]> git.sesse.net Git - ffmpeg/blobdiff - libavfilter/vf_nlmeans.c
avfilter/vf_v360: add mask option, unset pixels are marked as transparent
[ffmpeg] / libavfilter / vf_nlmeans.c
index c30e44498f5f3721bee1de8095681b3ca282ad37..06233b0dd46a0cdbb9bc423bbc95467c728c68b9 100644 (file)
@@ -20,7 +20,6 @@
 
 /**
  * @todo
- * - SIMD for final weighted averaging
  * - better automatic defaults? see "Parameters" @ http://www.ipol.im/pub/art/2011/bcm_nlm/
  * - temporal support (probably doesn't need any displacement according to
  *   "Denoising image sequences does not require motion estimation")
 #include "video.h"
 
 struct weighted_avg {
-    double total_weight;
-    double sum;
+    float total_weight;
+    float sum;
 };
 
-#define WEIGHT_LUT_NBITS 9
-#define WEIGHT_LUT_SIZE  (1<<WEIGHT_LUT_NBITS)
-
 typedef struct NLMeansContext {
     const AVClass *class;
     int nb_planes;
@@ -63,9 +59,8 @@ typedef struct NLMeansContext {
     ptrdiff_t ii_lz_32;                         // linesize in 32-bit units of the integral image
     struct weighted_avg *wa;                    // weighted average of every pixel
     ptrdiff_t wa_linesize;                      // linesize for wa in struct size unit
-    double weight_lut[WEIGHT_LUT_SIZE];         // lookup table mapping (scaled) patch differences to their associated weights
-    double pdiff_lut_scale;                     // scale factor for patch differences before looking into the LUT
-    int max_meaningful_diff;                    // maximum difference considered (if the patch difference is too high we ignore the pixel)
+    float *weight_lut;                          // lookup table mapping (scaled) patch differences to their associated weights
+    uint32_t max_meaningful_diff;               // maximum difference considered (if the patch difference is too high we ignore the pixel)
     NLMeansDSPContext dsp;
 } NLMeansContext;
 
@@ -101,44 +96,6 @@ static int query_formats(AVFilterContext *ctx)
     return ff_set_common_formats(ctx, fmts_list);
 }
 
-/*
- * M is a discrete map where every entry contains the sum of all the entries
- * in the rectangle from the top-left origin of M to its coordinate. In the
- * following schema, "i" contains the sum of the whole map:
- *
- * M = +----------+-----------------+----+
- *     |          |                 |    |
- *     |          |                 |    |
- *     |         a|                b|   c|
- *     +----------+-----------------+----+
- *     |          |                 |    |
- *     |          |                 |    |
- *     |          |        X        |    |
- *     |          |                 |    |
- *     |         d|                e|   f|
- *     +----------+-----------------+----+
- *     |          |                 |    |
- *     |         g|                h|   i|
- *     +----------+-----------------+----+
- *
- * The sum of the X box can be calculated with:
- *    X = e-d-b+a
- *
- * See https://en.wikipedia.org/wiki/Summed_area_table
- *
- * The compute*_ssd functions compute the integral image M where every entry
- * contains the sum of the squared difference of every corresponding pixels of
- * two input planes of the same size as M.
- */
-static inline int get_integral_patch_value(const uint32_t *ii, int ii_lz_32, int x, int y, int p)
-{
-    const int e = ii[(y + p    ) * ii_lz_32 + (x + p    )];
-    const int d = ii[(y + p    ) * ii_lz_32 + (x - p - 1)];
-    const int b = ii[(y - p - 1) * ii_lz_32 + (x + p    )];
-    const int a = ii[(y - p - 1) * ii_lz_32 + (x - p - 1)];
-    return e - d - b + a;
-}
-
 /**
  * Compute squared difference of the safe area (the zone where s1 and s2
  * overlap). It is likely the largest integral zone, so it is interesting to do
@@ -146,10 +103,6 @@ static inline int get_integral_patch_value(const uint32_t *ii, int ii_lz_32, int
  * function, we do not need any clipping here.
  *
  * The line above dst and the column to its left are always readable.
- *
- * This C version computes the SSD integral image using a scalar accumulator,
- * while for SIMD implementation it is likely more interesting to use the
- * two-loops algorithm variant.
  */
 static void compute_safe_ssd_integral_image_c(uint32_t *dst, ptrdiff_t dst_linesize_32,
                                               const uint8_t *s1, ptrdiff_t linesize1,
@@ -157,21 +110,32 @@ static void compute_safe_ssd_integral_image_c(uint32_t *dst, ptrdiff_t dst_lines
                                               int w, int h)
 {
     int x, y;
+    const uint32_t *dst_top = dst - dst_linesize_32;
 
     /* SIMD-friendly assumptions allowed here */
     av_assert2(!(w & 0xf) && w >= 16 && h >= 1);
 
     for (y = 0; y < h; y++) {
-        uint32_t acc = dst[-1] - dst[-dst_linesize_32 - 1];
-
-        for (x = 0; x < w; x++) {
-            const int d  = s1[x] - s2[x];
-            acc += d * d;
-            dst[x] = dst[-dst_linesize_32 + x] + acc;
+        for (x = 0; x < w; x += 4) {
+            const int d0 = s1[x    ] - s2[x    ];
+            const int d1 = s1[x + 1] - s2[x + 1];
+            const int d2 = s1[x + 2] - s2[x + 2];
+            const int d3 = s1[x + 3] - s2[x + 3];
+
+            dst[x    ] = dst_top[x    ] - dst_top[x - 1] + d0*d0;
+            dst[x + 1] = dst_top[x + 1] - dst_top[x    ] + d1*d1;
+            dst[x + 2] = dst_top[x + 2] - dst_top[x + 1] + d2*d2;
+            dst[x + 3] = dst_top[x + 3] - dst_top[x + 2] + d3*d3;
+
+            dst[x    ] += dst[x - 1];
+            dst[x + 1] += dst[x    ];
+            dst[x + 2] += dst[x + 1];
+            dst[x + 3] += dst[x + 2];
         }
         s1  += linesize1;
         s2  += linesize2;
         dst += dst_linesize_32;
+        dst_top += dst_linesize_32;
     }
 }
 
@@ -321,8 +285,8 @@ static int config_input(AVFilterLink *inlink)
     const int e = FFMAX(s->research_hsize, s->research_hsize_uv)
                 + FFMAX(s->patch_hsize,    s->patch_hsize_uv);
 
-    s->chroma_w = FF_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w);
-    s->chroma_h = FF_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h);
+    s->chroma_w = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w);
+    s->chroma_h = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h);
     s->nb_planes = av_pix_fmt_count_planes(inlink->format);
 
     /* Allocate the integral image with extra edges of thickness "e"
@@ -387,28 +351,86 @@ static int nlmeans_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs
     const int slice_end   = (process_h * (jobnr+1)) / nb_jobs;
     const int starty = td->starty + slice_start;
     const int endy   = td->starty + slice_end;
+    const int p = td->p;
+    const uint32_t *ii = td->ii_start + (starty - p - 1) * s->ii_lz_32 - p - 1;
+    const int dist_b = 2*p + 1;
+    const int dist_d = dist_b * s->ii_lz_32;
+    const int dist_e = dist_d + dist_b;
 
     for (y = starty; y < endy; y++) {
         const uint8_t *src = td->src + y*src_linesize;
         struct weighted_avg *wa = s->wa + y*s->wa_linesize;
         for (x = td->startx; x < td->endx; x++) {
-            const int patch_diff_sq = get_integral_patch_value(td->ii_start, s->ii_lz_32, x, y, td->p);
+            /*
+             * M is a discrete map where every entry contains the sum of all the entries
+             * in the rectangle from the top-left origin of M to its coordinate. In the
+             * following schema, "i" contains the sum of the whole map:
+             *
+             * M = +----------+-----------------+----+
+             *     |          |                 |    |
+             *     |          |                 |    |
+             *     |         a|                b|   c|
+             *     +----------+-----------------+----+
+             *     |          |                 |    |
+             *     |          |                 |    |
+             *     |          |        X        |    |
+             *     |          |                 |    |
+             *     |         d|                e|   f|
+             *     +----------+-----------------+----+
+             *     |          |                 |    |
+             *     |         g|                h|   i|
+             *     +----------+-----------------+----+
+             *
+             * The sum of the X box can be calculated with:
+             *    X = e-d-b+a
+             *
+             * See https://en.wikipedia.org/wiki/Summed_area_table
+             *
+             * The compute*_ssd functions compute the integral image M where every entry
+             * contains the sum of the squared difference of every corresponding pixels of
+             * two input planes of the same size as M.
+             */
+            const uint32_t a = ii[x];
+            const uint32_t b = ii[x + dist_b];
+            const uint32_t d = ii[x + dist_d];
+            const uint32_t e = ii[x + dist_e];
+            const uint32_t patch_diff_sq = e - d - b + a;
+
             if (patch_diff_sq < s->max_meaningful_diff) {
-                const int weight_lut_idx = patch_diff_sq * s->pdiff_lut_scale;
-                const double weight = s->weight_lut[weight_lut_idx]; // exp(-patch_diff_sq * s->pdiff_scale)
+                const float weight = s->weight_lut[patch_diff_sq]; // exp(-patch_diff_sq * s->pdiff_scale)
                 wa[x].total_weight += weight;
                 wa[x].sum += weight * src[x];
             }
         }
+        ii += s->ii_lz_32;
     }
     return 0;
 }
 
+static void weight_averages(uint8_t *dst, ptrdiff_t dst_linesize,
+                            const uint8_t *src, ptrdiff_t src_linesize,
+                            struct weighted_avg *wa, ptrdiff_t wa_linesize,
+                            int w, int h)
+{
+    int x, y;
+
+    for (y = 0; y < h; y++) {
+        for (x = 0; x < w; x++) {
+            // Also weight the centered pixel
+            wa[x].total_weight += 1.f;
+            wa[x].sum += 1.f * src[x];
+            dst[x] = av_clip_uint8(wa[x].sum / wa[x].total_weight + 0.5f);
+        }
+        dst += dst_linesize;
+        src += src_linesize;
+        wa += wa_linesize;
+    }
+}
+
 static int nlmeans_plane(AVFilterContext *ctx, int w, int h, int p, int r,
                          uint8_t *dst, ptrdiff_t dst_linesize,
                          const uint8_t *src, ptrdiff_t src_linesize)
 {
-    int x, y;
     int offx, offy;
     NLMeansContext *s = ctx->priv;
     /* patches center points cover the whole research window so the patches
@@ -441,17 +463,10 @@ static int nlmeans_plane(AVFilterContext *ctx, int w, int h, int p, int r,
             }
         }
     }
-    for (y = 0; y < h; y++) {
-        for (x = 0; x < w; x++) {
-            struct weighted_avg *wa = &s->wa[y*s->wa_linesize + x];
 
-            // Also weight the centered pixel
-            wa->total_weight += 1.0;
-            wa->sum += 1.0 * src[y*src_linesize + x];
+    weight_averages(dst, dst_linesize, src, src_linesize,
+                    s->wa, s->wa_linesize, w, h);
 
-            dst[y*dst_linesize + x] = av_clip_uint8(wa->sum / wa->total_weight);
-        }
-    }
     return 0;
 }
 
@@ -506,11 +521,12 @@ static av_cold int init(AVFilterContext *ctx)
     const double h = s->sigma * 10.;
 
     s->pdiff_scale = 1. / (h * h);
-    s->max_meaningful_diff = -log(1/255.) / s->pdiff_scale;
-    s->pdiff_lut_scale = 1./s->max_meaningful_diff * WEIGHT_LUT_SIZE;
-    av_assert0((s->max_meaningful_diff - 1) * s->pdiff_lut_scale < FF_ARRAY_ELEMS(s->weight_lut));
-    for (i = 0; i < WEIGHT_LUT_SIZE; i++)
-        s->weight_lut[i] = exp(-i / s->pdiff_lut_scale * s->pdiff_scale);
+    s->max_meaningful_diff = log(255.) / s->pdiff_scale;
+    s->weight_lut = av_calloc(s->max_meaningful_diff, sizeof(*s->weight_lut));
+    if (!s->weight_lut)
+        return AVERROR(ENOMEM);
+    for (i = 0; i < s->max_meaningful_diff; i++)
+        s->weight_lut[i] = exp(-i * s->pdiff_scale);
 
     CHECK_ODD_FIELD(research_size,   "Luma research window");
     CHECK_ODD_FIELD(patch_size,      "Luma patch");
@@ -538,6 +554,7 @@ static av_cold int init(AVFilterContext *ctx)
 static av_cold void uninit(AVFilterContext *ctx)
 {
     NLMeansContext *s = ctx->priv;
+    av_freep(&s->weight_lut);
     av_freep(&s->ii_orig);
     av_freep(&s->wa);
 }