]> git.sesse.net Git - ffmpeg/blobdiff - libavcodec/fft.c
10l: fix encoding for LFE channel
[ffmpeg] / libavcodec / fft.c
index 7c8cce84c6e2f8fe7ccec16854568b4b7e996c63..81765510e3aaa4233d16c38d6fab47da42f384bf 100644 (file)
@@ -1,7 +1,7 @@
 /*
  * FFT/IFFT transforms
  * Copyright (c) 2008 Loren Merritt
- * Copyright (c) 2002 Fabrice Bellard.
+ * Copyright (c) 2002 Fabrice Bellard
  * Partly based on libdjbfft by D. J. Bernstein
  *
  * This file is part of FFmpeg.
  */
 
 /**
- * @file fft.c
+ * @file
  * FFT/IFFT transforms.
  */
 
-#include "dsputil.h"
+#include <stdlib.h>
+#include <string.h>
+#include "libavutil/mathematics.h"
+#include "fft.h"
 
 /* cos(2*pi*x/n) for 0<=x<=n/4, followed by its reverse */
-DECLARE_ALIGNED_16(FFTSample, ff_cos_16[8]);
-DECLARE_ALIGNED_16(FFTSample, ff_cos_32[16]);
-DECLARE_ALIGNED_16(FFTSample, ff_cos_64[32]);
-DECLARE_ALIGNED_16(FFTSample, ff_cos_128[64]);
-DECLARE_ALIGNED_16(FFTSample, ff_cos_256[128]);
-DECLARE_ALIGNED_16(FFTSample, ff_cos_512[256]);
-DECLARE_ALIGNED_16(FFTSample, ff_cos_1024[512]);
-DECLARE_ALIGNED_16(FFTSample, ff_cos_2048[1024]);
-DECLARE_ALIGNED_16(FFTSample, ff_cos_4096[2048]);
-DECLARE_ALIGNED_16(FFTSample, ff_cos_8192[4096]);
-DECLARE_ALIGNED_16(FFTSample, ff_cos_16384[8192]);
-DECLARE_ALIGNED_16(FFTSample, ff_cos_32768[16384]);
-DECLARE_ALIGNED_16(FFTSample, ff_cos_65536[32768]);
-static FFTSample *ff_cos_tabs[] = {
+#if !CONFIG_HARDCODED_TABLES
+COSTABLE(16);
+COSTABLE(32);
+COSTABLE(64);
+COSTABLE(128);
+COSTABLE(256);
+COSTABLE(512);
+COSTABLE(1024);
+COSTABLE(2048);
+COSTABLE(4096);
+COSTABLE(8192);
+COSTABLE(16384);
+COSTABLE(32768);
+COSTABLE(65536);
+#endif
+COSTABLE_CONST FFTSample * const ff_cos_tabs[] = {
+    NULL, NULL, NULL, NULL,
     ff_cos_16, ff_cos_32, ff_cos_64, ff_cos_128, ff_cos_256, ff_cos_512, ff_cos_1024,
     ff_cos_2048, ff_cos_4096, ff_cos_8192, ff_cos_16384, ff_cos_32768, ff_cos_65536,
 };
@@ -58,166 +64,75 @@ static int split_radix_permutation(int i, int n, int inverse)
     else                  return split_radix_permutation(i, m, inverse)*4 - 1;
 }
 
-/**
- * The size of the FFT is 2^nbits. If inverse is TRUE, inverse FFT is
- * done
- */
-int ff_fft_init(FFTContext *s, int nbits, int inverse)
+av_cold void ff_init_ff_cos_tabs(int index)
 {
-    int i, j, m, n;
-    float alpha, c1, s1, s2;
-    int split_radix = 1;
-    int av_unused has_vectors;
+#if !CONFIG_HARDCODED_TABLES
+    int i;
+    int m = 1<<index;
+    double freq = 2*M_PI/m;
+    FFTSample *tab = ff_cos_tabs[index];
+    for(i=0; i<=m/4; i++)
+        tab[i] = cos(i*freq);
+    for(i=1; i<m/4; i++)
+        tab[m/2-i] = tab[i];
+#endif
+}
+
+av_cold int ff_fft_init(FFTContext *s, int nbits, int inverse)
+{
+    int i, j, n;
 
     if (nbits < 2 || nbits > 16)
         goto fail;
     s->nbits = nbits;
     n = 1 << nbits;
 
-    s->tmp_buf = NULL;
-    s->exptab = av_malloc((n / 2) * sizeof(FFTComplex));
-    if (!s->exptab)
-        goto fail;
     s->revtab = av_malloc(n * sizeof(uint16_t));
     if (!s->revtab)
         goto fail;
+    s->tmp_buf = av_malloc(n * sizeof(FFTComplex));
+    if (!s->tmp_buf)
+        goto fail;
     s->inverse = inverse;
 
-    s2 = inverse ? 1.0 : -1.0;
-
     s->fft_permute = ff_fft_permute_c;
-    s->fft_calc = ff_fft_calc_c;
-    s->imdct_calc = ff_imdct_calc_c;
-    s->imdct_half = ff_imdct_half_c;
-    s->exptab1 = NULL;
-
-#if defined HAVE_MMX && defined HAVE_YASM
-    has_vectors = mm_support();
-    if (has_vectors & FF_MM_SSE) {
-        /* SSE for P3/P4/K8 */
-        s->imdct_calc = ff_imdct_calc_sse;
-        s->imdct_half = ff_imdct_half_sse;
-        s->fft_permute = ff_fft_permute_sse;
-        s->fft_calc = ff_fft_calc_sse;
-    } else if (has_vectors & FF_MM_3DNOWEXT) {
-        /* 3DNowEx for K7 */
-        s->imdct_calc = ff_imdct_calc_3dn2;
-        s->imdct_half = ff_imdct_half_3dn2;
-        s->fft_calc = ff_fft_calc_3dn2;
-    } else if (has_vectors & FF_MM_3DNOW) {
-        /* 3DNow! for K6-2/3 */
-        s->imdct_calc = ff_imdct_calc_3dn;
-        s->imdct_half = ff_imdct_half_3dn;
-        s->fft_calc = ff_fft_calc_3dn;
-    }
-#elif defined HAVE_ALTIVEC && !defined ALTIVEC_USE_REFERENCE_C_CODE
-    has_vectors = mm_support();
-    if (has_vectors & FF_MM_ALTIVEC) {
-        s->fft_calc = ff_fft_calc_altivec;
-        split_radix = 0;
-    }
+    s->fft_calc    = ff_fft_calc_c;
+#if CONFIG_MDCT
+    s->imdct_calc  = ff_imdct_calc_c;
+    s->imdct_half  = ff_imdct_half_c;
+    s->mdct_calc   = ff_mdct_calc_c;
 #endif
 
-    if (split_radix) {
-        for(j=4; j<=nbits; j++) {
-            int m = 1<<j;
-            double freq = 2*M_PI/m;
-            FFTSample *tab = ff_cos_tabs[j-4];
-            for(i=0; i<=m/4; i++)
-                tab[i] = cos(i*freq);
-            for(i=1; i<m/4; i++)
-                tab[m/2-i] = tab[i];
-        }
-        for(i=0; i<n; i++)
-            s->revtab[-split_radix_permutation(i, n, s->inverse) & (n-1)] = i;
-        s->tmp_buf = av_malloc(n * sizeof(FFTComplex));
-    } else {
-        int np, nblocks, np2, l;
-        FFTComplex *q;
-
-        for(i=0; i<(n/2); i++) {
-            alpha = 2 * M_PI * (float)i / (float)n;
-            c1 = cos(alpha);
-            s1 = sin(alpha) * s2;
-            s->exptab[i].re = c1;
-            s->exptab[i].im = s1;
-        }
-
-        np = 1 << nbits;
-        nblocks = np >> 3;
-        np2 = np >> 1;
-        s->exptab1 = av_malloc(np * 2 * sizeof(FFTComplex));
-        if (!s->exptab1)
-            goto fail;
-        q = s->exptab1;
-        do {
-            for(l = 0; l < np2; l += 2 * nblocks) {
-                *q++ = s->exptab[l];
-                *q++ = s->exptab[l + nblocks];
-
-                q->re = -s->exptab[l].im;
-                q->im = s->exptab[l].re;
-                q++;
-                q->re = -s->exptab[l + nblocks].im;
-                q->im = s->exptab[l + nblocks].re;
-                q++;
-            }
-            nblocks = nblocks >> 1;
-        } while (nblocks != 0);
-        av_freep(&s->exptab);
-
-        /* compute bit reverse table */
-        for(i=0;i<n;i++) {
-            m=0;
-            for(j=0;j<nbits;j++) {
-                m |= ((i >> j) & 1) << (nbits-j-1);
-            }
-            s->revtab[i]=m;
-        }
+    if (ARCH_ARM)     ff_fft_init_arm(s);
+    if (HAVE_ALTIVEC) ff_fft_init_altivec(s);
+    if (HAVE_MMX)     ff_fft_init_mmx(s);
+
+    for(j=4; j<=nbits; j++) {
+        ff_init_ff_cos_tabs(j);
     }
+    for(i=0; i<n; i++)
+        s->revtab[-split_radix_permutation(i, n, s->inverse) & (n-1)] = i;
 
     return 0;
  fail:
     av_freep(&s->revtab);
-    av_freep(&s->exptab);
-    av_freep(&s->exptab1);
     av_freep(&s->tmp_buf);
     return -1;
 }
 
-/**
- * Do the permutation needed BEFORE calling ff_fft_calc()
- */
 void ff_fft_permute_c(FFTContext *s, FFTComplex *z)
 {
-    int j, k, np;
-    FFTComplex tmp;
+    int j, np;
     const uint16_t *revtab = s->revtab;
     np = 1 << s->nbits;
-
-    if (s->tmp_buf) {
-        /* TODO: handle split-radix permute in a more optimal way, probably in-place */
-        for(j=0;j<np;j++) s->tmp_buf[revtab[j]] = z[j];
-        memcpy(z, s->tmp_buf, np * sizeof(FFTComplex));
-        return;
-    }
-
-    /* reverse */
-    for(j=0;j<np;j++) {
-        k = revtab[j];
-        if (k < j) {
-            tmp = z[k];
-            z[k] = z[j];
-            z[j] = tmp;
-        }
-    }
+    /* TODO: handle split-radix permute in a more optimal way, probably in-place */
+    for(j=0;j<np;j++) s->tmp_buf[revtab[j]] = z[j];
+    memcpy(z, s->tmp_buf, np * sizeof(FFTComplex));
 }
 
-void ff_fft_end(FFTContext *s)
+av_cold void ff_fft_end(FFTContext *s)
 {
     av_freep(&s->revtab);
-    av_freep(&s->exptab);
-    av_freep(&s->exptab1);
     av_freep(&s->tmp_buf);
 }
 
@@ -336,7 +251,7 @@ static void fft8(FFTComplex *z)
     TRANSFORM(z[1],z[3],z[5],z[7],sqrthalf,sqrthalf);
 }
 
-#ifndef CONFIG_SMALL
+#if !CONFIG_SMALL
 static void fft16(FFTComplex *z)
 {
     FFTSample t1, t2, t3, t4, t5, t6;
@@ -358,7 +273,7 @@ DECL_FFT(64,32,16)
 DECL_FFT(128,64,32)
 DECL_FFT(256,128,64)
 DECL_FFT(512,256,128)
-#ifndef CONFIG_SMALL
+#if !CONFIG_SMALL
 #define pass pass_big
 #endif
 DECL_FFT(1024,512,256)
@@ -369,16 +284,11 @@ DECL_FFT(16384,8192,4096)
 DECL_FFT(32768,16384,8192)
 DECL_FFT(65536,32768,16384)
 
-static void (*fft_dispatch[])(FFTComplex*) = {
+static void (* const fft_dispatch[])(FFTComplex*) = {
     fft4, fft8, fft16, fft32, fft64, fft128, fft256, fft512, fft1024,
     fft2048, fft4096, fft8192, fft16384, fft32768, fft65536,
 };
 
-/**
- * Do a complex FFT with the parameters defined in ff_fft_init(). The
- * input data must be permuted before with s->revtab table. No
- * 1.0/sqrt(n) normalization is done.
- */
 void ff_fft_calc_c(FFTContext *s, FFTComplex *z)
 {
     fft_dispatch[s->nbits-2](z);