]> git.sesse.net Git - ffmpeg/blobdiff - libavcodec/opus_celt.c
avcodec/rkmpp : remove stream start retries before first frame.
[ffmpeg] / libavcodec / opus_celt.c
index 84d484753b361fe9292d3941a2510a0f771ace51..115dd8c63e5b2b5eade765c15208b05fe390b4a3 100644 (file)
@@ -143,345 +143,14 @@ static void celt_decode_tf_changes(CeltFrame *f, OpusRangeCoder *rc)
     }
 }
 
-static void celt_decode_allocation(CeltFrame *f, OpusRangeCoder *rc)
-{
-    // approx. maximum bit allocation for each band before boost/trim
-    int cap[CELT_MAX_BANDS];
-    int boost[CELT_MAX_BANDS];
-    int threshold[CELT_MAX_BANDS];
-    int bits1[CELT_MAX_BANDS];
-    int bits2[CELT_MAX_BANDS];
-    int trim_offset[CELT_MAX_BANDS];
-
-    int skip_start_band = f->start_band;
-    int dynalloc       = 6;
-    int alloctrim      = 5;
-    int extrabits      = 0;
-
-    int skip_bit             = 0;
-    int intensity_stereo_bit = 0;
-    int dual_stereo_bit      = 0;
-
-    int remaining, bandbits;
-    int low, high, total, done;
-    int totalbits;
-    int consumed;
-    int i, j;
-
-    consumed = opus_rc_tell(rc);
-
-    /* obtain spread flag */
-    f->spread = CELT_SPREAD_NORMAL;
-    if (consumed + 4 <= f->framebits)
-        f->spread = ff_opus_rc_dec_cdf(rc, ff_celt_model_spread);
-
-    /* generate static allocation caps */
-    for (i = 0; i < CELT_MAX_BANDS; i++) {
-        cap[i] = (ff_celt_static_caps[f->size][f->channels - 1][i] + 64)
-                 * ff_celt_freq_range[i] << (f->channels - 1) << f->size >> 2;
-    }
-
-    /* obtain band boost */
-    totalbits = f->framebits << 3; // convert to 1/8 bits
-    consumed = opus_rc_tell_frac(rc);
-    for (i = f->start_band; i < f->end_band; i++) {
-        int quanta, band_dynalloc;
-
-        boost[i] = 0;
-
-        quanta = ff_celt_freq_range[i] << (f->channels - 1) << f->size;
-        quanta = FFMIN(quanta << 3, FFMAX(6 << 3, quanta));
-        band_dynalloc = dynalloc;
-        while (consumed + (band_dynalloc<<3) < totalbits && boost[i] < cap[i]) {
-            int add = ff_opus_rc_dec_log(rc, band_dynalloc);
-            consumed = opus_rc_tell_frac(rc);
-            if (!add)
-                break;
-
-            boost[i]     += quanta;
-            totalbits    -= quanta;
-            band_dynalloc = 1;
-        }
-        /* dynalloc is more likely to occur if it's already been used for earlier bands */
-        if (boost[i])
-            dynalloc = FFMAX(2, dynalloc - 1);
-    }
-
-    /* obtain allocation trim */
-    if (consumed + (6 << 3) <= totalbits)
-        alloctrim = ff_opus_rc_dec_cdf(rc, ff_celt_model_alloc_trim);
-
-    /* anti-collapse bit reservation */
-    totalbits = (f->framebits << 3) - opus_rc_tell_frac(rc) - 1;
-    f->anticollapse_needed = 0;
-    if (f->blocks > 1 && f->size >= 2 &&
-        totalbits >= ((f->size + 2) << 3))
-        f->anticollapse_needed = 1 << 3;
-    totalbits -= f->anticollapse_needed;
-
-    /* band skip bit reservation */
-    if (totalbits >= 1 << 3)
-        skip_bit = 1 << 3;
-    totalbits -= skip_bit;
-
-    /* intensity/dual stereo bit reservation */
-    if (f->channels == 2) {
-        intensity_stereo_bit = ff_celt_log2_frac[f->end_band - f->start_band];
-        if (intensity_stereo_bit <= totalbits) {
-            totalbits -= intensity_stereo_bit;
-            if (totalbits >= 1 << 3) {
-                dual_stereo_bit = 1 << 3;
-                totalbits -= 1 << 3;
-            }
-        } else
-            intensity_stereo_bit = 0;
-    }
-
-    for (i = f->start_band; i < f->end_band; i++) {
-        int trim     = alloctrim - 5 - f->size;
-        int band     = ff_celt_freq_range[i] * (f->end_band - i - 1);
-        int duration = f->size + 3;
-        int scale    = duration + f->channels - 1;
-
-        /* PVQ minimum allocation threshold, below this value the band is
-         * skipped */
-        threshold[i] = FFMAX(3 * ff_celt_freq_range[i] << duration >> 4,
-                             f->channels << 3);
-
-        trim_offset[i] = trim * (band << scale) >> 6;
-
-        if (ff_celt_freq_range[i] << f->size == 1)
-            trim_offset[i] -= f->channels << 3;
-    }
-
-    /* bisection */
-    low  = 1;
-    high = CELT_VECTORS - 1;
-    while (low <= high) {
-        int center = (low + high) >> 1;
-        done = total = 0;
-
-        for (i = f->end_band - 1; i >= f->start_band; i--) {
-            bandbits = ff_celt_freq_range[i] * ff_celt_static_alloc[center][i]
-                       << (f->channels - 1) << f->size >> 2;
-
-            if (bandbits)
-                bandbits = FFMAX(0, bandbits + trim_offset[i]);
-            bandbits += boost[i];
-
-            if (bandbits >= threshold[i] || done) {
-                done = 1;
-                total += FFMIN(bandbits, cap[i]);
-            } else if (bandbits >= f->channels << 3)
-                total += f->channels << 3;
-        }
-
-        if (total > totalbits)
-            high = center - 1;
-        else
-            low = center + 1;
-    }
-    high = low--;
-
-    for (i = f->start_band; i < f->end_band; i++) {
-        bits1[i] = ff_celt_freq_range[i] * ff_celt_static_alloc[low][i]
-                   << (f->channels - 1) << f->size >> 2;
-        bits2[i] = high >= CELT_VECTORS ? cap[i] :
-                   ff_celt_freq_range[i] * ff_celt_static_alloc[high][i]
-                   << (f->channels - 1) << f->size >> 2;
-
-        if (bits1[i])
-            bits1[i] = FFMAX(0, bits1[i] + trim_offset[i]);
-        if (bits2[i])
-            bits2[i] = FFMAX(0, bits2[i] + trim_offset[i]);
-        if (low)
-            bits1[i] += boost[i];
-        bits2[i] += boost[i];
-
-        if (boost[i])
-            skip_start_band = i;
-        bits2[i] = FFMAX(0, bits2[i] - bits1[i]);
-    }
-
-    /* bisection */
-    low  = 0;
-    high = 1 << CELT_ALLOC_STEPS;
-    for (i = 0; i < CELT_ALLOC_STEPS; i++) {
-        int center = (low + high) >> 1;
-        done = total = 0;
-
-        for (j = f->end_band - 1; j >= f->start_band; j--) {
-            bandbits = bits1[j] + (center * bits2[j] >> CELT_ALLOC_STEPS);
-
-            if (bandbits >= threshold[j] || done) {
-                done = 1;
-                total += FFMIN(bandbits, cap[j]);
-            } else if (bandbits >= f->channels << 3)
-                total += f->channels << 3;
-        }
-        if (total > totalbits)
-            high = center;
-        else
-            low = center;
-    }
-
-    done = total = 0;
-    for (i = f->end_band - 1; i >= f->start_band; i--) {
-        bandbits = bits1[i] + (low * bits2[i] >> CELT_ALLOC_STEPS);
-
-        if (bandbits >= threshold[i] || done)
-            done = 1;
-        else
-            bandbits = (bandbits >= f->channels << 3) ?
-                       f->channels << 3 : 0;
-
-        bandbits     = FFMIN(bandbits, cap[i]);
-        f->pulses[i] = bandbits;
-        total      += bandbits;
-    }
-
-    /* band skipping */
-    for (f->coded_bands = f->end_band; ; f->coded_bands--) {
-        int allocation;
-        j = f->coded_bands - 1;
-
-        if (j == skip_start_band) {
-            /* all remaining bands are not skipped */
-            totalbits += skip_bit;
-            break;
-        }
-
-        /* determine the number of bits available for coding "do not skip" markers */
-        remaining   = totalbits - total;
-        bandbits    = remaining / (ff_celt_freq_bands[j+1] - ff_celt_freq_bands[f->start_band]);
-        remaining  -= bandbits  * (ff_celt_freq_bands[j+1] - ff_celt_freq_bands[f->start_band]);
-        allocation  = f->pulses[j] + bandbits * ff_celt_freq_range[j]
-                      + FFMAX(0, remaining - (ff_celt_freq_bands[j] - ff_celt_freq_bands[f->start_band]));
-
-        /* a "do not skip" marker is only coded if the allocation is
-           above the chosen threshold */
-        if (allocation >= FFMAX(threshold[j], (f->channels + 1) <<3 )) {
-            if (ff_opus_rc_dec_log(rc, 1))
-                break;
-
-            total      += 1 << 3;
-            allocation -= 1 << 3;
-        }
-
-        /* the band is skipped, so reclaim its bits */
-        total -= f->pulses[j];
-        if (intensity_stereo_bit) {
-            total -= intensity_stereo_bit;
-            intensity_stereo_bit = ff_celt_log2_frac[j - f->start_band];
-            total += intensity_stereo_bit;
-        }
-
-        total += f->pulses[j] = (allocation >= f->channels << 3) ?
-                              f->channels << 3 : 0;
-    }
-
-    /* obtain stereo flags */
-    f->intensity_stereo = 0;
-    f->dual_stereo      = 0;
-    if (intensity_stereo_bit)
-        f->intensity_stereo = f->start_band +
-                          ff_opus_rc_dec_uint(rc, f->coded_bands + 1 - f->start_band);
-    if (f->intensity_stereo <= f->start_band)
-        totalbits += dual_stereo_bit; /* no intensity stereo means no dual stereo */
-    else if (dual_stereo_bit)
-        f->dual_stereo = ff_opus_rc_dec_log(rc, 1);
-
-    /* supply the remaining bits in this frame to lower bands */
-    remaining = totalbits - total;
-    bandbits  = remaining / (ff_celt_freq_bands[f->coded_bands] - ff_celt_freq_bands[f->start_band]);
-    remaining -= bandbits * (ff_celt_freq_bands[f->coded_bands] - ff_celt_freq_bands[f->start_band]);
-    for (i = f->start_band; i < f->coded_bands; i++) {
-        int bits = FFMIN(remaining, ff_celt_freq_range[i]);
-
-        f->pulses[i] += bits + bandbits * ff_celt_freq_range[i];
-        remaining    -= bits;
-    }
-
-    for (i = f->start_band; i < f->coded_bands; i++) {
-        int N = ff_celt_freq_range[i] << f->size;
-        int prev_extra = extrabits;
-        f->pulses[i] += extrabits;
-
-        if (N > 1) {
-            int dof;        // degrees of freedom
-            int temp;       // dof * channels * log(dof)
-            int offset;     // fine energy quantization offset, i.e.
-                            // extra bits assigned over the standard
-                            // totalbits/dof
-            int fine_bits, max_bits;
-
-            extrabits = FFMAX(0, f->pulses[i] - cap[i]);
-            f->pulses[i] -= extrabits;
-
-            /* intensity stereo makes use of an extra degree of freedom */
-            dof = N * f->channels
-                  + (f->channels == 2 && N > 2 && !f->dual_stereo && i < f->intensity_stereo);
-            temp = dof * (ff_celt_log_freq_range[i] + (f->size<<3));
-            offset = (temp >> 1) - dof * CELT_FINE_OFFSET;
-            if (N == 2) /* dof=2 is the only case that doesn't fit the model */
-                offset += dof<<1;
-
-            /* grant an additional bias for the first and second pulses */
-            if (f->pulses[i] + offset < 2 * (dof << 3))
-                offset += temp >> 2;
-            else if (f->pulses[i] + offset < 3 * (dof << 3))
-                offset += temp >> 3;
-
-            fine_bits = (f->pulses[i] + offset + (dof << 2)) / (dof << 3);
-            max_bits  = FFMIN((f->pulses[i]>>3) >> (f->channels - 1),
-                              CELT_MAX_FINE_BITS);
-
-            max_bits  = FFMAX(max_bits, 0);
-
-            f->fine_bits[i] = av_clip(fine_bits, 0, max_bits);
-
-            /* if fine_bits was rounded down or capped,
-               give priority for the final fine energy pass */
-            f->fine_priority[i] = (f->fine_bits[i] * (dof<<3) >= f->pulses[i] + offset);
-
-            /* the remaining bits are assigned to PVQ */
-            f->pulses[i] -= f->fine_bits[i] << (f->channels - 1) << 3;
-        } else {
-            /* all bits go to fine energy except for the sign bit */
-            extrabits = FFMAX(0, f->pulses[i] - (f->channels << 3));
-            f->pulses[i] -= extrabits;
-            f->fine_bits[i] = 0;
-            f->fine_priority[i] = 1;
-        }
-
-        /* hand back a limited number of extra fine energy bits to this band */
-        if (extrabits > 0) {
-            int fineextra = FFMIN(extrabits >> (f->channels + 2),
-                                  CELT_MAX_FINE_BITS - f->fine_bits[i]);
-            f->fine_bits[i] += fineextra;
-
-            fineextra <<= f->channels + 2;
-            f->fine_priority[i] = (fineextra >= extrabits - prev_extra);
-            extrabits -= fineextra;
-        }
-    }
-    f->remaining = extrabits;
-
-    /* skipped bands dedicate all of their bits for fine energy */
-    for (; i < f->end_band; i++) {
-        f->fine_bits[i]     = f->pulses[i] >> (f->channels - 1) >> 3;
-        f->pulses[i]        = 0;
-        f->fine_priority[i] = f->fine_bits[i] < 1;
-    }
-}
-
 static void celt_denormalize(CeltFrame *f, CeltBlock *block, float *data)
 {
     int i, j;
 
     for (i = f->start_band; i < f->end_band; i++) {
         float *dst = data + (ff_celt_freq_bands[i] << f->size);
-        float norm = exp2f(block->energy[i] + ff_celt_mean_energy[i]);
+        float log_norm = block->energy[i] + ff_celt_mean_energy[i];
+        float norm = exp2f(FFMIN(log_norm, 32.0f));
 
         for (j = 0; j < ff_celt_freq_range[i] << f->size; j++)
             dst[j] *= norm;
@@ -675,98 +344,6 @@ static void process_anticollapse(CeltFrame *f, CeltBlock *block, float *X)
     }
 }
 
-static void celt_decode_bands(CeltFrame *f, OpusRangeCoder *rc)
-{
-    float lowband_scratch[8 * 22];
-    float norm[2 * 8 * 100];
-
-    int totalbits = (f->framebits << 3) - f->anticollapse_needed;
-
-    int update_lowband = 1;
-    int lowband_offset = 0;
-
-    int i, j;
-
-    memset(f->block[0].coeffs, 0, sizeof(f->block[0].coeffs));
-    memset(f->block[1].coeffs, 0, sizeof(f->block[0].coeffs));
-
-    for (i = f->start_band; i < f->end_band; i++) {
-        uint32_t cm[2] = { (1 << f->blocks) - 1, (1 << f->blocks) - 1 };
-        int band_offset = ff_celt_freq_bands[i] << f->size;
-        int band_size   = ff_celt_freq_range[i] << f->size;
-        float *X = f->block[0].coeffs + band_offset;
-        float *Y = (f->channels == 2) ? f->block[1].coeffs + band_offset : NULL;
-
-        int consumed = opus_rc_tell_frac(rc);
-        float *norm2 = norm + 8 * 100;
-        int effective_lowband = -1;
-        int b = 0;
-
-        /* Compute how many bits we want to allocate to this band */
-        if (i != f->start_band)
-            f->remaining -= consumed;
-        f->remaining2 = totalbits - consumed - 1;
-        if (i <= f->coded_bands - 1) {
-            int curr_balance = f->remaining / FFMIN(3, f->coded_bands-i);
-            b = av_clip_uintp2(FFMIN(f->remaining2 + 1, f->pulses[i] + curr_balance), 14);
-        }
-
-        if (ff_celt_freq_bands[i] - ff_celt_freq_range[i] >= ff_celt_freq_bands[f->start_band] &&
-            (update_lowband || lowband_offset == 0))
-            lowband_offset = i;
-
-        /* Get a conservative estimate of the collapse_mask's for the bands we're
-           going to be folding from. */
-        if (lowband_offset != 0 && (f->spread != CELT_SPREAD_AGGRESSIVE ||
-                                    f->blocks > 1 || f->tf_change[i] < 0)) {
-            int foldstart, foldend;
-
-            /* This ensures we never repeat spectral content within one band */
-            effective_lowband = FFMAX(ff_celt_freq_bands[f->start_band],
-                                      ff_celt_freq_bands[lowband_offset] - ff_celt_freq_range[i]);
-            foldstart = lowband_offset;
-            while (ff_celt_freq_bands[--foldstart] > effective_lowband);
-            foldend = lowband_offset - 1;
-            while (ff_celt_freq_bands[++foldend] < effective_lowband + ff_celt_freq_range[i]);
-
-            cm[0] = cm[1] = 0;
-            for (j = foldstart; j < foldend; j++) {
-                cm[0] |= f->block[0].collapse_masks[j];
-                cm[1] |= f->block[f->channels - 1].collapse_masks[j];
-            }
-        }
-
-        if (f->dual_stereo && i == f->intensity_stereo) {
-            /* Switch off dual stereo to do intensity */
-            f->dual_stereo = 0;
-            for (j = ff_celt_freq_bands[f->start_band] << f->size; j < band_offset; j++)
-                norm[j] = (norm[j] + norm2[j]) / 2;
-        }
-
-        if (f->dual_stereo) {
-            cm[0] = f->pvq->decode_band(f->pvq, f, rc, i, X, NULL, band_size, b / 2, f->blocks,
-                                        effective_lowband != -1 ? norm + (effective_lowband << f->size) : NULL, f->size,
-                                        norm + band_offset, 0, 1.0f, lowband_scratch, cm[0]);
-
-            cm[1] = f->pvq->decode_band(f->pvq, f, rc, i, Y, NULL, band_size, b/2, f->blocks,
-                                        effective_lowband != -1 ? norm2 + (effective_lowband << f->size) : NULL, f->size,
-                                        norm2 + band_offset, 0, 1.0f, lowband_scratch, cm[1]);
-        } else {
-            cm[0] = f->pvq->decode_band(f->pvq, f, rc, i, X, Y, band_size, b, f->blocks,
-                                        effective_lowband != -1 ? norm + (effective_lowband << f->size) : NULL, f->size,
-                                        norm + band_offset, 0, 1.0f, lowband_scratch, cm[0]|cm[1]);
-            cm[1] = cm[0];
-        }
-
-        f->block[0].collapse_masks[i]               = (uint8_t)cm[0];
-        f->block[f->channels - 1].collapse_masks[i] = (uint8_t)cm[1];
-        f->remaining += f->pulses[i] + consumed;
-
-        /* Update the folding position only as long as we have 1 bit/sample depth */
-        update_lowband = (b > band_size << 3);
-    }
-}
-
 int ff_celt_decode_frame(CeltFrame *f, OpusRangeCoder *rc,
                          float **output, int channels, int frame_size,
                          int start_band,  int end_band)
@@ -806,8 +383,10 @@ int ff_celt_decode_frame(CeltFrame *f, OpusRangeCoder *rc,
     if (!f->output_channels)
         f->output_channels = channels;
 
-    memset(f->block[0].collapse_masks, 0, sizeof(f->block[0].collapse_masks));
-    memset(f->block[1].collapse_masks, 0, sizeof(f->block[1].collapse_masks));
+    for (i = 0; i < f->channels; i++) {
+        memset(f->block[i].coeffs,         0, sizeof(f->block[i].coeffs));
+        memset(f->block[i].collapse_masks, 0, sizeof(f->block[i].collapse_masks));
+    }
 
     consumed = opus_rc_tell(rc);
 
@@ -842,9 +421,9 @@ int ff_celt_decode_frame(CeltFrame *f, OpusRangeCoder *rc,
 
     celt_decode_coarse_energy(f, rc);
     celt_decode_tf_changes   (f, rc);
-    celt_decode_allocation   (f, rc);
+    ff_celt_bitalloc         (f, rc, 0);
     celt_decode_fine_energy  (f, rc);
-    celt_decode_bands        (f, rc);
+    ff_celt_quant_bands      (f, rc);
 
     if (f->anticollapse_needed)
         f->anticollapse = ff_opus_rc_get_raw(rc, 1);
@@ -984,7 +563,8 @@ void ff_celt_free(CeltFrame **f)
     av_freep(f);
 }
 
-int ff_celt_init(AVCodecContext *avctx, CeltFrame **f, int output_channels)
+int ff_celt_init(AVCodecContext *avctx, CeltFrame **f, int output_channels,
+                 int apply_phase_inv)
 {
     CeltFrame *frm;
     int i, ret;
@@ -1001,12 +581,13 @@ int ff_celt_init(AVCodecContext *avctx, CeltFrame **f, int output_channels)
 
     frm->avctx           = avctx;
     frm->output_channels = output_channels;
+    frm->apply_phase_inv = apply_phase_inv;
 
     for (i = 0; i < FF_ARRAY_ELEMS(frm->imdct); i++)
         if ((ret = ff_mdct15_init(&frm->imdct[i], 1, i + 3, -1.0f/32768)) < 0)
             goto fail;
 
-    if ((ret = ff_celt_pvq_init(&frm->pvq)) < 0)
+    if ((ret = ff_celt_pvq_init(&frm->pvq, 0)) < 0)
         goto fail;
 
     frm->dsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT);