]> git.sesse.net Git - ffmpeg/blobdiff - libavcodec/aptx.c
avcodec: Remove deprecated VBV delay field
[ffmpeg] / libavcodec / aptx.c
index 8750d8421fb4e1dfa5cec8cee0bf3be7cfde66bd..3aeee1907c9df922b99acbb531d0d322090d5ae3 100644 (file)
  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  */
 
-#include "libavutil/intreadwrite.h"
-#include "avcodec.h"
-#include "internal.h"
-#include "mathops.h"
-#include "audio_frame_queue.h"
-
-
-enum channels {
-    LEFT,
-    RIGHT,
-    NB_CHANNELS
-};
-
-enum subbands {
-    LF,  // Low Frequency (0-5.5 kHz)
-    MLF, // Medium-Low Frequency (5.5-11kHz)
-    MHF, // Medium-High Frequency (11-16.5kHz)
-    HF,  // High Frequency (16.5-22kHz)
-    NB_SUBBANDS
-};
-
-#define NB_FILTERS 2
-#define FILTER_TAPS 16
-
-typedef struct {
-    int pos;
-    int32_t buffer[2*FILTER_TAPS];
-} FilterSignal;
-
-typedef struct {
-    FilterSignal outer_filter_signal[NB_FILTERS];
-    FilterSignal inner_filter_signal[NB_FILTERS][NB_FILTERS];
-} QMFAnalysis;
-
-typedef struct {
-    int32_t quantized_sample;
-    int32_t quantized_sample_parity_change;
-    int32_t error;
-} Quantize;
-
-typedef struct {
-    int32_t quantization_factor;
-    int32_t factor_select;
-    int32_t reconstructed_difference;
-} InvertQuantize;
-
-typedef struct {
-    int32_t prev_sign[2];
-    int32_t s_weight[2];
-    int32_t d_weight[24];
-    int32_t pos;
-    int32_t reconstructed_differences[48];
-    int32_t previous_reconstructed_sample;
-    int32_t predicted_difference;
-    int32_t predicted_sample;
-} Prediction;
-
-typedef struct {
-    int32_t codeword_history;
-    int32_t dither_parity;
-    int32_t dither[NB_SUBBANDS];
-
-    QMFAnalysis qmf;
-    Quantize quantize[NB_SUBBANDS];
-    InvertQuantize invert_quantize[NB_SUBBANDS];
-    Prediction prediction[NB_SUBBANDS];
-} Channel;
-
-typedef struct {
-    int hd;
-    int block_size;
-    int32_t sync_idx;
-    Channel channels[NB_CHANNELS];
-    AudioFrameQueue afq;
-} AptXContext;
+#include "aptx.h"
 
 
 static const int32_t quantize_intervals_LF[65] = {
@@ -383,17 +309,7 @@ static const int16_t hd_quantize_factor_select_offset_HF[17] = {
     70,  90, 115, 147, 192, 264, 398, 521, 521,
 };
 
-typedef const struct {
-    const int32_t *quantize_intervals;
-    const int32_t *invert_quantize_dither_factors;
-    const int32_t *quantize_dither_factors;
-    const int16_t *quantize_factor_select_offset;
-    int tables_size;
-    int32_t factor_max;
-    int32_t prediction_order;
-} ConstTables;
-
-static ConstTables tables[2][NB_SUBBANDS] = {
+ConstTables ff_aptx_quant_tables[2][NB_SUBBANDS] = {
     {
         [LF]  = { quantize_intervals_LF,
                   invert_quantize_dither_factors_LF,
@@ -456,34 +372,16 @@ static const int16_t quantization_factors[32] = {
 };
 
 
-/* Rounded right shift with optionnal clipping */
-#define RSHIFT_SIZE(size)                                                     \
-av_always_inline                                                              \
-static int##size##_t rshift##size(int##size##_t value, int shift)             \
-{                                                                             \
-    int##size##_t rounding = (int##size##_t)1 << (shift - 1);                 \
-    int##size##_t mask = ((int##size##_t)1 << (shift + 1)) - 1;               \
-    return ((value + rounding) >> shift) - ((value & mask) == rounding);      \
-}                                                                             \
-av_always_inline                                                              \
-static int##size##_t rshift##size##_clip24(int##size##_t value, int shift)    \
-{                                                                             \
-    return av_clip_intp2(rshift##size(value, shift), 23);                     \
-}
-RSHIFT_SIZE(32)
-RSHIFT_SIZE(64)
-
-
 av_always_inline
 static void aptx_update_codeword_history(Channel *channel)
 {
     int32_t cw = ((channel->quantize[0].quantized_sample & 3) << 0) +
                  ((channel->quantize[1].quantized_sample & 2) << 1) +
                  ((channel->quantize[2].quantized_sample & 1) << 3);
-    channel->codeword_history = (cw << 8) + (channel->codeword_history << 4);
+    channel->codeword_history = (cw << 8) + ((unsigned)channel->codeword_history << 4);
 }
 
-static void aptx_generate_dither(Channel *channel)
+void ff_aptx_generate_dither(Channel *channel)
 {
     int subband;
     int64_t m;
@@ -492,262 +390,12 @@ static void aptx_generate_dither(Channel *channel)
     aptx_update_codeword_history(channel);
 
     m = (int64_t)5184443 * (channel->codeword_history >> 7);
-    d = (m << 2) + (m >> 22);
+    d = (m * 4) + (m >> 22);
     for (subband = 0; subband < NB_SUBBANDS; subband++)
-        channel->dither[subband] = d << (23 - 5*subband);
+        channel->dither[subband] = (unsigned)d << (23 - 5*subband);
     channel->dither_parity = (d >> 25) & 1;
 }
 
-/*
- * Convolution filter coefficients for the outer QMF of the QMF tree.
- * The 2 sets are a mirror of each other.
- */
-static const int32_t aptx_qmf_outer_coeffs[NB_FILTERS][FILTER_TAPS] = {
-    {
-        730, -413, -9611, 43626, -121026, 269973, -585547, 2801966,
-        697128, -160481, 27611, 8478, -10043, 3511, 688, -897,
-    },
-    {
-        -897, 688, 3511, -10043, 8478, 27611, -160481, 697128,
-        2801966, -585547, 269973, -121026, 43626, -9611, -413, 730,
-    },
-};
-
-/*
- * Convolution filter coefficients for the inner QMF of the QMF tree.
- * The 2 sets are a mirror of each other.
- */
-static const int32_t aptx_qmf_inner_coeffs[NB_FILTERS][FILTER_TAPS] = {
-    {
-       1033, -584, -13592, 61697, -171156, 381799, -828088, 3962579,
-       985888, -226954, 39048, 11990, -14203, 4966, 973, -1268,
-    },
-    {
-      -1268, 973, 4966, -14203, 11990, 39048, -226954, 985888,
-      3962579, -828088, 381799, -171156, 61697, -13592, -584, 1033,
-    },
-};
-
-/*
- * Push one sample into a circular signal buffer.
- */
-av_always_inline
-static void aptx_qmf_filter_signal_push(FilterSignal *signal, int32_t sample)
-{
-    signal->buffer[signal->pos            ] = sample;
-    signal->buffer[signal->pos+FILTER_TAPS] = sample;
-    signal->pos = (signal->pos + 1) & (FILTER_TAPS - 1);
-}
-
-/*
- * Compute the convolution of the signal with the coefficients, and reduce
- * to 24 bits by applying the specified right shifting.
- */
-av_always_inline
-static int32_t aptx_qmf_convolution(FilterSignal *signal,
-                                    const int32_t coeffs[FILTER_TAPS],
-                                    int shift)
-{
-    int32_t *sig = &signal->buffer[signal->pos];
-    int64_t e = 0;
-    int i;
-
-    for (i = 0; i < FILTER_TAPS; i++)
-        e += MUL64(sig[i], coeffs[i]);
-
-    return rshift64_clip24(e, shift);
-}
-
-/*
- * Half-band QMF analysis filter realized with a polyphase FIR filter.
- * Split into 2 subbands and downsample by 2.
- * So for each pair of samples that goes in, one sample goes out,
- * split into 2 separate subbands.
- */
-av_always_inline
-static void aptx_qmf_polyphase_analysis(FilterSignal signal[NB_FILTERS],
-                                        const int32_t coeffs[NB_FILTERS][FILTER_TAPS],
-                                        int shift,
-                                        int32_t samples[NB_FILTERS],
-                                        int32_t *low_subband_output,
-                                        int32_t *high_subband_output)
-{
-    int32_t subbands[NB_FILTERS];
-    int i;
-
-    for (i = 0; i < NB_FILTERS; i++) {
-        aptx_qmf_filter_signal_push(&signal[i], samples[NB_FILTERS-1-i]);
-        subbands[i] = aptx_qmf_convolution(&signal[i], coeffs[i], shift);
-    }
-
-    *low_subband_output  = av_clip_intp2(subbands[0] + subbands[1], 23);
-    *high_subband_output = av_clip_intp2(subbands[0] - subbands[1], 23);
-}
-
-/*
- * Two stage QMF analysis tree.
- * Split 4 input samples into 4 subbands and downsample by 4.
- * So for each group of 4 samples that goes in, one sample goes out,
- * split into 4 separate subbands.
- */
-static void aptx_qmf_tree_analysis(QMFAnalysis *qmf,
-                                   int32_t samples[4],
-                                   int32_t subband_samples[4])
-{
-    int32_t intermediate_samples[4];
-    int i;
-
-    /* Split 4 input samples into 2 intermediate subbands downsampled to 2 samples */
-    for (i = 0; i < 2; i++)
-        aptx_qmf_polyphase_analysis(qmf->outer_filter_signal,
-                                    aptx_qmf_outer_coeffs, 23,
-                                    &samples[2*i],
-                                    &intermediate_samples[0+i],
-                                    &intermediate_samples[2+i]);
-
-    /* Split 2 intermediate subband samples into 4 final subbands downsampled to 1 sample */
-    for (i = 0; i < 2; i++)
-        aptx_qmf_polyphase_analysis(qmf->inner_filter_signal[i],
-                                    aptx_qmf_inner_coeffs, 23,
-                                    &intermediate_samples[2*i],
-                                    &subband_samples[2*i+0],
-                                    &subband_samples[2*i+1]);
-}
-
-/*
- * Half-band QMF synthesis filter realized with a polyphase FIR filter.
- * Join 2 subbands and upsample by 2.
- * So for each 2 subbands sample that goes in, a pair of samples goes out.
- */
-av_always_inline
-static void aptx_qmf_polyphase_synthesis(FilterSignal signal[NB_FILTERS],
-                                         const int32_t coeffs[NB_FILTERS][FILTER_TAPS],
-                                         int shift,
-                                         int32_t low_subband_input,
-                                         int32_t high_subband_input,
-                                         int32_t samples[NB_FILTERS])
-{
-    int32_t subbands[NB_FILTERS];
-    int i;
-
-    subbands[0] = low_subband_input + high_subband_input;
-    subbands[1] = low_subband_input - high_subband_input;
-
-    for (i = 0; i < NB_FILTERS; i++) {
-        aptx_qmf_filter_signal_push(&signal[i], subbands[1-i]);
-        samples[i] = aptx_qmf_convolution(&signal[i], coeffs[i], shift);
-    }
-}
-
-/*
- * Two stage QMF synthesis tree.
- * Join 4 subbands and upsample by 4.
- * So for each 4 subbands sample that goes in, a group of 4 samples goes out.
- */
-static void aptx_qmf_tree_synthesis(QMFAnalysis *qmf,
-                                    int32_t subband_samples[4],
-                                    int32_t samples[4])
-{
-    int32_t intermediate_samples[4];
-    int i;
-
-    /* Join 4 subbands into 2 intermediate subbands upsampled to 2 samples. */
-    for (i = 0; i < 2; i++)
-        aptx_qmf_polyphase_synthesis(qmf->inner_filter_signal[i],
-                                     aptx_qmf_inner_coeffs, 22,
-                                     subband_samples[2*i+0],
-                                     subband_samples[2*i+1],
-                                     &intermediate_samples[2*i]);
-
-    /* Join 2 samples from intermediate subbands upsampled to 4 samples. */
-    for (i = 0; i < 2; i++)
-        aptx_qmf_polyphase_synthesis(qmf->outer_filter_signal,
-                                     aptx_qmf_outer_coeffs, 21,
-                                     intermediate_samples[0+i],
-                                     intermediate_samples[2+i],
-                                     &samples[2*i]);
-}
-
-
-av_always_inline
-static int32_t aptx_bin_search(int32_t value, int32_t factor,
-                               const int32_t *intervals, int32_t nb_intervals)
-{
-    int32_t idx = 0;
-    int i;
-
-    for (i = nb_intervals >> 1; i > 0; i >>= 1)
-        if (MUL64(factor, intervals[idx + i]) <= ((int64_t)value << 24))
-            idx += i;
-
-    return idx;
-}
-
-static void aptx_quantize_difference(Quantize *quantize,
-                                     int32_t sample_difference,
-                                     int32_t dither,
-                                     int32_t quantization_factor,
-                                     ConstTables *tables)
-{
-    const int32_t *intervals = tables->quantize_intervals;
-    int32_t quantized_sample, dithered_sample, parity_change;
-    int32_t d, mean, interval, inv, sample_difference_abs;
-    int64_t error;
-
-    sample_difference_abs = FFABS(sample_difference);
-    sample_difference_abs = FFMIN(sample_difference_abs, (1 << 23) - 1);
-
-    quantized_sample = aptx_bin_search(sample_difference_abs >> 4,
-                                       quantization_factor,
-                                       intervals, tables->tables_size);
-
-    d = rshift32_clip24(MULH(dither, dither), 7) - (1 << 23);
-    d = rshift64(MUL64(d, tables->quantize_dither_factors[quantized_sample]), 23);
-
-    intervals += quantized_sample;
-    mean = (intervals[1] + intervals[0]) / 2;
-    interval = (intervals[1] - intervals[0]) * (-(sample_difference < 0) | 1);
-
-    dithered_sample = rshift64_clip24(MUL64(dither, interval) + ((int64_t)av_clip_intp2(mean + d, 23) << 32), 32);
-    error = ((int64_t)sample_difference_abs << 20) - MUL64(dithered_sample, quantization_factor);
-    quantize->error = FFABS(rshift64(error, 23));
-
-    parity_change = quantized_sample;
-    if (error < 0)
-        quantized_sample--;
-    else
-        parity_change--;
-
-    inv = -(sample_difference < 0);
-    quantize->quantized_sample               = quantized_sample ^ inv;
-    quantize->quantized_sample_parity_change = parity_change    ^ inv;
-}
-
-static void aptx_encode_channel(Channel *channel, int32_t samples[4], int hd)
-{
-    int32_t subband_samples[4];
-    int subband;
-    aptx_qmf_tree_analysis(&channel->qmf, samples, subband_samples);
-    aptx_generate_dither(channel);
-    for (subband = 0; subband < NB_SUBBANDS; subband++) {
-        int32_t diff = av_clip_intp2(subband_samples[subband] - channel->prediction[subband].predicted_sample, 23);
-        aptx_quantize_difference(&channel->quantize[subband], diff,
-                                 channel->dither[subband],
-                                 channel->invert_quantize[subband].quantization_factor,
-                                 &tables[hd][subband]);
-    }
-}
-
-static void aptx_decode_channel(Channel *channel, int32_t samples[4])
-{
-    int32_t subband_samples[4];
-    int subband;
-    for (subband = 0; subband < NB_SUBBANDS; subband++)
-        subband_samples[subband] = channel->prediction[subband].previous_reconstructed_sample;
-    aptx_qmf_tree_synthesis(&channel->qmf, subband_samples, samples);
-}
-
-
 static void aptx_invert_quantization(InvertQuantize *invert_quantize,
                                      int32_t quantized_sample, int32_t dither,
                                      ConstTables *tables)
@@ -759,12 +407,12 @@ static void aptx_invert_quantization(InvertQuantize *invert_quantize,
     if (quantized_sample < 0)
         qr = -qr;
 
-    qr = rshift64_clip24(((int64_t)qr<<32) + MUL64(dither, tables->invert_quantize_dither_factors[idx]), 32);
+    qr = rshift64_clip24((qr * (1LL<<32)) + MUL64(dither, tables->invert_quantize_dither_factors[idx]), 32);
     invert_quantize->reconstructed_difference = MUL64(invert_quantize->quantization_factor, qr) >> 19;
 
     /* update factor_select */
     factor_select = 32620 * invert_quantize->factor_select;
-    factor_select = rshift32(factor_select + (tables->quantize_factor_select_offset[idx] << 15), 15);
+    factor_select = rshift32(factor_select + (tables->quantize_factor_select_offset[idx] * (1 << 15)), 15);
     invert_quantize->factor_select = av_clip(factor_select, 0, tables->factor_max);
 
     /* update quantization factor */
@@ -801,7 +449,7 @@ static void aptx_prediction_filtering(Prediction *prediction,
     prediction->previous_reconstructed_sample = reconstructed_sample;
 
     reconstructed_differences = aptx_reconstructed_differences_update(prediction, reconstructed_difference, order);
-    srd0 = FFDIFFSIGN(reconstructed_difference, 0) << 23;
+    srd0 = FFDIFFSIGN(reconstructed_difference, 0) * (1 << 23);
     for (i = 0; i < order; i++) {
         int32_t srd = FF_SIGNBIT(reconstructed_differences[-i-1]) | 1;
         prediction->d_weight[i] -= rshift32(prediction->d_weight[i] - srd*srd0, 8);
@@ -830,7 +478,7 @@ static void aptx_process_subband(InvertQuantize *invert_quantize,
 
     range = 0x100000;
     sw1 = rshift32(-same_sign[1] * prediction->s_weight[1], 1);
-    sw1 = (av_clip(sw1, -range, range) & ~0xF) << 4;
+    sw1 = (av_clip(sw1, -range, range) & ~0xF) * 16;
 
     range = 0x300000;
     weight[0] = 254 * prediction->s_weight[0] + 0x800000*same_sign[0] + sw1;
@@ -845,7 +493,7 @@ static void aptx_process_subband(InvertQuantize *invert_quantize,
                               tables->prediction_order);
 }
 
-static void aptx_invert_quantize_and_prediction(Channel *channel, int hd)
+void ff_aptx_invert_quantize_and_prediction(Channel *channel, int hd)
 {
     int subband;
     for (subband = 0; subband < NB_SUBBANDS; subband++)
@@ -853,142 +501,17 @@ static void aptx_invert_quantize_and_prediction(Channel *channel, int hd)
                              &channel->prediction[subband],
                              channel->quantize[subband].quantized_sample,
                              channel->dither[subband],
-                             &tables[hd][subband]);
-}
-
-static int32_t aptx_quantized_parity(Channel *channel)
-{
-    int32_t parity = channel->dither_parity;
-    int subband;
-
-    for (subband = 0; subband < NB_SUBBANDS; subband++)
-        parity ^= channel->quantize[subband].quantized_sample;
-
-    return parity & 1;
-}
-
-/* For each sample, ensure that the parity of all subbands of all channels
- * is 0 except once every 8 samples where the parity is forced to 1. */
-static int aptx_check_parity(Channel channels[NB_CHANNELS], int32_t *idx)
-{
-    int32_t parity = aptx_quantized_parity(&channels[LEFT])
-                   ^ aptx_quantized_parity(&channels[RIGHT]);
-
-    int eighth = *idx == 7;
-    *idx = (*idx + 1) & 7;
-
-    return parity ^ eighth;
+                             &ff_aptx_quant_tables[hd][subband]);
 }
 
-static void aptx_insert_sync(Channel channels[NB_CHANNELS], int32_t *idx)
-{
-    if (aptx_check_parity(channels, idx)) {
-        int i;
-        Channel *c;
-        static const int map[] = { 1, 2, 0, 3 };
-        Quantize *min = &channels[NB_CHANNELS-1].quantize[map[0]];
-        for (c = &channels[NB_CHANNELS-1]; c >= channels; c--)
-            for (i = 0; i < NB_SUBBANDS; i++)
-                if (c->quantize[map[i]].error < min->error)
-                    min = &c->quantize[map[i]];
-
-        /* Forcing the desired parity is done by offsetting by 1 the quantized
-         * sample from the subband featuring the smallest quantization error. */
-        min->quantized_sample = min->quantized_sample_parity_change;
-    }
-}
-
-static uint16_t aptx_pack_codeword(Channel *channel)
-{
-    int32_t parity = aptx_quantized_parity(channel);
-    return (((channel->quantize[3].quantized_sample & 0x06) | parity) << 13)
-         | (((channel->quantize[2].quantized_sample & 0x03)         ) << 11)
-         | (((channel->quantize[1].quantized_sample & 0x0F)         ) <<  7)
-         | (((channel->quantize[0].quantized_sample & 0x7F)         ) <<  0);
-}
-
-static uint32_t aptxhd_pack_codeword(Channel *channel)
-{
-    int32_t parity = aptx_quantized_parity(channel);
-    return (((channel->quantize[3].quantized_sample & 0x01E) | parity) << 19)
-         | (((channel->quantize[2].quantized_sample & 0x00F)         ) << 15)
-         | (((channel->quantize[1].quantized_sample & 0x03F)         ) <<  9)
-         | (((channel->quantize[0].quantized_sample & 0x1FF)         ) <<  0);
-}
-
-static void aptx_unpack_codeword(Channel *channel, uint16_t codeword)
-{
-    channel->quantize[0].quantized_sample = sign_extend(codeword >>  0, 7);
-    channel->quantize[1].quantized_sample = sign_extend(codeword >>  7, 4);
-    channel->quantize[2].quantized_sample = sign_extend(codeword >> 11, 2);
-    channel->quantize[3].quantized_sample = sign_extend(codeword >> 13, 3);
-    channel->quantize[3].quantized_sample = (channel->quantize[3].quantized_sample & ~1)
-                                          | aptx_quantized_parity(channel);
-}
-
-static void aptxhd_unpack_codeword(Channel *channel, uint32_t codeword)
-{
-    channel->quantize[0].quantized_sample = sign_extend(codeword >>  0, 9);
-    channel->quantize[1].quantized_sample = sign_extend(codeword >>  9, 6);
-    channel->quantize[2].quantized_sample = sign_extend(codeword >> 15, 4);
-    channel->quantize[3].quantized_sample = sign_extend(codeword >> 19, 5);
-    channel->quantize[3].quantized_sample = (channel->quantize[3].quantized_sample & ~1)
-                                          | aptx_quantized_parity(channel);
-}
-
-static void aptx_encode_samples(AptXContext *ctx,
-                                int32_t samples[NB_CHANNELS][4],
-                                uint8_t *output)
-{
-    int channel;
-    for (channel = 0; channel < NB_CHANNELS; channel++)
-        aptx_encode_channel(&ctx->channels[channel], samples[channel], ctx->hd);
-
-    aptx_insert_sync(ctx->channels, &ctx->sync_idx);
-
-    for (channel = 0; channel < NB_CHANNELS; channel++) {
-        aptx_invert_quantize_and_prediction(&ctx->channels[channel], ctx->hd);
-        if (ctx->hd)
-            AV_WB24(output + 3*channel,
-                    aptxhd_pack_codeword(&ctx->channels[channel]));
-        else
-            AV_WB16(output + 2*channel,
-                    aptx_pack_codeword(&ctx->channels[channel]));
-    }
-}
-
-static int aptx_decode_samples(AptXContext *ctx,
-                                const uint8_t *input,
-                                int32_t samples[NB_CHANNELS][4])
-{
-    int channel, ret;
-
-    for (channel = 0; channel < NB_CHANNELS; channel++) {
-        aptx_generate_dither(&ctx->channels[channel]);
-
-        if (ctx->hd)
-            aptxhd_unpack_codeword(&ctx->channels[channel],
-                                   AV_RB24(input + 3*channel));
-        else
-            aptx_unpack_codeword(&ctx->channels[channel],
-                                 AV_RB16(input + 2*channel));
-        aptx_invert_quantize_and_prediction(&ctx->channels[channel], ctx->hd);
-    }
-
-    ret = aptx_check_parity(ctx->channels, &ctx->sync_idx);
-
-    for (channel = 0; channel < NB_CHANNELS; channel++)
-        aptx_decode_channel(&ctx->channels[channel], samples[channel]);
-
-    return ret;
-}
-
-
-static av_cold int aptx_init(AVCodecContext *avctx)
+av_cold int ff_aptx_init(AVCodecContext *avctx)
 {
     AptXContext *s = avctx->priv_data;
     int chan, subband;
 
+    if (avctx->channels != 2)
+        return AVERROR_INVALIDDATA;
+
     s->hd = avctx->codec->id == AV_CODEC_ID_APTX_HD;
     s->block_size = s->hd ? 6 : 4;
 
@@ -1013,150 +536,3 @@ static av_cold int aptx_init(AVCodecContext *avctx)
     ff_af_queue_init(avctx, &s->afq);
     return 0;
 }
-
-static int aptx_decode_frame(AVCodecContext *avctx, void *data,
-                             int *got_frame_ptr, AVPacket *avpkt)
-{
-    AptXContext *s = avctx->priv_data;
-    AVFrame *frame = data;
-    int pos, opos, channel, sample, ret;
-
-    if (avpkt->size < s->block_size) {
-        av_log(avctx, AV_LOG_ERROR, "Packet is too small\n");
-        return AVERROR_INVALIDDATA;
-    }
-
-    /* get output buffer */
-    frame->channels = NB_CHANNELS;
-    frame->format = AV_SAMPLE_FMT_S32P;
-    frame->nb_samples = 4 * avpkt->size / s->block_size;
-    if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
-        return ret;
-
-    for (pos = 0, opos = 0; opos < frame->nb_samples; pos += s->block_size, opos += 4) {
-        int32_t samples[NB_CHANNELS][4];
-
-        if (aptx_decode_samples(s, &avpkt->data[pos], samples)) {
-            av_log(avctx, AV_LOG_ERROR, "Synchronization error\n");
-            return AVERROR_INVALIDDATA;
-        }
-
-        for (channel = 0; channel < NB_CHANNELS; channel++)
-            for (sample = 0; sample < 4; sample++)
-                AV_WN32A(&frame->data[channel][4*(opos+sample)],
-                         samples[channel][sample] << 8);
-    }
-
-    *got_frame_ptr = 1;
-    return s->block_size * frame->nb_samples / 4;
-}
-
-static int aptx_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
-                             const AVFrame *frame, int *got_packet_ptr)
-{
-    AptXContext *s = avctx->priv_data;
-    int pos, ipos, channel, sample, output_size, ret;
-
-    if ((ret = ff_af_queue_add(&s->afq, frame)) < 0)
-        return ret;
-
-    output_size = s->block_size * frame->nb_samples/4;
-    if ((ret = ff_alloc_packet2(avctx, avpkt, output_size, 0)) < 0)
-        return ret;
-
-    for (pos = 0, ipos = 0; pos < output_size; pos += s->block_size, ipos += 4) {
-        int32_t samples[NB_CHANNELS][4];
-
-        for (channel = 0; channel < NB_CHANNELS; channel++)
-            for (sample = 0; sample < 4; sample++)
-                samples[channel][sample] = (int32_t)AV_RN32A(&frame->data[channel][4*(ipos+sample)]) >> 8;
-
-        aptx_encode_samples(s, samples, avpkt->data + pos);
-    }
-
-    ff_af_queue_remove(&s->afq, frame->nb_samples, &avpkt->pts, &avpkt->duration);
-    *got_packet_ptr = 1;
-    return 0;
-}
-
-static av_cold int aptx_close(AVCodecContext *avctx)
-{
-    AptXContext *s = avctx->priv_data;
-    ff_af_queue_close(&s->afq);
-    return 0;
-}
-
-
-#if CONFIG_APTX_DECODER
-AVCodec ff_aptx_decoder = {
-    .name                  = "aptx",
-    .long_name             = NULL_IF_CONFIG_SMALL("aptX (Audio Processing Technology for Bluetooth)"),
-    .type                  = AVMEDIA_TYPE_AUDIO,
-    .id                    = AV_CODEC_ID_APTX,
-    .priv_data_size        = sizeof(AptXContext),
-    .init                  = aptx_init,
-    .decode                = aptx_decode_frame,
-    .close                 = aptx_close,
-    .capabilities          = AV_CODEC_CAP_DR1,
-    .caps_internal         = FF_CODEC_CAP_INIT_THREADSAFE,
-    .channel_layouts       = (const uint64_t[]) { AV_CH_LAYOUT_STEREO, 0},
-    .sample_fmts           = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S32P,
-                                                             AV_SAMPLE_FMT_NONE },
-};
-#endif
-
-#if CONFIG_APTX_HD_DECODER
-AVCodec ff_aptx_hd_decoder = {
-    .name                  = "aptx_hd",
-    .long_name             = NULL_IF_CONFIG_SMALL("aptX HD (Audio Processing Technology for Bluetooth)"),
-    .type                  = AVMEDIA_TYPE_AUDIO,
-    .id                    = AV_CODEC_ID_APTX_HD,
-    .priv_data_size        = sizeof(AptXContext),
-    .init                  = aptx_init,
-    .decode                = aptx_decode_frame,
-    .close                 = aptx_close,
-    .capabilities          = AV_CODEC_CAP_DR1,
-    .caps_internal         = FF_CODEC_CAP_INIT_THREADSAFE,
-    .channel_layouts       = (const uint64_t[]) { AV_CH_LAYOUT_STEREO, 0},
-    .sample_fmts           = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S32P,
-                                                             AV_SAMPLE_FMT_NONE },
-};
-#endif
-
-#if CONFIG_APTX_ENCODER
-AVCodec ff_aptx_encoder = {
-    .name                  = "aptx",
-    .long_name             = NULL_IF_CONFIG_SMALL("aptX (Audio Processing Technology for Bluetooth)"),
-    .type                  = AVMEDIA_TYPE_AUDIO,
-    .id                    = AV_CODEC_ID_APTX,
-    .priv_data_size        = sizeof(AptXContext),
-    .init                  = aptx_init,
-    .encode2               = aptx_encode_frame,
-    .close                 = aptx_close,
-    .capabilities          = AV_CODEC_CAP_SMALL_LAST_FRAME,
-    .caps_internal         = FF_CODEC_CAP_INIT_THREADSAFE,
-    .channel_layouts       = (const uint64_t[]) { AV_CH_LAYOUT_STEREO, 0},
-    .sample_fmts           = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S32P,
-                                                             AV_SAMPLE_FMT_NONE },
-    .supported_samplerates = (const int[]) {8000, 16000, 24000, 32000, 44100, 48000, 0},
-};
-#endif
-
-#if CONFIG_APTX_HD_ENCODER
-AVCodec ff_aptx_hd_encoder = {
-    .name                  = "aptx_hd",
-    .long_name             = NULL_IF_CONFIG_SMALL("aptX HD (Audio Processing Technology for Bluetooth)"),
-    .type                  = AVMEDIA_TYPE_AUDIO,
-    .id                    = AV_CODEC_ID_APTX_HD,
-    .priv_data_size        = sizeof(AptXContext),
-    .init                  = aptx_init,
-    .encode2               = aptx_encode_frame,
-    .close                 = aptx_close,
-    .capabilities          = AV_CODEC_CAP_SMALL_LAST_FRAME,
-    .caps_internal         = FF_CODEC_CAP_INIT_THREADSAFE,
-    .channel_layouts       = (const uint64_t[]) { AV_CH_LAYOUT_STEREO, 0},
-    .sample_fmts           = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S32P,
-                                                             AV_SAMPLE_FMT_NONE },
-    .supported_samplerates = (const int[]) {8000, 16000, 24000, 32000, 44100, 48000, 0},
-};
-#endif