]> git.sesse.net Git - ffmpeg/blobdiff - libavfilter/vf_v360.c
avfilter/vf_v360: fix small artifacts with tetrahedron inputs
[ffmpeg] / libavfilter / vf_v360.c
index 741a626bc85a204a65d464876fb8775f624f161a..39dd07af6ebafd57a74e6a6a079901dabac53ad3 100644 (file)
@@ -61,6 +61,9 @@ static const AVOption v360_options[] = {
     {      "c6x1", "cubemap 6x1",                                0, AV_OPT_TYPE_CONST,  {.i64=CUBEMAP_6_1},     0,                   0, FLAGS, "in" },
     {       "eac", "equi-angular cubemap",                       0, AV_OPT_TYPE_CONST,  {.i64=EQUIANGULAR},     0,                   0, FLAGS, "in" },
     {  "dfisheye", "dual fisheye",                               0, AV_OPT_TYPE_CONST,  {.i64=DUAL_FISHEYE},    0,                   0, FLAGS, "in" },
+    {      "flat", "regular video",                              0, AV_OPT_TYPE_CONST,  {.i64=FLAT},            0,                   0, FLAGS, "in" },
+    {"rectilinear", "regular video",                             0, AV_OPT_TYPE_CONST,  {.i64=FLAT},            0,                   0, FLAGS, "in" },
+    {  "gnomonic", "regular video",                              0, AV_OPT_TYPE_CONST,  {.i64=FLAT},            0,                   0, FLAGS, "in" },
     {    "barrel", "barrel facebook's 360 format",               0, AV_OPT_TYPE_CONST,  {.i64=BARREL},          0,                   0, FLAGS, "in" },
     {        "fb", "barrel facebook's 360 format",               0, AV_OPT_TYPE_CONST,  {.i64=BARREL},          0,                   0, FLAGS, "in" },
     {      "c1x6", "cubemap 1x6",                                0, AV_OPT_TYPE_CONST,  {.i64=CUBEMAP_1_6},     0,                   0, FLAGS, "in" },
@@ -68,6 +71,10 @@ static const AVOption v360_options[] = {
     {  "mercator", "mercator",                                   0, AV_OPT_TYPE_CONST,  {.i64=MERCATOR},        0,                   0, FLAGS, "in" },
     {      "ball", "ball",                                       0, AV_OPT_TYPE_CONST,  {.i64=BALL},            0,                   0, FLAGS, "in" },
     {    "hammer", "hammer",                                     0, AV_OPT_TYPE_CONST,  {.i64=HAMMER},          0,                   0, FLAGS, "in" },
+    {"sinusoidal", "sinusoidal",                                 0, AV_OPT_TYPE_CONST,  {.i64=SINUSOIDAL},      0,                   0, FLAGS, "in" },
+    {   "fisheye", "fisheye",                                    0, AV_OPT_TYPE_CONST,  {.i64=FISHEYE},         0,                   0, FLAGS, "in" },
+    {"cylindrical", "cylindrical",                               0, AV_OPT_TYPE_CONST,  {.i64=CYLINDRICAL},     0,                   0, FLAGS, "in" },
+    {"tetrahedron", "tetrahedron",                               0, AV_OPT_TYPE_CONST,  {.i64=TETRAHEDRON},     0,                   0, FLAGS, "in" },
     {    "output", "set output projection",            OFFSET(out), AV_OPT_TYPE_INT,    {.i64=CUBEMAP_3_2},     0,    NB_PROJECTIONS-1, FLAGS, "out" },
     {         "e", "equirectangular",                            0, AV_OPT_TYPE_CONST,  {.i64=EQUIRECTANGULAR}, 0,                   0, FLAGS, "out" },
     {  "equirect", "equirectangular",                            0, AV_OPT_TYPE_CONST,  {.i64=EQUIRECTANGULAR}, 0,                   0, FLAGS, "out" },
@@ -85,6 +92,12 @@ static const AVOption v360_options[] = {
     {  "mercator", "mercator",                                   0, AV_OPT_TYPE_CONST,  {.i64=MERCATOR},        0,                   0, FLAGS, "out" },
     {      "ball", "ball",                                       0, AV_OPT_TYPE_CONST,  {.i64=BALL},            0,                   0, FLAGS, "out" },
     {    "hammer", "hammer",                                     0, AV_OPT_TYPE_CONST,  {.i64=HAMMER},          0,                   0, FLAGS, "out" },
+    {"sinusoidal", "sinusoidal",                                 0, AV_OPT_TYPE_CONST,  {.i64=SINUSOIDAL},      0,                   0, FLAGS, "out" },
+    {   "fisheye", "fisheye",                                    0, AV_OPT_TYPE_CONST,  {.i64=FISHEYE},         0,                   0, FLAGS, "out" },
+    {   "pannini", "pannini",                                    0, AV_OPT_TYPE_CONST,  {.i64=PANNINI},         0,                   0, FLAGS, "out" },
+    {"cylindrical", "cylindrical",                               0, AV_OPT_TYPE_CONST,  {.i64=CYLINDRICAL},     0,                   0, FLAGS, "out" },
+    {"perspective", "perspective",                               0, AV_OPT_TYPE_CONST,  {.i64=PERSPECTIVE},     0,                   0, FLAGS, "out" },
+    {"tetrahedron", "tetrahedron",                               0, AV_OPT_TYPE_CONST,  {.i64=TETRAHEDRON},     0,                   0, FLAGS, "out" },
     {    "interp", "set interpolation method",      OFFSET(interp), AV_OPT_TYPE_INT,    {.i64=BILINEAR},        0, NB_INTERP_METHODS-1, FLAGS, "interp" },
     {      "near", "nearest neighbour",                          0, AV_OPT_TYPE_CONST,  {.i64=NEAREST},         0,                   0, FLAGS, "interp" },
     {   "nearest", "nearest neighbour",                          0, AV_OPT_TYPE_CONST,  {.i64=NEAREST},         0,                   0, FLAGS, "interp" },
@@ -94,6 +107,10 @@ static const AVOption v360_options[] = {
     {     "cubic", "bicubic interpolation",                      0, AV_OPT_TYPE_CONST,  {.i64=BICUBIC},         0,                   0, FLAGS, "interp" },
     {      "lanc", "lanczos interpolation",                      0, AV_OPT_TYPE_CONST,  {.i64=LANCZOS},         0,                   0, FLAGS, "interp" },
     {   "lanczos", "lanczos interpolation",                      0, AV_OPT_TYPE_CONST,  {.i64=LANCZOS},         0,                   0, FLAGS, "interp" },
+    {      "sp16", "spline16 interpolation",                     0, AV_OPT_TYPE_CONST,  {.i64=SPLINE16},        0,                   0, FLAGS, "interp" },
+    {  "spline16", "spline16 interpolation",                     0, AV_OPT_TYPE_CONST,  {.i64=SPLINE16},        0,                   0, FLAGS, "interp" },
+    {     "gauss", "gaussian interpolation",                     0, AV_OPT_TYPE_CONST,  {.i64=GAUSSIAN},        0,                   0, FLAGS, "interp" },
+    {  "gaussian", "gaussian interpolation",                     0, AV_OPT_TYPE_CONST,  {.i64=GAUSSIAN},        0,                   0, FLAGS, "interp" },
     {         "w", "output width",                   OFFSET(width), AV_OPT_TYPE_INT,    {.i64=0},               0,           INT16_MAX, FLAGS, "w"},
     {         "h", "output height",                 OFFSET(height), AV_OPT_TYPE_INT,    {.i64=0},               0,           INT16_MAX, FLAGS, "h"},
     { "in_stereo", "input stereo format",        OFFSET(in_stereo), AV_OPT_TYPE_INT,    {.i64=STEREO_2D},       0,    NB_STEREO_FMTS-1, FLAGS, "stereo" },
@@ -105,8 +122,10 @@ static const AVOption v360_options[] = {
     {"out_forder", "output cubemap face order", OFFSET(out_forder), AV_OPT_TYPE_STRING, {.str="rludfb"},        0,     NB_DIRECTIONS-1, FLAGS, "out_forder"},
     {   "in_frot", "input cubemap face rotation",  OFFSET(in_frot), AV_OPT_TYPE_STRING, {.str="000000"},        0,     NB_DIRECTIONS-1, FLAGS, "in_frot"},
     {  "out_frot", "output cubemap face rotation",OFFSET(out_frot), AV_OPT_TYPE_STRING, {.str="000000"},        0,     NB_DIRECTIONS-1, FLAGS, "out_frot"},
-    {    "in_pad", "input cubemap pads",            OFFSET(in_pad), AV_OPT_TYPE_FLOAT,  {.dbl=0.f},           0.f,                 1.f, FLAGS, "in_pad"},
-    {   "out_pad", "output cubemap pads",          OFFSET(out_pad), AV_OPT_TYPE_FLOAT,  {.dbl=0.f},           0.f,                 1.f, FLAGS, "out_pad"},
+    {    "in_pad", "percent input cubemap pads",    OFFSET(in_pad), AV_OPT_TYPE_FLOAT,  {.dbl=0.f},           0.f,                 1.f, FLAGS, "in_pad"},
+    {   "out_pad", "percent output cubemap pads",  OFFSET(out_pad), AV_OPT_TYPE_FLOAT,  {.dbl=0.f},           0.f,                 1.f, FLAGS, "out_pad"},
+    {   "fin_pad", "fixed input cubemap pads",     OFFSET(fin_pad), AV_OPT_TYPE_INT,    {.i64=0},               0,                 100, FLAGS, "fin_pad"},
+    {  "fout_pad", "fixed output cubemap pads",   OFFSET(fout_pad), AV_OPT_TYPE_INT,    {.i64=0},               0,                 100, FLAGS, "fout_pad"},
     {       "yaw", "yaw rotation",                     OFFSET(yaw), AV_OPT_TYPE_FLOAT,  {.dbl=0.f},        -180.f,               180.f, FLAGS, "yaw"},
     {     "pitch", "pitch rotation",                 OFFSET(pitch), AV_OPT_TYPE_FLOAT,  {.dbl=0.f},        -180.f,               180.f, FLAGS, "pitch"},
     {      "roll", "roll rotation",                   OFFSET(roll), AV_OPT_TYPE_FLOAT,  {.dbl=0.f},        -180.f,               180.f, FLAGS, "roll"},
@@ -121,6 +140,9 @@ static const AVOption v360_options[] = {
     {   "iv_flip", "flip in video vertically",     OFFSET(iv_flip), AV_OPT_TYPE_BOOL,   {.i64=0},               0,                   1, FLAGS, "iv_flip"},
     {  "in_trans", "transpose video input",   OFFSET(in_transpose), AV_OPT_TYPE_BOOL,   {.i64=0},               0,                   1, FLAGS, "in_transpose"},
     { "out_trans", "transpose video output", OFFSET(out_transpose), AV_OPT_TYPE_BOOL,   {.i64=0},               0,                   1, FLAGS, "out_transpose"},
+    {    "ih_fov", "input horizontal field of view",OFFSET(ih_fov), AV_OPT_TYPE_FLOAT,  {.dbl=90.f},     0.00001f,               360.f, FLAGS, "ih_fov"},
+    {    "iv_fov", "input vertical field of view",  OFFSET(iv_fov), AV_OPT_TYPE_FLOAT,  {.dbl=45.f},     0.00001f,               360.f, FLAGS, "iv_fov"},
+    {    "id_fov", "input diagonal field of view",  OFFSET(id_fov), AV_OPT_TYPE_FLOAT,  {.dbl=0.f},           0.f,               360.f, FLAGS, "id_fov"},
     { NULL }
 };
 
@@ -196,18 +218,19 @@ static int query_formats(AVFilterContext *ctx)
     return ff_set_common_formats(ctx, fmts_list);
 }
 
-#define DEFINE_REMAP1_LINE(bits, div)                                                           \
-static void remap1_##bits##bit_line_c(uint8_t *dst, int width, const uint8_t *src,              \
-                                      ptrdiff_t in_linesize,                                    \
-                                      const uint16_t *u, const uint16_t *v, const int16_t *ker) \
-{                                                                                               \
-    const uint##bits##_t *s = (const uint##bits##_t *)src;                                      \
-    uint##bits##_t *d = (uint##bits##_t *)dst;                                                  \
-                                                                                                \
-    in_linesize /= div;                                                                         \
-                                                                                                \
-    for (int x = 0; x < width; x++)                                                             \
-        d[x] = s[v[x] * in_linesize + u[x]];                                                    \
+#define DEFINE_REMAP1_LINE(bits, div)                                                    \
+static void remap1_##bits##bit_line_c(uint8_t *dst, int width, const uint8_t *const src, \
+                                      ptrdiff_t in_linesize,                             \
+                                      const int16_t *const u, const int16_t *const v,    \
+                                      const int16_t *const ker)                          \
+{                                                                                        \
+    const uint##bits##_t *const s = (const uint##bits##_t *const)src;                    \
+    uint##bits##_t *d = (uint##bits##_t *)dst;                                           \
+                                                                                         \
+    in_linesize /= div;                                                                  \
+                                                                                         \
+    for (int x = 0; x < width; x++)                                                      \
+        d[x] = s[v[x] * in_linesize + u[x]];                                             \
 }
 
 DEFINE_REMAP1_LINE( 8, 1)
@@ -222,13 +245,14 @@ DEFINE_REMAP1_LINE(16, 2)
 #define DEFINE_REMAP(ws, bits)                                                                             \
 static int remap##ws##_##bits##bit_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)          \
 {                                                                                                          \
-    ThreadData *td = (ThreadData*)arg;                                                                     \
+    ThreadData *td = arg;                                                                                  \
     const V360Context *s = ctx->priv;                                                                      \
     const AVFrame *in = td->in;                                                                            \
     AVFrame *out = td->out;                                                                                \
                                                                                                            \
     for (int stereo = 0; stereo < 1 + s->out_stereo > STEREO_2D; stereo++) {                               \
         for (int plane = 0; plane < s->nb_planes; plane++) {                                               \
+            const unsigned map = s->map[plane];                                                            \
             const int in_linesize  = in->linesize[plane];                                                  \
             const int out_linesize = out->linesize[plane];                                                 \
             const int uv_linesize = s->uv_linesize[plane];                                                 \
@@ -236,7 +260,8 @@ static int remap##ws##_##bits##bit_slice(AVFilterContext *ctx, void *arg, int jo
             const int in_offset_h = stereo ? s->in_offset_h[plane] : 0;                                    \
             const int out_offset_w = stereo ? s->out_offset_w[plane] : 0;                                  \
             const int out_offset_h = stereo ? s->out_offset_h[plane] : 0;                                  \
-            const uint8_t *src = in->data[plane] + in_offset_h * in_linesize + in_offset_w * (bits >> 3);  \
+            const uint8_t *const src = in->data[plane] +                                                   \
+                                                   in_offset_h * in_linesize + in_offset_w * (bits >> 3);  \
             uint8_t *dst = out->data[plane] + out_offset_h * out_linesize + out_offset_w * (bits >> 3);    \
             const int width = s->pr_width[plane];                                                          \
             const int height = s->pr_height[plane];                                                        \
@@ -245,10 +270,9 @@ static int remap##ws##_##bits##bit_slice(AVFilterContext *ctx, void *arg, int jo
             const int slice_end   = (height * (jobnr + 1)) / nb_jobs;                                      \
                                                                                                            \
             for (int y = slice_start; y < slice_end; y++) {                                                \
-                const unsigned map = s->map[plane];                                                        \
-                const uint16_t *u = s->u[map] + y * uv_linesize * ws * ws;                                 \
-                const uint16_t *v = s->v[map] + y * uv_linesize * ws * ws;                                 \
-                const int16_t *ker = s->ker[map] + y * uv_linesize * ws * ws;                              \
+                const int16_t *const u = s->u[map] + y * uv_linesize * ws * ws;                            \
+                const int16_t *const v = s->v[map] + y * uv_linesize * ws * ws;                            \
+                const int16_t *const ker = s->ker[map] + y * uv_linesize * ws * ws;                        \
                                                                                                            \
                 s->remap_line(dst + y * out_linesize, width, src, in_linesize, u, v, ker);                 \
             }                                                                                              \
@@ -265,30 +289,31 @@ DEFINE_REMAP(1, 16)
 DEFINE_REMAP(2, 16)
 DEFINE_REMAP(4, 16)
 
-#define DEFINE_REMAP_LINE(ws, bits, div)                                                                   \
-static void remap##ws##_##bits##bit_line_c(uint8_t *dst, int width, const uint8_t *src,                    \
-                                           ptrdiff_t in_linesize,                                          \
-                                           const uint16_t *u, const uint16_t *v, const int16_t *ker)       \
-{                                                                                                          \
-    const uint##bits##_t *s = (const uint##bits##_t *)src;                                                 \
-    uint##bits##_t *d = (uint##bits##_t *)dst;                                                             \
-                                                                                                           \
-    in_linesize /= div;                                                                                    \
-                                                                                                           \
-    for (int x = 0; x < width; x++) {                                                                      \
-        const uint16_t *uu = u + x * ws * ws;                                                              \
-        const uint16_t *vv = v + x * ws * ws;                                                              \
-        const int16_t *kker = ker + x * ws * ws;                                                           \
-        int tmp = 0;                                                                                       \
-                                                                                                           \
-        for (int i = 0; i < ws; i++) {                                                                     \
-            for (int j = 0; j < ws; j++) {                                                                 \
-                tmp += kker[i * ws + j] * s[vv[i * ws + j] * in_linesize + uu[i * ws + j]];                \
-            }                                                                                              \
-        }                                                                                                  \
-                                                                                                           \
-        d[x] = av_clip_uint##bits(tmp >> 14);                                                              \
-    }                                                                                                      \
+#define DEFINE_REMAP_LINE(ws, bits, div)                                                      \
+static void remap##ws##_##bits##bit_line_c(uint8_t *dst, int width, const uint8_t *const src, \
+                                           ptrdiff_t in_linesize,                             \
+                                           const int16_t *const u, const int16_t *const v,    \
+                                           const int16_t *const ker)                          \
+{                                                                                             \
+    const uint##bits##_t *const s = (const uint##bits##_t *const)src;                         \
+    uint##bits##_t *d = (uint##bits##_t *)dst;                                                \
+                                                                                              \
+    in_linesize /= div;                                                                       \
+                                                                                              \
+    for (int x = 0; x < width; x++) {                                                         \
+        const int16_t *const uu = u + x * ws * ws;                                            \
+        const int16_t *const vv = v + x * ws * ws;                                            \
+        const int16_t *const kker = ker + x * ws * ws;                                        \
+        int tmp = 0;                                                                          \
+                                                                                              \
+        for (int i = 0; i < ws; i++) {                                                        \
+            for (int j = 0; j < ws; j++) {                                                    \
+                tmp += kker[i * ws + j] * s[vv[i * ws + j] * in_linesize + uu[i * ws + j]];   \
+            }                                                                                 \
+        }                                                                                     \
+                                                                                              \
+        d[x] = av_clip_uint##bits(tmp >> 14);                                                 \
+    }                                                                                         \
 }
 
 DEFINE_REMAP_LINE(2,  8, 1)
@@ -307,6 +332,8 @@ void ff_v360_init(V360Context *s, int depth)
         break;
     case BICUBIC:
     case LANCZOS:
+    case SPLINE16:
+    case GAUSSIAN:
         s->remap_line = depth <= 8 ? remap4_8bit_line_c : remap4_16bit_line_c;
         break;
     }
@@ -326,10 +353,10 @@ void ff_v360_init(V360Context *s, int depth)
  * @param ker ker remap data
  */
 static void nearest_kernel(float du, float dv, const XYRemap *rmap,
-                           uint16_t *u, uint16_t *v, int16_t *ker)
+                           int16_t *u, int16_t *v, int16_t *ker)
 {
-    const int i = roundf(dv) + 1;
-    const int j = roundf(du) + 1;
+    const int i = lrintf(dv) + 1;
+    const int j = lrintf(du) + 1;
 
     u[0] = rmap->u[i][j];
     v[0] = rmap->v[i][j];
@@ -346,7 +373,7 @@ static void nearest_kernel(float du, float dv, const XYRemap *rmap,
  * @param ker ker remap data
  */
 static void bilinear_kernel(float du, float dv, const XYRemap *rmap,
-                            uint16_t *u, uint16_t *v, int16_t *ker)
+                            int16_t *u, int16_t *v, int16_t *ker)
 {
     for (int i = 0; i < 2; i++) {
         for (int j = 0; j < 2; j++) {
@@ -389,7 +416,7 @@ static inline void calculate_bicubic_coeffs(float t, float *coeffs)
  * @param ker ker remap data
  */
 static void bicubic_kernel(float du, float dv, const XYRemap *rmap,
-                           uint16_t *u, uint16_t *v, int16_t *ker)
+                           int16_t *u, int16_t *v, int16_t *ker)
 {
     float du_coeffs[4];
     float dv_coeffs[4];
@@ -442,7 +469,7 @@ static inline void calculate_lanczos_coeffs(float t, float *coeffs)
  * @param ker ker remap data
  */
 static void lanczos_kernel(float du, float dv, const XYRemap *rmap,
-                           uint16_t *u, uint16_t *v, int16_t *ker)
+                           int16_t *u, int16_t *v, int16_t *ker)
 {
     float du_coeffs[4];
     float dv_coeffs[4];
@@ -459,6 +486,101 @@ static void lanczos_kernel(float du, float dv, const XYRemap *rmap,
     }
 }
 
+/**
+ * Calculate 1-dimensional spline16 coefficients.
+ *
+ * @param t relative coordinate
+ * @param coeffs coefficients
+ */
+static void calculate_spline16_coeffs(float t, float *coeffs)
+{
+    coeffs[0] = ((-1.f / 3.f * t + 0.8f) * t - 7.f / 15.f) * t;
+    coeffs[1] = ((t - 9.f / 5.f) * t - 0.2f) * t + 1.f;
+    coeffs[2] = ((6.f / 5.f - t) * t + 0.8f) * t;
+    coeffs[3] = ((1.f / 3.f * t - 0.2f) * t - 2.f / 15.f) * t;
+}
+
+/**
+ * Calculate kernel for spline16 interpolation.
+ *
+ * @param du horizontal relative coordinate
+ * @param dv vertical relative coordinate
+ * @param rmap calculated 4x4 window
+ * @param u u remap data
+ * @param v v remap data
+ * @param ker ker remap data
+ */
+static void spline16_kernel(float du, float dv, const XYRemap *rmap,
+                            int16_t *u, int16_t *v, int16_t *ker)
+{
+    float du_coeffs[4];
+    float dv_coeffs[4];
+
+    calculate_spline16_coeffs(du, du_coeffs);
+    calculate_spline16_coeffs(dv, dv_coeffs);
+
+    for (int i = 0; i < 4; i++) {
+        for (int j = 0; j < 4; j++) {
+            u[i * 4 + j] = rmap->u[i][j];
+            v[i * 4 + j] = rmap->v[i][j];
+            ker[i * 4 + j] = lrintf(du_coeffs[j] * dv_coeffs[i] * 16385.f);
+        }
+    }
+}
+
+/**
+ * Calculate 1-dimensional gaussian coefficients.
+ *
+ * @param t relative coordinate
+ * @param coeffs coefficients
+ */
+static void calculate_gaussian_coeffs(float t, float *coeffs)
+{
+    float sum = 0.f;
+
+    for (int i = 0; i < 4; i++) {
+        const float x = t - (i - 1);
+        if (x == 0.f) {
+            coeffs[i] = 1.f;
+        } else {
+            coeffs[i] = expf(-2.f * x * x) * expf(-x * x / 2.f);
+        }
+        sum += coeffs[i];
+    }
+
+    for (int i = 0; i < 4; i++) {
+        coeffs[i] /= sum;
+    }
+}
+
+/**
+ * Calculate kernel for gaussian interpolation.
+ *
+ * @param du horizontal relative coordinate
+ * @param dv vertical relative coordinate
+ * @param rmap calculated 4x4 window
+ * @param u u remap data
+ * @param v v remap data
+ * @param ker ker remap data
+ */
+static void gaussian_kernel(float du, float dv, const XYRemap *rmap,
+                            int16_t *u, int16_t *v, int16_t *ker)
+{
+    float du_coeffs[4];
+    float dv_coeffs[4];
+
+    calculate_gaussian_coeffs(du, du_coeffs);
+    calculate_gaussian_coeffs(dv, dv_coeffs);
+
+    for (int i = 0; i < 4; i++) {
+        for (int j = 0; j < 4; j++) {
+            u[i * 4 + j] = rmap->u[i][j];
+            v[i * 4 + j] = rmap->v[i][j];
+            ker[i * 4 + j] = lrintf(du_coeffs[j] * dv_coeffs[i] * 16385.f);
+        }
+    }
+}
+
 /**
  * Modulo operation with only positive remainders.
  *
@@ -724,16 +846,18 @@ static void normalize_vector(float *vec)
  * @param vf vertical cubemap coordinate [0, 1)
  * @param face face of cubemap
  * @param vec coordinates on sphere
+ * @param scalew scale for uf
+ * @param scaleh scale for vf
  */
 static void cube_to_xyz(const V360Context *s,
                         float uf, float vf, int face,
-                        float *vec)
+                        float *vec, float scalew, float scaleh)
 {
     const int direction = s->out_cubemap_direction_order[face];
     float l_x, l_y, l_z;
 
-    uf /= (1.f - s->out_pad);
-    vf /= (1.f - s->out_pad);
+    uf /= scalew;
+    vf /= scaleh;
 
     rotate_cube_face_inverse(&uf, &vf, s->out_cubemap_face_rotation[face]);
 
@@ -1063,6 +1187,9 @@ static void cube3x2_to_xyz(const V360Context *s,
                            int i, int j, int width, int height,
                            float *vec)
 {
+    const float scalew = s->fout_pad > 0 ? 1.f - s->fout_pad / (s->out_width  / 3.f) : 1.f - s->out_pad;
+    const float scaleh = s->fout_pad > 0 ? 1.f - s->fout_pad / (s->out_height / 2.f) : 1.f - s->out_pad;
+
     const float ew = width  / 3.f;
     const float eh = height / 2.f;
 
@@ -1078,7 +1205,7 @@ static void cube3x2_to_xyz(const V360Context *s,
     const float uf = 2.f * (i - u_shift + 0.5f) / ewi - 1.f;
     const float vf = 2.f * (j - v_shift + 0.5f) / ehi - 1.f;
 
-    cube_to_xyz(s, uf, vf, face, vec);
+    cube_to_xyz(s, uf, vf, face, vec, scalew, scaleh);
 }
 
 /**
@@ -1095,8 +1222,10 @@ static void cube3x2_to_xyz(const V360Context *s,
  */
 static void xyz_to_cube3x2(const V360Context *s,
                            const float *vec, int width, int height,
-                           uint16_t us[4][4], uint16_t vs[4][4], float *du, float *dv)
+                           int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
 {
+    const float scalew = s->fin_pad > 0 ? 1.f - s->fin_pad / (s->in_width  / 3.f) : 1.f - s->in_pad;
+    const float scaleh = s->fin_pad > 0 ? 1.f - s->fin_pad / (s->in_height / 2.f) : 1.f - s->in_pad;
     const float ew = width  / 3.f;
     const float eh = height / 2.f;
     float uf, vf;
@@ -1107,8 +1236,8 @@ static void xyz_to_cube3x2(const V360Context *s,
 
     xyz_to_cube(s, vec, &uf, &vf, &direction);
 
-    uf *= (1.f - s->in_pad);
-    vf *= (1.f - s->in_pad);
+    uf *= scalew;
+    vf *= scaleh;
 
     face = s->in_cubemap_face_order[direction];
     u_face = face % 3;
@@ -1143,13 +1272,13 @@ static void xyz_to_cube3x2(const V360Context *s,
                 uf = 2.f * new_ui / ewi - 1.f;
                 vf = 2.f * new_vi / ehi - 1.f;
 
-                uf /= (1.f - s->in_pad);
-                vf /= (1.f - s->in_pad);
+                uf /= scalew;
+                vf /= scaleh;
 
                 process_cube_coordinates(s, uf, vf, direction, &uf, &vf, &face);
 
-                uf *= (1.f - s->in_pad);
-                vf *= (1.f - s->in_pad);
+                uf *= scalew;
+                vf *= scaleh;
 
                 u_face = face % 3;
                 v_face = face / 3;
@@ -1158,8 +1287,8 @@ static void xyz_to_cube3x2(const V360Context *s,
                 new_ewi = ceilf(ew * (u_face + 1)) - u_shift;
                 new_ehi = ceilf(eh * (v_face + 1)) - v_shift;
 
-                new_ui = av_clip(roundf(0.5f * new_ewi * (uf + 1.f)), 0, new_ewi - 1);
-                new_vi = av_clip(roundf(0.5f * new_ehi * (vf + 1.f)), 0, new_ehi - 1);
+                new_ui = av_clip(lrintf(0.5f * new_ewi * (uf + 1.f)), 0, new_ewi - 1);
+                new_vi = av_clip(lrintf(0.5f * new_ehi * (vf + 1.f)), 0, new_ehi - 1);
             }
 
             us[i + 1][j + 1] = u_shift + new_ui;
@@ -1182,6 +1311,9 @@ static void cube1x6_to_xyz(const V360Context *s,
                            int i, int j, int width, int height,
                            float *vec)
 {
+    const float scalew = s->fout_pad > 0 ? 1.f - (float)(s->fout_pad) / s->out_width : 1.f - s->out_pad;
+    const float scaleh = s->fout_pad > 0 ? 1.f - s->fout_pad / (s->out_height / 6.f) : 1.f - s->out_pad;
+
     const float ew = width;
     const float eh = height / 6.f;
 
@@ -1193,7 +1325,7 @@ static void cube1x6_to_xyz(const V360Context *s,
     const float uf = 2.f * (i           + 0.5f) / ew  - 1.f;
     const float vf = 2.f * (j - v_shift + 0.5f) / ehi - 1.f;
 
-    cube_to_xyz(s, uf, vf, face, vec);
+    cube_to_xyz(s, uf, vf, face, vec, scalew, scaleh);
 }
 
 /**
@@ -1210,6 +1342,9 @@ static void cube6x1_to_xyz(const V360Context *s,
                            int i, int j, int width, int height,
                            float *vec)
 {
+    const float scalew = s->fout_pad > 0 ? 1.f - s->fout_pad / (s->out_width / 6.f)   : 1.f - s->out_pad;
+    const float scaleh = s->fout_pad > 0 ? 1.f - (float)(s->fout_pad) / s->out_height : 1.f - s->out_pad;
+
     const float ew = width / 6.f;
     const float eh = height;
 
@@ -1221,7 +1356,7 @@ static void cube6x1_to_xyz(const V360Context *s,
     const float uf = 2.f * (i - u_shift + 0.5f) / ewi - 1.f;
     const float vf = 2.f * (j           + 0.5f) / eh  - 1.f;
 
-    cube_to_xyz(s, uf, vf, face, vec);
+    cube_to_xyz(s, uf, vf, face, vec, scalew, scaleh);
 }
 
 /**
@@ -1238,8 +1373,10 @@ static void cube6x1_to_xyz(const V360Context *s,
  */
 static void xyz_to_cube1x6(const V360Context *s,
                            const float *vec, int width, int height,
-                           uint16_t us[4][4], uint16_t vs[4][4], float *du, float *dv)
+                           int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
 {
+    const float scalew = s->fin_pad > 0 ? 1.f - (float)(s->fin_pad) / s->in_width : 1.f - s->in_pad;
+    const float scaleh = s->fin_pad > 0 ? 1.f - s->fin_pad / (s->in_height / 6.f) : 1.f - s->in_pad;
     const float eh = height / 6.f;
     const int ewi = width;
     float uf, vf;
@@ -1249,8 +1386,8 @@ static void xyz_to_cube1x6(const V360Context *s,
 
     xyz_to_cube(s, vec, &uf, &vf, &direction);
 
-    uf *= (1.f - s->in_pad);
-    vf *= (1.f - s->in_pad);
+    uf *= scalew;
+    vf *= scaleh;
 
     face = s->in_cubemap_face_order[direction];
     ehi = ceilf(eh * (face + 1)) - ceilf(eh * face);
@@ -1279,19 +1416,19 @@ static void xyz_to_cube1x6(const V360Context *s,
                 uf = 2.f * new_ui / ewi - 1.f;
                 vf = 2.f * new_vi / ehi - 1.f;
 
-                uf /= (1.f - s->in_pad);
-                vf /= (1.f - s->in_pad);
+                uf /= scalew;
+                vf /= scaleh;
 
                 process_cube_coordinates(s, uf, vf, direction, &uf, &vf, &face);
 
-                uf *= (1.f - s->in_pad);
-                vf *= (1.f - s->in_pad);
+                uf *= scalew;
+                vf *= scaleh;
 
                 v_shift = ceilf(eh * face);
                 new_ehi = ceilf(eh * (face + 1)) - v_shift;
 
-                new_ui = av_clip(roundf(0.5f *     ewi * (uf + 1.f)), 0,     ewi - 1);
-                new_vi = av_clip(roundf(0.5f * new_ehi * (vf + 1.f)), 0, new_ehi - 1);
+                new_ui = av_clip(lrintf(0.5f *     ewi * (uf + 1.f)), 0,     ewi - 1);
+                new_vi = av_clip(lrintf(0.5f * new_ehi * (vf + 1.f)), 0, new_ehi - 1);
             }
 
             us[i + 1][j + 1] =           new_ui;
@@ -1314,8 +1451,10 @@ static void xyz_to_cube1x6(const V360Context *s,
  */
 static void xyz_to_cube6x1(const V360Context *s,
                            const float *vec, int width, int height,
-                           uint16_t us[4][4], uint16_t vs[4][4], float *du, float *dv)
+                           int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
 {
+    const float scalew = s->fin_pad > 0 ? 1.f - s->fin_pad / (s->in_width / 6.f)   : 1.f - s->in_pad;
+    const float scaleh = s->fin_pad > 0 ? 1.f - (float)(s->fin_pad) / s->in_height : 1.f - s->in_pad;
     const float ew = width / 6.f;
     const int ehi = height;
     float uf, vf;
@@ -1325,8 +1464,8 @@ static void xyz_to_cube6x1(const V360Context *s,
 
     xyz_to_cube(s, vec, &uf, &vf, &direction);
 
-    uf *= (1.f - s->in_pad);
-    vf *= (1.f - s->in_pad);
+    uf *= scalew;
+    vf *= scaleh;
 
     face = s->in_cubemap_face_order[direction];
     ewi = ceilf(ew * (face + 1)) - ceilf(ew * face);
@@ -1355,19 +1494,19 @@ static void xyz_to_cube6x1(const V360Context *s,
                 uf = 2.f * new_ui / ewi - 1.f;
                 vf = 2.f * new_vi / ehi - 1.f;
 
-                uf /= (1.f - s->in_pad);
-                vf /= (1.f - s->in_pad);
+                uf /= scalew;
+                vf /= scaleh;
 
                 process_cube_coordinates(s, uf, vf, direction, &uf, &vf, &face);
 
-                uf *= (1.f - s->in_pad);
-                vf *= (1.f - s->in_pad);
+                uf *= scalew;
+                vf *= scaleh;
 
                 u_shift = ceilf(ew * face);
                 new_ewi = ceilf(ew * (face + 1)) - u_shift;
 
-                new_ui = av_clip(roundf(0.5f * new_ewi * (uf + 1.f)), 0, new_ewi - 1);
-                new_vi = av_clip(roundf(0.5f *     ehi * (vf + 1.f)), 0,     ehi - 1);
+                new_ui = av_clip(lrintf(0.5f * new_ewi * (uf + 1.f)), 0, new_ewi - 1);
+                new_vi = av_clip(lrintf(0.5f *     ehi * (vf + 1.f)), 0,     ehi - 1);
             }
 
             us[i + 1][j + 1] = u_shift + new_ui;
@@ -1414,11 +1553,8 @@ static int prepare_stereographic_out(AVFilterContext *ctx)
 {
     V360Context *s = ctx->priv;
 
-    const float h_angle = tanf(FFMIN(s->h_fov, 359.f) * M_PI / 720.f);
-    const float v_angle = tanf(FFMIN(s->v_fov, 359.f) * M_PI / 720.f);
-
-    s->flat_range[0] = h_angle;
-    s->flat_range[1] = v_angle;
+    s->flat_range[0] = tanf(FFMIN(s->h_fov, 359.f) * M_PI / 720.f);
+    s->flat_range[1] = tanf(FFMIN(s->v_fov, 359.f) * M_PI / 720.f);
 
     return 0;
 }
@@ -1448,6 +1584,23 @@ static void stereographic_to_xyz(const V360Context *s,
     normalize_vector(vec);
 }
 
+/**
+ * Prepare data for processing stereographic input format.
+ *
+ * @param ctx filter context
+ *
+ * @return error code
+ */
+static int prepare_stereographic_in(AVFilterContext *ctx)
+{
+    V360Context *s = ctx->priv;
+
+    s->iflat_range[0] = tanf(FFMIN(s->ih_fov, 359.f) * M_PI / 720.f);
+    s->iflat_range[1] = tanf(FFMIN(s->iv_fov, 359.f) * M_PI / 720.f);
+
+    return 0;
+}
+
 /**
  * Calculate frame position in stereographic format for corresponding 3D coordinates on sphere.
  *
@@ -1462,25 +1615,27 @@ static void stereographic_to_xyz(const V360Context *s,
  */
 static void xyz_to_stereographic(const V360Context *s,
                                  const float *vec, int width, int height,
-                                 uint16_t us[4][4], uint16_t vs[4][4], float *du, float *dv)
+                                 int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
 {
-    const float x = av_clipf(vec[0] / (1.f - vec[1]), -1.f, 1.f) * s->input_mirror_modifier[0];
-    const float y = av_clipf(vec[2] / (1.f - vec[1]), -1.f, 1.f) * s->input_mirror_modifier[1];
+    const float x = vec[0] / (1.f - vec[1]) / s->iflat_range[0] * s->input_mirror_modifier[0];
+    const float y = vec[2] / (1.f - vec[1]) / s->iflat_range[1] * s->input_mirror_modifier[1];
     float uf, vf;
-    int ui, vi;
+    int visible, ui, vi;
 
     uf = (x + 1.f) * width  / 2.f;
     vf = (y + 1.f) * height / 2.f;
     ui = floorf(uf);
     vi = floorf(vf);
 
-    *du = uf - ui;
-    *dv = vf - vi;
+    visible = isfinite(x) && isfinite(y) && vi >= 0 && vi < height && ui >= 0 && ui < width;
+
+    *du = visible ? uf - ui : 0.f;
+    *dv = visible ? vf - vi : 0.f;
 
     for (int i = -1; i < 3; i++) {
         for (int j = -1; j < 3; j++) {
-            us[i + 1][j + 1] = av_clip(ui + j, 0, width - 1);
-            vs[i + 1][j + 1] = av_clip(vi + i, 0, height - 1);
+            us[i + 1][j + 1] = visible ? av_clip(ui + j, 0, width  - 1) : 0;
+            vs[i + 1][j + 1] = visible ? av_clip(vi + i, 0, height - 1) : 0;
         }
     }
 }
@@ -1499,7 +1654,7 @@ static void xyz_to_stereographic(const V360Context *s,
  */
 static void xyz_to_equirect(const V360Context *s,
                             const float *vec, int width, int height,
-                            uint16_t us[4][4], uint16_t vs[4][4], float *du, float *dv)
+                            int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
 {
     const float phi   = atan2f(vec[0], -vec[2]) * s->input_mirror_modifier[0];
     const float theta = asinf(-vec[1]) * s->input_mirror_modifier[1];
@@ -1522,6 +1677,68 @@ static void xyz_to_equirect(const V360Context *s,
     }
 }
 
+/**
+ * Prepare data for processing flat input format.
+ *
+ * @param ctx filter context
+ *
+ * @return error code
+ */
+static int prepare_flat_in(AVFilterContext *ctx)
+{
+    V360Context *s = ctx->priv;
+
+    s->iflat_range[0] = tanf(0.5f * s->ih_fov * M_PI / 180.f);
+    s->iflat_range[1] = tanf(0.5f * s->iv_fov * M_PI / 180.f);
+
+    return 0;
+}
+
+/**
+ * Calculate frame position in flat format for corresponding 3D coordinates on sphere.
+ *
+ * @param s filter private context
+ * @param vec coordinates on sphere
+ * @param width frame width
+ * @param height frame height
+ * @param us horizontal coordinates for interpolation window
+ * @param vs vertical coordinates for interpolation window
+ * @param du horizontal relative coordinate
+ * @param dv vertical relative coordinate
+ */
+static void xyz_to_flat(const V360Context *s,
+                        const float *vec, int width, int height,
+                        int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
+{
+    const float theta = acosf(vec[2]);
+    const float r = tanf(theta);
+    const float rr = fabsf(r) < 1e+6f ? r : hypotf(width, height);
+    const float zf = -vec[2];
+    const float h = hypotf(vec[0], vec[1]);
+    const float c = h <= 1e-6f ? 1.f : rr / h;
+    float uf = -vec[0] * c / s->iflat_range[0] * s->input_mirror_modifier[0];
+    float vf =  vec[1] * c / s->iflat_range[1] * s->input_mirror_modifier[1];
+    int visible, ui, vi;
+
+    uf = zf >= 0.f ? (uf + 1.f) * width  / 2.f : 0.f;
+    vf = zf >= 0.f ? (vf + 1.f) * height / 2.f : 0.f;
+
+    ui = floorf(uf);
+    vi = floorf(vf);
+
+    visible = vi >= 0 && vi < height && ui >= 0 && ui < width;
+
+    *du = uf - ui;
+    *dv = vf - vi;
+
+    for (int i = -1; i < 3; i++) {
+        for (int j = -1; j < 3; j++) {
+            us[i + 1][j + 1] = visible ? av_clip(ui + j, 0, width  - 1) : 0;
+            vs[i + 1][j + 1] = visible ? av_clip(vi + i, 0, height - 1) : 0;
+        }
+    }
+}
+
 /**
  * Calculate frame position in mercator format for corresponding 3D coordinates on sphere.
  *
@@ -1536,15 +1753,15 @@ static void xyz_to_equirect(const V360Context *s,
  */
 static void xyz_to_mercator(const V360Context *s,
                             const float *vec, int width, int height,
-                            uint16_t us[4][4], uint16_t vs[4][4], float *du, float *dv)
+                            int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
 {
     const float phi   = atan2f(vec[0], -vec[2]) * s->input_mirror_modifier[0];
-    const float theta = 0.5f * asinhf(vec[1] / sqrtf(1.f - vec[1] * vec[1])) * s->input_mirror_modifier[1];
+    const float theta = -vec[1] * s->input_mirror_modifier[1];
     float uf, vf;
     int ui, vi;
 
-    uf = (phi   / M_PI + 1.f) * width  / 2.f;
-    vf = (theta / M_PI + 1.f) * height / 2.f;
+    uf = (phi / M_PI + 1.f) * width / 2.f;
+    vf = (av_clipf(logf((1.f + theta) / (1.f - theta)) / (2.f * M_PI), -1.f, 1.f) + 1.f) * height / 2.f;
     ui = floorf(uf);
     vi = floorf(vf);
 
@@ -1553,7 +1770,7 @@ static void xyz_to_mercator(const V360Context *s,
 
     for (int i = -1; i < 3; i++) {
         for (int j = -1; j < 3; j++) {
-            us[i + 1][j + 1] = mod(ui + j, width);
+            us[i + 1][j + 1] = av_clip(ui + j, 0, width  - 1);
             vs[i + 1][j + 1] = av_clip(vi + i, 0, height - 1);
         }
     }
@@ -1573,17 +1790,18 @@ static void mercator_to_xyz(const V360Context *s,
                             int i, int j, int width, int height,
                             float *vec)
 {
-    const float phi   = ((2.f * i) / width  - 1.f) * M_PI;
-    const float theta = atanf(sinhf(((2.f * j) / height - 1.f) * 2.f * M_PI));
+    const float phi = ((2.f * i) / width - 1.f) * M_PI + M_PI_2;
+    const float y   = ((2.f * j) / height - 1.f) * M_PI;
+    const float div = expf(2.f * y) + 1.f;
 
     const float sin_phi   = sinf(phi);
     const float cos_phi   = cosf(phi);
-    const float sin_theta = sinf(theta);
-    const float cos_theta = cosf(theta);
+    const float sin_theta = -2.f * expf(y) / div;
+    const float cos_theta = -(expf(2.f * y) - 1.f) / div;
 
-    vec[0] =  cos_theta * sin_phi;
-    vec[1] = -sin_theta;
-    vec[2] = -cos_theta * cos_phi;
+    vec[0] = sin_theta * cos_phi;
+    vec[1] = cos_theta;
+    vec[2] = sin_theta * sin_phi;
 }
 
 /**
@@ -1600,7 +1818,7 @@ static void mercator_to_xyz(const V360Context *s,
  */
 static void xyz_to_ball(const V360Context *s,
                         const float *vec, int width, int height,
-                        uint16_t us[4][4], uint16_t vs[4][4], float *du, float *dv)
+                        int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
 {
     const float l = hypotf(vec[0], vec[1]);
     const float r = sqrtf(1.f + vec[2]) / M_SQRT2;
@@ -1618,7 +1836,7 @@ static void xyz_to_ball(const V360Context *s,
 
     for (int i = -1; i < 3; i++) {
         for (int j = -1; j < 3; j++) {
-            us[i + 1][j + 1] = mod(ui + j, width);
+            us[i + 1][j + 1] = av_clip(ui + j, 0, width  - 1);
             vs[i + 1][j + 1] = av_clip(vi + i, 0, height - 1);
         }
     }
@@ -1706,7 +1924,7 @@ static void hammer_to_xyz(const V360Context *s,
  */
 static void xyz_to_hammer(const V360Context *s,
                           const float *vec, int width, int height,
-                          uint16_t us[4][4], uint16_t vs[4][4], float *du, float *dv)
+                          int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
 {
     const float theta = atan2f(vec[0], -vec[2]) * s->input_mirror_modifier[0];
 
@@ -1726,7 +1944,73 @@ static void xyz_to_hammer(const V360Context *s,
 
     for (int i = -1; i < 3; i++) {
         for (int j = -1; j < 3; j++) {
-            us[i + 1][j + 1] = mod(ui + j, width);
+            us[i + 1][j + 1] = av_clip(ui + j, 0, width  - 1);
+            vs[i + 1][j + 1] = av_clip(vi + i, 0, height - 1);
+        }
+    }
+}
+
+/**
+ * Calculate 3D coordinates on sphere for corresponding frame position in sinusoidal format.
+ *
+ * @param s filter private context
+ * @param i horizontal position on frame [0, width)
+ * @param j vertical position on frame [0, height)
+ * @param width frame width
+ * @param height frame height
+ * @param vec coordinates on sphere
+ */
+static void sinusoidal_to_xyz(const V360Context *s,
+                              int i, int j, int width, int height,
+                              float *vec)
+{
+    const float theta = ((2.f * j) / height - 1.f) * M_PI_2;
+    const float phi   = ((2.f * i) / width  - 1.f) * M_PI / cosf(theta);
+
+    const float sin_phi   = sinf(phi);
+    const float cos_phi   = cosf(phi);
+    const float sin_theta = sinf(theta);
+    const float cos_theta = cosf(theta);
+
+    vec[0] =  cos_theta * sin_phi;
+    vec[1] = -sin_theta;
+    vec[2] = -cos_theta * cos_phi;
+
+    normalize_vector(vec);
+}
+
+/**
+ * Calculate frame position in sinusoidal format for corresponding 3D coordinates on sphere.
+ *
+ * @param s filter private context
+ * @param vec coordinates on sphere
+ * @param width frame width
+ * @param height frame height
+ * @param us horizontal coordinates for interpolation window
+ * @param vs vertical coordinates for interpolation window
+ * @param du horizontal relative coordinate
+ * @param dv vertical relative coordinate
+ */
+static void xyz_to_sinusoidal(const V360Context *s,
+                              const float *vec, int width, int height,
+                              int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
+{
+    const float theta = asinf(-vec[1]) * s->input_mirror_modifier[1];
+    const float phi   = atan2f(vec[0], -vec[2]) * s->input_mirror_modifier[0] * cosf(theta);
+    float uf, vf;
+    int ui, vi;
+
+    uf = (phi   / M_PI   + 1.f) * width  / 2.f;
+    vf = (theta / M_PI_2 + 1.f) * height / 2.f;
+    ui = floorf(uf);
+    vi = floorf(vf);
+
+    *du = uf - ui;
+    *dv = vf - vi;
+
+    for (int i = -1; i < 3; i++) {
+        for (int j = -1; j < 3; j++) {
+            us[i + 1][j + 1] = av_clip(ui + j, 0, width  - 1);
             vs[i + 1][j + 1] = av_clip(vi + i, 0, height - 1);
         }
     }
@@ -1935,7 +2219,7 @@ static void eac_to_xyz(const V360Context *s,
  */
 static void xyz_to_eac(const V360Context *s,
                        const float *vec, int width, int height,
-                       uint16_t us[4][4], uint16_t vs[4][4], float *du, float *dv)
+                       int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
 {
     const float pixel_pad = 2;
     const float u_pad = pixel_pad / width;
@@ -1990,11 +2274,8 @@ static int prepare_flat_out(AVFilterContext *ctx)
 {
     V360Context *s = ctx->priv;
 
-    const float h_angle = 0.5f * s->h_fov * M_PI / 180.f;
-    const float v_angle = 0.5f * s->v_fov * M_PI / 180.f;
-
-    s->flat_range[0] = tanf(h_angle);
-    s->flat_range[1] = tanf(v_angle);
+    s->flat_range[0] = tanf(0.5f * s->h_fov * M_PI / 180.f);
+    s->flat_range[1] = tanf(0.5f * s->v_fov * M_PI / 180.f);
 
     return 0;
 }
@@ -2023,6 +2304,375 @@ static void flat_to_xyz(const V360Context *s,
     normalize_vector(vec);
 }
 
+/**
+ * Prepare data for processing fisheye output format.
+ *
+ * @param ctx filter context
+ *
+ * @return error code
+ */
+static int prepare_fisheye_out(AVFilterContext *ctx)
+{
+    V360Context *s = ctx->priv;
+
+    s->flat_range[0] = s->h_fov / 180.f;
+    s->flat_range[1] = s->v_fov / 180.f;
+
+    return 0;
+}
+
+/**
+ * Calculate 3D coordinates on sphere for corresponding frame position in fisheye format.
+ *
+ * @param s filter private context
+ * @param i horizontal position on frame [0, width)
+ * @param j vertical position on frame [0, height)
+ * @param width frame width
+ * @param height frame height
+ * @param vec coordinates on sphere
+ */
+static void fisheye_to_xyz(const V360Context *s,
+                           int i, int j, int width, int height,
+                           float *vec)
+{
+    const float uf = s->flat_range[0] * ((2.f * i) / width  - 1.f);
+    const float vf = s->flat_range[1] * ((2.f * j) / height - 1.f);
+
+    const float phi   = -atan2f(vf, uf);
+    const float theta = -M_PI_2 * (1.f - hypotf(uf, vf));
+
+    vec[0] = cosf(theta) * cosf(phi);
+    vec[1] = cosf(theta) * sinf(phi);
+    vec[2] = sinf(theta);
+
+    normalize_vector(vec);
+}
+
+/**
+ * Prepare data for processing fisheye input format.
+ *
+ * @param ctx filter context
+ *
+ * @return error code
+ */
+static int prepare_fisheye_in(AVFilterContext *ctx)
+{
+    V360Context *s = ctx->priv;
+
+    s->iflat_range[0] = s->ih_fov / 180.f;
+    s->iflat_range[1] = s->iv_fov / 180.f;
+
+    return 0;
+}
+
+/**
+ * Calculate frame position in fisheye format for corresponding 3D coordinates on sphere.
+ *
+ * @param s filter private context
+ * @param vec coordinates on sphere
+ * @param width frame width
+ * @param height frame height
+ * @param us horizontal coordinates for interpolation window
+ * @param vs vertical coordinates for interpolation window
+ * @param du horizontal relative coordinate
+ * @param dv vertical relative coordinate
+ */
+static void xyz_to_fisheye(const V360Context *s,
+                           const float *vec, int width, int height,
+                           int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
+{
+    const float phi   = -atan2f(hypotf(vec[0], vec[1]), -vec[2]) / M_PI;
+    const float theta = -atan2f(vec[0], vec[1]);
+
+    float uf = sinf(theta) * phi * s->input_mirror_modifier[0] / s->iflat_range[0];
+    float vf = cosf(theta) * phi * s->input_mirror_modifier[1] / s->iflat_range[1];
+
+    const int visible = hypotf(uf, vf) <= 0.5f;
+    int ui, vi;
+
+    uf = (uf + 0.5f) * width;
+    vf = (vf + 0.5f) * height;
+
+    ui = floorf(uf);
+    vi = floorf(vf);
+
+    *du = visible ? uf - ui : 0.f;
+    *dv = visible ? vf - vi : 0.f;
+
+    for (int i = -1; i < 3; i++) {
+        for (int j = -1; j < 3; j++) {
+            us[i + 1][j + 1] = visible ? av_clip(ui + j, 0, width  - 1) : 0;
+            vs[i + 1][j + 1] = visible ? av_clip(vi + i, 0, height - 1) : 0;
+        }
+    }
+}
+
+/**
+ * Calculate 3D coordinates on sphere for corresponding frame position in pannini format.
+ *
+ * @param s filter private context
+ * @param i horizontal position on frame [0, width)
+ * @param j vertical position on frame [0, height)
+ * @param width frame width
+ * @param height frame height
+ * @param vec coordinates on sphere
+ */
+static void pannini_to_xyz(const V360Context *s,
+                           int i, int j, int width, int height,
+                           float *vec)
+{
+    const float uf = ((2.f * i) / width  - 1.f);
+    const float vf = ((2.f * j) / height - 1.f);
+
+    const float d = s->h_fov;
+    const float k = uf * uf / ((d + 1.f) * (d + 1.f));
+    const float dscr = k * k * d * d - (k + 1.f) * (k * d * d - 1.f);
+    const float clon = (-k * d + sqrtf(dscr)) / (k + 1.f);
+    const float S = (d + 1.f) / (d + clon);
+    const float lon = -(M_PI + atan2f(uf, S * clon));
+    const float lat = -atan2f(vf, S);
+
+    vec[0] = sinf(lon) * cosf(lat);
+    vec[1] = sinf(lat);
+    vec[2] = cosf(lon) * cosf(lat);
+
+    normalize_vector(vec);
+}
+
+/**
+ * Prepare data for processing cylindrical output format.
+ *
+ * @param ctx filter context
+ *
+ * @return error code
+ */
+static int prepare_cylindrical_out(AVFilterContext *ctx)
+{
+    V360Context *s = ctx->priv;
+
+    s->flat_range[0] = M_PI * s->h_fov / 360.f;
+    s->flat_range[1] = tanf(0.5f * s->v_fov * M_PI / 180.f);
+
+    return 0;
+}
+
+/**
+ * Calculate 3D coordinates on sphere for corresponding frame position in cylindrical format.
+ *
+ * @param s filter private context
+ * @param i horizontal position on frame [0, width)
+ * @param j vertical position on frame [0, height)
+ * @param width frame width
+ * @param height frame height
+ * @param vec coordinates on sphere
+ */
+static void cylindrical_to_xyz(const V360Context *s,
+                               int i, int j, int width, int height,
+                               float *vec)
+{
+    const float uf = s->flat_range[0] * ((2.f * i) / width  - 1.f);
+    const float vf = s->flat_range[1] * ((2.f * j) / height - 1.f);
+
+    const float phi   = uf;
+    const float theta = atanf(vf);
+
+    const float sin_phi   = sinf(phi);
+    const float cos_phi   = cosf(phi);
+    const float sin_theta = sinf(theta);
+    const float cos_theta = cosf(theta);
+
+    vec[0] =  cos_theta * sin_phi;
+    vec[1] = -sin_theta;
+    vec[2] = -cos_theta * cos_phi;
+
+    normalize_vector(vec);
+}
+
+/**
+ * Prepare data for processing cylindrical input format.
+ *
+ * @param ctx filter context
+ *
+ * @return error code
+ */
+static int prepare_cylindrical_in(AVFilterContext *ctx)
+{
+    V360Context *s = ctx->priv;
+
+    s->iflat_range[0] = M_PI * s->ih_fov / 360.f;
+    s->iflat_range[1] = tanf(0.5f * s->iv_fov * M_PI / 180.f);
+
+    return 0;
+}
+
+/**
+ * Calculate frame position in cylindrical format for corresponding 3D coordinates on sphere.
+ *
+ * @param s filter private context
+ * @param vec coordinates on sphere
+ * @param width frame width
+ * @param height frame height
+ * @param us horizontal coordinates for interpolation window
+ * @param vs vertical coordinates for interpolation window
+ * @param du horizontal relative coordinate
+ * @param dv vertical relative coordinate
+ */
+static void xyz_to_cylindrical(const V360Context *s,
+                               const float *vec, int width, int height,
+                               int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
+{
+    const float phi   = atan2f(vec[0], -vec[2]) * s->input_mirror_modifier[0] / s->iflat_range[0];
+    const float theta = atan2f(-vec[1], hypotf(vec[0], vec[2])) * s->input_mirror_modifier[1] / s->iflat_range[1];
+    int visible, ui, vi;
+    float uf, vf;
+
+    uf = (phi + 1.f) * (width - 1) / 2.f;
+    vf = (tanf(theta) + 1.f) * height / 2.f;
+    ui = floorf(uf);
+    vi = floorf(vf);
+
+    visible = vi >= 0 && vi < height && ui >= 0 && ui < width &&
+              theta <=  M_PI * s->iv_fov / 180.f &&
+              theta >= -M_PI * s->iv_fov / 180.f;
+
+    *du = uf - ui;
+    *dv = vf - vi;
+
+    for (int i = -1; i < 3; i++) {
+        for (int j = -1; j < 3; j++) {
+            us[i + 1][j + 1] = visible ? av_clip(ui + j, 0, width  - 1) : 0;
+            vs[i + 1][j + 1] = visible ? av_clip(vi + i, 0, height - 1) : 0;
+        }
+    }
+}
+
+/**
+ * Calculate 3D coordinates on sphere for corresponding frame position in perspective format.
+ *
+ * @param s filter private context
+ * @param i horizontal position on frame [0, width)
+ * @param j vertical position on frame [0, height)
+ * @param width frame width
+ * @param height frame height
+ * @param vec coordinates on sphere
+ */
+static void perspective_to_xyz(const V360Context *s,
+                               int i, int j, int width, int height,
+                               float *vec)
+{
+    const float uf = ((2.f * i) / width  - 1.f);
+    const float vf = ((2.f * j) / height - 1.f);
+    const float rh = hypotf(uf, vf);
+    const float sinzz = 1.f - rh * rh;
+    const float h = 1.f + s->v_fov;
+    const float sinz = (h - sqrtf(sinzz)) / (h / rh + rh / h);
+    const float sinz2 = sinz * sinz;
+
+    if (sinz2 <= 1.f) {
+        const float cosz = sqrtf(1.f - sinz2);
+
+        const float theta = asinf(cosz);
+        const float phi   = atan2f(uf, vf);
+
+        const float sin_phi   = sinf(phi);
+        const float cos_phi   = cosf(phi);
+        const float sin_theta = sinf(theta);
+        const float cos_theta = cosf(theta);
+
+        vec[0] =  cos_theta * sin_phi;
+        vec[1] =  sin_theta;
+        vec[2] = -cos_theta * cos_phi;
+    } else {
+        vec[0] =  0.f;
+        vec[1] = -1.f;
+        vec[2] =  0.f;
+    }
+
+    normalize_vector(vec);
+}
+
+/**
+ * Calculate 3D coordinates on sphere for corresponding frame position in tetrahedron format.
+ *
+ * @param s filter private context
+ * @param i horizontal position on frame [0, width)
+ * @param j vertical position on frame [0, height)
+ * @param width frame width
+ * @param height frame height
+ * @param vec coordinates on sphere
+ */
+static void tetrahedron_to_xyz(const V360Context *s,
+                               int i, int j, int width, int height,
+                               float *vec)
+{
+    const float uf = (float)i / width;
+    const float vf = (float)j / height;
+
+    vec[0] = uf < 0.5f ? uf * 4.f - 1.f : 3.f - uf * 4.f;
+    vec[1] = 1.f - vf * 2.f;
+    vec[2] = 2.f * fabsf(1.f - fabsf(1.f - uf * 2.f + vf)) - 1.f;
+
+    normalize_vector(vec);
+}
+
+/**
+ * Calculate frame position in tetrahedron format for corresponding 3D coordinates on sphere.
+ *
+ * @param s filter private context
+ * @param vec coordinates on sphere
+ * @param width frame width
+ * @param height frame height
+ * @param us horizontal coordinates for interpolation window
+ * @param vs vertical coordinates for interpolation window
+ * @param du horizontal relative coordinate
+ * @param dv vertical relative coordinate
+ */
+static void xyz_to_tetrahedron(const V360Context *s,
+                               const float *vec, int width, int height,
+                               int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
+{
+    float d = 0.5f * (vec[0] * vec[0] + vec[1] * vec[1] + vec[2] * vec[2]);
+
+    const float d0 = (vec[0] * 0.5f + vec[1] * 0.5f + vec[2] *-0.5f) / d;
+    const float d1 = (vec[0] *-0.5f + vec[1] *-0.5f + vec[2] *-0.5f) / d;
+    const float d2 = (vec[0] * 0.5f + vec[1] *-0.5f + vec[2] * 0.5f) / d;
+    const float d3 = (vec[0] *-0.5f + vec[1] * 0.5f + vec[2] * 0.5f) / d;
+
+    float uf, vf, x, y, z;
+    int ui, vi;
+
+    d = FFMAX(d0, FFMAX3(d1, d2, d3));
+
+    x =  vec[0] / d;
+    y =  vec[1] / d;
+    z = -vec[2] / d;
+
+    vf = 0.5f - y * 0.5f;
+
+    if ((x + y >= 0.f &&  y + z >= 0.f && -z - x <= 0.f) ||
+        (x + y <= 0.f && -y + z >= 0.f &&  z - x >= 0.f)) {
+        uf = 0.25f * x + 0.25f;
+    }  else {
+        uf = 0.75f - 0.25f * x;
+    }
+
+    uf *= width;
+    vf *= height;
+
+    ui = floorf(uf);
+    vi = floorf(vf);
+
+    *du = uf - ui;
+    *dv = vf - vi;
+
+    for (int i = -1; i < 3; i++) {
+        for (int j = -1; j < 3; j++) {
+            us[i + 1][j + 1] = mod(ui + j, width);
+            vs[i + 1][j + 1] = av_clip(vi + i, 0, height - 1);
+        }
+    }
+}
+
 /**
  * Calculate 3D coordinates on sphere for corresponding frame position in dual fisheye format.
  *
@@ -2055,8 +2705,8 @@ static void dfisheye_to_xyz(const V360Context *s,
     const float sin_theta = sinf(theta);
     const float cos_theta = cosf(theta);
 
-    vec[0] = cos_theta *  uf / lh;
-    vec[1] = cos_theta * -vf / lh;
+    vec[0] = cos_theta * m * -uf / lh;
+    vec[1] = cos_theta *     -vf / lh;
     vec[2] = sin_theta;
 
     normalize_vector(vec);
@@ -2076,23 +2726,24 @@ static void dfisheye_to_xyz(const V360Context *s,
  */
 static void xyz_to_dfisheye(const V360Context *s,
                             const float *vec, int width, int height,
-                            uint16_t us[4][4], uint16_t vs[4][4], float *du, float *dv)
+                            int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
 {
     const float scale = 1.f - s->in_pad;
 
     const float ew = width / 2.f;
     const float eh = height;
 
-    const float phi   = atan2f(-vec[1], -vec[0]) * s->input_mirror_modifier[0];
-    const float theta = acosf(fabsf(vec[2])) / M_PI * s->input_mirror_modifier[1];
+    const float h     = hypotf(vec[0], vec[1]);
+    const float lh    = h > 0.f ? h : 1.f;
+    const float theta = acosf(fabsf(vec[2])) / M_PI;
 
-    float uf = (theta * cosf(phi) * scale + 0.5f) * ew;
-    float vf = (theta * sinf(phi) * scale + 0.5f) * eh;
+    float uf = (theta * (-vec[0] / lh) * s->input_mirror_modifier[0] * scale + 0.5f) * ew;
+    float vf = (theta * (-vec[1] / lh) * s->input_mirror_modifier[1] * scale + 0.5f) * eh;
 
     int ui, vi;
     int u_shift;
 
-    if (vec[2] >= 0) {
+    if (vec[2] >= 0.f) {
         u_shift = 0;
     } else {
         u_shift = ceilf(ew);
@@ -2197,7 +2848,7 @@ static void barrel_to_xyz(const V360Context *s,
  */
 static void xyz_to_barrel(const V360Context *s,
                           const float *vec, int width, int height,
-                          uint16_t us[4][4], uint16_t vs[4][4], float *du, float *dv)
+                          int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
 {
     const float scale = 0.99f;
 
@@ -2260,7 +2911,7 @@ static void multiply_matrix(float c[3][3], const float a[3][3], const float b[3]
 {
     for (int i = 0; i < 3; i++) {
         for (int j = 0; j < 3; j++) {
-            float sum = 0;
+            float sum = 0.f;
 
             for (int k = 0; k < 3; k++)
                 sum += a[i][k] * b[k][j];
@@ -2355,18 +3006,18 @@ static int allocate_plane(V360Context *s, int sizeof_uv, int sizeof_ker, int p)
     return 0;
 }
 
-static void fov_from_dfov(V360Context *s, float w, float h)
+static void fov_from_dfov(float d_fov, float w, float h, float *h_fov, float *v_fov)
 {
-    const float da = tanf(0.5 * FFMIN(s->d_fov, 359.f) * M_PI / 180.f);
+    const float da = tanf(0.5 * FFMIN(d_fov, 359.f) * M_PI / 180.f);
     const float d = hypotf(w, h);
 
-    s->h_fov = atan2f(da * w, d) * 360.f / M_PI;
-    s->v_fov = atan2f(da * h, d) * 360.f / M_PI;
+    *h_fov = atan2f(da * w, d) * 360.f / M_PI;
+    *v_fov = atan2f(da * h, d) * 360.f / M_PI;
 
-    if (s->h_fov < 0.f)
-        s->h_fov += 360.f;
-    if (s->v_fov < 0.f)
-        s->v_fov += 360.f;
+    if (*h_fov < 0.f)
+        *h_fov += 360.f;
+    if (*v_fov < 0.f)
+        *v_fov += 360.f;
 }
 
 static void set_dimensions(int *outw, int *outh, int w, int h, const AVPixFmtDescriptor *desc)
@@ -2396,8 +3047,8 @@ static av_always_inline int v360_slice(AVFilterContext *ctx, void *arg, int jobn
 
         for (int j = slice_start; j < slice_end; j++) {
             for (int i = 0; i < width; i++) {
-                uint16_t *u = s->u[p] + (j * uv_linesize + i) * s->elements;
-                uint16_t *v = s->v[p] + (j * uv_linesize + i) * s->elements;
+                int16_t *u = s->u[p] + (j * uv_linesize + i) * s->elements;
+                int16_t *v = s->v[p] + (j * uv_linesize + i) * s->elements;
                 int16_t *ker = s->ker[p] + (j * uv_linesize + i) * s->elements;
 
                 if (s->out_transpose)
@@ -2446,29 +3097,43 @@ static int config_output(AVFilterLink *outlink)
         s->calculate_kernel = nearest_kernel;
         s->remap_slice = depth <= 8 ? remap1_8bit_slice : remap1_16bit_slice;
         s->elements = 1;
-        sizeof_uv = sizeof(uint16_t) * s->elements;
+        sizeof_uv = sizeof(int16_t) * s->elements;
         sizeof_ker = 0;
         break;
     case BILINEAR:
         s->calculate_kernel = bilinear_kernel;
         s->remap_slice = depth <= 8 ? remap2_8bit_slice : remap2_16bit_slice;
         s->elements = 2 * 2;
-        sizeof_uv = sizeof(uint16_t) * s->elements;
-        sizeof_ker = sizeof(uint16_t) * s->elements;
+        sizeof_uv = sizeof(int16_t) * s->elements;
+        sizeof_ker = sizeof(int16_t) * s->elements;
         break;
     case BICUBIC:
         s->calculate_kernel = bicubic_kernel;
         s->remap_slice = depth <= 8 ? remap4_8bit_slice : remap4_16bit_slice;
         s->elements = 4 * 4;
-        sizeof_uv = sizeof(uint16_t) * s->elements;
-        sizeof_ker = sizeof(uint16_t) * s->elements;
+        sizeof_uv = sizeof(int16_t) * s->elements;
+        sizeof_ker = sizeof(int16_t) * s->elements;
         break;
     case LANCZOS:
         s->calculate_kernel = lanczos_kernel;
         s->remap_slice = depth <= 8 ? remap4_8bit_slice : remap4_16bit_slice;
         s->elements = 4 * 4;
-        sizeof_uv = sizeof(uint16_t) * s->elements;
-        sizeof_ker = sizeof(uint16_t) * s->elements;
+        sizeof_uv = sizeof(int16_t) * s->elements;
+        sizeof_ker = sizeof(int16_t) * s->elements;
+        break;
+    case SPLINE16:
+        s->calculate_kernel = spline16_kernel;
+        s->remap_slice = depth <= 8 ? remap4_8bit_slice : remap4_16bit_slice;
+        s->elements = 4 * 4;
+        sizeof_uv = sizeof(int16_t) * s->elements;
+        sizeof_ker = sizeof(int16_t) * s->elements;
+        break;
+    case GAUSSIAN:
+        s->calculate_kernel = gaussian_kernel;
+        s->remap_slice = depth <= 8 ? remap4_8bit_slice : remap4_16bit_slice;
+        s->elements = 4 * 4;
+        sizeof_uv = sizeof(int16_t) * s->elements;
+        sizeof_ker = sizeof(int16_t) * s->elements;
         break;
     default:
         av_assert0(0);
@@ -2521,6 +3186,15 @@ static int config_output(AVFilterLink *outlink)
     set_dimensions(s->inplanewidth, s->inplaneheight, w, h, desc);
     set_dimensions(s->in_offset_w, s->in_offset_h, in_offset_w, in_offset_h, desc);
 
+    s->in_width = s->inplanewidth[0];
+    s->in_height = s->inplaneheight[0];
+
+    if (s->id_fov > 0.f)
+        fov_from_dfov(s->id_fov, w, h, &s->ih_fov, &s->iv_fov);
+
+    if (s->in_transpose)
+        FFSWAP(int, s->in_width, s->in_height);
+
     switch (s->in) {
     case EQUIRECTANGULAR:
         s->in_transform = xyz_to_equirect;
@@ -2553,7 +3227,14 @@ static int config_output(AVFilterLink *outlink)
         hf = h / 9.f * 8.f;
         break;
     case FLAT:
-        av_log(ctx, AV_LOG_ERROR, "Flat format is not accepted as input.\n");
+        s->in_transform = xyz_to_flat;
+        err = prepare_flat_in(ctx);
+        wf = w;
+        hf = h;
+        break;
+    case PERSPECTIVE:
+    case PANNINI:
+        av_log(ctx, AV_LOG_ERROR, "Supplied format is not accepted as input.\n");
         return AVERROR(EINVAL);
     case DUAL_FISHEYE:
         s->in_transform = xyz_to_dfisheye;
@@ -2569,7 +3250,7 @@ static int config_output(AVFilterLink *outlink)
         break;
     case STEREOGRAPHIC:
         s->in_transform = xyz_to_stereographic;
-        err = 0;
+        err = prepare_stereographic_in(ctx);
         wf = w;
         hf = h / 2.f;
         break;
@@ -2577,7 +3258,7 @@ static int config_output(AVFilterLink *outlink)
         s->in_transform = xyz_to_mercator;
         err = 0;
         wf = w;
-        hf = h;
+        hf = h / 2.f;
         break;
     case BALL:
         s->in_transform = xyz_to_ball;
@@ -2591,6 +3272,30 @@ static int config_output(AVFilterLink *outlink)
         wf = w;
         hf = h;
         break;
+    case SINUSOIDAL:
+        s->in_transform = xyz_to_sinusoidal;
+        err = 0;
+        wf = w;
+        hf = h;
+        break;
+    case FISHEYE:
+        s->in_transform = xyz_to_fisheye;
+        err = prepare_fisheye_in(ctx);
+        wf = w * 2;
+        hf = h;
+        break;
+    case CYLINDRICAL:
+        s->in_transform = xyz_to_cylindrical;
+        err = prepare_cylindrical_in(ctx);
+        wf = w;
+        hf = h * 2.f;
+        break;
+    case TETRAHEDRON:
+        s->in_transform = xyz_to_tetrahedron;
+        err = 0;
+        wf = w;
+        hf = h;
+        break;
     default:
         av_log(ctx, AV_LOG_ERROR, "Specified input format is not handled.\n");
         return AVERROR_BUG;
@@ -2604,74 +3309,110 @@ static int config_output(AVFilterLink *outlink)
     case EQUIRECTANGULAR:
         s->out_transform = equirect_to_xyz;
         prepare_out = NULL;
-        w = roundf(wf);
-        h = roundf(hf);
+        w = lrintf(wf);
+        h = lrintf(hf);
         break;
     case CUBEMAP_3_2:
         s->out_transform = cube3x2_to_xyz;
         prepare_out = prepare_cube_out;
-        w = roundf(wf / 4.f * 3.f);
-        h = roundf(hf);
+        w = lrintf(wf / 4.f * 3.f);
+        h = lrintf(hf);
         break;
     case CUBEMAP_1_6:
         s->out_transform = cube1x6_to_xyz;
         prepare_out = prepare_cube_out;
-        w = roundf(wf / 4.f);
-        h = roundf(hf * 3.f);
+        w = lrintf(wf / 4.f);
+        h = lrintf(hf * 3.f);
         break;
     case CUBEMAP_6_1:
         s->out_transform = cube6x1_to_xyz;
         prepare_out = prepare_cube_out;
-        w = roundf(wf / 2.f * 3.f);
-        h = roundf(hf / 2.f);
+        w = lrintf(wf / 2.f * 3.f);
+        h = lrintf(hf / 2.f);
         break;
     case EQUIANGULAR:
         s->out_transform = eac_to_xyz;
         prepare_out = prepare_eac_out;
-        w = roundf(wf);
-        h = roundf(hf / 8.f * 9.f);
+        w = lrintf(wf);
+        h = lrintf(hf / 8.f * 9.f);
         break;
     case FLAT:
         s->out_transform = flat_to_xyz;
         prepare_out = prepare_flat_out;
-        w = roundf(wf);
-        h = roundf(hf);
+        w = lrintf(wf);
+        h = lrintf(hf);
         break;
     case DUAL_FISHEYE:
         s->out_transform = dfisheye_to_xyz;
         prepare_out = NULL;
-        w = roundf(wf);
-        h = roundf(hf);
+        w = lrintf(wf);
+        h = lrintf(hf);
         break;
     case BARREL:
         s->out_transform = barrel_to_xyz;
         prepare_out = NULL;
-        w = roundf(wf / 4.f * 5.f);
-        h = roundf(hf);
+        w = lrintf(wf / 4.f * 5.f);
+        h = lrintf(hf);
         break;
     case STEREOGRAPHIC:
         s->out_transform = stereographic_to_xyz;
         prepare_out = prepare_stereographic_out;
-        w = roundf(wf);
-        h = roundf(hf * 2.f);
+        w = lrintf(wf);
+        h = lrintf(hf * 2.f);
         break;
     case MERCATOR:
         s->out_transform = mercator_to_xyz;
         prepare_out = NULL;
-        w = roundf(wf);
-        h = roundf(hf);
+        w = lrintf(wf);
+        h = lrintf(hf * 2.f);
         break;
     case BALL:
         s->out_transform = ball_to_xyz;
         prepare_out = NULL;
-        w = roundf(wf);
-        h = roundf(hf * 2.f);
+        w = lrintf(wf);
+        h = lrintf(hf * 2.f);
         break;
     case HAMMER:
         s->out_transform = hammer_to_xyz;
         prepare_out = NULL;
-        w = roundf(wf);
-        h = roundf(hf);
+        w = lrintf(wf);
+        h = lrintf(hf);
+        break;
+    case SINUSOIDAL:
+        s->out_transform = sinusoidal_to_xyz;
+        prepare_out = NULL;
+        w = lrintf(wf);
+        h = lrintf(hf);
+        break;
+    case FISHEYE:
+        s->out_transform = fisheye_to_xyz;
+        prepare_out = prepare_fisheye_out;
+        w = lrintf(wf * 0.5f);
+        h = lrintf(hf);
+        break;
+    case PANNINI:
+        s->out_transform = pannini_to_xyz;
+        prepare_out = NULL;
+        w = lrintf(wf);
+        h = lrintf(hf);
+        break;
+    case CYLINDRICAL:
+        s->out_transform = cylindrical_to_xyz;
+        prepare_out = prepare_cylindrical_out;
+        w = lrintf(wf);
+        h = lrintf(hf * 0.5f);
+        break;
+    case PERSPECTIVE:
+        s->out_transform = perspective_to_xyz;
+        prepare_out = NULL;
+        w = lrintf(wf / 2.f);
+        h = lrintf(hf);
+        break;
+    case TETRAHEDRON:
+        s->out_transform = tetrahedron_to_xyz;
+        prepare_out = NULL;
+        w = lrintf(wf);
+        h = lrintf(hf);
         break;
     default:
         av_log(ctx, AV_LOG_ERROR, "Specified output format is not handled.\n");
@@ -2694,7 +3435,7 @@ static int config_output(AVFilterLink *outlink)
     }
 
     if (s->d_fov > 0.f)
-        fov_from_dfov(s, w, h);
+        fov_from_dfov(s->d_fov, w, h, &s->h_fov, &s->v_fov);
 
     if (prepare_out) {
         err = prepare_out(ctx);
@@ -2704,6 +3445,12 @@ static int config_output(AVFilterLink *outlink)
 
     set_dimensions(s->pr_width, s->pr_height, w, h, desc);
 
+    s->out_width = s->pr_width[0];
+    s->out_height = s->pr_height[0];
+
+    if (s->out_transpose)
+        FFSWAP(int, s->out_width, s->out_height);
+
     switch (s->out_stereo) {
     case STEREO_2D:
         out_offset_w = out_offset_h = 0;
@@ -2738,9 +3485,8 @@ static int config_output(AVFilterLink *outlink)
         s->map[0] = s->map[1] = s->map[2] = s->map[3] = 0;
     } else {
         s->nb_allocated = 2;
-        s->map[0] = 0;
+        s->map[0] = s->map[3] = 0;
         s->map[1] = s->map[2] = 1;
-        s->map[3] = 0;
     }
 
     for (int i = 0; i < s->nb_allocated; i++)