range using the coupling coefficients and coupling coordinates.
  * reference: Section 7.4.3 Coupling Coordinate Format
  */
-static void uncouple_channels(AC3DecodeContext *s)
+static void calc_transform_coeffs_cpl(AC3DecodeContext *s)
 {
-    int i, j, ch, bnd, subbnd;
+    int bin, band, ch;
 
-    subbnd = -1;
-    i = s->start_freq[CPL_CH];
-    for(bnd=0; bnd<s->num_cpl_bands; bnd++) {
-        do {
-            subbnd++;
-            for(j=0; j<12; j++) {
-                for(ch=1; ch<=s->fbw_channels; ch++) {
-                    if(s->channel_in_cpl[ch]) {
-                        s->transform_coeffs[ch][i] = s->transform_coeffs[CPL_CH][i] * s->cpl_coords[ch][bnd] * 8.0f;
-                        if (ch == 2 && s->phase_flags[bnd])
-                            s->transform_coeffs[ch][i] = -s->transform_coeffs[ch][i];
-                    }
+    bin = s->start_freq[CPL_CH];
+    for (band = 0; band < s->num_cpl_bands; band++) {
+        int band_start = bin;
+        int band_end = bin + s->cpl_band_sizes[band];
+        for (ch = 1; ch <= s->fbw_channels; ch++) {
+            if (s->channel_in_cpl[ch]) {
+                int cpl_coord = s->cpl_coords[ch][band] << 5;
+                for (bin = band_start; bin < band_end; bin++) {
+                    s->fixed_coeffs[ch][bin] =
+                        MULH(s->fixed_coeffs[CPL_CH][bin] << 4, cpl_coord);
+                }
+                if (ch == 2 && s->phase_flags[band]) {
+                    for (bin = band_start; bin < band_end; bin++)
+                        s->fixed_coeffs[2][bin] = -s->fixed_coeffs[2][bin];
                 }
-                i++;
             }
-        } while(s->cpl_band_struct[subbnd]);
+        }
+        bin = band_end;
     }
 }
 
@@ -500,147 +413,145 @@ static void uncouple_channels(AC3DecodeContext *s)
  * Grouped mantissas for 3-level 5-level and 11-level quantization
  */
 typedef struct {
-    float b1_mant[3];
-    float b2_mant[3];
-    float b4_mant[2];
-    int b1ptr;
-    int b2ptr;
-    int b4ptr;
+    int b1_mant[2];
+    int b2_mant[2];
+    int b4_mant;
+    int b1;
+    int b2;
+    int b4;
 } mant_groups;
 
 /**
- * Get the transform coefficients for a particular channel
+ * Decode the transform coefficients for a particular channel
  * reference: Section 7.3 Quantization and Decoding of Mantissas
  */
-static int get_transform_coeffs_ch(AC3DecodeContext *s, int ch_index, mant_groups *m)
+static void ac3_decode_transform_coeffs_ch(AC3DecodeContext *s, int ch_index, mant_groups *m)
 {
+    int start_freq = s->start_freq[ch_index];
+    int end_freq   = s->end_freq[ch_index];
+    uint8_t *baps  = s->bap[ch_index];
+    int8_t *exps   = s->dexps[ch_index];
+    int *coeffs    = s->fixed_coeffs[ch_index];
+    int dither     = (ch_index == CPL_CH) || s->dither_flag[ch_index];
     GetBitContext *gbc = &s->gbc;
-    int i, gcode, tbap, start, end;
-    uint8_t *exps;
-    uint8_t *bap;
-    float *coeffs;
-
-    exps = s->dexps[ch_index];
-    bap = s->bap[ch_index];
-    coeffs = s->transform_coeffs[ch_index];
-    start = s->start_freq[ch_index];
-    end = s->end_freq[ch_index];
-
-    for (i = start; i < end; i++) {
-        tbap = bap[i];
-        switch (tbap) {
-            case 0:
-                coeffs[i] = ((av_random(&s->dith_state) & 0xFFFF) / 65535.0f) - 0.5f;
-                break;
-
-            case 1:
-                if(m->b1ptr > 2) {
-                    gcode = get_bits(gbc, 5);
-                    m->b1_mant[0] = b1_mantissas[gcode][0];
-                    m->b1_mant[1] = b1_mantissas[gcode][1];
-                    m->b1_mant[2] = b1_mantissas[gcode][2];
-                    m->b1ptr = 0;
-                }
-                coeffs[i] = m->b1_mant[m->b1ptr++];
-                break;
-
-            case 2:
-                if(m->b2ptr > 2) {
-                    gcode = get_bits(gbc, 7);
-                    m->b2_mant[0] = b2_mantissas[gcode][0];
-                    m->b2_mant[1] = b2_mantissas[gcode][1];
-                    m->b2_mant[2] = b2_mantissas[gcode][2];
-                    m->b2ptr = 0;
-                }
-                coeffs[i] = m->b2_mant[m->b2ptr++];
-                break;
-
-            case 3:
-                coeffs[i] = b3_mantissas[get_bits(gbc, 3)];
-                break;
-
-            case 4:
-                if(m->b4ptr > 1) {
-                    gcode = get_bits(gbc, 7);
-                    m->b4_mant[0] = b4_mantissas[gcode][0];
-                    m->b4_mant[1] = b4_mantissas[gcode][1];
-                    m->b4ptr = 0;
-                }
-                coeffs[i] = m->b4_mant[m->b4ptr++];
-                break;
-
-            case 5:
-                coeffs[i] = b5_mantissas[get_bits(gbc, 4)];
-                break;
-
-            default:
-                /* asymmetric dequantization */
-                coeffs[i] = get_sbits(gbc, quantization_tab[tbap]) * scale_factors[quantization_tab[tbap]-1];
-                break;
+    int freq;
+
+    for (freq = start_freq; freq < end_freq; freq++) {
+        int bap = baps[freq];
+        int mantissa;
+        switch (bap) {
+        case 0:
+            if (dither)
+                mantissa = (av_lfg_get(&s->dith_state) & 0x7FFFFF) - 0x400000;
+            else
+                mantissa = 0;
+            break;
+        case 1:
+            if (m->b1) {
+                m->b1--;
+                mantissa = m->b1_mant[m->b1];
+            } else {
+                int bits      = get_bits(gbc, 5);
+                mantissa      = b1_mantissas[bits][0];
+                m->b1_mant[1] = b1_mantissas[bits][1];
+                m->b1_mant[0] = b1_mantissas[bits][2];
+                m->b1         = 2;
+            }
+            break;
+        case 2:
+            if (m->b2) {
+                m->b2--;
+                mantissa = m->b2_mant[m->b2];
+            } else {
+                int bits      = get_bits(gbc, 7);
+                mantissa      = b2_mantissas[bits][0];
+                m->b2_mant[1] = b2_mantissas[bits][1];
+                m->b2_mant[0] = b2_mantissas[bits][2];
+                m->b2         = 2;
+            }
+            break;
+        case 3:
+            mantissa = b3_mantissas[get_bits(gbc, 3)];
+            break;
+        case 4:
+            if (m->b4) {
+                m->b4 = 0;
+                mantissa = m->b4_mant;
+            } else {
+                int bits   = get_bits(gbc, 7);
+                mantissa   = b4_mantissas[bits][0];
+                m->b4_mant = b4_mantissas[bits][1];
+                m->b4      = 1;
+            }
+            break;
+        case 5:
+            mantissa = b5_mantissas[get_bits(gbc, 4)];
+            break;
+        default: /* 6 to 15 */
+            /* Shift mantissa and sign-extend it. */
+            mantissa = get_sbits(gbc, quantization_tab[bap]);
+            mantissa <<= 24 - quantization_tab[bap];
+            break;
         }
-        coeffs[i] *= scale_factors[exps[i]];
+        coeffs[freq] = mantissa >> exps[freq];
     }
-
-    return 0;
 }
 
 /**
- * Remove random dithering from coefficients with zero-bit mantissas
+ * Remove random dithering from coupling range coefficients with zero-bit
+ * mantissas for coupled channels which do not use dithering.
  * reference: Section 7.3.4 Dither for Zero Bit Mantissas (bap=0)
  */
 static void remove_dithering(AC3DecodeContext *s) {
     int ch, i;
-    int end=0;
-    float *coeffs;
-    uint8_t *bap;
-
-    for(ch=1; ch<=s->fbw_channels; ch++) {
-        if(!s->dither_flag[ch]) {
-            coeffs = s->transform_coeffs[ch];
-            bap = s->bap[ch];
-            if(s->channel_in_cpl[ch])
-                end = s->start_freq[CPL_CH];
-            else
-                end = s->end_freq[ch];
-            for(i=0; i<end; i++) {
-                if(!bap[i])
-                    coeffs[i] = 0.0f;
-            }
-            if(s->channel_in_cpl[ch]) {
-                bap = s->bap[CPL_CH];
-                for(; i<s->end_freq[CPL_CH]; i++) {
-                    if(!bap[i])
-                        coeffs[i] = 0.0f;
-                }
+
+    for (ch = 1; ch <= s->fbw_channels; ch++) {
+        if (!s->dither_flag[ch] && s->channel_in_cpl[ch]) {
+            for (i = s->start_freq[CPL_CH]; i < s->end_freq[CPL_CH]; i++) {
+                if (!s->bap[CPL_CH][i])
+                    s->fixed_coeffs[ch][i] = 0;
             }
         }
     }
 }
 
+static void decode_transform_coeffs_ch(AC3DecodeContext *s, int blk, int ch,
+                                       mant_groups *m)
+{
+    if (!s->channel_uses_aht[ch]) {
+        ac3_decode_transform_coeffs_ch(s, ch, m);
+    } else {
+        /* if AHT is used, mantissas for all blocks are encoded in the first
+           block of the frame. */
+        int bin;
+        if (!blk && CONFIG_EAC3_DECODER)
+            ff_eac3_decode_transform_coeffs_aht_ch(s, ch);
+        for (bin = s->start_freq[ch]; bin < s->end_freq[ch]; bin++) {
+            s->fixed_coeffs[ch][bin] = s->pre_mantissa[ch][bin][blk] >> s->dexps[ch][bin];
+        }
+    }
+}
+
 /**
- * Get the transform coefficients.
+ * Decode the transform coefficients.
  */
-static int get_transform_coeffs(AC3DecodeContext *s)
+static void decode_transform_coeffs(AC3DecodeContext *s, int blk)
 {
     int ch, end;
     int got_cplchan = 0;
     mant_groups m;
 
-    m.b1ptr = m.b2ptr = m.b4ptr = 3;
+    m.b1 = m.b2 = m.b4 = 0;
 
     for (ch = 1; ch <= s->channels; ch++) {
         /* transform coefficients for full-bandwidth channel */
-        if (get_transform_coeffs_ch(s, ch, &m))
-            return -1;
+        decode_transform_coeffs_ch(s, blk, ch, &m);
         /* tranform coefficients for coupling channel come right after the
            coefficients for the first coupled channel*/
         if (s->channel_in_cpl[ch])  {
             if (!got_cplchan) {
-                if (get_transform_coeffs_ch(s, CPL_CH, &m)) {
-                    av_log(s->avctx, AV_LOG_ERROR, "error in decoupling channels\n");
-                    return -1;
-                }
-                uncouple_channels(s);
+                decode_transform_coeffs_ch(s, blk, CPL_CH, &m);
+                calc_transform_coeffs_cpl(s);
                 got_cplchan = 1;
             }
             end = s->end_freq[CPL_CH];
@@ -648,15 +559,12 @@ static int get_transform_coeffs(AC3DecodeContext *s)
             end = s->end_freq[ch];
         }
         do
-            s->transform_coeffs[ch][end] = 0;
-        while(++end < 256);
+            s->fixed_coeffs[ch][end] = 0;
+        while (++end < 256);
     }
 
-    /* if any channel doesn't use dithering, zero appropriate coefficients */
-    if(!s->dither_all)
-        remove_dithering(s);
-
-    return 0;
+    /* zero the dithered coefficients for appropriate channels */
+    remove_dithering(s);
 }
 
 /**
@@ -667,220 +575,415 @@ static void do_rematrixing(AC3DecodeContext *s)
 {
     int bnd, i;
     int end, bndend;
-    float tmp0, tmp1;
 
     end = FFMIN(s->end_freq[1], s->end_freq[2]);
 
-    for(bnd=0; bnd<s->num_rematrixing_bands; bnd++) {
-        if(s->rematrixing_flags[bnd]) {
-            bndend = FFMIN(end, rematrix_band_tab[bnd+1]);
-            for(i=rematrix_band_tab[bnd]; i<bndend; i++) {
-                tmp0 = s->transform_coeffs[1][i];
-                tmp1 = s->transform_coeffs[2][i];
-                s->transform_coeffs[1][i] = tmp0 + tmp1;
-                s->transform_coeffs[2][i] = tmp0 - tmp1;
+    for (bnd = 0; bnd < s->num_rematrixing_bands; bnd++) {
+        if (s->rematrixing_flags[bnd]) {
+            bndend = FFMIN(end, ff_ac3_rematrix_band_tab[bnd + 1]);
+            for (i = ff_ac3_rematrix_band_tab[bnd]; i < bndend; i++) {
+                int tmp0 = s->fixed_coeffs[1][i];
+                s->fixed_coeffs[1][i] += s->fixed_coeffs[2][i];
+                s->fixed_coeffs[2][i]  = tmp0 - s->fixed_coeffs[2][i];
             }
         }
     }
 }
 
-/**
- * Perform the 256-point IMDCT
- */
-static void do_imdct_256(AC3DecodeContext *s, int chindex)
-{
-    int i, k;
-    DECLARE_ALIGNED_16(float, x[128]);
-    FFTComplex z[2][64];
-    float *o_ptr = s->tmp_output;
-
-    for(i=0; i<2; i++) {
-        /* de-interleave coefficients */
-        for(k=0; k<128; k++) {
-            x[k] = s->transform_coeffs[chindex][2*k+i];
-        }
-
-        /* run standard IMDCT */
-        s->imdct_256.fft.imdct_calc(&s->imdct_256, o_ptr, x, s->tmp_imdct);
-
-        /* reverse the post-rotation & reordering from standard IMDCT */
-        for(k=0; k<32; k++) {
-            z[i][32+k].re = -o_ptr[128+2*k];
-            z[i][32+k].im = -o_ptr[2*k];
-            z[i][31-k].re =  o_ptr[2*k+1];
-            z[i][31-k].im =  o_ptr[128+2*k+1];
-        }
-    }
-
-    /* apply AC-3 post-rotation & reordering */
-    for(k=0; k<64; k++) {
-        o_ptr[    2*k  ] = -z[0][   k].im;
-        o_ptr[    2*k+1] =  z[0][63-k].re;
-        o_ptr[128+2*k  ] = -z[0][   k].re;
-        o_ptr[128+2*k+1] =  z[0][63-k].im;
-        o_ptr[256+2*k  ] = -z[1][   k].re;
-        o_ptr[256+2*k+1] =  z[1][63-k].im;
-        o_ptr[384+2*k  ] =  z[1][   k].im;
-        o_ptr[384+2*k+1] = -z[1][63-k].re;
-    }
-}
-
 /**
  * Inverse MDCT Transform.
  * Convert frequency domain coefficients to time-domain audio samples.
  * reference: Section 7.9.4 Transformation Equations
  */
-static inline void do_imdct(AC3DecodeContext *s)
+static inline void do_imdct(AC3DecodeContext *s, int channels)
 {
     int ch;
-    int channels;
 
-    /* Don't perform the IMDCT on the LFE channel unless it's used in the output */
-    channels = s->fbw_channels;
-    if(s->output_mode & AC3_OUTPUT_LFEON)
-        channels++;
-
-    for (ch=1; ch<=channels; ch++) {
+    for (ch = 1; ch <= channels; ch++) {
         if (s->block_switch[ch]) {
-            do_imdct_256(s, ch);
+            int i;
+            float *x = s->tmp_output + 128;
+            for (i = 0; i < 128; i++)
+                x[i] = s->transform_coeffs[ch][2 * i];
+            s->imdct_256.imdct_half(&s->imdct_256, s->tmp_output, x);
+            s->dsp.vector_fmul_window(s->output[ch - 1], s->delay[ch - 1],
+                                      s->tmp_output, s->window, 128);
+            for (i = 0; i < 128; i++)
+                x[i] = s->transform_coeffs[ch][2 * i + 1];
+            s->imdct_256.imdct_half(&s->imdct_256, s->delay[ch - 1], x);
         } else {
-            s->imdct_512.fft.imdct_calc(&s->imdct_512, s->tmp_output,
-                                        s->transform_coeffs[ch], s->tmp_imdct);
+            s->imdct_512.imdct_half(&s->imdct_512, s->tmp_output, s->transform_coeffs[ch]);
+            s->dsp.vector_fmul_window(s->output[ch - 1], s->delay[ch - 1],
+                                      s->tmp_output, s->window, 128);
+            memcpy(s->delay[ch - 1], s->tmp_output + 128, 128 * sizeof(float));
         }
-        /* For the first half of the block, apply the window, add the delay
-           from the previous block, and send to output */
-        s->dsp.vector_fmul_add_add(s->output[ch-1], s->tmp_output,
-                                     s->window, s->delay[ch-1], 0, 256, 1);
-        /* For the second half of the block, apply the window and store the
-           samples to delay, to be combined with the next block */
-        s->dsp.vector_fmul_reverse(s->delay[ch-1], s->tmp_output+256,
-                                   s->window, 256);
     }
 }
 
 /**
  * Downmix the output to mono or stereo.
  */
-static void ac3_downmix(AC3DecodeContext *s)
+void ff_ac3_downmix_c(float (*samples)[256], float (*matrix)[2],
+                      int out_ch, int in_ch, int len)
 {
     int i, j;
-    float v0, v1, s0, s1;
-
-    for(i=0; i<256; i++) {
-        v0 = v1 = s0 = s1 = 0.0f;
-        for(j=0; j<s->fbw_channels; j++) {
-            v0 += s->output[j][i] * s->downmix_coeffs[j][0];
-            v1 += s->output[j][i] * s->downmix_coeffs[j][1];
-            s0 += s->downmix_coeffs[j][0];
-            s1 += s->downmix_coeffs[j][1];
+    float v0, v1;
+    if (out_ch == 2) {
+        for (i = 0; i < len; i++) {
+            v0 = v1 = 0.0f;
+            for (j = 0; j < in_ch; j++) {
+                v0 += samples[j][i] * matrix[j][0];
+                v1 += samples[j][i] * matrix[j][1];
+            }
+            samples[0][i] = v0;
+            samples[1][i] = v1;
+        }
+    } else if (out_ch == 1) {
+        for (i = 0; i < len; i++) {
+            v0 = 0.0f;
+            for (j = 0; j < in_ch; j++)
+                v0 += samples[j][i] * matrix[j][0];
+            samples[0][i] = v0;
+        }
+    }
+}
+
+/**
+ * Upmix delay samples from stereo to original channel layout.
+ */
+static void ac3_upmix_delay(AC3DecodeContext *s)
+{
+    int channel_data_size = sizeof(s->delay[0]);
+    switch (s->channel_mode) {
+    case AC3_CHMODE_DUALMONO:
+    case AC3_CHMODE_STEREO:
+        /* upmix mono to stereo */
+        memcpy(s->delay[1], s->delay[0], channel_data_size);
+        break;
+    case AC3_CHMODE_2F2R:
+        memset(s->delay[3], 0, channel_data_size);
+    case AC3_CHMODE_2F1R:
+        memset(s->delay[2], 0, channel_data_size);
+        break;
+    case AC3_CHMODE_3F2R:
+        memset(s->delay[4], 0, channel_data_size);
+    case AC3_CHMODE_3F1R:
+        memset(s->delay[3], 0, channel_data_size);
+    case AC3_CHMODE_3F:
+        memcpy(s->delay[2], s->delay[1], channel_data_size);
+        memset(s->delay[1], 0, channel_data_size);
+        break;
+    }
+}
+
+/**
+ * Decode band structure for coupling, spectral extension, or enhanced coupling.
+ * The band structure defines how many subbands are in each band.  For each
+ * subband in the range, 1 means it is combined with the previous band, and 0
+ * means that it starts a new band.
+ *
+ * @param[in] gbc bit reader context
+ * @param[in] blk block number
+ * @param[in] eac3 flag to indicate E-AC-3
+ * @param[in] ecpl flag to indicate enhanced coupling
+ * @param[in] start_subband subband number for start of range
+ * @param[in] end_subband subband number for end of range
+ * @param[in] default_band_struct default band structure table
+ * @param[out] num_bands number of bands (optionally NULL)
+ * @param[out] band_sizes array containing the number of bins in each band (optionally NULL)
+ */
+static void decode_band_structure(GetBitContext *gbc, int blk, int eac3,
+                                  int ecpl, int start_subband, int end_subband,
+                                  const uint8_t *default_band_struct,
+                                  int *num_bands, uint8_t *band_sizes)
+{
+    int subbnd, bnd, n_subbands, n_bands=0;
+    uint8_t bnd_sz[22];
+    uint8_t coded_band_struct[22];
+    const uint8_t *band_struct;
+
+    n_subbands = end_subband - start_subband;
+
+    /* decode band structure from bitstream or use default */
+    if (!eac3 || get_bits1(gbc)) {
+        for (subbnd = 0; subbnd < n_subbands - 1; subbnd++) {
+            coded_band_struct[subbnd] = get_bits1(gbc);
         }
-        v0 /= s0;
-        v1 /= s1;
-        if(s->output_mode == AC3_CHMODE_MONO) {
-            s->output[0][i] = (v0 + v1) * LEVEL_MINUS_3DB;
-        } else if(s->output_mode == AC3_CHMODE_STEREO) {
-            s->output[0][i] = v0;
-            s->output[1][i] = v1;
+        band_struct = coded_band_struct;
+    } else if (!blk) {
+        band_struct = &default_band_struct[start_subband+1];
+    } else {
+        /* no change in band structure */
+        return;
+    }
+
+    /* calculate number of bands and band sizes based on band structure.
+       note that the first 4 subbands in enhanced coupling span only 6 bins
+       instead of 12. */
+    if (num_bands || band_sizes ) {
+        n_bands = n_subbands;
+        bnd_sz[0] = ecpl ? 6 : 12;
+        for (bnd = 0, subbnd = 1; subbnd < n_subbands; subbnd++) {
+            int subbnd_size = (ecpl && subbnd < 4) ? 6 : 12;
+            if (band_struct[subbnd - 1]) {
+                n_bands--;
+                bnd_sz[bnd] += subbnd_size;
+            } else {
+                bnd_sz[++bnd] = subbnd_size;
+            }
         }
     }
+
+    /* set optional output params */
+    if (num_bands)
+        *num_bands = n_bands;
+    if (band_sizes)
+        memcpy(band_sizes, bnd_sz, n_bands);
 }
 
 /**
- * Parse an audio block from AC-3 bitstream.
+ * Decode a single audio block from the AC-3 bitstream.
  */
-static int ac3_parse_audio_block(AC3DecodeContext *s, int blk)
+static int decode_audio_block(AC3DecodeContext *s, int blk)
 {
     int fbw_channels = s->fbw_channels;
     int channel_mode = s->channel_mode;
     int i, bnd, seg, ch;
+    int different_transforms;
+    int downmix_output;
+    int cpl_in_use;
     GetBitContext *gbc = &s->gbc;
-    uint8_t bit_alloc_stages[AC3_MAX_CHANNELS];
-
-    memset(bit_alloc_stages, 0, AC3_MAX_CHANNELS);
+    uint8_t bit_alloc_stages[AC3_MAX_CHANNELS] = { 0 };
 
     /* block switch flags */
-    for (ch = 1; ch <= fbw_channels; ch++)
-        s->block_switch[ch] = get_bits1(gbc);
+    different_transforms = 0;
+    if (s->block_switch_syntax) {
+        for (ch = 1; ch <= fbw_channels; ch++) {
+            s->block_switch[ch] = get_bits1(gbc);
+            if (ch > 1 && s->block_switch[ch] != s->block_switch[1])
+                different_transforms = 1;
+        }
+    }
 
     /* dithering flags */
-    s->dither_all = 1;
-    for (ch = 1; ch <= fbw_channels; ch++) {
-        s->dither_flag[ch] = get_bits1(gbc);
-        if(!s->dither_flag[ch])
-            s->dither_all = 0;
+    if (s->dither_flag_syntax) {
+        for (ch = 1; ch <= fbw_channels; ch++) {
+            s->dither_flag[ch] = get_bits1(gbc);
+        }
     }
 
     /* dynamic range */
-    i = !(s->channel_mode);
+    i = !s->channel_mode;
     do {
-        if(get_bits1(gbc)) {
-            s->dynamic_range[i] = ((dynamic_range_tab[get_bits(gbc, 8)]-1.0) *
-                                  s->avctx->drc_scale)+1.0;
-        } else if(blk == 0) {
+        if (get_bits1(gbc)) {
+            s->dynamic_range[i] = ((dynamic_range_tab[get_bits(gbc, 8)] - 1.0) *
+                                  s->drc_scale) + 1.0;
+        } else if (blk == 0) {
             s->dynamic_range[i] = 1.0f;
         }
-    } while(i--);
+    } while (i--);
+
+    /* spectral extension strategy */
+    if (s->eac3 && (!blk || get_bits1(gbc))) {
+        s->spx_in_use = get_bits1(gbc);
+        if (s->spx_in_use) {
+            int dst_start_freq, dst_end_freq, src_start_freq,
+                start_subband, end_subband;
+
+            /* determine which channels use spx */
+            if (s->channel_mode == AC3_CHMODE_MONO) {
+                s->channel_uses_spx[1] = 1;
+            } else {
+                for (ch = 1; ch <= fbw_channels; ch++)
+                    s->channel_uses_spx[ch] = get_bits1(gbc);
+            }
+
+            /* get the frequency bins of the spx copy region and the spx start
+               and end subbands */
+            dst_start_freq = get_bits(gbc, 2);
+            start_subband  = get_bits(gbc, 3) + 2;
+            if (start_subband > 7)
+                start_subband += start_subband - 7;
+            end_subband    = get_bits(gbc, 3) + 5;
+            if (end_subband   > 7)
+                end_subband   += end_subband   - 7;
+            dst_start_freq = dst_start_freq * 12 + 25;
+            src_start_freq = start_subband  * 12 + 25;
+            dst_end_freq   = end_subband    * 12 + 25;
+
+            /* check validity of spx ranges */
+            if (start_subband >= end_subband) {
+                av_log(s->avctx, AV_LOG_ERROR, "invalid spectral extension "
+                       "range (%d >= %d)\n", start_subband, end_subband);
+                return -1;
+            }
+            if (dst_start_freq >= src_start_freq) {
+                av_log(s->avctx, AV_LOG_ERROR, "invalid spectral extension "
+                       "copy start bin (%d >= %d)\n", dst_start_freq, src_start_freq);
+                return -1;
+            }
+
+            s->spx_dst_start_freq = dst_start_freq;
+            s->spx_src_start_freq = src_start_freq;
+            s->spx_dst_end_freq   = dst_end_freq;
+
+            decode_band_structure(gbc, blk, s->eac3, 0,
+                                  start_subband, end_subband,
+                                  ff_eac3_default_spx_band_struct,
+                                  &s->num_spx_bands,
+                                  s->spx_band_sizes);
+        } else {
+            for (ch = 1; ch <= fbw_channels; ch++) {
+                s->channel_uses_spx[ch] = 0;
+                s->first_spx_coords[ch] = 1;
+            }
+        }
+    }
+
+    /* spectral extension coordinates */
+    if (s->spx_in_use) {
+        for (ch = 1; ch <= fbw_channels; ch++) {
+            if (s->channel_uses_spx[ch]) {
+                if (s->first_spx_coords[ch] || get_bits1(gbc)) {
+                    float spx_blend;
+                    int bin, master_spx_coord;
+
+                    s->first_spx_coords[ch] = 0;
+                    spx_blend = get_bits(gbc, 5) * (1.0f/32);
+                    master_spx_coord = get_bits(gbc, 2) * 3;
+
+                    bin = s->spx_src_start_freq;
+                    for (bnd = 0; bnd < s->num_spx_bands; bnd++) {
+                        int bandsize;
+                        int spx_coord_exp, spx_coord_mant;
+                        float nratio, sblend, nblend, spx_coord;
+
+                        /* calculate blending factors */
+                        bandsize = s->spx_band_sizes[bnd];
+                        nratio = ((float)((bin + (bandsize >> 1))) / s->spx_dst_end_freq) - spx_blend;
+                        nratio = av_clipf(nratio, 0.0f, 1.0f);
+                        nblend = sqrtf(3.0f * nratio); // noise is scaled by sqrt(3)
+                                                       // to give unity variance
+                        sblend = sqrtf(1.0f - nratio);
+                        bin += bandsize;
+
+                        /* decode spx coordinates */
+                        spx_coord_exp  = get_bits(gbc, 4);
+                        spx_coord_mant = get_bits(gbc, 2);
+                        if (spx_coord_exp == 15) spx_coord_mant <<= 1;
+                        else                     spx_coord_mant += 4;
+                        spx_coord_mant <<= (25 - spx_coord_exp - master_spx_coord);
+                        spx_coord = spx_coord_mant * (1.0f / (1 << 23));
+
+                        /* multiply noise and signal blending factors by spx coordinate */
+                        s->spx_noise_blend [ch][bnd] = nblend * spx_coord;
+                        s->spx_signal_blend[ch][bnd] = sblend * spx_coord;
+                    }
+                }
+            } else {
+                s->first_spx_coords[ch] = 1;
+            }
+        }
+    }
 
     /* coupling strategy */
-    if (get_bits1(gbc)) {
+    if (s->eac3 ? s->cpl_strategy_exists[blk] : get_bits1(gbc)) {
         memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
-        s->cpl_in_use = get_bits1(gbc);
-        if (s->cpl_in_use) {
+        if (!s->eac3)
+            s->cpl_in_use[blk] = get_bits1(gbc);
+        if (s->cpl_in_use[blk]) {
             /* coupling in use */
-            int cpl_begin_freq, cpl_end_freq;
+            int cpl_start_subband, cpl_end_subband;
+
+            if (channel_mode < AC3_CHMODE_STEREO) {
+                av_log(s->avctx, AV_LOG_ERROR, "coupling not allowed in mono or dual-mono\n");
+                return -1;
+            }
+
+            /* check for enhanced coupling */
+            if (s->eac3 && get_bits1(gbc)) {
+                /* TODO: parse enhanced coupling strategy info */
+                av_log_missing_feature(s->avctx, "Enhanced coupling", 1);
+                return -1;
+            }
 
             /* determine which channels are coupled */
-            for (ch = 1; ch <= fbw_channels; ch++)
-                s->channel_in_cpl[ch] = get_bits1(gbc);
+            if (s->eac3 && s->channel_mode == AC3_CHMODE_STEREO) {
+                s->channel_in_cpl[1] = 1;
+                s->channel_in_cpl[2] = 1;
+            } else {
+                for (ch = 1; ch <= fbw_channels; ch++)
+                    s->channel_in_cpl[ch] = get_bits1(gbc);
+            }
 
             /* phase flags in use */
             if (channel_mode == AC3_CHMODE_STEREO)
                 s->phase_flags_in_use = get_bits1(gbc);
 
-            /* coupling frequency range and band structure */
-            cpl_begin_freq = get_bits(gbc, 4);
-            cpl_end_freq = get_bits(gbc, 4);
-            if (3 + cpl_end_freq - cpl_begin_freq < 0) {
-                av_log(s->avctx, AV_LOG_ERROR, "3+cplendf = %d < cplbegf = %d\n", 3+cpl_end_freq, cpl_begin_freq);
+            /* coupling frequency range */
+            cpl_start_subband = get_bits(gbc, 4);
+            cpl_end_subband = s->spx_in_use ? (s->spx_src_start_freq - 37) / 12 :
+                                              get_bits(gbc, 4) + 3;
+            if (cpl_start_subband >= cpl_end_subband) {
+                av_log(s->avctx, AV_LOG_ERROR, "invalid coupling range (%d >= %d)\n",
+                       cpl_start_subband, cpl_end_subband);
                 return -1;
             }
-            s->num_cpl_bands = s->num_cpl_subbands = 3 + cpl_end_freq - cpl_begin_freq;
-            s->start_freq[CPL_CH] = cpl_begin_freq * 12 + 37;
-            s->end_freq[CPL_CH] = cpl_end_freq * 12 + 73;
-            for (bnd = 0; bnd < s->num_cpl_subbands - 1; bnd++) {
-                if (get_bits1(gbc)) {
-                    s->cpl_band_struct[bnd] = 1;
-                    s->num_cpl_bands--;
-                }
-            }
-            s->cpl_band_struct[s->num_cpl_subbands-1] = 0;
+            s->start_freq[CPL_CH] = cpl_start_subband * 12 + 37;
+            s->end_freq[CPL_CH]   = cpl_end_subband   * 12 + 37;
+
+            decode_band_structure(gbc, blk, s->eac3, 0, cpl_start_subband,
+                                  cpl_end_subband,
+                                  ff_eac3_default_cpl_band_struct,
+                                  &s->num_cpl_bands, s->cpl_band_sizes);
         } else {
             /* coupling not in use */
-            for (ch = 1; ch <= fbw_channels; ch++)
+            for (ch = 1; ch <= fbw_channels; ch++) {
                 s->channel_in_cpl[ch] = 0;
+                s->first_cpl_coords[ch] = 1;
+            }
+            s->first_cpl_leak = s->eac3;
+            s->phase_flags_in_use = 0;
+        }
+    } else if (!s->eac3) {
+        if (!blk) {
+            av_log(s->avctx, AV_LOG_ERROR, "new coupling strategy must "
+                   "be present in block 0\n");
+            return -1;
+        } else {
+            s->cpl_in_use[blk] = s->cpl_in_use[blk-1];
         }
     }
+    cpl_in_use = s->cpl_in_use[blk];
 
     /* coupling coordinates */
-    if (s->cpl_in_use) {
+    if (cpl_in_use) {
         int cpl_coords_exist = 0;
 
         for (ch = 1; ch <= fbw_channels; ch++) {
             if (s->channel_in_cpl[ch]) {
-                if (get_bits1(gbc)) {
+                if ((s->eac3 && s->first_cpl_coords[ch]) || get_bits1(gbc)) {
                     int master_cpl_coord, cpl_coord_exp, cpl_coord_mant;
+                    s->first_cpl_coords[ch] = 0;
                     cpl_coords_exist = 1;
                     master_cpl_coord = 3 * get_bits(gbc, 2);
                     for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
                         cpl_coord_exp = get_bits(gbc, 4);
                         cpl_coord_mant = get_bits(gbc, 4);
                         if (cpl_coord_exp == 15)
-                            s->cpl_coords[ch][bnd] = cpl_coord_mant / 16.0f;
+                            s->cpl_coords[ch][bnd] = cpl_coord_mant << 22;
                         else
-                            s->cpl_coords[ch][bnd] = (cpl_coord_mant + 16.0f) / 32.0f;
-                        s->cpl_coords[ch][bnd] *= scale_factors[cpl_coord_exp + master_cpl_coord];
+                            s->cpl_coords[ch][bnd] = (cpl_coord_mant + 16) << 21;
+                        s->cpl_coords[ch][bnd] >>= (cpl_coord_exp + master_cpl_coord);
                     }
+                } else if (!blk) {
+                    av_log(s->avctx, AV_LOG_ERROR, "new coupling coordinates must "
+                           "be present in block 0\n");
+                    return -1;
                 }
+            } else {
+                /* channel not in coupling */
+                s->first_cpl_coords[ch] = 1;
             }
         }
         /* phase flags */
@@ -893,102 +996,166 @@ static int ac3_parse_audio_block(AC3DecodeContext *s, int blk)
 
     /* stereo rematrixing strategy and band structure */
     if (channel_mode == AC3_CHMODE_STEREO) {
-        if (get_bits1(gbc)) {
+        if ((s->eac3 && !blk) || get_bits1(gbc)) {
             s->num_rematrixing_bands = 4;
-            if(s->cpl_in_use && s->start_freq[CPL_CH] <= 61)
+            if (cpl_in_use && s->start_freq[CPL_CH] <= 61) {
                 s->num_rematrixing_bands -= 1 + (s->start_freq[CPL_CH] == 37);
-            for(bnd=0; bnd<s->num_rematrixing_bands; bnd++)
+            } else if (s->spx_in_use && s->spx_src_start_freq <= 61) {
+                s->num_rematrixing_bands--;
+            }
+            for (bnd = 0; bnd < s->num_rematrixing_bands; bnd++)
                 s->rematrixing_flags[bnd] = get_bits1(gbc);
+        } else if (!blk) {
+            av_log(s->avctx, AV_LOG_WARNING, "Warning: "
+                   "new rematrixing strategy not present in block 0\n");
+            s->num_rematrixing_bands = 0;
         }
     }
 
     /* exponent strategies for each channel */
-    s->exp_strategy[CPL_CH] = EXP_REUSE;
-    s->exp_strategy[s->lfe_ch] = EXP_REUSE;
-    for (ch = !s->cpl_in_use; ch <= s->channels; ch++) {
-        if(ch == s->lfe_ch)
-            s->exp_strategy[ch] = get_bits(gbc, 1);
-        else
-            s->exp_strategy[ch] = get_bits(gbc, 2);
-        if(s->exp_strategy[ch] != EXP_REUSE)
+    for (ch = !cpl_in_use; ch <= s->channels; ch++) {
+        if (!s->eac3)
+            s->exp_strategy[blk][ch] = get_bits(gbc, 2 - (ch == s->lfe_ch));
+        if (s->exp_strategy[blk][ch] != EXP_REUSE)
             bit_alloc_stages[ch] = 3;
     }
 
     /* channel bandwidth */
     for (ch = 1; ch <= fbw_channels; ch++) {
         s->start_freq[ch] = 0;
-        if (s->exp_strategy[ch] != EXP_REUSE) {
+        if (s->exp_strategy[blk][ch] != EXP_REUSE) {
+            int group_size;
             int prev = s->end_freq[ch];
             if (s->channel_in_cpl[ch])
                 s->end_freq[ch] = s->start_freq[CPL_CH];
+            else if (s->channel_uses_spx[ch])
+                s->end_freq[ch] = s->spx_src_start_freq;
             else {
                 int bandwidth_code = get_bits(gbc, 6);
                 if (bandwidth_code > 60) {
-                    av_log(s->avctx, AV_LOG_ERROR, "bandwidth code = %d > 60", bandwidth_code);
+                    av_log(s->avctx, AV_LOG_ERROR, "bandwidth code = %d > 60\n", bandwidth_code);
                     return -1;
                 }
                 s->end_freq[ch] = bandwidth_code * 3 + 73;
             }
-            if(blk > 0 && s->end_freq[ch] != prev)
+            group_size = 3 << (s->exp_strategy[blk][ch] - 1);
+            s->num_exp_groups[ch] = (s->end_freq[ch] + group_size-4) / group_size;
+            if (blk > 0 && s->end_freq[ch] != prev)
                 memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
         }
     }
-    s->start_freq[s->lfe_ch] = 0;
-    s->end_freq[s->lfe_ch] = 7;
+    if (cpl_in_use && s->exp_strategy[blk][CPL_CH] != EXP_REUSE) {
+        s->num_exp_groups[CPL_CH] = (s->end_freq[CPL_CH] - s->start_freq[CPL_CH]) /
+                                    (3 << (s->exp_strategy[blk][CPL_CH] - 1));
+    }
 
     /* decode exponents for each channel */
-    for (ch = !s->cpl_in_use; ch <= s->channels; ch++) {
-        if (s->exp_strategy[ch] != EXP_REUSE) {
-            int group_size, num_groups;
-            group_size = 3 << (s->exp_strategy[ch] - 1);
-            if(ch == CPL_CH)
-                num_groups = (s->end_freq[ch] - s->start_freq[ch]) / group_size;
-            else if(ch == s->lfe_ch)
-                num_groups = 2;
-            else
-                num_groups = (s->end_freq[ch] + group_size - 4) / group_size;
+    for (ch = !cpl_in_use; ch <= s->channels; ch++) {
+        if (s->exp_strategy[blk][ch] != EXP_REUSE) {
             s->dexps[ch][0] = get_bits(gbc, 4) << !ch;
-            decode_exponents(gbc, s->exp_strategy[ch], num_groups, s->dexps[ch][0],
-                             &s->dexps[ch][s->start_freq[ch]+!!ch]);
-            if(ch != CPL_CH && ch != s->lfe_ch)
+            if (decode_exponents(gbc, s->exp_strategy[blk][ch],
+                                 s->num_exp_groups[ch], s->dexps[ch][0],
+                                 &s->dexps[ch][s->start_freq[ch]+!!ch])) {
+                av_log(s->avctx, AV_LOG_ERROR, "exponent out-of-range\n");
+                return -1;
+            }
+            if (ch != CPL_CH && ch != s->lfe_ch)
                 skip_bits(gbc, 2); /* skip gainrng */
         }
     }
 
     /* bit allocation information */
-    if (get_bits1(gbc)) {
-        s->bit_alloc_params.slow_decay = ff_ac3_slow_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift;
-        s->bit_alloc_params.fast_decay = ff_ac3_fast_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift;
-        s->bit_alloc_params.slow_gain  = ff_ac3_slow_gain_tab[get_bits(gbc, 2)];
-        s->bit_alloc_params.db_per_bit = ff_ac3_db_per_bit_tab[get_bits(gbc, 2)];
-        s->bit_alloc_params.floor  = ff_ac3_floor_tab[get_bits(gbc, 3)];
-        for(ch=!s->cpl_in_use; ch<=s->channels; ch++) {
-            bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
+    if (s->bit_allocation_syntax) {
+        if (get_bits1(gbc)) {
+            s->bit_alloc_params.slow_decay = ff_ac3_slow_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift;
+            s->bit_alloc_params.fast_decay = ff_ac3_fast_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift;
+            s->bit_alloc_params.slow_gain  = ff_ac3_slow_gain_tab[get_bits(gbc, 2)];
+            s->bit_alloc_params.db_per_bit = ff_ac3_db_per_bit_tab[get_bits(gbc, 2)];
+            s->bit_alloc_params.floor  = ff_ac3_floor_tab[get_bits(gbc, 3)];
+            for (ch = !cpl_in_use; ch <= s->channels; ch++)
+                bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
+        } else if (!blk) {
+            av_log(s->avctx, AV_LOG_ERROR, "new bit allocation info must "
+                   "be present in block 0\n");
+            return -1;
         }
     }
 
     /* signal-to-noise ratio offsets and fast gains (signal-to-mask ratios) */
-    if (get_bits1(gbc)) {
-        int csnr;
-        csnr = (get_bits(gbc, 6) - 15) << 4;
-        for (ch = !s->cpl_in_use; ch <= s->channels; ch++) { /* snr offset and fast gain */
-            s->snr_offset[ch] = (csnr + get_bits(gbc, 4)) << 2;
+    if (!s->eac3 || !blk) {
+        if (s->snr_offset_strategy && get_bits1(gbc)) {
+            int snr = 0;
+            int csnr;
+            csnr = (get_bits(gbc, 6) - 15) << 4;
+            for (i = ch = !cpl_in_use; ch <= s->channels; ch++) {
+                /* snr offset */
+                if (ch == i || s->snr_offset_strategy == 2)
+                    snr = (csnr + get_bits(gbc, 4)) << 2;
+                /* run at least last bit allocation stage if snr offset changes */
+                if (blk && s->snr_offset[ch] != snr) {
+                    bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 1);
+                }
+                s->snr_offset[ch] = snr;
+
+                /* fast gain (normal AC-3 only) */
+                if (!s->eac3) {
+                    int prev = s->fast_gain[ch];
+                    s->fast_gain[ch] = ff_ac3_fast_gain_tab[get_bits(gbc, 3)];
+                    /* run last 2 bit allocation stages if fast gain changes */
+                    if (blk && prev != s->fast_gain[ch])
+                        bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
+                }
+            }
+        } else if (!s->eac3 && !blk) {
+            av_log(s->avctx, AV_LOG_ERROR, "new snr offsets must be present in block 0\n");
+            return -1;
+        }
+    }
+
+    /* fast gain (E-AC-3 only) */
+    if (s->fast_gain_syntax && get_bits1(gbc)) {
+        for (ch = !cpl_in_use; ch <= s->channels; ch++) {
+            int prev = s->fast_gain[ch];
             s->fast_gain[ch] = ff_ac3_fast_gain_tab[get_bits(gbc, 3)];
+            /* run last 2 bit allocation stages if fast gain changes */
+            if (blk && prev != s->fast_gain[ch])
+                bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
         }
-        memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
+    } else if (s->eac3 && !blk) {
+        for (ch = !cpl_in_use; ch <= s->channels; ch++)
+            s->fast_gain[ch] = ff_ac3_fast_gain_tab[4];
+    }
+
+    /* E-AC-3 to AC-3 converter SNR offset */
+    if (s->frame_type == EAC3_FRAME_TYPE_INDEPENDENT && get_bits1(gbc)) {
+        skip_bits(gbc, 10); // skip converter snr offset
     }
 
     /* coupling leak information */
-    if (s->cpl_in_use && get_bits1(gbc)) {
-        s->bit_alloc_params.cpl_fast_leak = get_bits(gbc, 3);
-        s->bit_alloc_params.cpl_slow_leak = get_bits(gbc, 3);
-        bit_alloc_stages[CPL_CH] = FFMAX(bit_alloc_stages[CPL_CH], 2);
+    if (cpl_in_use) {
+        if (s->first_cpl_leak || get_bits1(gbc)) {
+            int fl = get_bits(gbc, 3);
+            int sl = get_bits(gbc, 3);
+            /* run last 2 bit allocation stages for coupling channel if
+               coupling leak changes */
+            if (blk && (fl != s->bit_alloc_params.cpl_fast_leak ||
+                sl != s->bit_alloc_params.cpl_slow_leak)) {
+                bit_alloc_stages[CPL_CH] = FFMAX(bit_alloc_stages[CPL_CH], 2);
+            }
+            s->bit_alloc_params.cpl_fast_leak = fl;
+            s->bit_alloc_params.cpl_slow_leak = sl;
+        } else if (!s->eac3 && !blk) {
+            av_log(s->avctx, AV_LOG_ERROR, "new coupling leak info must "
+                   "be present in block 0\n");
+            return -1;
+        }
+        s->first_cpl_leak = 0;
     }
 
     /* delta bit allocation information */
-    if (get_bits1(gbc)) {
+    if (s->dba_syntax && get_bits1(gbc)) {
         /* delta bit allocation exists (strategy) */
-        for (ch = !s->cpl_in_use; ch <= fbw_channels; ch++) {
+        for (ch = !cpl_in_use; ch <= fbw_channels; ch++) {
             s->dba_mode[ch] = get_bits(gbc, 2);
             if (s->dba_mode[ch] == DBA_RESERVED) {
                 av_log(s->avctx, AV_LOG_ERROR, "delta bit allocation strategy reserved\n");
@@ -997,95 +1164,124 @@ static int ac3_parse_audio_block(AC3DecodeContext *s, int blk)
             bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
         }
         /* channel delta offset, len and bit allocation */
-        for (ch = !s->cpl_in_use; ch <= fbw_channels; ch++) {
+        for (ch = !cpl_in_use; ch <= fbw_channels; ch++) {
             if (s->dba_mode[ch] == DBA_NEW) {
-                s->dba_nsegs[ch] = get_bits(gbc, 3);
-                for (seg = 0; seg <= s->dba_nsegs[ch]; seg++) {
+                s->dba_nsegs[ch] = get_bits(gbc, 3) + 1;
+                for (seg = 0; seg < s->dba_nsegs[ch]; seg++) {
                     s->dba_offsets[ch][seg] = get_bits(gbc, 5);
                     s->dba_lengths[ch][seg] = get_bits(gbc, 4);
-                    s->dba_values[ch][seg] = get_bits(gbc, 3);
+                    s->dba_values[ch][seg]  = get_bits(gbc, 3);
                 }
+                /* run last 2 bit allocation stages if new dba values */
+                bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
             }
         }
-    } else if(blk == 0) {
-        for(ch=0; ch<=s->channels; ch++) {
+    } else if (blk == 0) {
+        for (ch = 0; ch <= s->channels; ch++) {
             s->dba_mode[ch] = DBA_NONE;
         }
     }
 
     /* Bit allocation */
-    for(ch=!s->cpl_in_use; ch<=s->channels; ch++) {
-        if(bit_alloc_stages[ch] > 2) {
+    for (ch = !cpl_in_use; ch <= s->channels; ch++) {
+        if (bit_alloc_stages[ch] > 2) {
             /* Exponent mapping into PSD and PSD integration */
             ff_ac3_bit_alloc_calc_psd(s->dexps[ch],
                                       s->start_freq[ch], s->end_freq[ch],
                                       s->psd[ch], s->band_psd[ch]);
         }
-        if(bit_alloc_stages[ch] > 1) {
+        if (bit_alloc_stages[ch] > 1) {
             /* Compute excitation function, Compute masking curve, and
                Apply delta bit allocation */
-            ff_ac3_bit_alloc_calc_mask(&s->bit_alloc_params, s->band_psd[ch],
-                                       s->start_freq[ch], s->end_freq[ch],
-                                       s->fast_gain[ch], (ch == s->lfe_ch),
-                                       s->dba_mode[ch], s->dba_nsegs[ch],
-                                       s->dba_offsets[ch], s->dba_lengths[ch],
-                                       s->dba_values[ch], s->mask[ch]);
+            if (ff_ac3_bit_alloc_calc_mask(&s->bit_alloc_params, s->band_psd[ch],
+                                           s->start_freq[ch],  s->end_freq[ch],
+                                           s->fast_gain[ch],   (ch == s->lfe_ch),
+                                           s->dba_mode[ch],    s->dba_nsegs[ch],
+                                           s->dba_offsets[ch], s->dba_lengths[ch],
+                                           s->dba_values[ch],  s->mask[ch])) {
+                av_log(s->avctx, AV_LOG_ERROR, "error in bit allocation\n");
+                return -1;
+            }
         }
-        if(bit_alloc_stages[ch] > 0) {
+        if (bit_alloc_stages[ch] > 0) {
             /* Compute bit allocation */
-            ff_ac3_bit_alloc_calc_bap(s->mask[ch], s->psd[ch],
+            const uint8_t *bap_tab = s->channel_uses_aht[ch] ?
+                                     ff_eac3_hebap_tab : ff_ac3_bap_tab;
+            s->ac3dsp.bit_alloc_calc_bap(s->mask[ch], s->psd[ch],
                                       s->start_freq[ch], s->end_freq[ch],
                                       s->snr_offset[ch],
                                       s->bit_alloc_params.floor,
-                                      s->bap[ch]);
+                                      bap_tab, s->bap[ch]);
         }
     }
 
     /* unused dummy data */
-    if (get_bits1(gbc)) {
+    if (s->skip_syntax && get_bits1(gbc)) {
         int skipl = get_bits(gbc, 9);
-        while(skipl--)
+        while (skipl--)
             skip_bits(gbc, 8);
     }
 
     /* unpack the transform coefficients
        this also uncouples channels if coupling is in use. */
-    if (get_transform_coeffs(s)) {
-        av_log(s->avctx, AV_LOG_ERROR, "Error in routine get_transform_coeffs\n");
-        return -1;
-    }
+    decode_transform_coeffs(s, blk);
+
+    /* TODO: generate enhanced coupling coordinates and uncouple */
 
     /* recover coefficients if rematrixing is in use */
-    if(s->channel_mode == AC3_CHMODE_STEREO)
+    if (s->channel_mode == AC3_CHMODE_STEREO)
         do_rematrixing(s);
 
     /* apply scaling to coefficients (headroom, dynrng) */
-    for(ch=1; ch<=s->channels; ch++) {
-        float gain = 2.0f * s->mul_bias;
-        if(s->channel_mode == AC3_CHMODE_DUALMONO) {
-            gain *= s->dynamic_range[ch-1];
+    for (ch = 1; ch <= s->channels; ch++) {
+        float gain = s->mul_bias / 4194304.0f;
+        if (s->channel_mode == AC3_CHMODE_DUALMONO) {
+            gain *= s->dynamic_range[2 - ch];
         } else {
             gain *= s->dynamic_range[0];
         }
-        for(i=0; i<s->end_freq[ch]; i++) {
-            s->transform_coeffs[ch][i] *= gain;
-        }
+        s->fmt_conv.int32_to_float_fmul_scalar(s->transform_coeffs[ch],
+                                               s->fixed_coeffs[ch], gain, 256);
     }
 
-    do_imdct(s);
-
-    /* downmix output if needed */
-    if(s->channels != s->out_channels && !((s->output_mode & AC3_OUTPUT_LFEON) &&
-            s->fbw_channels == s->out_channels)) {
-        ac3_downmix(s);
+    /* apply spectral extension to high frequency bins */
+    if (s->spx_in_use && CONFIG_EAC3_DECODER) {
+        ff_eac3_apply_spectral_extension(s);
     }
 
-    /* convert float to 16-bit integer */
-    for(ch=0; ch<s->out_channels; ch++) {
-        for(i=0; i<256; i++) {
-            s->output[ch][i] += s->add_bias;
+    /* downmix and MDCT. order depends on whether block switching is used for
+       any channel in this block. this is because coefficients for the long
+       and short transforms cannot be mixed. */
+    downmix_output = s->channels != s->out_channels &&
+                     !((s->output_mode & AC3_OUTPUT_LFEON) &&
+                     s->fbw_channels == s->out_channels);
+    if (different_transforms) {
+        /* the delay samples have already been downmixed, so we upmix the delay
+           samples in order to reconstruct all channels before downmixing. */
+        if (s->downmixed) {
+            s->downmixed = 0;
+            ac3_upmix_delay(s);
+        }
+
+        do_imdct(s, s->channels);
+
+        if (downmix_output) {
+            s->dsp.ac3_downmix(s->output, s->downmix_coeffs,
+                               s->out_channels, s->fbw_channels, 256);
         }
-        s->dsp.float_to_int16(s->int_output[ch], s->output[ch], 256);
+    } else {
+        if (downmix_output) {
+            s->dsp.ac3_downmix(s->transform_coeffs + 1, s->downmix_coeffs,
+                               s->out_channels, s->fbw_channels, 256);
+        }
+
+        if (downmix_output && !s->downmixed) {
+            s->downmixed = 1;
+            s->dsp.ac3_downmix(s->delay, s->downmix_coeffs, s->out_channels,
+                               s->fbw_channels, 128);
+        }
+
+        do_imdct(s, s->out_channels);
     }
 
     return 0;
@@ -1094,90 +1290,151 @@ static int ac3_parse_audio_block(AC3DecodeContext *s, int blk)
 /**
  * Decode a single AC-3 frame.
  */
-static int ac3_decode_frame(AVCodecContext * avctx, void *data, int *data_size, uint8_t *buf, int buf_size)
+static int ac3_decode_frame(AVCodecContext * avctx, void *data,
+                            int *got_frame_ptr, AVPacket *avpkt)
 {
+    const uint8_t *buf = avpkt->data;
+    int buf_size = avpkt->size;
     AC3DecodeContext *s = avctx->priv_data;
-    int16_t *out_samples = (int16_t *)data;
-    int i, blk, ch, err;
-
+    float   *out_samples_flt;
+    int16_t *out_samples_s16;
+    int blk, ch, err, ret;
+    const uint8_t *channel_map;
+    const float *output[AC3_MAX_CHANNELS];
+
+    /* copy input buffer to decoder context to avoid reading past the end
+       of the buffer, which can be caused by a damaged input stream. */
+    if (buf_size >= 2 && AV_RB16(buf) == 0x770B) {
+        // seems to be byte-swapped AC-3
+        int cnt = FFMIN(buf_size, AC3_FRAME_BUFFER_SIZE) >> 1;
+        s->dsp.bswap16_buf((uint16_t *)s->input_buffer, (const uint16_t *)buf, cnt);
+    } else
+        memcpy(s->input_buffer, buf, FFMIN(buf_size, AC3_FRAME_BUFFER_SIZE));
+    buf = s->input_buffer;
     /* initialize the GetBitContext with the start of valid AC-3 Frame */
     init_get_bits(&s->gbc, buf, buf_size * 8);
 
     /* parse the syncinfo */
-    err = ac3_parse_header(s);
-    if(err) {
-        switch(err) {
-            case AC3_PARSE_ERROR_SYNC:
-                av_log(avctx, AV_LOG_ERROR, "frame sync error\n");
-                break;
-            case AC3_PARSE_ERROR_BSID:
-                av_log(avctx, AV_LOG_ERROR, "invalid bitstream id\n");
-                break;
-            case AC3_PARSE_ERROR_SAMPLE_RATE:
-                av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n");
-                break;
-            case AC3_PARSE_ERROR_FRAME_SIZE:
-                av_log(avctx, AV_LOG_ERROR, "invalid frame size\n");
-                break;
-            default:
-                av_log(avctx, AV_LOG_ERROR, "invalid header\n");
-                break;
-        }
-        return -1;
-    }
+    err = parse_frame_header(s);
 
-    /* check that reported frame size fits in input buffer */
-    if(s->frame_size > buf_size) {
-        av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
-        return -1;
-    }
-
-    /* check for crc mismatch */
-    if(avctx->error_resilience > 0) {
-        if(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0, &buf[2], s->frame_size-2)) {
-            av_log(avctx, AV_LOG_ERROR, "frame CRC mismatch\n");
+    if (err) {
+        switch (err) {
+        case AAC_AC3_PARSE_ERROR_SYNC:
+            av_log(avctx, AV_LOG_ERROR, "frame sync error\n");
             return -1;
+        case AAC_AC3_PARSE_ERROR_BSID:
+            av_log(avctx, AV_LOG_ERROR, "invalid bitstream id\n");
+            break;
+        case AAC_AC3_PARSE_ERROR_SAMPLE_RATE:
+            av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n");
+            break;
+        case AAC_AC3_PARSE_ERROR_FRAME_SIZE:
+            av_log(avctx, AV_LOG_ERROR, "invalid frame size\n");
+            break;
+        case AAC_AC3_PARSE_ERROR_FRAME_TYPE:
+            /* skip frame if CRC is ok. otherwise use error concealment. */
+            /* TODO: add support for substreams and dependent frames */
+            if (s->frame_type == EAC3_FRAME_TYPE_DEPENDENT || s->substreamid) {
+                av_log(avctx, AV_LOG_ERROR, "unsupported frame type : "
+                       "skipping frame\n");
+                *got_frame_ptr = 0;
+                return s->frame_size;
+            } else {
+                av_log(avctx, AV_LOG_ERROR, "invalid frame type\n");
+            }
+            break;
+        default:
+            av_log(avctx, AV_LOG_ERROR, "invalid header\n");
+            break;
+        }
+    } else {
+        /* check that reported frame size fits in input buffer */
+        if (s->frame_size > buf_size) {
+            av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
+            err = AAC_AC3_PARSE_ERROR_FRAME_SIZE;
+        } else if (avctx->err_recognition & AV_EF_CRCCHECK) {
+            /* check for crc mismatch */
+            if (av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0, &buf[2],
+                       s->frame_size - 2)) {
+                av_log(avctx, AV_LOG_ERROR, "frame CRC mismatch\n");
+                err = AAC_AC3_PARSE_ERROR_CRC;
+            }
         }
-        /* TODO: error concealment */
     }
 
-    avctx->sample_rate = s->sample_rate;
-    avctx->bit_rate = s->bit_rate;
+    /* if frame is ok, set audio parameters */
+    if (!err) {
+        avctx->sample_rate = s->sample_rate;
+        avctx->bit_rate    = s->bit_rate;
+
+        /* channel config */
+        s->out_channels = s->channels;
+        s->output_mode  = s->channel_mode;
+        if (s->lfe_on)
+            s->output_mode |= AC3_OUTPUT_LFEON;
+        if (avctx->request_channels > 0 && avctx->request_channels <= 2 &&
+                avctx->request_channels < s->channels) {
+            s->out_channels = avctx->request_channels;
+            s->output_mode  = avctx->request_channels == 1 ? AC3_CHMODE_MONO : AC3_CHMODE_STEREO;
+            s->channel_layout = avpriv_ac3_channel_layout_tab[s->output_mode];
+        }
+        avctx->channels       = s->out_channels;
+        avctx->channel_layout = s->channel_layout;
 
-    /* channel config */
-    s->out_channels = s->channels;
-    if (avctx->request_channels > 0 && avctx->request_channels <= 2 &&
-            avctx->request_channels < s->channels) {
-        s->out_channels = avctx->request_channels;
-        s->output_mode  = avctx->request_channels == 1 ? AC3_CHMODE_MONO : AC3_CHMODE_STEREO;
+        /* set downmixing coefficients if needed */
+        if (s->channels != s->out_channels && !((s->output_mode & AC3_OUTPUT_LFEON) &&
+                s->fbw_channels == s->out_channels)) {
+            set_downmix_coeffs(s);
+        }
+    } else if (!s->out_channels) {
+        s->out_channels = avctx->channels;
+        if (s->out_channels < s->channels)
+            s->output_mode  = s->out_channels == 1 ? AC3_CHMODE_MONO : AC3_CHMODE_STEREO;
     }
-    avctx->channels = s->out_channels;
-
-    /* set downmixing coefficients if needed */
-    if(s->channels != s->out_channels && !((s->output_mode & AC3_OUTPUT_LFEON) &&
-            s->fbw_channels == s->out_channels)) {
-        set_downmix_coeffs(s);
+    /* set audio service type based on bitstream mode for AC-3 */
+    avctx->audio_service_type = s->bitstream_mode;
+    if (s->bitstream_mode == 0x7 && s->channels > 1)
+        avctx->audio_service_type = AV_AUDIO_SERVICE_TYPE_KARAOKE;
+
+    /* get output buffer */
+    s->frame.nb_samples = s->num_blocks * 256;
+    if ((ret = avctx->get_buffer(avctx, &s->frame)) < 0) {
+        av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
+        return ret;
     }
-
-    /* parse the audio blocks */
-    for (blk = 0; blk < NB_BLOCKS; blk++) {
-        if (ac3_parse_audio_block(s, blk)) {
-            av_log(avctx, AV_LOG_ERROR, "error parsing the audio block\n");
-            *data_size = 0;
-            return s->frame_size;
+    out_samples_flt = (float   *)s->frame.data[0];
+    out_samples_s16 = (int16_t *)s->frame.data[0];
+
+    /* decode the audio blocks */
+    channel_map = ff_ac3_dec_channel_map[s->output_mode & ~AC3_OUTPUT_LFEON][s->lfe_on];
+    for (ch = 0; ch < s->out_channels; ch++)
+        output[ch] = s->output[channel_map[ch]];
+    for (blk = 0; blk < s->num_blocks; blk++) {
+        if (!err && decode_audio_block(s, blk)) {
+            av_log(avctx, AV_LOG_ERROR, "error decoding the audio block\n");
+            err = 1;
+        }
+        if (avctx->sample_fmt == AV_SAMPLE_FMT_FLT) {
+            s->fmt_conv.float_interleave(out_samples_flt, output, 256,
+                                         s->out_channels);
+            out_samples_flt += 256 * s->out_channels;
+        } else {
+            s->fmt_conv.float_to_int16_interleave(out_samples_s16, output, 256,
+                                                  s->out_channels);
+            out_samples_s16 += 256 * s->out_channels;
         }
-        for (i = 0; i < 256; i++)
-            for (ch = 0; ch < s->out_channels; ch++)
-                *(out_samples++) = s->int_output[ch][i];
     }
-    *data_size = NB_BLOCKS * 256 * avctx->channels * sizeof (int16_t);
-    return s->frame_size;
+
+    *got_frame_ptr   = 1;
+    *(AVFrame *)data = s->frame;
+
+    return FFMIN(buf_size, s->frame_size);
 }
 
 /**
  * Uninitialize the AC-3 decoder.
  */
-static int ac3_decode_end(AVCodecContext *avctx)
+static av_cold int ac3_decode_end(AVCodecContext *avctx)
 {
     AC3DecodeContext *s = avctx->priv_data;
     ff_mdct_end(&s->imdct_512);
@@ -1186,12 +1443,57 @@ static int ac3_decode_end(AVCodecContext *avctx)
     return 0;
 }
 
-AVCodec ac3_decoder = {
-    .name = "ac3",
-    .type = CODEC_TYPE_AUDIO,
-    .id = CODEC_ID_AC3,
+#define OFFSET(x) offsetof(AC3DecodeContext, x)
+#define PAR (AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM)
+static const AVOption options[] = {
+    { "drc_scale", "percentage of dynamic range compression to apply", OFFSET(drc_scale), AV_OPT_TYPE_FLOAT, {1.0}, 0.0, 1.0, PAR },
+    { NULL},
+};
+
+static const AVClass ac3_decoder_class = {
+    .class_name = "AC3 decoder",
+    .item_name  = av_default_item_name,
+    .option     = options,
+    .version    = LIBAVUTIL_VERSION_INT,
+};
+
+AVCodec ff_ac3_decoder = {
+    .name           = "ac3",
+    .type           = AVMEDIA_TYPE_AUDIO,
+    .id             = CODEC_ID_AC3,
+    .priv_data_size = sizeof (AC3DecodeContext),
+    .init           = ac3_decode_init,
+    .close          = ac3_decode_end,
+    .decode         = ac3_decode_frame,
+    .capabilities   = CODEC_CAP_DR1,
+    .long_name      = NULL_IF_CONFIG_SMALL("ATSC A/52A (AC-3)"),
+    .sample_fmts    = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLT,
+                                                      AV_SAMPLE_FMT_S16,
+                                                      AV_SAMPLE_FMT_NONE },
+    .priv_class     = &ac3_decoder_class,
+};
+
+#if CONFIG_EAC3_DECODER
+static const AVClass eac3_decoder_class = {
+    .class_name = "E-AC3 decoder",
+    .item_name  = av_default_item_name,
+    .option     = options,
+    .version    = LIBAVUTIL_VERSION_INT,
+};
+
+AVCodec ff_eac3_decoder = {
+    .name           = "eac3",
+    .type           = AVMEDIA_TYPE_AUDIO,
+    .id             = CODEC_ID_EAC3,
     .priv_data_size = sizeof (AC3DecodeContext),
-    .init = ac3_decode_init,
-    .close = ac3_decode_end,
-    .decode = ac3_decode_frame,
+    .init           = ac3_decode_init,
+    .close          = ac3_decode_end,
+    .decode         = ac3_decode_frame,
+    .capabilities   = CODEC_CAP_DR1,
+    .long_name      = NULL_IF_CONFIG_SMALL("ATSC A/52B (AC-3, E-AC-3)"),
+    .sample_fmts    = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLT,
+                                                      AV_SAMPLE_FMT_S16,
+                                                      AV_SAMPLE_FMT_NONE },
+    .priv_class     = &eac3_decoder_class,
 };
+#endif