]> git.sesse.net Git - nageru/blobdiff - motion_search.frag
Finish up the variational refinement, conceptually. Of course, it doesn't work yet.
[nageru] / motion_search.frag
index 0c5dcc4c1e68810d12d220f9af3cfe6d76d4e5c8..188f5c3da22b73361a810d382cd8d83cbdab0433 100644 (file)
@@ -40,7 +40,7 @@ const uint num_iterations = 16;
 
 in vec2 flow_tc;
 in vec2 patch_bottom_left_texel;  // Center of bottom-left texel of patch.
-out vec2 out_flow;
+out vec3 out_flow;
 
 uniform sampler2D flow_tex, grad0_tex, image0_tex, image1_tex;
 uniform vec2 image_size, inv_image_size;
@@ -49,7 +49,7 @@ void main()
 {
        // Lock patch_bottom_left_texel to an integer, so that we never get
        // any bilinear artifacts for the gradient.
-       vec2 base = round(patch_bottom_left_texel * image_size)
+       vec2 base = (round(patch_bottom_left_texel * image_size - vec2(0.5, 0.5)) + vec2(0.5, 0.5))
                * inv_image_size;
 
        // First, precompute the pseudo-Hessian for the template patch.
@@ -63,6 +63,8 @@ void main()
        // this is an outer product, so we get a (symmetric) 2x2 matrix,
        // not a scalar.
        mat2 H = mat2(0.0f);
+       vec2 grad_sum = vec2(0.0f);  // Used for patch normalization.
+       float template_sum = 0.0f;
        for (uint y = 0; y < patch_size; ++y) {
                for (uint x = 0; x < patch_size; ++x) {
                        vec2 tc = base + uvec2(x, y) * inv_image_size;
@@ -70,6 +72,9 @@ void main()
                        H[0][0] += grad.x * grad.x;
                        H[1][1] += grad.y * grad.y;
                        H[0][1] += grad.x * grad.y;
+
+                       template_sum += texture(image0_tex, tc).x;
+                       grad_sum += grad;
                }
        }
        H[1][0] = H[0][1];
@@ -85,24 +90,18 @@ void main()
 
        mat2 H_inv = inverse(H);
 
-       // Fetch the initial guess for the flow. (We need the normalization step
-       // because densification works by accumulating; see the comments on the
-       // Densify class.)
-       vec3 prev_flow = texture(flow_tex, flow_tc).xyz;
-       vec2 initial_u;
-       if (prev_flow.z < 1e-3) {
-               initial_u = vec2(0.0, 0.0);
-       } else {
-               initial_u = prev_flow.xy / prev_flow.z;
-       }
+       // Fetch the initial guess for the flow.
+       vec2 initial_u = texture(flow_tex, flow_tc).xy;
 
        // Note: The flow is in OpenGL coordinates [0..1], but the calculations
        // generally come out in pixels since the gradient is in pixels,
        // so we need to convert at the end.
        vec2 u = initial_u;
+       float mean_diff, first_mean_diff;
 
        for (uint i = 0; i < num_iterations; ++i) {
                vec2 du = vec2(0.0, 0.0);
+               float warped_sum = 0.0f;
                for (uint y = 0; y < patch_size; ++y) {
                        for (uint x = 0; x < patch_size; ++x) {
                                vec2 tc = base + uvec2(x, y) * inv_image_size;
@@ -110,15 +109,45 @@ void main()
                                float t = texture(image0_tex, tc).x;
                                float warped = texture(image1_tex, tc + u).x;
                                du += grad * (warped - t);
+                               warped_sum += warped;
                        }
                }
-               u += (H_inv * du) * inv_image_size;
+
+               // Subtract the mean for patch normalization. We've done our
+               // sums without subtracting the means (because we didn't know them
+               // beforehand), ie.:
+               //
+               //   sum(S^T * ((x + µ1) - (y + µ2))) = sum(S^T * (x - y)) + (µ1 – µ2) sum(S^T)
+               //
+               // which gives trivially
+               //
+               //   sum(S^T * (x - y)) = [what we calculated] - (µ1 - µ2) sum(S^T)
+               //
+               // so we can just subtract away the mean difference here.
+               mean_diff = (warped_sum - template_sum) * (1.0 / (patch_size * patch_size));
+               du -= grad_sum * mean_diff;
+
+               if (i == 0) {
+                       first_mean_diff = mean_diff;
+               }
+
+               // Do the actual update.
+               u -= (H_inv * du) * inv_image_size;
        }
 
-       // Reject if we moved too far.
-       if (length((u - initial_u) * image_size) > patch_size) {
+       // Reject if we moved too far. Also reject if the patch goes out-of-bounds
+       // (the paper does not mention this, but the code does, and it seems to be
+       // critical to avoid really bad behavior at the edges).
+       if ((length((u - initial_u) * image_size) > patch_size) ||
+            u.x * image_size.x < -(patch_size * 0.5f) ||
+            (1.0 - u.x) * image_size.x < -(patch_size * 0.5f) ||
+            u.y * image_size.y < -(patch_size * 0.5f) ||
+            (1.0 - u.y) * image_size.y < -(patch_size * 0.5f)) {
                u = initial_u;
+               mean_diff = first_mean_diff;
        }
 
-       out_flow = u;
+       // NOTE: The mean patch diff will be for the second-to-last patch,
+       // not the true position of du. But hopefully, it will be very close.
+       out_flow = vec3(u.x, u.y, mean_diff);
 }