]> git.sesse.net Git - bcachefs-tools-debian/blobdiff - libbcachefs/btree_update_interior.h
Move c_src dirs back to toplevel
[bcachefs-tools-debian] / libbcachefs / btree_update_interior.h
diff --git a/libbcachefs/btree_update_interior.h b/libbcachefs/btree_update_interior.h
new file mode 100644 (file)
index 0000000..adfc620
--- /dev/null
@@ -0,0 +1,333 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifndef _BCACHEFS_BTREE_UPDATE_INTERIOR_H
+#define _BCACHEFS_BTREE_UPDATE_INTERIOR_H
+
+#include "btree_cache.h"
+#include "btree_locking.h"
+#include "btree_update.h"
+
+#define BTREE_UPDATE_NODES_MAX         ((BTREE_MAX_DEPTH - 2) * 2 + GC_MERGE_NODES)
+
+#define BTREE_UPDATE_JOURNAL_RES       (BTREE_UPDATE_NODES_MAX * (BKEY_BTREE_PTR_U64s_MAX + 1))
+
+/*
+ * Tracks an in progress split/rewrite of a btree node and the update to the
+ * parent node:
+ *
+ * When we split/rewrite a node, we do all the updates in memory without
+ * waiting for any writes to complete - we allocate the new node(s) and update
+ * the parent node, possibly recursively up to the root.
+ *
+ * The end result is that we have one or more new nodes being written -
+ * possibly several, if there were multiple splits - and then a write (updating
+ * an interior node) which will make all these new nodes visible.
+ *
+ * Additionally, as we split/rewrite nodes we free the old nodes - but the old
+ * nodes can't be freed (their space on disk can't be reclaimed) until the
+ * update to the interior node that makes the new node visible completes -
+ * until then, the old nodes are still reachable on disk.
+ *
+ */
+struct btree_update {
+       struct closure                  cl;
+       struct bch_fs                   *c;
+       u64                             start_time;
+
+       struct list_head                list;
+       struct list_head                unwritten_list;
+
+       /* What kind of update are we doing? */
+       enum {
+               BTREE_INTERIOR_NO_UPDATE,
+               BTREE_INTERIOR_UPDATING_NODE,
+               BTREE_INTERIOR_UPDATING_ROOT,
+               BTREE_INTERIOR_UPDATING_AS,
+       } mode;
+
+       unsigned                        nodes_written:1;
+       unsigned                        took_gc_lock:1;
+
+       enum btree_id                   btree_id;
+       unsigned                        update_level;
+
+       struct disk_reservation         disk_res;
+
+       /*
+        * BTREE_INTERIOR_UPDATING_NODE:
+        * The update that made the new nodes visible was a regular update to an
+        * existing interior node - @b. We can't write out the update to @b
+        * until the new nodes we created are finished writing, so we block @b
+        * from writing by putting this btree_interior update on the
+        * @b->write_blocked list with @write_blocked_list:
+        */
+       struct btree                    *b;
+       struct list_head                write_blocked_list;
+
+       /*
+        * We may be freeing nodes that were dirty, and thus had journal entries
+        * pinned: we need to transfer the oldest of those pins to the
+        * btree_update operation, and release it when the new node(s)
+        * are all persistent and reachable:
+        */
+       struct journal_entry_pin        journal;
+
+       /* Preallocated nodes we reserve when we start the update: */
+       struct prealloc_nodes {
+               struct btree            *b[BTREE_UPDATE_NODES_MAX];
+               unsigned                nr;
+       }                               prealloc_nodes[2];
+
+       /* Nodes being freed: */
+       struct keylist                  old_keys;
+       u64                             _old_keys[BTREE_UPDATE_NODES_MAX *
+                                                 BKEY_BTREE_PTR_U64s_MAX];
+
+       /* Nodes being added: */
+       struct keylist                  new_keys;
+       u64                             _new_keys[BTREE_UPDATE_NODES_MAX *
+                                                 BKEY_BTREE_PTR_U64s_MAX];
+
+       /* New nodes, that will be made reachable by this update: */
+       struct btree                    *new_nodes[BTREE_UPDATE_NODES_MAX];
+       unsigned                        nr_new_nodes;
+
+       struct btree                    *old_nodes[BTREE_UPDATE_NODES_MAX];
+       __le64                          old_nodes_seq[BTREE_UPDATE_NODES_MAX];
+       unsigned                        nr_old_nodes;
+
+       open_bucket_idx_t               open_buckets[BTREE_UPDATE_NODES_MAX *
+                                                    BCH_REPLICAS_MAX];
+       open_bucket_idx_t               nr_open_buckets;
+
+       unsigned                        journal_u64s;
+       u64                             journal_entries[BTREE_UPDATE_JOURNAL_RES];
+
+       /* Only here to reduce stack usage on recursive splits: */
+       struct keylist                  parent_keys;
+       /*
+        * Enough room for btree_split's keys without realloc - btree node
+        * pointers never have crc/compression info, so we only need to acount
+        * for the pointers for three keys
+        */
+       u64                             inline_keys[BKEY_BTREE_PTR_U64s_MAX * 3];
+};
+
+struct btree *__bch2_btree_node_alloc_replacement(struct btree_update *,
+                                                 struct btree_trans *,
+                                                 struct btree *,
+                                                 struct bkey_format);
+
+int bch2_btree_split_leaf(struct btree_trans *, btree_path_idx_t, unsigned);
+
+int __bch2_foreground_maybe_merge(struct btree_trans *, btree_path_idx_t,
+                                 unsigned, unsigned, enum btree_node_sibling);
+
+static inline int bch2_foreground_maybe_merge_sibling(struct btree_trans *trans,
+                                       btree_path_idx_t path_idx,
+                                       unsigned level, unsigned flags,
+                                       enum btree_node_sibling sib)
+{
+       struct btree_path *path = trans->paths + path_idx;
+       struct btree *b;
+
+       EBUG_ON(!btree_node_locked(path, level));
+
+       b = path->l[level].b;
+       if (b->sib_u64s[sib] > trans->c->btree_foreground_merge_threshold)
+               return 0;
+
+       return __bch2_foreground_maybe_merge(trans, path_idx, level, flags, sib);
+}
+
+static inline int bch2_foreground_maybe_merge(struct btree_trans *trans,
+                                             btree_path_idx_t path,
+                                             unsigned level,
+                                             unsigned flags)
+{
+       return  bch2_foreground_maybe_merge_sibling(trans, path, level, flags,
+                                                   btree_prev_sib) ?:
+               bch2_foreground_maybe_merge_sibling(trans, path, level, flags,
+                                                   btree_next_sib);
+}
+
+int bch2_btree_node_rewrite(struct btree_trans *, struct btree_iter *,
+                           struct btree *, unsigned);
+void bch2_btree_node_rewrite_async(struct bch_fs *, struct btree *);
+int bch2_btree_node_update_key(struct btree_trans *, struct btree_iter *,
+                              struct btree *, struct bkey_i *,
+                              unsigned, bool);
+int bch2_btree_node_update_key_get_iter(struct btree_trans *, struct btree *,
+                                       struct bkey_i *, unsigned, bool);
+
+void bch2_btree_set_root_for_read(struct bch_fs *, struct btree *);
+void bch2_btree_root_alloc(struct bch_fs *, enum btree_id);
+
+static inline unsigned btree_update_reserve_required(struct bch_fs *c,
+                                                    struct btree *b)
+{
+       unsigned depth = btree_node_root(c, b)->c.level + 1;
+
+       /*
+        * Number of nodes we might have to allocate in a worst case btree
+        * split operation - we split all the way up to the root, then allocate
+        * a new root, unless we're already at max depth:
+        */
+       if (depth < BTREE_MAX_DEPTH)
+               return (depth - b->c.level) * 2 + 1;
+       else
+               return (depth - b->c.level) * 2 - 1;
+}
+
+static inline void btree_node_reset_sib_u64s(struct btree *b)
+{
+       b->sib_u64s[0] = b->nr.live_u64s;
+       b->sib_u64s[1] = b->nr.live_u64s;
+}
+
+static inline void *btree_data_end(struct bch_fs *c, struct btree *b)
+{
+       return (void *) b->data + btree_bytes(c);
+}
+
+static inline struct bkey_packed *unwritten_whiteouts_start(struct bch_fs *c,
+                                                           struct btree *b)
+{
+       return (void *) ((u64 *) btree_data_end(c, b) - b->whiteout_u64s);
+}
+
+static inline struct bkey_packed *unwritten_whiteouts_end(struct bch_fs *c,
+                                                         struct btree *b)
+{
+       return btree_data_end(c, b);
+}
+
+static inline void *write_block(struct btree *b)
+{
+       return (void *) b->data + (b->written << 9);
+}
+
+static inline bool __btree_addr_written(struct btree *b, void *p)
+{
+       return p < write_block(b);
+}
+
+static inline bool bset_written(struct btree *b, struct bset *i)
+{
+       return __btree_addr_written(b, i);
+}
+
+static inline bool bkey_written(struct btree *b, struct bkey_packed *k)
+{
+       return __btree_addr_written(b, k);
+}
+
+static inline ssize_t __bch_btree_u64s_remaining(struct bch_fs *c,
+                                                struct btree *b,
+                                                void *end)
+{
+       ssize_t used = bset_byte_offset(b, end) / sizeof(u64) +
+               b->whiteout_u64s;
+       ssize_t total = c->opts.btree_node_size >> 3;
+
+       /* Always leave one extra u64 for bch2_varint_decode: */
+       used++;
+
+       return total - used;
+}
+
+static inline size_t bch_btree_keys_u64s_remaining(struct bch_fs *c,
+                                                  struct btree *b)
+{
+       ssize_t remaining = __bch_btree_u64s_remaining(c, b,
+                               btree_bkey_last(b, bset_tree_last(b)));
+
+       BUG_ON(remaining < 0);
+
+       if (bset_written(b, btree_bset_last(b)))
+               return 0;
+
+       return remaining;
+}
+
+#define BTREE_WRITE_SET_U64s_BITS      9
+
+static inline unsigned btree_write_set_buffer(struct btree *b)
+{
+       /*
+        * Could buffer up larger amounts of keys for btrees with larger keys,
+        * pending benchmarking:
+        */
+       return 8 << BTREE_WRITE_SET_U64s_BITS;
+}
+
+static inline struct btree_node_entry *want_new_bset(struct bch_fs *c,
+                                                    struct btree *b)
+{
+       struct bset_tree *t = bset_tree_last(b);
+       struct btree_node_entry *bne = max(write_block(b),
+                       (void *) btree_bkey_last(b, bset_tree_last(b)));
+       ssize_t remaining_space =
+               __bch_btree_u64s_remaining(c, b, bne->keys.start);
+
+       if (unlikely(bset_written(b, bset(b, t)))) {
+               if (remaining_space > (ssize_t) (block_bytes(c) >> 3))
+                       return bne;
+       } else {
+               if (unlikely(bset_u64s(t) * sizeof(u64) > btree_write_set_buffer(b)) &&
+                   remaining_space > (ssize_t) (btree_write_set_buffer(b) >> 3))
+                       return bne;
+       }
+
+       return NULL;
+}
+
+static inline void push_whiteout(struct bch_fs *c, struct btree *b,
+                                struct bpos pos)
+{
+       struct bkey_packed k;
+
+       BUG_ON(bch_btree_keys_u64s_remaining(c, b) < BKEY_U64s);
+       EBUG_ON(btree_node_just_written(b));
+
+       if (!bkey_pack_pos(&k, pos, b)) {
+               struct bkey *u = (void *) &k;
+
+               bkey_init(u);
+               u->p = pos;
+       }
+
+       k.needs_whiteout = true;
+
+       b->whiteout_u64s += k.u64s;
+       bkey_p_copy(unwritten_whiteouts_start(c, b), &k);
+}
+
+/*
+ * write lock must be held on @b (else the dirty bset that we were going to
+ * insert into could be written out from under us)
+ */
+static inline bool bch2_btree_node_insert_fits(struct bch_fs *c,
+                                              struct btree *b, unsigned u64s)
+{
+       if (unlikely(btree_node_need_rewrite(b)))
+               return false;
+
+       return u64s <= bch_btree_keys_u64s_remaining(c, b);
+}
+
+void bch2_btree_updates_to_text(struct printbuf *, struct bch_fs *);
+
+bool bch2_btree_interior_updates_flush(struct bch_fs *);
+
+void bch2_journal_entry_to_btree_root(struct bch_fs *, struct jset_entry *);
+struct jset_entry *bch2_btree_roots_to_journal_entries(struct bch_fs *,
+                                       struct jset_entry *, unsigned long);
+
+void bch2_do_pending_node_rewrites(struct bch_fs *);
+void bch2_free_pending_node_rewrites(struct bch_fs *);
+
+void bch2_fs_btree_interior_update_exit(struct bch_fs *);
+void bch2_fs_btree_interior_update_init_early(struct bch_fs *);
+int bch2_fs_btree_interior_update_init(struct bch_fs *);
+
+#endif /* _BCACHEFS_BTREE_UPDATE_INTERIOR_H */