]> git.sesse.net Git - pistorm/blobdiff - raylib_pi4_test/models.c
[MEGA-WIP] Raylib-based RTG output
[pistorm] / raylib_pi4_test / models.c
diff --git a/raylib_pi4_test/models.c b/raylib_pi4_test/models.c
new file mode 100644 (file)
index 0000000..feaadf8
--- /dev/null
@@ -0,0 +1,4829 @@
+/**********************************************************************************************
+*
+*   raylib.models - Basic functions to deal with 3d shapes and 3d models
+*
+*   CONFIGURATION:
+*
+*   #define SUPPORT_FILEFORMAT_OBJ
+*   #define SUPPORT_FILEFORMAT_MTL
+*   #define SUPPORT_FILEFORMAT_IQM
+*   #define SUPPORT_FILEFORMAT_GLTF
+*       Selected desired fileformats to be supported for model data loading.
+*
+*   #define SUPPORT_MESH_GENERATION
+*       Support procedural mesh generation functions, uses external par_shapes.h library
+*       NOTE: Some generated meshes DO NOT include generated texture coordinates
+*
+*
+*   LICENSE: zlib/libpng
+*
+*   Copyright (c) 2013-2021 Ramon Santamaria (@raysan5)
+*
+*   This software is provided "as-is", without any express or implied warranty. In no event
+*   will the authors be held liable for any damages arising from the use of this software.
+*
+*   Permission is granted to anyone to use this software for any purpose, including commercial
+*   applications, and to alter it and redistribute it freely, subject to the following restrictions:
+*
+*     1. The origin of this software must not be misrepresented; you must not claim that you
+*     wrote the original software. If you use this software in a product, an acknowledgment
+*     in the product documentation would be appreciated but is not required.
+*
+*     2. Altered source versions must be plainly marked as such, and must not be misrepresented
+*     as being the original software.
+*
+*     3. This notice may not be removed or altered from any source distribution.
+*
+**********************************************************************************************/
+
+#include "raylib.h"         // Declares module functions
+
+// Check if config flags have been externally provided on compilation line
+#if !defined(EXTERNAL_CONFIG_FLAGS)
+    #include "config.h"         // Defines module configuration flags
+#endif
+
+#include "utils.h"          // Required for: LoadFileData(), LoadFileText(), SaveFileText()
+
+#include <stdio.h>          // Required for: sprintf()
+#include <stdlib.h>         // Required for: malloc(), free()
+#include <string.h>         // Required for: memcmp(), strlen()
+#include <math.h>           // Required for: sinf(), cosf(), sqrtf(), fabsf()
+
+#if defined(_WIN32)
+    #include <direct.h>     // Required for: _chdir() [Used in LoadOBJ()]
+    #define CHDIR _chdir
+#else
+    #include <unistd.h>     // Required for: chdir() (POSIX) [Used in LoadOBJ()]
+    #define CHDIR chdir
+#endif
+
+#include "rlgl.h"           // raylib OpenGL abstraction layer to OpenGL 1.1, 2.1, 3.3+ or ES2
+
+#if defined(SUPPORT_FILEFORMAT_OBJ) || defined(SUPPORT_FILEFORMAT_MTL)
+    #define TINYOBJ_MALLOC RL_MALLOC
+    #define TINYOBJ_CALLOC RL_CALLOC
+    #define TINYOBJ_REALLOC RL_REALLOC
+    #define TINYOBJ_FREE RL_FREE
+
+    #define TINYOBJ_LOADER_C_IMPLEMENTATION
+    #include "external/tinyobj_loader_c.h"      // OBJ/MTL file formats loading
+#endif
+
+#if defined(SUPPORT_FILEFORMAT_GLTF)
+    #define CGLTF_MALLOC RL_MALLOC
+    #define CGLTF_FREE RL_FREE
+
+    #define CGLTF_IMPLEMENTATION
+    #include "external/cgltf.h"         // glTF file format loading
+    #include "external/stb_image.h"     // glTF texture images loading
+#endif
+
+#if defined(SUPPORT_MESH_GENERATION)
+    #define PAR_MALLOC(T, N) ((T*)RL_MALLOC(N*sizeof(T)))
+    #define PAR_CALLOC(T, N) ((T*)RL_CALLOC(N*sizeof(T), 1))
+    #define PAR_REALLOC(T, BUF, N) ((T*)RL_REALLOC(BUF, sizeof(T)*(N)))
+    #define PAR_FREE RL_FREE
+
+    #define PAR_SHAPES_IMPLEMENTATION
+    #include "external/par_shapes.h"    // Shapes 3d parametric generation
+#endif
+
+//----------------------------------------------------------------------------------
+// Defines and Macros
+//----------------------------------------------------------------------------------
+// ...
+
+//----------------------------------------------------------------------------------
+// Types and Structures Definition
+//----------------------------------------------------------------------------------
+// ...
+
+//----------------------------------------------------------------------------------
+// Global Variables Definition
+//----------------------------------------------------------------------------------
+// ...
+
+//----------------------------------------------------------------------------------
+// Module specific Functions Declaration
+//----------------------------------------------------------------------------------
+#if defined(SUPPORT_FILEFORMAT_OBJ)
+static Model LoadOBJ(const char *fileName);     // Load OBJ mesh data
+#endif
+#if defined(SUPPORT_FILEFORMAT_IQM)
+static Model LoadIQM(const char *fileName);     // Load IQM mesh data
+static ModelAnimation *LoadIQMModelAnimations(const char *fileName, int *animCount);    // Load IQM animation data
+#endif
+#if defined(SUPPORT_FILEFORMAT_GLTF)
+static Model LoadGLTF(const char *fileName);    // Load GLTF mesh data
+static ModelAnimation *LoadGLTFModelAnimations(const char *fileName, int *animCount);    // Load GLTF animation data
+static void LoadGLTFModelIndices(Model* model, cgltf_accessor* indexAccessor, int primitiveIndex);
+static void BindGLTFPrimitiveToBones(Model* model, const cgltf_data* data, int primitiveIndex);
+static void LoadGLTFBoneAttribute(Model* model, cgltf_accessor* jointsAccessor, const cgltf_data* data, int primitiveIndex);
+static void LoadGLTFMaterial(Model* model, const char* fileName, const cgltf_data* data);
+static void InitGLTFBones(Model* model, const cgltf_data* data);
+#endif
+
+//----------------------------------------------------------------------------------
+// Module Functions Definition
+//----------------------------------------------------------------------------------
+
+// Draw a line in 3D world space
+void DrawLine3D(Vector3 startPos, Vector3 endPos, Color color)
+{
+    // WARNING: Be careful with internal buffer vertex alignment
+    // when using RL_LINES or RL_TRIANGLES, data is aligned to fit
+    // lines-triangles-quads in the same indexed buffers!!!
+    rlCheckRenderBatchLimit(8);
+
+    rlBegin(RL_LINES);
+        rlColor4ub(color.r, color.g, color.b, color.a);
+        rlVertex3f(startPos.x, startPos.y, startPos.z);
+        rlVertex3f(endPos.x, endPos.y, endPos.z);
+    rlEnd();
+}
+
+// Draw a point in 3D space, actually a small line
+void DrawPoint3D(Vector3 position, Color color)
+{
+    rlCheckRenderBatchLimit(8);
+
+    rlPushMatrix();
+        rlTranslatef(position.x, position.y, position.z);
+        rlBegin(RL_LINES);
+            rlColor4ub(color.r, color.g, color.b, color.a);
+            rlVertex3f(0.0f, 0.0f, 0.0f);
+            rlVertex3f(0.0f, 0.0f, 0.1f);
+        rlEnd();
+    rlPopMatrix();
+}
+
+// Draw a circle in 3D world space
+void DrawCircle3D(Vector3 center, float radius, Vector3 rotationAxis, float rotationAngle, Color color)
+{
+    rlCheckRenderBatchLimit(2*36);
+
+    rlPushMatrix();
+        rlTranslatef(center.x, center.y, center.z);
+        rlRotatef(rotationAngle, rotationAxis.x, rotationAxis.y, rotationAxis.z);
+
+        rlBegin(RL_LINES);
+            for (int i = 0; i < 360; i += 10)
+            {
+                rlColor4ub(color.r, color.g, color.b, color.a);
+
+                rlVertex3f(sinf(DEG2RAD*i)*radius, cosf(DEG2RAD*i)*radius, 0.0f);
+                rlVertex3f(sinf(DEG2RAD*(i + 10))*radius, cosf(DEG2RAD*(i + 10))*radius, 0.0f);
+            }
+        rlEnd();
+    rlPopMatrix();
+}
+
+// Draw a color-filled triangle (vertex in counter-clockwise order!)
+void DrawTriangle3D(Vector3 v1, Vector3 v2, Vector3 v3, Color color)
+{
+    rlCheckRenderBatchLimit(3);
+
+    rlBegin(RL_TRIANGLES);
+        rlColor4ub(color.r, color.g, color.b, color.a);
+        rlVertex3f(v1.x, v1.y, v1.z);
+        rlVertex3f(v2.x, v2.y, v2.z);
+        rlVertex3f(v3.x, v3.y, v3.z);
+    rlEnd();
+}
+
+// Draw a triangle strip defined by points
+void DrawTriangleStrip3D(Vector3 *points, int pointsCount, Color color)
+{
+    if (pointsCount >= 3)
+    {
+        rlCheckRenderBatchLimit(3*(pointsCount - 2));
+
+        rlBegin(RL_TRIANGLES);
+            rlColor4ub(color.r, color.g, color.b, color.a);
+
+            for (int i = 2; i < pointsCount; i++)
+            {
+                if ((i%2) == 0)
+                {
+                    rlVertex3f(points[i].x, points[i].y, points[i].z);
+                    rlVertex3f(points[i - 2].x, points[i - 2].y, points[i - 2].z);
+                    rlVertex3f(points[i - 1].x, points[i - 1].y, points[i - 1].z);
+                }
+                else
+                {
+                    rlVertex3f(points[i].x, points[i].y, points[i].z);
+                    rlVertex3f(points[i - 1].x, points[i - 1].y, points[i - 1].z);
+                    rlVertex3f(points[i - 2].x, points[i - 2].y, points[i - 2].z);
+                }
+            }
+        rlEnd();
+    }
+}
+
+// Draw cube
+// NOTE: Cube position is the center position
+void DrawCube(Vector3 position, float width, float height, float length, Color color)
+{
+    float x = 0.0f;
+    float y = 0.0f;
+    float z = 0.0f;
+
+    rlCheckRenderBatchLimit(36);
+
+    rlPushMatrix();
+        // NOTE: Transformation is applied in inverse order (scale -> rotate -> translate)
+        rlTranslatef(position.x, position.y, position.z);
+        //rlRotatef(45, 0, 1, 0);
+        //rlScalef(1.0f, 1.0f, 1.0f);   // NOTE: Vertices are directly scaled on definition
+
+        rlBegin(RL_TRIANGLES);
+            rlColor4ub(color.r, color.g, color.b, color.a);
+
+            // Front face
+            rlVertex3f(x - width/2, y - height/2, z + length/2);  // Bottom Left
+            rlVertex3f(x + width/2, y - height/2, z + length/2);  // Bottom Right
+            rlVertex3f(x - width/2, y + height/2, z + length/2);  // Top Left
+
+            rlVertex3f(x + width/2, y + height/2, z + length/2);  // Top Right
+            rlVertex3f(x - width/2, y + height/2, z + length/2);  // Top Left
+            rlVertex3f(x + width/2, y - height/2, z + length/2);  // Bottom Right
+
+            // Back face
+            rlVertex3f(x - width/2, y - height/2, z - length/2);  // Bottom Left
+            rlVertex3f(x - width/2, y + height/2, z - length/2);  // Top Left
+            rlVertex3f(x + width/2, y - height/2, z - length/2);  // Bottom Right
+
+            rlVertex3f(x + width/2, y + height/2, z - length/2);  // Top Right
+            rlVertex3f(x + width/2, y - height/2, z - length/2);  // Bottom Right
+            rlVertex3f(x - width/2, y + height/2, z - length/2);  // Top Left
+
+            // Top face
+            rlVertex3f(x - width/2, y + height/2, z - length/2);  // Top Left
+            rlVertex3f(x - width/2, y + height/2, z + length/2);  // Bottom Left
+            rlVertex3f(x + width/2, y + height/2, z + length/2);  // Bottom Right
+
+            rlVertex3f(x + width/2, y + height/2, z - length/2);  // Top Right
+            rlVertex3f(x - width/2, y + height/2, z - length/2);  // Top Left
+            rlVertex3f(x + width/2, y + height/2, z + length/2);  // Bottom Right
+
+            // Bottom face
+            rlVertex3f(x - width/2, y - height/2, z - length/2);  // Top Left
+            rlVertex3f(x + width/2, y - height/2, z + length/2);  // Bottom Right
+            rlVertex3f(x - width/2, y - height/2, z + length/2);  // Bottom Left
+
+            rlVertex3f(x + width/2, y - height/2, z - length/2);  // Top Right
+            rlVertex3f(x + width/2, y - height/2, z + length/2);  // Bottom Right
+            rlVertex3f(x - width/2, y - height/2, z - length/2);  // Top Left
+
+            // Right face
+            rlVertex3f(x + width/2, y - height/2, z - length/2);  // Bottom Right
+            rlVertex3f(x + width/2, y + height/2, z - length/2);  // Top Right
+            rlVertex3f(x + width/2, y + height/2, z + length/2);  // Top Left
+
+            rlVertex3f(x + width/2, y - height/2, z + length/2);  // Bottom Left
+            rlVertex3f(x + width/2, y - height/2, z - length/2);  // Bottom Right
+            rlVertex3f(x + width/2, y + height/2, z + length/2);  // Top Left
+
+            // Left face
+            rlVertex3f(x - width/2, y - height/2, z - length/2);  // Bottom Right
+            rlVertex3f(x - width/2, y + height/2, z + length/2);  // Top Left
+            rlVertex3f(x - width/2, y + height/2, z - length/2);  // Top Right
+
+            rlVertex3f(x - width/2, y - height/2, z + length/2);  // Bottom Left
+            rlVertex3f(x - width/2, y + height/2, z + length/2);  // Top Left
+            rlVertex3f(x - width/2, y - height/2, z - length/2);  // Bottom Right
+        rlEnd();
+    rlPopMatrix();
+}
+
+// Draw cube (Vector version)
+void DrawCubeV(Vector3 position, Vector3 size, Color color)
+{
+    DrawCube(position, size.x, size.y, size.z, color);
+}
+
+// Draw cube wires
+void DrawCubeWires(Vector3 position, float width, float height, float length, Color color)
+{
+    float x = 0.0f;
+    float y = 0.0f;
+    float z = 0.0f;
+
+    rlCheckRenderBatchLimit(36);
+
+    rlPushMatrix();
+        rlTranslatef(position.x, position.y, position.z);
+
+        rlBegin(RL_LINES);
+            rlColor4ub(color.r, color.g, color.b, color.a);
+
+            // Front Face -----------------------------------------------------
+            // Bottom Line
+            rlVertex3f(x-width/2, y-height/2, z+length/2);  // Bottom Left
+            rlVertex3f(x+width/2, y-height/2, z+length/2);  // Bottom Right
+
+            // Left Line
+            rlVertex3f(x+width/2, y-height/2, z+length/2);  // Bottom Right
+            rlVertex3f(x+width/2, y+height/2, z+length/2);  // Top Right
+
+            // Top Line
+            rlVertex3f(x+width/2, y+height/2, z+length/2);  // Top Right
+            rlVertex3f(x-width/2, y+height/2, z+length/2);  // Top Left
+
+            // Right Line
+            rlVertex3f(x-width/2, y+height/2, z+length/2);  // Top Left
+            rlVertex3f(x-width/2, y-height/2, z+length/2);  // Bottom Left
+
+            // Back Face ------------------------------------------------------
+            // Bottom Line
+            rlVertex3f(x-width/2, y-height/2, z-length/2);  // Bottom Left
+            rlVertex3f(x+width/2, y-height/2, z-length/2);  // Bottom Right
+
+            // Left Line
+            rlVertex3f(x+width/2, y-height/2, z-length/2);  // Bottom Right
+            rlVertex3f(x+width/2, y+height/2, z-length/2);  // Top Right
+
+            // Top Line
+            rlVertex3f(x+width/2, y+height/2, z-length/2);  // Top Right
+            rlVertex3f(x-width/2, y+height/2, z-length/2);  // Top Left
+
+            // Right Line
+            rlVertex3f(x-width/2, y+height/2, z-length/2);  // Top Left
+            rlVertex3f(x-width/2, y-height/2, z-length/2);  // Bottom Left
+
+            // Top Face -------------------------------------------------------
+            // Left Line
+            rlVertex3f(x-width/2, y+height/2, z+length/2);  // Top Left Front
+            rlVertex3f(x-width/2, y+height/2, z-length/2);  // Top Left Back
+
+            // Right Line
+            rlVertex3f(x+width/2, y+height/2, z+length/2);  // Top Right Front
+            rlVertex3f(x+width/2, y+height/2, z-length/2);  // Top Right Back
+
+            // Bottom Face  ---------------------------------------------------
+            // Left Line
+            rlVertex3f(x-width/2, y-height/2, z+length/2);  // Top Left Front
+            rlVertex3f(x-width/2, y-height/2, z-length/2);  // Top Left Back
+
+            // Right Line
+            rlVertex3f(x+width/2, y-height/2, z+length/2);  // Top Right Front
+            rlVertex3f(x+width/2, y-height/2, z-length/2);  // Top Right Back
+        rlEnd();
+    rlPopMatrix();
+}
+
+// Draw cube wires (vector version)
+void DrawCubeWiresV(Vector3 position, Vector3 size, Color color)
+{
+    DrawCubeWires(position, size.x, size.y, size.z, color);
+}
+
+// Draw cube
+// NOTE: Cube position is the center position
+void DrawCubeTexture(Texture2D texture, Vector3 position, float width, float height, float length, Color color)
+{
+    float x = position.x;
+    float y = position.y;
+    float z = position.z;
+
+    rlCheckRenderBatchLimit(36);
+
+    rlSetTexture(texture.id);
+
+    //rlPushMatrix();
+        // NOTE: Transformation is applied in inverse order (scale -> rotate -> translate)
+        //rlTranslatef(2.0f, 0.0f, 0.0f);
+        //rlRotatef(45, 0, 1, 0);
+        //rlScalef(2.0f, 2.0f, 2.0f);
+
+        rlBegin(RL_QUADS);
+            rlColor4ub(color.r, color.g, color.b, color.a);
+            // Front Face
+            rlNormal3f(0.0f, 0.0f, 1.0f);                  // Normal Pointing Towards Viewer
+            rlTexCoord2f(0.0f, 0.0f); rlVertex3f(x - width/2, y - height/2, z + length/2);  // Bottom Left Of The Texture and Quad
+            rlTexCoord2f(1.0f, 0.0f); rlVertex3f(x + width/2, y - height/2, z + length/2);  // Bottom Right Of The Texture and Quad
+            rlTexCoord2f(1.0f, 1.0f); rlVertex3f(x + width/2, y + height/2, z + length/2);  // Top Right Of The Texture and Quad
+            rlTexCoord2f(0.0f, 1.0f); rlVertex3f(x - width/2, y + height/2, z + length/2);  // Top Left Of The Texture and Quad
+            // Back Face
+            rlNormal3f(0.0f, 0.0f, - 1.0f);                  // Normal Pointing Away From Viewer
+            rlTexCoord2f(1.0f, 0.0f); rlVertex3f(x - width/2, y - height/2, z - length/2);  // Bottom Right Of The Texture and Quad
+            rlTexCoord2f(1.0f, 1.0f); rlVertex3f(x - width/2, y + height/2, z - length/2);  // Top Right Of The Texture and Quad
+            rlTexCoord2f(0.0f, 1.0f); rlVertex3f(x + width/2, y + height/2, z - length/2);  // Top Left Of The Texture and Quad
+            rlTexCoord2f(0.0f, 0.0f); rlVertex3f(x + width/2, y - height/2, z - length/2);  // Bottom Left Of The Texture and Quad
+            // Top Face
+            rlNormal3f(0.0f, 1.0f, 0.0f);                  // Normal Pointing Up
+            rlTexCoord2f(0.0f, 1.0f); rlVertex3f(x - width/2, y + height/2, z - length/2);  // Top Left Of The Texture and Quad
+            rlTexCoord2f(0.0f, 0.0f); rlVertex3f(x - width/2, y + height/2, z + length/2);  // Bottom Left Of The Texture and Quad
+            rlTexCoord2f(1.0f, 0.0f); rlVertex3f(x + width/2, y + height/2, z + length/2);  // Bottom Right Of The Texture and Quad
+            rlTexCoord2f(1.0f, 1.0f); rlVertex3f(x + width/2, y + height/2, z - length/2);  // Top Right Of The Texture and Quad
+            // Bottom Face
+            rlNormal3f(0.0f, - 1.0f, 0.0f);                  // Normal Pointing Down
+            rlTexCoord2f(1.0f, 1.0f); rlVertex3f(x - width/2, y - height/2, z - length/2);  // Top Right Of The Texture and Quad
+            rlTexCoord2f(0.0f, 1.0f); rlVertex3f(x + width/2, y - height/2, z - length/2);  // Top Left Of The Texture and Quad
+            rlTexCoord2f(0.0f, 0.0f); rlVertex3f(x + width/2, y - height/2, z + length/2);  // Bottom Left Of The Texture and Quad
+            rlTexCoord2f(1.0f, 0.0f); rlVertex3f(x - width/2, y - height/2, z + length/2);  // Bottom Right Of The Texture and Quad
+            // Right face
+            rlNormal3f(1.0f, 0.0f, 0.0f);                  // Normal Pointing Right
+            rlTexCoord2f(1.0f, 0.0f); rlVertex3f(x + width/2, y - height/2, z - length/2);  // Bottom Right Of The Texture and Quad
+            rlTexCoord2f(1.0f, 1.0f); rlVertex3f(x + width/2, y + height/2, z - length/2);  // Top Right Of The Texture and Quad
+            rlTexCoord2f(0.0f, 1.0f); rlVertex3f(x + width/2, y + height/2, z + length/2);  // Top Left Of The Texture and Quad
+            rlTexCoord2f(0.0f, 0.0f); rlVertex3f(x + width/2, y - height/2, z + length/2);  // Bottom Left Of The Texture and Quad
+            // Left Face
+            rlNormal3f( - 1.0f, 0.0f, 0.0f);                  // Normal Pointing Left
+            rlTexCoord2f(0.0f, 0.0f); rlVertex3f(x - width/2, y - height/2, z - length/2);  // Bottom Left Of The Texture and Quad
+            rlTexCoord2f(1.0f, 0.0f); rlVertex3f(x - width/2, y - height/2, z + length/2);  // Bottom Right Of The Texture and Quad
+            rlTexCoord2f(1.0f, 1.0f); rlVertex3f(x - width/2, y + height/2, z + length/2);  // Top Right Of The Texture and Quad
+            rlTexCoord2f(0.0f, 1.0f); rlVertex3f(x - width/2, y + height/2, z - length/2);  // Top Left Of The Texture and Quad
+        rlEnd();
+    //rlPopMatrix();
+
+    rlSetTexture(0);
+}
+
+// Draw sphere
+void DrawSphere(Vector3 centerPos, float radius, Color color)
+{
+    DrawSphereEx(centerPos, radius, 16, 16, color);
+}
+
+// Draw sphere with extended parameters
+void DrawSphereEx(Vector3 centerPos, float radius, int rings, int slices, Color color)
+{
+    int numVertex = (rings + 2)*slices*6;
+    rlCheckRenderBatchLimit(numVertex);
+
+    rlPushMatrix();
+        // NOTE: Transformation is applied in inverse order (scale -> translate)
+        rlTranslatef(centerPos.x, centerPos.y, centerPos.z);
+        rlScalef(radius, radius, radius);
+
+        rlBegin(RL_TRIANGLES);
+            rlColor4ub(color.r, color.g, color.b, color.a);
+
+            for (int i = 0; i < (rings + 2); i++)
+            {
+                for (int j = 0; j < slices; j++)
+                {
+                    rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*i))*sinf(DEG2RAD*(j*360/slices)),
+                               sinf(DEG2RAD*(270+(180/(rings + 1))*i)),
+                               cosf(DEG2RAD*(270+(180/(rings + 1))*i))*cosf(DEG2RAD*(j*360/slices)));
+                    rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*sinf(DEG2RAD*((j+1)*360/slices)),
+                               sinf(DEG2RAD*(270+(180/(rings + 1))*(i+1))),
+                               cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*cosf(DEG2RAD*((j+1)*360/slices)));
+                    rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*sinf(DEG2RAD*(j*360/slices)),
+                               sinf(DEG2RAD*(270+(180/(rings + 1))*(i+1))),
+                               cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*cosf(DEG2RAD*(j*360/slices)));
+
+                    rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*i))*sinf(DEG2RAD*(j*360/slices)),
+                               sinf(DEG2RAD*(270+(180/(rings + 1))*i)),
+                               cosf(DEG2RAD*(270+(180/(rings + 1))*i))*cosf(DEG2RAD*(j*360/slices)));
+                    rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*(i)))*sinf(DEG2RAD*((j+1)*360/slices)),
+                               sinf(DEG2RAD*(270+(180/(rings + 1))*(i))),
+                               cosf(DEG2RAD*(270+(180/(rings + 1))*(i)))*cosf(DEG2RAD*((j+1)*360/slices)));
+                    rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*sinf(DEG2RAD*((j+1)*360/slices)),
+                               sinf(DEG2RAD*(270+(180/(rings + 1))*(i+1))),
+                               cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*cosf(DEG2RAD*((j+1)*360/slices)));
+                }
+            }
+        rlEnd();
+    rlPopMatrix();
+}
+
+// Draw sphere wires
+void DrawSphereWires(Vector3 centerPos, float radius, int rings, int slices, Color color)
+{
+    int numVertex = (rings + 2)*slices*6;
+    rlCheckRenderBatchLimit(numVertex);
+
+    rlPushMatrix();
+        // NOTE: Transformation is applied in inverse order (scale -> translate)
+        rlTranslatef(centerPos.x, centerPos.y, centerPos.z);
+        rlScalef(radius, radius, radius);
+
+        rlBegin(RL_LINES);
+            rlColor4ub(color.r, color.g, color.b, color.a);
+
+            for (int i = 0; i < (rings + 2); i++)
+            {
+                for (int j = 0; j < slices; j++)
+                {
+                    rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*i))*sinf(DEG2RAD*(j*360/slices)),
+                               sinf(DEG2RAD*(270+(180/(rings + 1))*i)),
+                               cosf(DEG2RAD*(270+(180/(rings + 1))*i))*cosf(DEG2RAD*(j*360/slices)));
+                    rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*sinf(DEG2RAD*((j+1)*360/slices)),
+                               sinf(DEG2RAD*(270+(180/(rings + 1))*(i+1))),
+                               cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*cosf(DEG2RAD*((j+1)*360/slices)));
+
+                    rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*sinf(DEG2RAD*((j+1)*360/slices)),
+                               sinf(DEG2RAD*(270+(180/(rings + 1))*(i+1))),
+                               cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*cosf(DEG2RAD*((j+1)*360/slices)));
+                    rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*sinf(DEG2RAD*(j*360/slices)),
+                               sinf(DEG2RAD*(270+(180/(rings + 1))*(i+1))),
+                               cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*cosf(DEG2RAD*(j*360/slices)));
+
+                    rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*sinf(DEG2RAD*(j*360/slices)),
+                               sinf(DEG2RAD*(270+(180/(rings + 1))*(i+1))),
+                               cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*cosf(DEG2RAD*(j*360/slices)));
+                    rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*i))*sinf(DEG2RAD*(j*360/slices)),
+                               sinf(DEG2RAD*(270+(180/(rings + 1))*i)),
+                               cosf(DEG2RAD*(270+(180/(rings + 1))*i))*cosf(DEG2RAD*(j*360/slices)));
+                }
+            }
+        rlEnd();
+    rlPopMatrix();
+}
+
+// Draw a cylinder
+// NOTE: It could be also used for pyramid and cone
+void DrawCylinder(Vector3 position, float radiusTop, float radiusBottom, float height, int sides, Color color)
+{
+    if (sides < 3) sides = 3;
+
+    int numVertex = sides*6;
+    rlCheckRenderBatchLimit(numVertex);
+
+    rlPushMatrix();
+        rlTranslatef(position.x, position.y, position.z);
+
+        rlBegin(RL_TRIANGLES);
+            rlColor4ub(color.r, color.g, color.b, color.a);
+
+            if (radiusTop > 0)
+            {
+                // Draw Body -------------------------------------------------------------------------------------
+                for (int i = 0; i < 360; i += 360/sides)
+                {
+                    rlVertex3f(sinf(DEG2RAD*i)*radiusBottom, 0, cosf(DEG2RAD*i)*radiusBottom); //Bottom Left
+                    rlVertex3f(sinf(DEG2RAD*(i + 360/sides))*radiusBottom, 0, cosf(DEG2RAD*(i + 360/sides))*radiusBottom); //Bottom Right
+                    rlVertex3f(sinf(DEG2RAD*(i + 360/sides))*radiusTop, height, cosf(DEG2RAD*(i + 360/sides))*radiusTop); //Top Right
+
+                    rlVertex3f(sinf(DEG2RAD*i)*radiusTop, height, cosf(DEG2RAD*i)*radiusTop); //Top Left
+                    rlVertex3f(sinf(DEG2RAD*i)*radiusBottom, 0, cosf(DEG2RAD*i)*radiusBottom); //Bottom Left
+                    rlVertex3f(sinf(DEG2RAD*(i + 360/sides))*radiusTop, height, cosf(DEG2RAD*(i + 360/sides))*radiusTop); //Top Right
+                }
+
+                // Draw Cap --------------------------------------------------------------------------------------
+                for (int i = 0; i < 360; i += 360/sides)
+                {
+                    rlVertex3f(0, height, 0);
+                    rlVertex3f(sinf(DEG2RAD*i)*radiusTop, height, cosf(DEG2RAD*i)*radiusTop);
+                    rlVertex3f(sinf(DEG2RAD*(i + 360/sides))*radiusTop, height, cosf(DEG2RAD*(i + 360/sides))*radiusTop);
+                }
+            }
+            else
+            {
+                // Draw Cone -------------------------------------------------------------------------------------
+                for (int i = 0; i < 360; i += 360/sides)
+                {
+                    rlVertex3f(0, height, 0);
+                    rlVertex3f(sinf(DEG2RAD*i)*radiusBottom, 0, cosf(DEG2RAD*i)*radiusBottom);
+                    rlVertex3f(sinf(DEG2RAD*(i + 360/sides))*radiusBottom, 0, cosf(DEG2RAD*(i + 360/sides))*radiusBottom);
+                }
+            }
+
+            // Draw Base -----------------------------------------------------------------------------------------
+            for (int i = 0; i < 360; i += 360/sides)
+            {
+                rlVertex3f(0, 0, 0);
+                rlVertex3f(sinf(DEG2RAD*(i + 360/sides))*radiusBottom, 0, cosf(DEG2RAD*(i + 360/sides))*radiusBottom);
+                rlVertex3f(sinf(DEG2RAD*i)*radiusBottom, 0, cosf(DEG2RAD*i)*radiusBottom);
+            }
+        rlEnd();
+    rlPopMatrix();
+}
+
+// Draw a wired cylinder
+// NOTE: It could be also used for pyramid and cone
+void DrawCylinderWires(Vector3 position, float radiusTop, float radiusBottom, float height, int sides, Color color)
+{
+    if (sides < 3) sides = 3;
+
+    int numVertex = sides*8;
+    rlCheckRenderBatchLimit(numVertex);
+
+    rlPushMatrix();
+        rlTranslatef(position.x, position.y, position.z);
+
+        rlBegin(RL_LINES);
+            rlColor4ub(color.r, color.g, color.b, color.a);
+
+            for (int i = 0; i < 360; i += 360/sides)
+            {
+                rlVertex3f(sinf(DEG2RAD*i)*radiusBottom, 0, cosf(DEG2RAD*i)*radiusBottom);
+                rlVertex3f(sinf(DEG2RAD*(i + 360/sides))*radiusBottom, 0, cosf(DEG2RAD*(i + 360/sides))*radiusBottom);
+
+                rlVertex3f(sinf(DEG2RAD*(i + 360/sides))*radiusBottom, 0, cosf(DEG2RAD*(i + 360/sides))*radiusBottom);
+                rlVertex3f(sinf(DEG2RAD*(i + 360/sides))*radiusTop, height, cosf(DEG2RAD*(i + 360/sides))*radiusTop);
+
+                rlVertex3f(sinf(DEG2RAD*(i + 360/sides))*radiusTop, height, cosf(DEG2RAD*(i + 360/sides))*radiusTop);
+                rlVertex3f(sinf(DEG2RAD*i)*radiusTop, height, cosf(DEG2RAD*i)*radiusTop);
+
+                rlVertex3f(sinf(DEG2RAD*i)*radiusTop, height, cosf(DEG2RAD*i)*radiusTop);
+                rlVertex3f(sinf(DEG2RAD*i)*radiusBottom, 0, cosf(DEG2RAD*i)*radiusBottom);
+            }
+        rlEnd();
+    rlPopMatrix();
+}
+
+// Draw a plane
+void DrawPlane(Vector3 centerPos, Vector2 size, Color color)
+{
+    rlCheckRenderBatchLimit(4);
+
+    // NOTE: Plane is always created on XZ ground
+    rlPushMatrix();
+        rlTranslatef(centerPos.x, centerPos.y, centerPos.z);
+        rlScalef(size.x, 1.0f, size.y);
+
+        rlBegin(RL_QUADS);
+            rlColor4ub(color.r, color.g, color.b, color.a);
+            rlNormal3f(0.0f, 1.0f, 0.0f);
+
+            rlVertex3f(-0.5f, 0.0f, -0.5f);
+            rlVertex3f(-0.5f, 0.0f, 0.5f);
+            rlVertex3f(0.5f, 0.0f, 0.5f);
+            rlVertex3f(0.5f, 0.0f, -0.5f);
+        rlEnd();
+    rlPopMatrix();
+}
+
+// Draw a ray line
+void DrawRay(Ray ray, Color color)
+{
+    float scale = 10000;
+
+    rlBegin(RL_LINES);
+        rlColor4ub(color.r, color.g, color.b, color.a);
+        rlColor4ub(color.r, color.g, color.b, color.a);
+
+        rlVertex3f(ray.position.x, ray.position.y, ray.position.z);
+        rlVertex3f(ray.position.x + ray.direction.x*scale, ray.position.y + ray.direction.y*scale, ray.position.z + ray.direction.z*scale);
+    rlEnd();
+}
+
+// Draw a grid centered at (0, 0, 0)
+void DrawGrid(int slices, float spacing)
+{
+    int halfSlices = slices/2;
+
+    rlCheckRenderBatchLimit((slices + 2)*4);
+
+    rlBegin(RL_LINES);
+        for (int i = -halfSlices; i <= halfSlices; i++)
+        {
+            if (i == 0)
+            {
+                rlColor3f(0.5f, 0.5f, 0.5f);
+                rlColor3f(0.5f, 0.5f, 0.5f);
+                rlColor3f(0.5f, 0.5f, 0.5f);
+                rlColor3f(0.5f, 0.5f, 0.5f);
+            }
+            else
+            {
+                rlColor3f(0.75f, 0.75f, 0.75f);
+                rlColor3f(0.75f, 0.75f, 0.75f);
+                rlColor3f(0.75f, 0.75f, 0.75f);
+                rlColor3f(0.75f, 0.75f, 0.75f);
+            }
+
+            rlVertex3f((float)i*spacing, 0.0f, (float)-halfSlices*spacing);
+            rlVertex3f((float)i*spacing, 0.0f, (float)halfSlices*spacing);
+
+            rlVertex3f((float)-halfSlices*spacing, 0.0f, (float)i*spacing);
+            rlVertex3f((float)halfSlices*spacing, 0.0f, (float)i*spacing);
+        }
+    rlEnd();
+}
+
+// Load model from files (mesh and material)
+Model LoadModel(const char *fileName)
+{
+    Model model = { 0 };
+
+#if defined(SUPPORT_FILEFORMAT_OBJ)
+    if (IsFileExtension(fileName, ".obj")) model = LoadOBJ(fileName);
+#endif
+#if defined(SUPPORT_FILEFORMAT_IQM)
+    if (IsFileExtension(fileName, ".iqm")) model = LoadIQM(fileName);
+#endif
+#if defined(SUPPORT_FILEFORMAT_GLTF)
+    if (IsFileExtension(fileName, ".gltf;.glb")) model = LoadGLTF(fileName);
+#endif
+
+    // Make sure model transform is set to identity matrix!
+    model.transform = MatrixIdentity();
+
+    if (model.meshCount == 0)
+    {
+        model.meshCount = 1;
+        model.meshes = (Mesh *)RL_CALLOC(model.meshCount, sizeof(Mesh));
+#if defined(SUPPORT_MESH_GENERATION)
+        TRACELOG(LOG_WARNING, "MESH: [%s] Failed to load mesh data, default to cube mesh", fileName);
+        model.meshes[0] = GenMeshCube(1.0f, 1.0f, 1.0f);
+#else
+        TRACELOG(LOG_WARNING, "MESH: [%s] Failed to load mesh data", fileName);
+#endif
+    }
+    else
+    {
+        // Upload vertex data to GPU (static mesh)
+        for (int i = 0; i < model.meshCount; i++) UploadMesh(&model.meshes[i], false);
+    }
+
+    if (model.materialCount == 0)
+    {
+        TRACELOG(LOG_WARNING, "MATERIAL: [%s] Failed to load material data, default to white material", fileName);
+
+        model.materialCount = 1;
+        model.materials = (Material *)RL_CALLOC(model.materialCount, sizeof(Material));
+        model.materials[0] = LoadMaterialDefault();
+
+        if (model.meshMaterial == NULL) model.meshMaterial = (int *)RL_CALLOC(model.meshCount, sizeof(int));
+    }
+
+    return model;
+}
+
+// Load model from generated mesh
+// WARNING: A shallow copy of mesh is generated, passed by value,
+// as long as struct contains pointers to data and some values, we get a copy
+// of mesh pointing to same data as original version... be careful!
+Model LoadModelFromMesh(Mesh mesh)
+{
+    Model model = { 0 };
+
+    model.transform = MatrixIdentity();
+
+    model.meshCount = 1;
+    model.meshes = (Mesh *)RL_CALLOC(model.meshCount, sizeof(Mesh));
+    model.meshes[0] = mesh;
+
+    model.materialCount = 1;
+    model.materials = (Material *)RL_CALLOC(model.materialCount, sizeof(Material));
+    model.materials[0] = LoadMaterialDefault();
+
+    model.meshMaterial = (int *)RL_CALLOC(model.meshCount, sizeof(int));
+    model.meshMaterial[0] = 0;  // First material index
+
+    return model;
+}
+
+// Unload model (meshes/materials) from memory (RAM and/or VRAM)
+// NOTE: This function takes care of all model elements, for a detailed control
+// over them, use UnloadMesh() and UnloadMaterial()
+void UnloadModel(Model model)
+{
+    // Unload meshes
+    for (int i = 0; i < model.meshCount; i++) UnloadMesh(model.meshes[i]);
+
+    // Unload materials maps
+    // NOTE: As the user could be sharing shaders and textures between models,
+    // we don't unload the material but just free it's maps,
+    // the user is responsible for freeing models shaders and textures
+    for (int i = 0; i < model.materialCount; i++) RL_FREE(model.materials[i].maps);
+
+    // Unload arrays
+    RL_FREE(model.meshes);
+    RL_FREE(model.materials);
+    RL_FREE(model.meshMaterial);
+
+    // Unload animation data
+    RL_FREE(model.bones);
+    RL_FREE(model.bindPose);
+
+    TRACELOG(LOG_INFO, "MODEL: Unloaded model (and meshes) from RAM and VRAM");
+}
+
+// Unload model (but not meshes) from memory (RAM and/or VRAM)
+void UnloadModelKeepMeshes(Model model)
+{
+    // Unload materials maps
+    // NOTE: As the user could be sharing shaders and textures between models,
+    // we don't unload the material but just free it's maps,
+    // the user is responsible for freeing models shaders and textures
+    for (int i = 0; i < model.materialCount; i++) RL_FREE(model.materials[i].maps);
+
+    // Unload arrays
+    RL_FREE(model.meshes);
+    RL_FREE(model.materials);
+    RL_FREE(model.meshMaterial);
+
+    // Unload animation data
+    RL_FREE(model.bones);
+    RL_FREE(model.bindPose);
+
+    TRACELOG(LOG_INFO, "MODEL: Unloaded model (but not meshes) from RAM and VRAM");
+}
+
+// Upload vertex data into a VAO (if supported) and VBO
+void UploadMesh(Mesh *mesh, bool dynamic)
+{
+    if (mesh->vaoId > 0)
+    {
+        // Check if mesh has already been loaded in GPU
+        TRACELOG(LOG_WARNING, "VAO: [ID %i] Trying to re-load an already loaded mesh", mesh->vaoId);
+        return;
+    }
+
+    mesh->vboId = (unsigned int *)RL_CALLOC(MAX_MESH_VERTEX_BUFFERS, sizeof(unsigned int));
+
+    mesh->vaoId = 0;        // Vertex Array Object
+    mesh->vboId[0] = 0;     // Vertex buffer: positions
+    mesh->vboId[1] = 0;     // Vertex buffer: texcoords
+    mesh->vboId[2] = 0;     // Vertex buffer: normals
+    mesh->vboId[3] = 0;     // Vertex buffer: colors
+    mesh->vboId[4] = 0;     // Vertex buffer: tangents
+    mesh->vboId[5] = 0;     // Vertex buffer: texcoords2
+    mesh->vboId[6] = 0;     // Vertex buffer: indices
+
+#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
+    mesh->vaoId = rlLoadVertexArray();
+    rlEnableVertexArray(mesh->vaoId);
+
+    // NOTE: Attributes must be uploaded considering default locations points
+
+    // Enable vertex attributes: position (shader-location = 0)
+    mesh->vboId[0] = rlLoadVertexBuffer(mesh->vertices, mesh->vertexCount*3*sizeof(float), dynamic);
+    rlSetVertexAttribute(0, 3, RL_FLOAT, 0, 0, 0);
+    rlEnableVertexAttribute(0);
+
+    // Enable vertex attributes: texcoords (shader-location = 1)
+    mesh->vboId[1] = rlLoadVertexBuffer(mesh->texcoords, mesh->vertexCount*2*sizeof(float), dynamic);
+    rlSetVertexAttribute(1, 2, RL_FLOAT, 0, 0, 0);
+    rlEnableVertexAttribute(1);
+
+    if (mesh->normals != NULL)
+    {
+        // Enable vertex attributes: normals (shader-location = 2)
+        mesh->vboId[2] = rlLoadVertexBuffer(mesh->normals, mesh->vertexCount*3*sizeof(float), dynamic);
+        rlSetVertexAttribute(2, 3, RL_FLOAT, 0, 0, 0);
+        rlEnableVertexAttribute(2);
+    }
+    else
+    {
+        // Default color vertex attribute set to WHITE
+        float value[3] = { 1.0f, 1.0f, 1.0f };
+        rlSetVertexAttributeDefault(2, value, SHADER_ATTRIB_VEC3, 3);
+        rlDisableVertexAttribute(2);
+    }
+
+    if (mesh->colors != NULL)
+    {
+        // Enable vertex attribute: color (shader-location = 3)
+        mesh->vboId[3] = rlLoadVertexBuffer(mesh->colors, mesh->vertexCount*4*sizeof(unsigned char), dynamic);
+        rlSetVertexAttribute(3, 4, RL_UNSIGNED_BYTE, 1, 0, 0);
+        rlEnableVertexAttribute(3);
+    }
+    else
+    {
+        // Default color vertex attribute set to WHITE
+        float value[4] = { 1.0f, 1.0f, 1.0f, 1.0f };
+        rlSetVertexAttributeDefault(3, value, SHADER_ATTRIB_VEC4, 4);
+        rlDisableVertexAttribute(3);
+    }
+
+    if (mesh->tangents != NULL)
+    {
+        // Enable vertex attribute: tangent (shader-location = 4)
+        mesh->vboId[4] = rlLoadVertexBuffer(mesh->tangents, mesh->vertexCount*4*sizeof(float), dynamic);
+        rlSetVertexAttribute(4, 4, RL_FLOAT, 0, 0, 0);
+        rlEnableVertexAttribute(4);
+    }
+    else
+    {
+        // Default tangents vertex attribute
+        float value[4] = { 0.0f, 0.0f, 0.0f, 0.0f };
+        rlSetVertexAttributeDefault(4, value, SHADER_ATTRIB_VEC4, 4);
+        rlDisableVertexAttribute(4);
+    }
+
+    if (mesh->texcoords2 != NULL)
+    {
+        // Enable vertex attribute: texcoord2 (shader-location = 5)
+        mesh->vboId[5] = rlLoadVertexBuffer(mesh->texcoords2, mesh->vertexCount*2*sizeof(float), dynamic);
+        rlSetVertexAttribute(5, 2, RL_FLOAT, 0, 0, 0);
+        rlEnableVertexAttribute(5);
+    }
+    else
+    {
+        // Default texcoord2 vertex attribute
+        float value[2] = { 0.0f, 0.0f };
+        rlSetVertexAttributeDefault(5, value, SHADER_ATTRIB_VEC2, 2);
+        rlDisableVertexAttribute(5);
+    }
+
+    if (mesh->indices != NULL)
+    {
+        mesh->vboId[6] = rlLoadVertexBufferElement(mesh->indices, mesh->triangleCount*3*sizeof(unsigned short), dynamic);
+    }
+
+    if (mesh->vaoId > 0) TRACELOG(LOG_INFO, "VAO: [ID %i] Mesh uploaded successfully to VRAM (GPU)", mesh->vaoId);
+    else TRACELOG(LOG_INFO, "VBO: Mesh uploaded successfully to VRAM (GPU)");
+
+    rlDisableVertexArray();
+#endif
+}
+
+// Update mesh vertex data in GPU for a specific buffer index
+void UpdateMeshBuffer(Mesh mesh, int index, void *data, int dataSize, int offset)
+{
+    rlUpdateVertexBuffer(mesh.vboId[index], data, dataSize, offset);
+}
+
+// Draw a 3d mesh with material and transform
+void DrawMesh(Mesh mesh, Material material, Matrix transform)
+{
+    DrawMeshInstanced(mesh, material, &transform, 1);
+}
+
+// Draw multiple mesh instances with material and different transforms
+void DrawMeshInstanced(Mesh mesh, Material material, Matrix *transforms, int instances)
+{
+#if defined(GRAPHICS_API_OPENGL_11)
+    #define GL_VERTEX_ARRAY         0x8074
+    #define GL_NORMAL_ARRAY         0x8075
+    #define GL_COLOR_ARRAY          0x8076
+    #define GL_TEXTURE_COORD_ARRAY  0x8078
+
+    rlEnableTexture(material.maps[MATERIAL_MAP_DIFFUSE].texture.id);
+
+    rlEnableStatePointer(GL_VERTEX_ARRAY, mesh.vertices);
+    rlEnableStatePointer(GL_TEXTURE_COORD_ARRAY, mesh.texcoords);
+    rlEnableStatePointer(GL_NORMAL_ARRAY, mesh.normals);
+    rlEnableStatePointer(GL_COLOR_ARRAY, mesh.colors);
+
+    rlPushMatrix();
+        rlMultMatrixf(MatrixToFloat(transforms[0]));
+        rlColor4ub(material.maps[MATERIAL_MAP_DIFFUSE].color.r,
+                   material.maps[MATERIAL_MAP_DIFFUSE].color.g,
+                   material.maps[MATERIAL_MAP_DIFFUSE].color.b,
+                   material.maps[MATERIAL_MAP_DIFFUSE].color.a);
+
+        if (mesh.indices != NULL) rlDrawVertexArrayElements(0, mesh.triangleCount*3, mesh.indices);
+        else rlDrawVertexArray(0, mesh.vertexCount);
+    rlPopMatrix();
+
+    rlDisableStatePointer(GL_VERTEX_ARRAY);
+    rlDisableStatePointer(GL_TEXTURE_COORD_ARRAY);
+    rlDisableStatePointer(GL_NORMAL_ARRAY);
+    rlDisableStatePointer(GL_COLOR_ARRAY);
+
+    rlDisableTexture();
+#endif
+
+#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
+    // Check instancing
+    bool instancing = false;
+    if (instances < 1) return;
+    else if (instances > 1) instancing = true;
+    float16 *instanceTransforms = NULL;
+    unsigned int instancesVboId = 0;
+
+    // Bind shader program
+    rlEnableShader(material.shader.id);
+
+    // Send required data to shader (matrices, values)
+    //-----------------------------------------------------
+    // Upload to shader material.colDiffuse
+    if (material.shader.locs[SHADER_LOC_COLOR_DIFFUSE] != -1)
+    {
+        float values[4] = {
+            (float)material.maps[MATERIAL_MAP_DIFFUSE].color.r/255.0f,
+            (float)material.maps[MATERIAL_MAP_DIFFUSE].color.g/255.0f,
+            (float)material.maps[MATERIAL_MAP_DIFFUSE].color.b/255.0f,
+            (float)material.maps[MATERIAL_MAP_DIFFUSE].color.a/255.0f
+        };
+
+        rlSetUniform(material.shader.locs[SHADER_LOC_COLOR_DIFFUSE], values, SHADER_UNIFORM_VEC4, 1);
+    }
+
+    // Upload to shader material.colSpecular (if location available)
+    if (material.shader.locs[SHADER_LOC_COLOR_SPECULAR] != -1)
+    {
+        float values[4] = {
+            (float)material.maps[SHADER_LOC_COLOR_SPECULAR].color.r/255.0f,
+            (float)material.maps[SHADER_LOC_COLOR_SPECULAR].color.g/255.0f,
+            (float)material.maps[SHADER_LOC_COLOR_SPECULAR].color.b/255.0f,
+            (float)material.maps[SHADER_LOC_COLOR_SPECULAR].color.a/255.0f
+        };
+
+        rlSetUniform(material.shader.locs[SHADER_LOC_COLOR_SPECULAR], values, SHADER_UNIFORM_VEC4, 1);
+    }
+
+    // Get a copy of current matrices to work with,
+    // just in case stereo render is required and we need to modify them
+    // NOTE: At this point the modelview matrix just contains the view matrix (camera)
+    // That's because BeginMode3D() sets it and there is no model-drawing function
+    // that modifies it, all use rlPushMatrix() and rlPopMatrix()
+    Matrix matView = rlGetMatrixModelview();
+    Matrix matModelView = matView;
+    Matrix matProjection = rlGetMatrixProjection();
+
+    // Upload view and projection matrices (if locations available)
+    if (material.shader.locs[SHADER_LOC_MATRIX_VIEW] != -1) rlSetUniformMatrix(material.shader.locs[SHADER_LOC_MATRIX_VIEW], matView);
+    if (material.shader.locs[SHADER_LOC_MATRIX_PROJECTION] != -1) rlSetUniformMatrix(material.shader.locs[SHADER_LOC_MATRIX_PROJECTION], matProjection);
+
+    if (instancing)
+    {
+        // Create instances buffer
+        instanceTransforms = RL_MALLOC(instances*sizeof(float16));
+
+        // Fill buffer with instances transformations as float16 arrays
+        for (int i = 0; i < instances; i++) instanceTransforms[i] = MatrixToFloatV(transforms[i]);
+
+        // Enable mesh VAO to attach new buffer
+        rlEnableVertexArray(mesh.vaoId);
+
+        // This could alternatively use a static VBO and either glMapBuffer() or glBufferSubData().
+        // It isn't clear which would be reliably faster in all cases and on all platforms,
+        // anecdotally glMapBuffer() seems very slow (syncs) while glBufferSubData() seems
+        // no faster, since we're transferring all the transform matrices anyway
+        instancesVboId = rlLoadVertexBuffer(instanceTransforms, instances*sizeof(float16), false);
+
+        // Instances transformation matrices are send to shader attribute location: SHADER_LOC_MATRIX_MODEL
+        for (unsigned int i = 0; i < 4; i++)
+        {
+            rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_MATRIX_MODEL] + i);
+            rlSetVertexAttribute(material.shader.locs[SHADER_LOC_MATRIX_MODEL] + i, 4, RL_FLOAT, 0, sizeof(Matrix), (void *)(i*sizeof(Vector4)));
+            rlSetVertexAttributeDivisor(material.shader.locs[SHADER_LOC_MATRIX_MODEL] + i, 1);
+        }
+
+        rlDisableVertexBuffer();
+        rlDisableVertexArray();
+
+        // Accumulate internal matrix transform (push/pop) and view matrix
+        // NOTE: In this case, model instance transformation must be computed in the shader
+        matModelView = MatrixMultiply(rlGetMatrixTransform(), matView);
+    }
+    else
+    {
+        // Model transformation matrix is send to shader uniform location: SHADER_LOC_MATRIX_MODEL
+        if (material.shader.locs[SHADER_LOC_MATRIX_MODEL] != -1) rlSetUniformMatrix(material.shader.locs[SHADER_LOC_MATRIX_MODEL], transforms[0]);
+
+        // Accumulate several transformations:
+        //    matView: rlgl internal modelview matrix (actually, just view matrix)
+        //    rlGetMatrixTransform(): rlgl internal transform matrix due to push/pop matrix stack
+        //    transform: function parameter transformation
+        matModelView = MatrixMultiply(transforms[0], MatrixMultiply(rlGetMatrixTransform(), matView));
+    }
+
+    // Upload model normal matrix (if locations available)
+    if (material.shader.locs[SHADER_LOC_MATRIX_NORMAL] != -1) rlSetUniformMatrix(material.shader.locs[SHADER_LOC_MATRIX_NORMAL], MatrixTranspose(MatrixInvert(matModelView)));
+    //-----------------------------------------------------
+
+    // Bind active texture maps (if available)
+    for (int i = 0; i < MAX_MATERIAL_MAPS; i++)
+    {
+        if (material.maps[i].texture.id > 0)
+        {
+            // Select current shader texture slot
+            rlActiveTextureSlot(i);
+
+            // Enable texture for active slot
+            if ((i == MATERIAL_MAP_IRRADIANCE) ||
+                (i == MATERIAL_MAP_PREFILTER) ||
+                (i == MATERIAL_MAP_CUBEMAP)) rlEnableTextureCubemap(material.maps[i].texture.id);
+            else rlEnableTexture(material.maps[i].texture.id);
+
+            rlSetUniform(material.shader.locs[SHADER_LOC_MAP_DIFFUSE + i], &i, SHADER_UNIFORM_INT, 1);
+        }
+    }
+
+    // Try binding vertex array objects (VAO)
+    // or use VBOs if not possible
+    if (!rlEnableVertexArray(mesh.vaoId))
+    {
+        // Bind mesh VBO data: vertex position (shader-location = 0)
+        rlEnableVertexBuffer(mesh.vboId[0]);
+        rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_POSITION], 3, RL_FLOAT, 0, 0, 0);
+        rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_POSITION]);
+
+        rlEnableVertexBuffer(mesh.vboId[0]);
+        rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_POSITION], 3, RL_FLOAT, 0, 0, 0);
+        rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_POSITION]);
+
+        // Bind mesh VBO data: vertex texcoords (shader-location = 1)
+        rlEnableVertexBuffer(mesh.vboId[1]);
+        rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TEXCOORD01], 2, RL_FLOAT, 0, 0, 0);
+        rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TEXCOORD01]);
+
+        if (material.shader.locs[SHADER_LOC_VERTEX_NORMAL] != -1)
+        {
+            // Bind mesh VBO data: vertex normals (shader-location = 2)
+            rlEnableVertexBuffer(mesh.vboId[2]);
+            rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_NORMAL], 3, RL_FLOAT, 0, 0, 0);
+            rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_NORMAL]);
+        }
+
+        // Bind mesh VBO data: vertex colors (shader-location = 3, if available)
+        if (material.shader.locs[SHADER_LOC_VERTEX_COLOR] != -1)
+        {
+            if (mesh.vboId[3] != 0)
+            {
+                rlEnableVertexBuffer(mesh.vboId[3]);
+                rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_COLOR], 4, RL_UNSIGNED_BYTE, 1, 0, 0);
+                rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_COLOR]);
+            }
+            else
+            {
+                // Set default value for unused attribute
+                // NOTE: Required when using default shader and no VAO support
+                float value[4] = { 1.0f, 1.0f, 1.0f, 1.0f };
+                rlSetVertexAttributeDefault(material.shader.locs[SHADER_LOC_VERTEX_COLOR], value, SHADER_ATTRIB_VEC2, 4);
+                rlDisableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_COLOR]);
+            }
+        }
+
+        // Bind mesh VBO data: vertex tangents (shader-location = 4, if available)
+        if (material.shader.locs[SHADER_LOC_VERTEX_TANGENT] != -1)
+        {
+            rlEnableVertexBuffer(mesh.vboId[4]);
+            rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TANGENT], 4, RL_FLOAT, 0, 0, 0);
+            rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TANGENT]);
+        }
+
+        // Bind mesh VBO data: vertex texcoords2 (shader-location = 5, if available)
+        if (material.shader.locs[SHADER_LOC_VERTEX_TEXCOORD02] != -1)
+        {
+            rlEnableVertexBuffer(mesh.vboId[5]);
+            rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TEXCOORD02], 2, RL_FLOAT, 0, 0, 0);
+            rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TEXCOORD02]);
+        }
+
+        if (mesh.indices != NULL) rlEnableVertexBufferElement(mesh.vboId[6]);
+    }
+
+    int eyesCount = 1;
+    if (rlIsStereoRenderEnabled()) eyesCount = 2;
+
+    for (int eye = 0; eye < eyesCount; eye++)
+    {
+        // Calculate model-view-projection matrix (MVP)
+        Matrix matMVP = MatrixIdentity();
+        if (eyesCount == 1) matMVP = MatrixMultiply(matModelView, matProjection);
+        else
+        {
+            // Setup current eye viewport (half screen width)
+            rlViewport(eye*rlGetFramebufferWidth()/2, 0, rlGetFramebufferWidth()/2, rlGetFramebufferHeight());
+            matMVP = MatrixMultiply(MatrixMultiply(matModelView, rlGetMatrixViewOffsetStereo(eye)), rlGetMatrixProjectionStereo(eye));
+        }
+
+        // Send combined model-view-projection matrix to shader
+        rlSetUniformMatrix(material.shader.locs[SHADER_LOC_MATRIX_MVP], matMVP);
+
+        if (instancing) // Draw mesh instanced
+        {
+            if (mesh.indices != NULL) rlDrawVertexArrayElementsInstanced(0, mesh.triangleCount*3, 0, instances);
+            else rlDrawVertexArrayInstanced(0, mesh.vertexCount, instances);
+        }
+        else    // Draw mesh
+        {
+            if (mesh.indices != NULL) rlDrawVertexArrayElements(0, mesh.triangleCount*3, 0);
+            else rlDrawVertexArray(0, mesh.vertexCount);
+        }
+    }
+
+    // Unbind all binded texture maps
+    for (int i = 0; i < MAX_MATERIAL_MAPS; i++)
+    {
+        // Select current shader texture slot
+        rlActiveTextureSlot(i);
+
+        // Disable texture for active slot
+        if ((i == MATERIAL_MAP_IRRADIANCE) ||
+            (i == MATERIAL_MAP_PREFILTER) ||
+            (i == MATERIAL_MAP_CUBEMAP)) rlDisableTextureCubemap();
+        else rlDisableTexture();
+    }
+
+    // Disable all possible vertex array objects (or VBOs)
+    rlDisableVertexArray();
+    rlDisableVertexBuffer();
+    rlDisableVertexBufferElement();
+
+    // Disable shader program
+    rlDisableShader();
+
+    if (instancing)
+    {
+        // Remove instance transforms buffer
+        rlUnloadVertexBuffer(instancesVboId);
+        RL_FREE(instanceTransforms);
+    }
+    else
+    {
+        // Restore rlgl internal modelview and projection matrices
+        rlSetMatrixModelview(matView);
+        rlSetMatrixProjection(matProjection);
+    }
+#endif
+}
+
+// Unload mesh from memory (RAM and VRAM)
+void UnloadMesh(Mesh mesh)
+{
+    // Unload rlgl mesh vboId data
+    rlUnloadVertexArray(mesh.vaoId);
+
+    for (int i = 0; i < MAX_MESH_VERTEX_BUFFERS; i++) rlUnloadVertexBuffer(mesh.vboId[i]);
+    RL_FREE(mesh.vboId);
+
+    RL_FREE(mesh.vertices);
+    RL_FREE(mesh.texcoords);
+    RL_FREE(mesh.normals);
+    RL_FREE(mesh.colors);
+    RL_FREE(mesh.tangents);
+    RL_FREE(mesh.texcoords2);
+    RL_FREE(mesh.indices);
+
+    RL_FREE(mesh.animVertices);
+    RL_FREE(mesh.animNormals);
+    RL_FREE(mesh.boneWeights);
+    RL_FREE(mesh.boneIds);
+}
+
+// Export mesh data to file
+bool ExportMesh(Mesh mesh, const char *fileName)
+{
+    bool success = false;
+
+    if (IsFileExtension(fileName, ".obj"))
+    {
+        // Estimated data size, it should be enough...
+        int dataSize = mesh.vertexCount/3* (int)strlen("v 0000.00f 0000.00f 0000.00f") +
+                       mesh.vertexCount/2* (int)strlen("vt 0.000f 0.00f") +
+                       mesh.vertexCount/3* (int)strlen("vn 0.000f 0.00f 0.00f") +
+                       mesh.triangleCount/3* (int)strlen("f 00000/00000/00000 00000/00000/00000 00000/00000/00000");
+
+        // NOTE: Text data buffer size is estimated considering mesh data size
+        char *txtData = (char *)RL_CALLOC(dataSize + 2000, sizeof(char));
+
+        int bytesCount = 0;
+        bytesCount += sprintf(txtData + bytesCount, "# //////////////////////////////////////////////////////////////////////////////////\n");
+        bytesCount += sprintf(txtData + bytesCount, "# //                                                                              //\n");
+        bytesCount += sprintf(txtData + bytesCount, "# // rMeshOBJ exporter v1.0 - Mesh exported as triangle faces and not optimized   //\n");
+        bytesCount += sprintf(txtData + bytesCount, "# //                                                                              //\n");
+        bytesCount += sprintf(txtData + bytesCount, "# // more info and bugs-report:  github.com/raysan5/raylib                        //\n");
+        bytesCount += sprintf(txtData + bytesCount, "# // feedback and support:       ray[at]raylib.com                                //\n");
+        bytesCount += sprintf(txtData + bytesCount, "# //                                                                              //\n");
+        bytesCount += sprintf(txtData + bytesCount, "# // Copyright (c) 2018 Ramon Santamaria (@raysan5)                               //\n");
+        bytesCount += sprintf(txtData + bytesCount, "# //                                                                              //\n");
+        bytesCount += sprintf(txtData + bytesCount, "# //////////////////////////////////////////////////////////////////////////////////\n\n");
+        bytesCount += sprintf(txtData + bytesCount, "# Vertex Count:     %i\n", mesh.vertexCount);
+        bytesCount += sprintf(txtData + bytesCount, "# Triangle Count:   %i\n\n", mesh.triangleCount);
+
+        bytesCount += sprintf(txtData + bytesCount, "g mesh\n");
+
+        for (int i = 0, v = 0; i < mesh.vertexCount; i++, v += 3)
+        {
+            bytesCount += sprintf(txtData + bytesCount, "v %.2f %.2f %.2f\n", mesh.vertices[v], mesh.vertices[v + 1], mesh.vertices[v + 2]);
+        }
+
+        for (int i = 0, v = 0; i < mesh.vertexCount; i++, v += 2)
+        {
+            bytesCount += sprintf(txtData + bytesCount, "vt %.3f %.3f\n", mesh.texcoords[v], mesh.texcoords[v + 1]);
+        }
+
+        for (int i = 0, v = 0; i < mesh.vertexCount; i++, v += 3)
+        {
+            bytesCount += sprintf(txtData + bytesCount, "vn %.3f %.3f %.3f\n", mesh.normals[v], mesh.normals[v + 1], mesh.normals[v + 2]);
+        }
+
+        for (int i = 0; i < mesh.triangleCount; i += 3)
+        {
+            bytesCount += sprintf(txtData + bytesCount, "f %i/%i/%i %i/%i/%i %i/%i/%i\n", i, i, i, i + 1, i + 1, i + 1, i + 2, i + 2, i + 2);
+        }
+
+        bytesCount += sprintf(txtData + bytesCount, "\n");
+
+        // NOTE: Text data length exported is determined by '\0' (NULL) character
+        success = SaveFileText(fileName, txtData);
+
+        RL_FREE(txtData);
+    }
+    else if (IsFileExtension(fileName, ".raw"))
+    {
+        // TODO: Support additional file formats to export mesh vertex data
+    }
+
+    return success;
+}
+
+
+// Load materials from model file
+Material *LoadMaterials(const char *fileName, int *materialCount)
+{
+    Material *materials = NULL;
+    unsigned int count = 0;
+
+    // TODO: Support IQM and GLTF for materials parsing
+
+#if defined(SUPPORT_FILEFORMAT_MTL)
+    if (IsFileExtension(fileName, ".mtl"))
+    {
+        tinyobj_material_t *mats = NULL;
+
+        int result = tinyobj_parse_mtl_file(&mats, &count, fileName);
+        if (result != TINYOBJ_SUCCESS) TRACELOG(LOG_WARNING, "MATERIAL: [%s] Failed to parse materials file", fileName);
+
+        // TODO: Process materials to return
+
+        tinyobj_materials_free(mats, count);
+    }
+#else
+    TRACELOG(LOG_WARNING, "FILEIO: [%s] Failed to load material file", fileName);
+#endif
+
+    // Set materials shader to default (DIFFUSE, SPECULAR, NORMAL)
+    if (materials != NULL)
+    {
+        for (unsigned int i = 0; i < count; i++) materials[i].shader = rlGetShaderDefault();
+    }
+
+    *materialCount = count;
+    return materials;
+}
+
+// Load default material (Supports: DIFFUSE, SPECULAR, NORMAL maps)
+Material LoadMaterialDefault(void)
+{
+    Material material = { 0 };
+    material.maps = (MaterialMap *)RL_CALLOC(MAX_MATERIAL_MAPS, sizeof(MaterialMap));
+
+    material.shader = rlGetShaderDefault();
+    material.maps[MATERIAL_MAP_DIFFUSE].texture = rlGetTextureDefault();   // White texture (1x1 pixel)
+    //material.maps[MATERIAL_MAP_NORMAL].texture;         // NOTE: By default, not set
+    //material.maps[MATERIAL_MAP_SPECULAR].texture;       // NOTE: By default, not set
+
+    material.maps[MATERIAL_MAP_DIFFUSE].color = WHITE;    // Diffuse color
+    material.maps[MATERIAL_MAP_SPECULAR].color = WHITE;   // Specular color
+
+    return material;
+}
+
+// Unload material from memory
+void UnloadMaterial(Material material)
+{
+    // Unload material shader (avoid unloading default shader, managed by raylib)
+    if (material.shader.id != rlGetShaderDefault().id) UnloadShader(material.shader);
+
+    // Unload loaded texture maps (avoid unloading default texture, managed by raylib)
+    for (int i = 0; i < MAX_MATERIAL_MAPS; i++)
+    {
+        if (material.maps[i].texture.id != rlGetTextureDefault().id) rlUnloadTexture(material.maps[i].texture.id);
+    }
+
+    RL_FREE(material.maps);
+}
+
+// Set texture for a material map type (MATERIAL_MAP_DIFFUSE, MATERIAL_MAP_SPECULAR...)
+// NOTE: Previous texture should be manually unloaded
+void SetMaterialTexture(Material *material, int mapType, Texture2D texture)
+{
+    material->maps[mapType].texture = texture;
+}
+
+// Set the material for a mesh
+void SetModelMeshMaterial(Model *model, int meshId, int materialId)
+{
+    if (meshId >= model->meshCount) TRACELOG(LOG_WARNING, "MESH: Id greater than mesh count");
+    else if (materialId >= model->materialCount) TRACELOG(LOG_WARNING, "MATERIAL: Id greater than material count");
+    else  model->meshMaterial[meshId] = materialId;
+}
+
+// Load model animations from file
+ModelAnimation *LoadModelAnimations(const char *fileName, int *animCount)
+{
+    ModelAnimation *animations = NULL;
+
+#if defined(SUPPORT_FILEFORMAT_IQM)
+    if (IsFileExtension(fileName, ".iqm")) animations = LoadIQMModelAnimations(fileName, animCount);
+#endif
+#if defined(SUPPORT_FILEFORMAT_GLTF)
+    if (IsFileExtension(fileName, ".gltf;.glb")) animations = LoadGLTFModelAnimations(fileName, animCount);
+#endif
+
+    return animations;
+}
+
+// Update model animated vertex data (positions and normals) for a given frame
+// NOTE: Updated data is uploaded to GPU
+void UpdateModelAnimation(Model model, ModelAnimation anim, int frame)
+{
+    if ((anim.frameCount > 0) && (anim.bones != NULL) && (anim.framePoses != NULL))
+    {
+        if (frame >= anim.frameCount) frame = frame%anim.frameCount;
+
+        for (int m = 0; m < model.meshCount; m++)
+        {
+            Vector3 animVertex = { 0 };
+            Vector3 animNormal = { 0 };
+
+            Vector3 inTranslation = { 0 };
+            Quaternion inRotation = { 0 };
+            //Vector3 inScale = { 0 };      // Not used...
+
+            Vector3 outTranslation = { 0 };
+            Quaternion outRotation = { 0 };
+            Vector3 outScale = { 0 };
+
+            int vCounter = 0;
+            int boneCounter = 0;
+            int boneId = 0;
+            float boneWeight = 0.0;
+
+            for (int i = 0; i < model.meshes[m].vertexCount; i++)
+            {
+                model.meshes[m].animVertices[vCounter]     = 0;
+                model.meshes[m].animVertices[vCounter + 1] = 0;
+                model.meshes[m].animVertices[vCounter + 2] = 0;
+
+                model.meshes[m].animNormals[vCounter]     = 0;
+                model.meshes[m].animNormals[vCounter + 1] = 0;
+                model.meshes[m].animNormals[vCounter + 2] = 0;
+
+                for (int j = 0; j < 4; j++)
+                {
+                    boneId = model.meshes[m].boneIds[boneCounter];
+                    boneWeight = model.meshes[m].boneWeights[boneCounter];
+                    inTranslation = model.bindPose[boneId].translation;
+                    inRotation = model.bindPose[boneId].rotation;
+                    //inScale = model.bindPose[boneId].scale;
+                    outTranslation = anim.framePoses[frame][boneId].translation;
+                    outRotation = anim.framePoses[frame][boneId].rotation;
+                    outScale = anim.framePoses[frame][boneId].scale;
+
+                    // Vertices processing
+                    // NOTE: We use meshes.vertices (default vertex position) to calculate meshes.animVertices (animated vertex position)
+                    animVertex = (Vector3){ model.meshes[m].vertices[vCounter], model.meshes[m].vertices[vCounter + 1], model.meshes[m].vertices[vCounter + 2] };
+                    animVertex = Vector3Multiply(animVertex, outScale);
+                    animVertex = Vector3Subtract(animVertex, inTranslation);
+                    animVertex = Vector3RotateByQuaternion(animVertex, QuaternionMultiply(outRotation, QuaternionInvert(inRotation)));
+                    animVertex = Vector3Add(animVertex, outTranslation);
+                    model.meshes[m].animVertices[vCounter]     += animVertex.x * boneWeight;
+                    model.meshes[m].animVertices[vCounter + 1] += animVertex.y * boneWeight;
+                    model.meshes[m].animVertices[vCounter + 2] += animVertex.z * boneWeight;
+
+                    // Normals processing
+                    // NOTE: We use meshes.baseNormals (default normal) to calculate meshes.normals (animated normals)
+                    if (model.meshes[m].normals != NULL)
+                    {
+                        animNormal = (Vector3){ model.meshes[m].normals[vCounter], model.meshes[m].normals[vCounter + 1], model.meshes[m].normals[vCounter + 2] };
+                        animNormal = Vector3RotateByQuaternion(animNormal, QuaternionMultiply(outRotation, QuaternionInvert(inRotation)));
+                        model.meshes[m].animNormals[vCounter]     += animNormal.x * boneWeight;
+                        model.meshes[m].animNormals[vCounter + 1] += animNormal.y * boneWeight;
+                        model.meshes[m].animNormals[vCounter + 2] += animNormal.z * boneWeight;
+                    }
+                    boneCounter += 1;
+                }
+                vCounter += 3;
+            }
+
+            // Upload new vertex data to GPU for model drawing
+            rlUpdateVertexBuffer(model.meshes[m].vboId[0], model.meshes[m].animVertices, model.meshes[m].vertexCount*3*sizeof(float), 0);    // Update vertex position
+            rlUpdateVertexBuffer(model.meshes[m].vboId[2], model.meshes[m].animNormals, model.meshes[m].vertexCount*3*sizeof(float), 0);     // Update vertex normals
+        }
+    }
+}
+
+// Unload animation array data
+void UnloadModelAnimations(ModelAnimation* animations, unsigned int count)
+{
+    for (unsigned int i = 0; i < count; i++) UnloadModelAnimation(animations[i]);
+    RL_FREE(animations);
+}
+
+// Unload animation data
+void UnloadModelAnimation(ModelAnimation anim)
+{
+    for (int i = 0; i < anim.frameCount; i++) RL_FREE(anim.framePoses[i]);
+
+    RL_FREE(anim.bones);
+    RL_FREE(anim.framePoses);
+}
+
+// Check model animation skeleton match
+// NOTE: Only number of bones and parent connections are checked
+bool IsModelAnimationValid(Model model, ModelAnimation anim)
+{
+    int result = true;
+
+    if (model.boneCount != anim.boneCount) result = false;
+    else
+    {
+        for (int i = 0; i < model.boneCount; i++)
+        {
+            if (model.bones[i].parent != anim.bones[i].parent) { result = false; break; }
+        }
+    }
+
+    return result;
+}
+
+#if defined(SUPPORT_MESH_GENERATION)
+// Generate polygonal mesh
+Mesh GenMeshPoly(int sides, float radius)
+{
+    Mesh mesh = { 0 };
+
+    if (sides < 3) return mesh;
+
+    int vertexCount = sides*3;
+
+    // Vertices definition
+    Vector3 *vertices = (Vector3 *)RL_MALLOC(vertexCount*sizeof(Vector3));
+
+    float d = 0.0f, dStep = 360.0f/sides;
+    for (int v = 0; v < vertexCount; v += 3)
+    {
+        vertices[v] = (Vector3){ 0.0f, 0.0f, 0.0f };
+        vertices[v + 1] = (Vector3){ sinf(DEG2RAD*d)*radius, 0.0f, cosf(DEG2RAD*d)*radius };
+        vertices[v + 2] = (Vector3){sinf(DEG2RAD*(d+dStep))*radius, 0.0f, cosf(DEG2RAD*(d+dStep))*radius };
+        d += dStep;
+    }
+
+    // Normals definition
+    Vector3 *normals = (Vector3 *)RL_MALLOC(vertexCount*sizeof(Vector3));
+    for (int n = 0; n < vertexCount; n++) normals[n] = (Vector3){ 0.0f, 1.0f, 0.0f };   // Vector3.up;
+
+    // TexCoords definition
+    Vector2 *texcoords = (Vector2 *)RL_MALLOC(vertexCount*sizeof(Vector2));
+    for (int n = 0; n < vertexCount; n++) texcoords[n] = (Vector2){ 0.0f, 0.0f };
+
+    mesh.vertexCount = vertexCount;
+    mesh.triangleCount = sides;
+    mesh.vertices = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float));
+    mesh.texcoords = (float *)RL_MALLOC(mesh.vertexCount*2*sizeof(float));
+    mesh.normals = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float));
+
+    // Mesh vertices position array
+    for (int i = 0; i < mesh.vertexCount; i++)
+    {
+        mesh.vertices[3*i] = vertices[i].x;
+        mesh.vertices[3*i + 1] = vertices[i].y;
+        mesh.vertices[3*i + 2] = vertices[i].z;
+    }
+
+    // Mesh texcoords array
+    for (int i = 0; i < mesh.vertexCount; i++)
+    {
+        mesh.texcoords[2*i] = texcoords[i].x;
+        mesh.texcoords[2*i + 1] = texcoords[i].y;
+    }
+
+    // Mesh normals array
+    for (int i = 0; i < mesh.vertexCount; i++)
+    {
+        mesh.normals[3*i] = normals[i].x;
+        mesh.normals[3*i + 1] = normals[i].y;
+        mesh.normals[3*i + 2] = normals[i].z;
+    }
+
+    RL_FREE(vertices);
+    RL_FREE(normals);
+    RL_FREE(texcoords);
+
+    // Upload vertex data to GPU (static mesh)
+    // NOTE: mesh.vboId array is allocated inside UploadMesh()
+    UploadMesh(&mesh, false);
+
+    return mesh;
+}
+
+// Generate plane mesh (with subdivisions)
+Mesh GenMeshPlane(float width, float length, int resX, int resZ)
+{
+    Mesh mesh = { 0 };
+
+#define CUSTOM_MESH_GEN_PLANE
+#if defined(CUSTOM_MESH_GEN_PLANE)
+    resX++;
+    resZ++;
+
+    // Vertices definition
+    int vertexCount = resX*resZ; // vertices get reused for the faces
+
+    Vector3 *vertices = (Vector3 *)RL_MALLOC(vertexCount*sizeof(Vector3));
+    for (int z = 0; z < resZ; z++)
+    {
+        // [-length/2, length/2]
+        float zPos = ((float)z/(resZ - 1) - 0.5f)*length;
+        for (int x = 0; x < resX; x++)
+        {
+            // [-width/2, width/2]
+            float xPos = ((float)x/(resX - 1) - 0.5f)*width;
+            vertices[x + z*resX] = (Vector3){ xPos, 0.0f, zPos };
+        }
+    }
+
+    // Normals definition
+    Vector3 *normals = (Vector3 *)RL_MALLOC(vertexCount*sizeof(Vector3));
+    for (int n = 0; n < vertexCount; n++) normals[n] = (Vector3){ 0.0f, 1.0f, 0.0f };   // Vector3.up;
+
+    // TexCoords definition
+    Vector2 *texcoords = (Vector2 *)RL_MALLOC(vertexCount*sizeof(Vector2));
+    for (int v = 0; v < resZ; v++)
+    {
+        for (int u = 0; u < resX; u++)
+        {
+            texcoords[u + v*resX] = (Vector2){ (float)u/(resX - 1), (float)v/(resZ - 1) };
+        }
+    }
+
+    // Triangles definition (indices)
+    int numFaces = (resX - 1)*(resZ - 1);
+    int *triangles = (int *)RL_MALLOC(numFaces*6*sizeof(int));
+    int t = 0;
+    for (int face = 0; face < numFaces; face++)
+    {
+        // Retrieve lower left corner from face ind
+        int i = face % (resX - 1) + (face/(resZ - 1)*resX);
+
+        triangles[t++] = i + resX;
+        triangles[t++] = i + 1;
+        triangles[t++] = i;
+
+        triangles[t++] = i + resX;
+        triangles[t++] = i + resX + 1;
+        triangles[t++] = i + 1;
+    }
+
+    mesh.vertexCount = vertexCount;
+    mesh.triangleCount = numFaces*2;
+    mesh.vertices = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float));
+    mesh.texcoords = (float *)RL_MALLOC(mesh.vertexCount*2*sizeof(float));
+    mesh.normals = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float));
+    mesh.indices = (unsigned short *)RL_MALLOC(mesh.triangleCount*3*sizeof(unsigned short));
+
+    // Mesh vertices position array
+    for (int i = 0; i < mesh.vertexCount; i++)
+    {
+        mesh.vertices[3*i] = vertices[i].x;
+        mesh.vertices[3*i + 1] = vertices[i].y;
+        mesh.vertices[3*i + 2] = vertices[i].z;
+    }
+
+    // Mesh texcoords array
+    for (int i = 0; i < mesh.vertexCount; i++)
+    {
+        mesh.texcoords[2*i] = texcoords[i].x;
+        mesh.texcoords[2*i + 1] = texcoords[i].y;
+    }
+
+    // Mesh normals array
+    for (int i = 0; i < mesh.vertexCount; i++)
+    {
+        mesh.normals[3*i] = normals[i].x;
+        mesh.normals[3*i + 1] = normals[i].y;
+        mesh.normals[3*i + 2] = normals[i].z;
+    }
+
+    // Mesh indices array initialization
+    for (int i = 0; i < mesh.triangleCount*3; i++) mesh.indices[i] = triangles[i];
+
+    RL_FREE(vertices);
+    RL_FREE(normals);
+    RL_FREE(texcoords);
+    RL_FREE(triangles);
+
+#else       // Use par_shapes library to generate plane mesh
+
+    par_shapes_mesh *plane = par_shapes_create_plane(resX, resZ);   // No normals/texcoords generated!!!
+    par_shapes_scale(plane, width, length, 1.0f);
+    par_shapes_rotate(plane, -PI/2.0f, (float[]){ 1, 0, 0 });
+    par_shapes_translate(plane, -width/2, 0.0f, length/2);
+
+    mesh.vertices = (float *)RL_MALLOC(plane->ntriangles*3*3*sizeof(float));
+    mesh.texcoords = (float *)RL_MALLOC(plane->ntriangles*3*2*sizeof(float));
+    mesh.normals = (float *)RL_MALLOC(plane->ntriangles*3*3*sizeof(float));
+
+    mesh.vertexCount = plane->ntriangles*3;
+    mesh.triangleCount = plane->ntriangles;
+
+    for (int k = 0; k < mesh.vertexCount; k++)
+    {
+        mesh.vertices[k*3] = plane->points[plane->triangles[k]*3];
+        mesh.vertices[k*3 + 1] = plane->points[plane->triangles[k]*3 + 1];
+        mesh.vertices[k*3 + 2] = plane->points[plane->triangles[k]*3 + 2];
+
+        mesh.normals[k*3] = plane->normals[plane->triangles[k]*3];
+        mesh.normals[k*3 + 1] = plane->normals[plane->triangles[k]*3 + 1];
+        mesh.normals[k*3 + 2] = plane->normals[plane->triangles[k]*3 + 2];
+
+        mesh.texcoords[k*2] = plane->tcoords[plane->triangles[k]*2];
+        mesh.texcoords[k*2 + 1] = plane->tcoords[plane->triangles[k]*2 + 1];
+    }
+
+    par_shapes_free_mesh(plane);
+#endif
+
+    // Upload vertex data to GPU (static mesh)
+    UploadMesh(&mesh, false);
+
+    return mesh;
+}
+
+// Generated cuboid mesh
+Mesh GenMeshCube(float width, float height, float length)
+{
+    Mesh mesh = { 0 };
+
+#define CUSTOM_MESH_GEN_CUBE
+#if defined(CUSTOM_MESH_GEN_CUBE)
+    float vertices[] = {
+        -width/2, -height/2, length/2,
+        width/2, -height/2, length/2,
+        width/2, height/2, length/2,
+        -width/2, height/2, length/2,
+        -width/2, -height/2, -length/2,
+        -width/2, height/2, -length/2,
+        width/2, height/2, -length/2,
+        width/2, -height/2, -length/2,
+        -width/2, height/2, -length/2,
+        -width/2, height/2, length/2,
+        width/2, height/2, length/2,
+        width/2, height/2, -length/2,
+        -width/2, -height/2, -length/2,
+        width/2, -height/2, -length/2,
+        width/2, -height/2, length/2,
+        -width/2, -height/2, length/2,
+        width/2, -height/2, -length/2,
+        width/2, height/2, -length/2,
+        width/2, height/2, length/2,
+        width/2, -height/2, length/2,
+        -width/2, -height/2, -length/2,
+        -width/2, -height/2, length/2,
+        -width/2, height/2, length/2,
+        -width/2, height/2, -length/2
+    };
+
+    float texcoords[] = {
+        0.0f, 0.0f,
+        1.0f, 0.0f,
+        1.0f, 1.0f,
+        0.0f, 1.0f,
+        1.0f, 0.0f,
+        1.0f, 1.0f,
+        0.0f, 1.0f,
+        0.0f, 0.0f,
+        0.0f, 1.0f,
+        0.0f, 0.0f,
+        1.0f, 0.0f,
+        1.0f, 1.0f,
+        1.0f, 1.0f,
+        0.0f, 1.0f,
+        0.0f, 0.0f,
+        1.0f, 0.0f,
+        1.0f, 0.0f,
+        1.0f, 1.0f,
+        0.0f, 1.0f,
+        0.0f, 0.0f,
+        0.0f, 0.0f,
+        1.0f, 0.0f,
+        1.0f, 1.0f,
+        0.0f, 1.0f
+    };
+
+    float normals[] = {
+        0.0f, 0.0f, 1.0f,
+        0.0f, 0.0f, 1.0f,
+        0.0f, 0.0f, 1.0f,
+        0.0f, 0.0f, 1.0f,
+        0.0f, 0.0f,-1.0f,
+        0.0f, 0.0f,-1.0f,
+        0.0f, 0.0f,-1.0f,
+        0.0f, 0.0f,-1.0f,
+        0.0f, 1.0f, 0.0f,
+        0.0f, 1.0f, 0.0f,
+        0.0f, 1.0f, 0.0f,
+        0.0f, 1.0f, 0.0f,
+        0.0f,-1.0f, 0.0f,
+        0.0f,-1.0f, 0.0f,
+        0.0f,-1.0f, 0.0f,
+        0.0f,-1.0f, 0.0f,
+        1.0f, 0.0f, 0.0f,
+        1.0f, 0.0f, 0.0f,
+        1.0f, 0.0f, 0.0f,
+        1.0f, 0.0f, 0.0f,
+        -1.0f, 0.0f, 0.0f,
+        -1.0f, 0.0f, 0.0f,
+        -1.0f, 0.0f, 0.0f,
+        -1.0f, 0.0f, 0.0f
+    };
+
+    mesh.vertices = (float *)RL_MALLOC(24*3*sizeof(float));
+    memcpy(mesh.vertices, vertices, 24*3*sizeof(float));
+
+    mesh.texcoords = (float *)RL_MALLOC(24*2*sizeof(float));
+    memcpy(mesh.texcoords, texcoords, 24*2*sizeof(float));
+
+    mesh.normals = (float *)RL_MALLOC(24*3*sizeof(float));
+    memcpy(mesh.normals, normals, 24*3*sizeof(float));
+
+    mesh.indices = (unsigned short *)RL_MALLOC(36*sizeof(unsigned short));
+
+    int k = 0;
+
+    // Indices can be initialized right now
+    for (int i = 0; i < 36; i+=6)
+    {
+        mesh.indices[i] = 4*k;
+        mesh.indices[i+1] = 4*k+1;
+        mesh.indices[i+2] = 4*k+2;
+        mesh.indices[i+3] = 4*k;
+        mesh.indices[i+4] = 4*k+2;
+        mesh.indices[i+5] = 4*k+3;
+
+        k++;
+    }
+
+    mesh.vertexCount = 24;
+    mesh.triangleCount = 12;
+
+#else               // Use par_shapes library to generate cube mesh
+/*
+// Platonic solids:
+par_shapes_mesh* par_shapes_create_tetrahedron();       // 4 sides polyhedron (pyramid)
+par_shapes_mesh* par_shapes_create_cube();              // 6 sides polyhedron (cube)
+par_shapes_mesh* par_shapes_create_octahedron();        // 8 sides polyhedron (dyamond)
+par_shapes_mesh* par_shapes_create_dodecahedron();      // 12 sides polyhedron
+par_shapes_mesh* par_shapes_create_icosahedron();       // 20 sides polyhedron
+*/
+    // Platonic solid generation: cube (6 sides)
+    // NOTE: No normals/texcoords generated by default
+    par_shapes_mesh *cube = par_shapes_create_cube();
+    cube->tcoords = PAR_MALLOC(float, 2*cube->npoints);
+    for (int i = 0; i < 2*cube->npoints; i++) cube->tcoords[i] = 0.0f;
+    par_shapes_scale(cube, width, height, length);
+    par_shapes_translate(cube, -width/2, 0.0f, -length/2);
+    par_shapes_compute_normals(cube);
+
+    mesh.vertices = (float *)RL_MALLOC(cube->ntriangles*3*3*sizeof(float));
+    mesh.texcoords = (float *)RL_MALLOC(cube->ntriangles*3*2*sizeof(float));
+    mesh.normals = (float *)RL_MALLOC(cube->ntriangles*3*3*sizeof(float));
+
+    mesh.vertexCount = cube->ntriangles*3;
+    mesh.triangleCount = cube->ntriangles;
+
+    for (int k = 0; k < mesh.vertexCount; k++)
+    {
+        mesh.vertices[k*3] = cube->points[cube->triangles[k]*3];
+        mesh.vertices[k*3 + 1] = cube->points[cube->triangles[k]*3 + 1];
+        mesh.vertices[k*3 + 2] = cube->points[cube->triangles[k]*3 + 2];
+
+        mesh.normals[k*3] = cube->normals[cube->triangles[k]*3];
+        mesh.normals[k*3 + 1] = cube->normals[cube->triangles[k]*3 + 1];
+        mesh.normals[k*3 + 2] = cube->normals[cube->triangles[k]*3 + 2];
+
+        mesh.texcoords[k*2] = cube->tcoords[cube->triangles[k]*2];
+        mesh.texcoords[k*2 + 1] = cube->tcoords[cube->triangles[k]*2 + 1];
+    }
+
+    par_shapes_free_mesh(cube);
+#endif
+
+    // Upload vertex data to GPU (static mesh)
+    UploadMesh(&mesh, false);
+
+    return mesh;
+}
+
+// Generate sphere mesh (standard sphere)
+Mesh GenMeshSphere(float radius, int rings, int slices)
+{
+    Mesh mesh = { 0 };
+
+    if ((rings >= 3) && (slices >= 3))
+    {
+        par_shapes_mesh *sphere = par_shapes_create_parametric_sphere(slices, rings);
+        par_shapes_scale(sphere, radius, radius, radius);
+        // NOTE: Soft normals are computed internally
+
+        mesh.vertices = (float *)RL_MALLOC(sphere->ntriangles*3*3*sizeof(float));
+        mesh.texcoords = (float *)RL_MALLOC(sphere->ntriangles*3*2*sizeof(float));
+        mesh.normals = (float *)RL_MALLOC(sphere->ntriangles*3*3*sizeof(float));
+
+        mesh.vertexCount = sphere->ntriangles*3;
+        mesh.triangleCount = sphere->ntriangles;
+
+        for (int k = 0; k < mesh.vertexCount; k++)
+        {
+            mesh.vertices[k*3] = sphere->points[sphere->triangles[k]*3];
+            mesh.vertices[k*3 + 1] = sphere->points[sphere->triangles[k]*3 + 1];
+            mesh.vertices[k*3 + 2] = sphere->points[sphere->triangles[k]*3 + 2];
+
+            mesh.normals[k*3] = sphere->normals[sphere->triangles[k]*3];
+            mesh.normals[k*3 + 1] = sphere->normals[sphere->triangles[k]*3 + 1];
+            mesh.normals[k*3 + 2] = sphere->normals[sphere->triangles[k]*3 + 2];
+
+            mesh.texcoords[k*2] = sphere->tcoords[sphere->triangles[k]*2];
+            mesh.texcoords[k*2 + 1] = sphere->tcoords[sphere->triangles[k]*2 + 1];
+        }
+
+        par_shapes_free_mesh(sphere);
+
+        // Upload vertex data to GPU (static mesh)
+        UploadMesh(&mesh, false);
+    }
+    else TRACELOG(LOG_WARNING, "MESH: Failed to generate mesh: sphere");
+
+    return mesh;
+}
+
+// Generate hemi-sphere mesh (half sphere, no bottom cap)
+Mesh GenMeshHemiSphere(float radius, int rings, int slices)
+{
+    Mesh mesh = { 0 };
+
+    if ((rings >= 3) && (slices >= 3))
+    {
+        if (radius < 0.0f) radius = 0.0f;
+
+        par_shapes_mesh *sphere = par_shapes_create_hemisphere(slices, rings);
+        par_shapes_scale(sphere, radius, radius, radius);
+        // NOTE: Soft normals are computed internally
+
+        mesh.vertices = (float *)RL_MALLOC(sphere->ntriangles*3*3*sizeof(float));
+        mesh.texcoords = (float *)RL_MALLOC(sphere->ntriangles*3*2*sizeof(float));
+        mesh.normals = (float *)RL_MALLOC(sphere->ntriangles*3*3*sizeof(float));
+
+        mesh.vertexCount = sphere->ntriangles*3;
+        mesh.triangleCount = sphere->ntriangles;
+
+        for (int k = 0; k < mesh.vertexCount; k++)
+        {
+            mesh.vertices[k*3] = sphere->points[sphere->triangles[k]*3];
+            mesh.vertices[k*3 + 1] = sphere->points[sphere->triangles[k]*3 + 1];
+            mesh.vertices[k*3 + 2] = sphere->points[sphere->triangles[k]*3 + 2];
+
+            mesh.normals[k*3] = sphere->normals[sphere->triangles[k]*3];
+            mesh.normals[k*3 + 1] = sphere->normals[sphere->triangles[k]*3 + 1];
+            mesh.normals[k*3 + 2] = sphere->normals[sphere->triangles[k]*3 + 2];
+
+            mesh.texcoords[k*2] = sphere->tcoords[sphere->triangles[k]*2];
+            mesh.texcoords[k*2 + 1] = sphere->tcoords[sphere->triangles[k]*2 + 1];
+        }
+
+        par_shapes_free_mesh(sphere);
+
+        // Upload vertex data to GPU (static mesh)
+        UploadMesh(&mesh, false);
+    }
+    else TRACELOG(LOG_WARNING, "MESH: Failed to generate mesh: hemisphere");
+
+    return mesh;
+}
+
+// Generate cylinder mesh
+Mesh GenMeshCylinder(float radius, float height, int slices)
+{
+    Mesh mesh = { 0 };
+
+    if (slices >= 3)
+    {
+        // Instance a cylinder that sits on the Z=0 plane using the given tessellation
+        // levels across the UV domain.  Think of "slices" like a number of pizza
+        // slices, and "stacks" like a number of stacked rings.
+        // Height and radius are both 1.0, but they can easily be changed with par_shapes_scale
+        par_shapes_mesh *cylinder = par_shapes_create_cylinder(slices, 8);
+        par_shapes_scale(cylinder, radius, radius, height);
+        par_shapes_rotate(cylinder, -PI/2.0f, (float[]){ 1, 0, 0 });
+        par_shapes_rotate(cylinder, PI/2.0f, (float[]){ 0, 1, 0 });
+
+        // Generate an orientable disk shape (top cap)
+        par_shapes_mesh *capTop = par_shapes_create_disk(radius, slices, (float[]){ 0, 0, 0 }, (float[]){ 0, 0, 1 });
+        capTop->tcoords = PAR_MALLOC(float, 2*capTop->npoints);
+        for (int i = 0; i < 2*capTop->npoints; i++) capTop->tcoords[i] = 0.0f;
+        par_shapes_rotate(capTop, -PI/2.0f, (float[]){ 1, 0, 0 });
+        par_shapes_translate(capTop, 0, height, 0);
+
+        // Generate an orientable disk shape (bottom cap)
+        par_shapes_mesh *capBottom = par_shapes_create_disk(radius, slices, (float[]){ 0, 0, 0 }, (float[]){ 0, 0, -1 });
+        capBottom->tcoords = PAR_MALLOC(float, 2*capBottom->npoints);
+        for (int i = 0; i < 2*capBottom->npoints; i++) capBottom->tcoords[i] = 0.95f;
+        par_shapes_rotate(capBottom, PI/2.0f, (float[]){ 1, 0, 0 });
+
+        par_shapes_merge_and_free(cylinder, capTop);
+        par_shapes_merge_and_free(cylinder, capBottom);
+
+        mesh.vertices = (float *)RL_MALLOC(cylinder->ntriangles*3*3*sizeof(float));
+        mesh.texcoords = (float *)RL_MALLOC(cylinder->ntriangles*3*2*sizeof(float));
+        mesh.normals = (float *)RL_MALLOC(cylinder->ntriangles*3*3*sizeof(float));
+
+        mesh.vertexCount = cylinder->ntriangles*3;
+        mesh.triangleCount = cylinder->ntriangles;
+
+        for (int k = 0; k < mesh.vertexCount; k++)
+        {
+            mesh.vertices[k*3] = cylinder->points[cylinder->triangles[k]*3];
+            mesh.vertices[k*3 + 1] = cylinder->points[cylinder->triangles[k]*3 + 1];
+            mesh.vertices[k*3 + 2] = cylinder->points[cylinder->triangles[k]*3 + 2];
+
+            mesh.normals[k*3] = cylinder->normals[cylinder->triangles[k]*3];
+            mesh.normals[k*3 + 1] = cylinder->normals[cylinder->triangles[k]*3 + 1];
+            mesh.normals[k*3 + 2] = cylinder->normals[cylinder->triangles[k]*3 + 2];
+
+            mesh.texcoords[k*2] = cylinder->tcoords[cylinder->triangles[k]*2];
+            mesh.texcoords[k*2 + 1] = cylinder->tcoords[cylinder->triangles[k]*2 + 1];
+        }
+
+        par_shapes_free_mesh(cylinder);
+
+        // Upload vertex data to GPU (static mesh)
+        UploadMesh(&mesh, false);
+    }
+    else TRACELOG(LOG_WARNING, "MESH: Failed to generate mesh: cylinder");
+
+    return mesh;
+}
+
+// Generate torus mesh
+Mesh GenMeshTorus(float radius, float size, int radSeg, int sides)
+{
+    Mesh mesh = { 0 };
+
+    if ((sides >= 3) && (radSeg >= 3))
+    {
+        if (radius > 1.0f) radius = 1.0f;
+        else if (radius < 0.1f) radius = 0.1f;
+
+        // Create a donut that sits on the Z=0 plane with the specified inner radius
+        // The outer radius can be controlled with par_shapes_scale
+        par_shapes_mesh *torus = par_shapes_create_torus(radSeg, sides, radius);
+        par_shapes_scale(torus, size/2, size/2, size/2);
+
+        mesh.vertices = (float *)RL_MALLOC(torus->ntriangles*3*3*sizeof(float));
+        mesh.texcoords = (float *)RL_MALLOC(torus->ntriangles*3*2*sizeof(float));
+        mesh.normals = (float *)RL_MALLOC(torus->ntriangles*3*3*sizeof(float));
+
+        mesh.vertexCount = torus->ntriangles*3;
+        mesh.triangleCount = torus->ntriangles;
+
+        for (int k = 0; k < mesh.vertexCount; k++)
+        {
+            mesh.vertices[k*3] = torus->points[torus->triangles[k]*3];
+            mesh.vertices[k*3 + 1] = torus->points[torus->triangles[k]*3 + 1];
+            mesh.vertices[k*3 + 2] = torus->points[torus->triangles[k]*3 + 2];
+
+            mesh.normals[k*3] = torus->normals[torus->triangles[k]*3];
+            mesh.normals[k*3 + 1] = torus->normals[torus->triangles[k]*3 + 1];
+            mesh.normals[k*3 + 2] = torus->normals[torus->triangles[k]*3 + 2];
+
+            mesh.texcoords[k*2] = torus->tcoords[torus->triangles[k]*2];
+            mesh.texcoords[k*2 + 1] = torus->tcoords[torus->triangles[k]*2 + 1];
+        }
+
+        par_shapes_free_mesh(torus);
+
+        // Upload vertex data to GPU (static mesh)
+        UploadMesh(&mesh, false);
+    }
+    else TRACELOG(LOG_WARNING, "MESH: Failed to generate mesh: torus");
+
+    return mesh;
+}
+
+// Generate trefoil knot mesh
+Mesh GenMeshKnot(float radius, float size, int radSeg, int sides)
+{
+    Mesh mesh = { 0 };
+
+    if ((sides >= 3) && (radSeg >= 3))
+    {
+        if (radius > 3.0f) radius = 3.0f;
+        else if (radius < 0.5f) radius = 0.5f;
+
+        par_shapes_mesh *knot = par_shapes_create_trefoil_knot(radSeg, sides, radius);
+        par_shapes_scale(knot, size, size, size);
+
+        mesh.vertices = (float *)RL_MALLOC(knot->ntriangles*3*3*sizeof(float));
+        mesh.texcoords = (float *)RL_MALLOC(knot->ntriangles*3*2*sizeof(float));
+        mesh.normals = (float *)RL_MALLOC(knot->ntriangles*3*3*sizeof(float));
+
+        mesh.vertexCount = knot->ntriangles*3;
+        mesh.triangleCount = knot->ntriangles;
+
+        for (int k = 0; k < mesh.vertexCount; k++)
+        {
+            mesh.vertices[k*3] = knot->points[knot->triangles[k]*3];
+            mesh.vertices[k*3 + 1] = knot->points[knot->triangles[k]*3 + 1];
+            mesh.vertices[k*3 + 2] = knot->points[knot->triangles[k]*3 + 2];
+
+            mesh.normals[k*3] = knot->normals[knot->triangles[k]*3];
+            mesh.normals[k*3 + 1] = knot->normals[knot->triangles[k]*3 + 1];
+            mesh.normals[k*3 + 2] = knot->normals[knot->triangles[k]*3 + 2];
+
+            mesh.texcoords[k*2] = knot->tcoords[knot->triangles[k]*2];
+            mesh.texcoords[k*2 + 1] = knot->tcoords[knot->triangles[k]*2 + 1];
+        }
+
+        par_shapes_free_mesh(knot);
+
+        // Upload vertex data to GPU (static mesh)
+        UploadMesh(&mesh, false);
+    }
+    else TRACELOG(LOG_WARNING, "MESH: Failed to generate mesh: knot");
+
+    return mesh;
+}
+
+// Generate a mesh from heightmap
+// NOTE: Vertex data is uploaded to GPU
+Mesh GenMeshHeightmap(Image heightmap, Vector3 size)
+{
+    #define GRAY_VALUE(c) ((c.r+c.g+c.b)/3)
+
+    Mesh mesh = { 0 };
+
+    int mapX = heightmap.width;
+    int mapZ = heightmap.height;
+
+    Color *pixels = LoadImageColors(heightmap);
+
+    // NOTE: One vertex per pixel
+    mesh.triangleCount = (mapX-1)*(mapZ-1)*2;    // One quad every four pixels
+
+    mesh.vertexCount = mesh.triangleCount*3;
+
+    mesh.vertices = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float));
+    mesh.normals = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float));
+    mesh.texcoords = (float *)RL_MALLOC(mesh.vertexCount*2*sizeof(float));
+    mesh.colors = NULL;
+
+    int vCounter = 0;       // Used to count vertices float by float
+    int tcCounter = 0;      // Used to count texcoords float by float
+    int nCounter = 0;       // Used to count normals float by float
+
+    int trisCounter = 0;
+
+    Vector3 scaleFactor = { size.x/mapX, size.y/255.0f, size.z/mapZ };
+
+    Vector3 vA;
+    Vector3 vB;
+    Vector3 vC;
+    Vector3 vN;
+
+    for (int z = 0; z < mapZ-1; z++)
+    {
+        for (int x = 0; x < mapX-1; x++)
+        {
+            // Fill vertices array with data
+            //----------------------------------------------------------
+
+            // one triangle - 3 vertex
+            mesh.vertices[vCounter] = (float)x*scaleFactor.x;
+            mesh.vertices[vCounter + 1] = (float)GRAY_VALUE(pixels[x + z*mapX])*scaleFactor.y;
+            mesh.vertices[vCounter + 2] = (float)z*scaleFactor.z;
+
+            mesh.vertices[vCounter + 3] = (float)x*scaleFactor.x;
+            mesh.vertices[vCounter + 4] = (float)GRAY_VALUE(pixels[x + (z + 1)*mapX])*scaleFactor.y;
+            mesh.vertices[vCounter + 5] = (float)(z + 1)*scaleFactor.z;
+
+            mesh.vertices[vCounter + 6] = (float)(x + 1)*scaleFactor.x;
+            mesh.vertices[vCounter + 7] = (float)GRAY_VALUE(pixels[(x + 1) + z*mapX])*scaleFactor.y;
+            mesh.vertices[vCounter + 8] = (float)z*scaleFactor.z;
+
+            // another triangle - 3 vertex
+            mesh.vertices[vCounter + 9] = mesh.vertices[vCounter + 6];
+            mesh.vertices[vCounter + 10] = mesh.vertices[vCounter + 7];
+            mesh.vertices[vCounter + 11] = mesh.vertices[vCounter + 8];
+
+            mesh.vertices[vCounter + 12] = mesh.vertices[vCounter + 3];
+            mesh.vertices[vCounter + 13] = mesh.vertices[vCounter + 4];
+            mesh.vertices[vCounter + 14] = mesh.vertices[vCounter + 5];
+
+            mesh.vertices[vCounter + 15] = (float)(x + 1)*scaleFactor.x;
+            mesh.vertices[vCounter + 16] = (float)GRAY_VALUE(pixels[(x + 1) + (z + 1)*mapX])*scaleFactor.y;
+            mesh.vertices[vCounter + 17] = (float)(z + 1)*scaleFactor.z;
+            vCounter += 18;     // 6 vertex, 18 floats
+
+            // Fill texcoords array with data
+            //--------------------------------------------------------------
+            mesh.texcoords[tcCounter] = (float)x/(mapX - 1);
+            mesh.texcoords[tcCounter + 1] = (float)z/(mapZ - 1);
+
+            mesh.texcoords[tcCounter + 2] = (float)x/(mapX - 1);
+            mesh.texcoords[tcCounter + 3] = (float)(z + 1)/(mapZ - 1);
+
+            mesh.texcoords[tcCounter + 4] = (float)(x + 1)/(mapX - 1);
+            mesh.texcoords[tcCounter + 5] = (float)z/(mapZ - 1);
+
+            mesh.texcoords[tcCounter + 6] = mesh.texcoords[tcCounter + 4];
+            mesh.texcoords[tcCounter + 7] = mesh.texcoords[tcCounter + 5];
+
+            mesh.texcoords[tcCounter + 8] = mesh.texcoords[tcCounter + 2];
+            mesh.texcoords[tcCounter + 9] = mesh.texcoords[tcCounter + 3];
+
+            mesh.texcoords[tcCounter + 10] = (float)(x + 1)/(mapX - 1);
+            mesh.texcoords[tcCounter + 11] = (float)(z + 1)/(mapZ - 1);
+            tcCounter += 12;    // 6 texcoords, 12 floats
+
+            // Fill normals array with data
+            //--------------------------------------------------------------
+            for (int i = 0; i < 18; i += 9)
+            {
+                vA.x = mesh.vertices[nCounter + i];
+                vA.y = mesh.vertices[nCounter + i + 1];
+                vA.z = mesh.vertices[nCounter + i + 2];
+
+                vB.x = mesh.vertices[nCounter + i + 3];
+                vB.y = mesh.vertices[nCounter + i + 4];
+                vB.z = mesh.vertices[nCounter + i + 5];
+
+                vC.x = mesh.vertices[nCounter + i + 6];
+                vC.y = mesh.vertices[nCounter + i + 7];
+                vC.z = mesh.vertices[nCounter + i + 8];
+
+                vN = Vector3Normalize(Vector3CrossProduct(Vector3Subtract(vB, vA), Vector3Subtract(vC, vA)));
+
+                mesh.normals[nCounter + i] = vN.x;
+                mesh.normals[nCounter + i + 1] = vN.y;
+                mesh.normals[nCounter + i + 2] = vN.z;
+
+                mesh.normals[nCounter + i + 3] = vN.x;
+                mesh.normals[nCounter + i + 4] = vN.y;
+                mesh.normals[nCounter + i + 5] = vN.z;
+
+                mesh.normals[nCounter + i + 6] = vN.x;
+                mesh.normals[nCounter + i + 7] = vN.y;
+                mesh.normals[nCounter + i + 8] = vN.z;
+            }
+
+            nCounter += 18;     // 6 vertex, 18 floats
+            trisCounter += 2;
+        }
+    }
+
+    UnloadImageColors(pixels);  // Unload pixels color data
+
+    // Upload vertex data to GPU (static mesh)
+    UploadMesh(&mesh, false);
+
+    return mesh;
+}
+
+// Generate a cubes mesh from pixel data
+// NOTE: Vertex data is uploaded to GPU
+Mesh GenMeshCubicmap(Image cubicmap, Vector3 cubeSize)
+{
+    #define COLOR_EQUAL(col1, col2) ((col1.r == col2.r)&&(col1.g == col2.g)&&(col1.b == col2.b)&&(col1.a == col2.a))
+
+    Mesh mesh = { 0 };
+
+    Color *pixels = LoadImageColors(cubicmap);
+
+    int mapWidth = cubicmap.width;
+    int mapHeight = cubicmap.height;
+
+    // NOTE: Max possible number of triangles numCubes*(12 triangles by cube)
+    int maxTriangles = cubicmap.width*cubicmap.height*12;
+
+    int vCounter = 0;       // Used to count vertices
+    int tcCounter = 0;      // Used to count texcoords
+    int nCounter = 0;       // Used to count normals
+
+    float w = cubeSize.x;
+    float h = cubeSize.z;
+    float h2 = cubeSize.y;
+
+    Vector3 *mapVertices = (Vector3 *)RL_MALLOC(maxTriangles*3*sizeof(Vector3));
+    Vector2 *mapTexcoords = (Vector2 *)RL_MALLOC(maxTriangles*3*sizeof(Vector2));
+    Vector3 *mapNormals = (Vector3 *)RL_MALLOC(maxTriangles*3*sizeof(Vector3));
+
+    // Define the 6 normals of the cube, we will combine them accordingly later...
+    Vector3 n1 = { 1.0f, 0.0f, 0.0f };
+    Vector3 n2 = { -1.0f, 0.0f, 0.0f };
+    Vector3 n3 = { 0.0f, 1.0f, 0.0f };
+    Vector3 n4 = { 0.0f, -1.0f, 0.0f };
+    Vector3 n5 = { 0.0f, 0.0f, -1.0f };
+    Vector3 n6 = { 0.0f, 0.0f, 1.0f };
+
+    // NOTE: We use texture rectangles to define different textures for top-bottom-front-back-right-left (6)
+    typedef struct RectangleF {
+        float x;
+        float y;
+        float width;
+        float height;
+    } RectangleF;
+
+    RectangleF rightTexUV = { 0.0f, 0.0f, 0.5f, 0.5f };
+    RectangleF leftTexUV = { 0.5f, 0.0f, 0.5f, 0.5f };
+    RectangleF frontTexUV = { 0.0f, 0.0f, 0.5f, 0.5f };
+    RectangleF backTexUV = { 0.5f, 0.0f, 0.5f, 0.5f };
+    RectangleF topTexUV = { 0.0f, 0.5f, 0.5f, 0.5f };
+    RectangleF bottomTexUV = { 0.5f, 0.5f, 0.5f, 0.5f };
+
+    for (int z = 0; z < mapHeight; ++z)
+    {
+        for (int x = 0; x < mapWidth; ++x)
+        {
+            // Define the 8 vertex of the cube, we will combine them accordingly later...
+            Vector3 v1 = { w*(x - 0.5f), h2, h*(z - 0.5f) };
+            Vector3 v2 = { w*(x - 0.5f), h2, h*(z + 0.5f) };
+            Vector3 v3 = { w*(x + 0.5f), h2, h*(z + 0.5f) };
+            Vector3 v4 = { w*(x + 0.5f), h2, h*(z - 0.5f) };
+            Vector3 v5 = { w*(x + 0.5f), 0, h*(z - 0.5f) };
+            Vector3 v6 = { w*(x - 0.5f), 0, h*(z - 0.5f) };
+            Vector3 v7 = { w*(x - 0.5f), 0, h*(z + 0.5f) };
+            Vector3 v8 = { w*(x + 0.5f), 0, h*(z + 0.5f) };
+
+            // We check pixel color to be WHITE -> draw full cube
+            if (COLOR_EQUAL(pixels[z*cubicmap.width + x], WHITE))
+            {
+                // Define triangles and checking collateral cubes
+                //------------------------------------------------
+
+                // Define top triangles (2 tris, 6 vertex --> v1-v2-v3, v1-v3-v4)
+                // WARNING: Not required for a WHITE cubes, created to allow seeing the map from outside
+                mapVertices[vCounter] = v1;
+                mapVertices[vCounter + 1] = v2;
+                mapVertices[vCounter + 2] = v3;
+                mapVertices[vCounter + 3] = v1;
+                mapVertices[vCounter + 4] = v3;
+                mapVertices[vCounter + 5] = v4;
+                vCounter += 6;
+
+                mapNormals[nCounter] = n3;
+                mapNormals[nCounter + 1] = n3;
+                mapNormals[nCounter + 2] = n3;
+                mapNormals[nCounter + 3] = n3;
+                mapNormals[nCounter + 4] = n3;
+                mapNormals[nCounter + 5] = n3;
+                nCounter += 6;
+
+                mapTexcoords[tcCounter] = (Vector2){ topTexUV.x, topTexUV.y };
+                mapTexcoords[tcCounter + 1] = (Vector2){ topTexUV.x, topTexUV.y + topTexUV.height };
+                mapTexcoords[tcCounter + 2] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y + topTexUV.height };
+                mapTexcoords[tcCounter + 3] = (Vector2){ topTexUV.x, topTexUV.y };
+                mapTexcoords[tcCounter + 4] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y + topTexUV.height };
+                mapTexcoords[tcCounter + 5] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y };
+                tcCounter += 6;
+
+                // Define bottom triangles (2 tris, 6 vertex --> v6-v8-v7, v6-v5-v8)
+                mapVertices[vCounter] = v6;
+                mapVertices[vCounter + 1] = v8;
+                mapVertices[vCounter + 2] = v7;
+                mapVertices[vCounter + 3] = v6;
+                mapVertices[vCounter + 4] = v5;
+                mapVertices[vCounter + 5] = v8;
+                vCounter += 6;
+
+                mapNormals[nCounter] = n4;
+                mapNormals[nCounter + 1] = n4;
+                mapNormals[nCounter + 2] = n4;
+                mapNormals[nCounter + 3] = n4;
+                mapNormals[nCounter + 4] = n4;
+                mapNormals[nCounter + 5] = n4;
+                nCounter += 6;
+
+                mapTexcoords[tcCounter] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y };
+                mapTexcoords[tcCounter + 1] = (Vector2){ bottomTexUV.x, bottomTexUV.y + bottomTexUV.height };
+                mapTexcoords[tcCounter + 2] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y + bottomTexUV.height };
+                mapTexcoords[tcCounter + 3] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y };
+                mapTexcoords[tcCounter + 4] = (Vector2){ bottomTexUV.x, bottomTexUV.y };
+                mapTexcoords[tcCounter + 5] = (Vector2){ bottomTexUV.x, bottomTexUV.y + bottomTexUV.height };
+                tcCounter += 6;
+
+                // Checking cube on bottom of current cube
+                if (((z < cubicmap.height - 1) && COLOR_EQUAL(pixels[(z + 1)*cubicmap.width + x], BLACK)) || (z == cubicmap.height - 1))
+                {
+                    // Define front triangles (2 tris, 6 vertex) --> v2 v7 v3, v3 v7 v8
+                    // NOTE: Collateral occluded faces are not generated
+                    mapVertices[vCounter] = v2;
+                    mapVertices[vCounter + 1] = v7;
+                    mapVertices[vCounter + 2] = v3;
+                    mapVertices[vCounter + 3] = v3;
+                    mapVertices[vCounter + 4] = v7;
+                    mapVertices[vCounter + 5] = v8;
+                    vCounter += 6;
+
+                    mapNormals[nCounter] = n6;
+                    mapNormals[nCounter + 1] = n6;
+                    mapNormals[nCounter + 2] = n6;
+                    mapNormals[nCounter + 3] = n6;
+                    mapNormals[nCounter + 4] = n6;
+                    mapNormals[nCounter + 5] = n6;
+                    nCounter += 6;
+
+                    mapTexcoords[tcCounter] = (Vector2){ frontTexUV.x, frontTexUV.y };
+                    mapTexcoords[tcCounter + 1] = (Vector2){ frontTexUV.x, frontTexUV.y + frontTexUV.height };
+                    mapTexcoords[tcCounter + 2] = (Vector2){ frontTexUV.x + frontTexUV.width, frontTexUV.y };
+                    mapTexcoords[tcCounter + 3] = (Vector2){ frontTexUV.x + frontTexUV.width, frontTexUV.y };
+                    mapTexcoords[tcCounter + 4] = (Vector2){ frontTexUV.x, frontTexUV.y + frontTexUV.height };
+                    mapTexcoords[tcCounter + 5] = (Vector2){ frontTexUV.x + frontTexUV.width, frontTexUV.y + frontTexUV.height };
+                    tcCounter += 6;
+                }
+
+                // Checking cube on top of current cube
+                if (((z > 0) && COLOR_EQUAL(pixels[(z - 1)*cubicmap.width + x], BLACK)) || (z == 0))
+                {
+                    // Define back triangles (2 tris, 6 vertex) --> v1 v5 v6, v1 v4 v5
+                    // NOTE: Collateral occluded faces are not generated
+                    mapVertices[vCounter] = v1;
+                    mapVertices[vCounter + 1] = v5;
+                    mapVertices[vCounter + 2] = v6;
+                    mapVertices[vCounter + 3] = v1;
+                    mapVertices[vCounter + 4] = v4;
+                    mapVertices[vCounter + 5] = v5;
+                    vCounter += 6;
+
+                    mapNormals[nCounter] = n5;
+                    mapNormals[nCounter + 1] = n5;
+                    mapNormals[nCounter + 2] = n5;
+                    mapNormals[nCounter + 3] = n5;
+                    mapNormals[nCounter + 4] = n5;
+                    mapNormals[nCounter + 5] = n5;
+                    nCounter += 6;
+
+                    mapTexcoords[tcCounter] = (Vector2){ backTexUV.x + backTexUV.width, backTexUV.y };
+                    mapTexcoords[tcCounter + 1] = (Vector2){ backTexUV.x, backTexUV.y + backTexUV.height };
+                    mapTexcoords[tcCounter + 2] = (Vector2){ backTexUV.x + backTexUV.width, backTexUV.y + backTexUV.height };
+                    mapTexcoords[tcCounter + 3] = (Vector2){ backTexUV.x + backTexUV.width, backTexUV.y };
+                    mapTexcoords[tcCounter + 4] = (Vector2){ backTexUV.x, backTexUV.y };
+                    mapTexcoords[tcCounter + 5] = (Vector2){ backTexUV.x, backTexUV.y + backTexUV.height };
+                    tcCounter += 6;
+                }
+
+                // Checking cube on right of current cube
+                if (((x < cubicmap.width - 1) && COLOR_EQUAL(pixels[z*cubicmap.width + (x + 1)], BLACK)) || (x == cubicmap.width - 1))
+                {
+                    // Define right triangles (2 tris, 6 vertex) --> v3 v8 v4, v4 v8 v5
+                    // NOTE: Collateral occluded faces are not generated
+                    mapVertices[vCounter] = v3;
+                    mapVertices[vCounter + 1] = v8;
+                    mapVertices[vCounter + 2] = v4;
+                    mapVertices[vCounter + 3] = v4;
+                    mapVertices[vCounter + 4] = v8;
+                    mapVertices[vCounter + 5] = v5;
+                    vCounter += 6;
+
+                    mapNormals[nCounter] = n1;
+                    mapNormals[nCounter + 1] = n1;
+                    mapNormals[nCounter + 2] = n1;
+                    mapNormals[nCounter + 3] = n1;
+                    mapNormals[nCounter + 4] = n1;
+                    mapNormals[nCounter + 5] = n1;
+                    nCounter += 6;
+
+                    mapTexcoords[tcCounter] = (Vector2){ rightTexUV.x, rightTexUV.y };
+                    mapTexcoords[tcCounter + 1] = (Vector2){ rightTexUV.x, rightTexUV.y + rightTexUV.height };
+                    mapTexcoords[tcCounter + 2] = (Vector2){ rightTexUV.x + rightTexUV.width, rightTexUV.y };
+                    mapTexcoords[tcCounter + 3] = (Vector2){ rightTexUV.x + rightTexUV.width, rightTexUV.y };
+                    mapTexcoords[tcCounter + 4] = (Vector2){ rightTexUV.x, rightTexUV.y + rightTexUV.height };
+                    mapTexcoords[tcCounter + 5] = (Vector2){ rightTexUV.x + rightTexUV.width, rightTexUV.y + rightTexUV.height };
+                    tcCounter += 6;
+                }
+
+                // Checking cube on left of current cube
+                if (((x > 0) && COLOR_EQUAL(pixels[z*cubicmap.width + (x - 1)], BLACK)) || (x == 0))
+                {
+                    // Define left triangles (2 tris, 6 vertex) --> v1 v7 v2, v1 v6 v7
+                    // NOTE: Collateral occluded faces are not generated
+                    mapVertices[vCounter] = v1;
+                    mapVertices[vCounter + 1] = v7;
+                    mapVertices[vCounter + 2] = v2;
+                    mapVertices[vCounter + 3] = v1;
+                    mapVertices[vCounter + 4] = v6;
+                    mapVertices[vCounter + 5] = v7;
+                    vCounter += 6;
+
+                    mapNormals[nCounter] = n2;
+                    mapNormals[nCounter + 1] = n2;
+                    mapNormals[nCounter + 2] = n2;
+                    mapNormals[nCounter + 3] = n2;
+                    mapNormals[nCounter + 4] = n2;
+                    mapNormals[nCounter + 5] = n2;
+                    nCounter += 6;
+
+                    mapTexcoords[tcCounter] = (Vector2){ leftTexUV.x, leftTexUV.y };
+                    mapTexcoords[tcCounter + 1] = (Vector2){ leftTexUV.x + leftTexUV.width, leftTexUV.y + leftTexUV.height };
+                    mapTexcoords[tcCounter + 2] = (Vector2){ leftTexUV.x + leftTexUV.width, leftTexUV.y };
+                    mapTexcoords[tcCounter + 3] = (Vector2){ leftTexUV.x, leftTexUV.y };
+                    mapTexcoords[tcCounter + 4] = (Vector2){ leftTexUV.x, leftTexUV.y + leftTexUV.height };
+                    mapTexcoords[tcCounter + 5] = (Vector2){ leftTexUV.x + leftTexUV.width, leftTexUV.y + leftTexUV.height };
+                    tcCounter += 6;
+                }
+            }
+            // We check pixel color to be BLACK, we will only draw floor and roof
+            else if (COLOR_EQUAL(pixels[z*cubicmap.width + x], BLACK))
+            {
+                // Define top triangles (2 tris, 6 vertex --> v1-v2-v3, v1-v3-v4)
+                mapVertices[vCounter] = v1;
+                mapVertices[vCounter + 1] = v3;
+                mapVertices[vCounter + 2] = v2;
+                mapVertices[vCounter + 3] = v1;
+                mapVertices[vCounter + 4] = v4;
+                mapVertices[vCounter + 5] = v3;
+                vCounter += 6;
+
+                mapNormals[nCounter] = n4;
+                mapNormals[nCounter + 1] = n4;
+                mapNormals[nCounter + 2] = n4;
+                mapNormals[nCounter + 3] = n4;
+                mapNormals[nCounter + 4] = n4;
+                mapNormals[nCounter + 5] = n4;
+                nCounter += 6;
+
+                mapTexcoords[tcCounter] = (Vector2){ topTexUV.x, topTexUV.y };
+                mapTexcoords[tcCounter + 1] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y + topTexUV.height };
+                mapTexcoords[tcCounter + 2] = (Vector2){ topTexUV.x, topTexUV.y + topTexUV.height };
+                mapTexcoords[tcCounter + 3] = (Vector2){ topTexUV.x, topTexUV.y };
+                mapTexcoords[tcCounter + 4] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y };
+                mapTexcoords[tcCounter + 5] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y + topTexUV.height };
+                tcCounter += 6;
+
+                // Define bottom triangles (2 tris, 6 vertex --> v6-v8-v7, v6-v5-v8)
+                mapVertices[vCounter] = v6;
+                mapVertices[vCounter + 1] = v7;
+                mapVertices[vCounter + 2] = v8;
+                mapVertices[vCounter + 3] = v6;
+                mapVertices[vCounter + 4] = v8;
+                mapVertices[vCounter + 5] = v5;
+                vCounter += 6;
+
+                mapNormals[nCounter] = n3;
+                mapNormals[nCounter + 1] = n3;
+                mapNormals[nCounter + 2] = n3;
+                mapNormals[nCounter + 3] = n3;
+                mapNormals[nCounter + 4] = n3;
+                mapNormals[nCounter + 5] = n3;
+                nCounter += 6;
+
+                mapTexcoords[tcCounter] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y };
+                mapTexcoords[tcCounter + 1] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y + bottomTexUV.height };
+                mapTexcoords[tcCounter + 2] = (Vector2){ bottomTexUV.x, bottomTexUV.y + bottomTexUV.height };
+                mapTexcoords[tcCounter + 3] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y };
+                mapTexcoords[tcCounter + 4] = (Vector2){ bottomTexUV.x, bottomTexUV.y + bottomTexUV.height };
+                mapTexcoords[tcCounter + 5] = (Vector2){ bottomTexUV.x, bottomTexUV.y };
+                tcCounter += 6;
+            }
+        }
+    }
+
+    // Move data from mapVertices temp arays to vertices float array
+    mesh.vertexCount = vCounter;
+    mesh.triangleCount = vCounter/3;
+
+    mesh.vertices = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float));
+    mesh.normals = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float));
+    mesh.texcoords = (float *)RL_MALLOC(mesh.vertexCount*2*sizeof(float));
+    mesh.colors = NULL;
+
+    int fCounter = 0;
+
+    // Move vertices data
+    for (int i = 0; i < vCounter; i++)
+    {
+        mesh.vertices[fCounter] = mapVertices[i].x;
+        mesh.vertices[fCounter + 1] = mapVertices[i].y;
+        mesh.vertices[fCounter + 2] = mapVertices[i].z;
+        fCounter += 3;
+    }
+
+    fCounter = 0;
+
+    // Move normals data
+    for (int i = 0; i < nCounter; i++)
+    {
+        mesh.normals[fCounter] = mapNormals[i].x;
+        mesh.normals[fCounter + 1] = mapNormals[i].y;
+        mesh.normals[fCounter + 2] = mapNormals[i].z;
+        fCounter += 3;
+    }
+
+    fCounter = 0;
+
+    // Move texcoords data
+    for (int i = 0; i < tcCounter; i++)
+    {
+        mesh.texcoords[fCounter] = mapTexcoords[i].x;
+        mesh.texcoords[fCounter + 1] = mapTexcoords[i].y;
+        fCounter += 2;
+    }
+
+    RL_FREE(mapVertices);
+    RL_FREE(mapNormals);
+    RL_FREE(mapTexcoords);
+
+    UnloadImageColors(pixels);   // Unload pixels color data
+
+    // Upload vertex data to GPU (static mesh)
+    UploadMesh(&mesh, false);
+
+    return mesh;
+}
+#endif      // SUPPORT_MESH_GENERATION
+
+// Compute mesh bounding box limits
+// NOTE: minVertex and maxVertex should be transformed by model transform matrix
+BoundingBox MeshBoundingBox(Mesh mesh)
+{
+    // Get min and max vertex to construct bounds (AABB)
+    Vector3 minVertex = { 0 };
+    Vector3 maxVertex = { 0 };
+
+    if (mesh.vertices != NULL)
+    {
+        minVertex = (Vector3){ mesh.vertices[0], mesh.vertices[1], mesh.vertices[2] };
+        maxVertex = (Vector3){ mesh.vertices[0], mesh.vertices[1], mesh.vertices[2] };
+
+        for (int i = 1; i < mesh.vertexCount; i++)
+        {
+            minVertex = Vector3Min(minVertex, (Vector3){ mesh.vertices[i*3], mesh.vertices[i*3 + 1], mesh.vertices[i*3 + 2] });
+            maxVertex = Vector3Max(maxVertex, (Vector3){ mesh.vertices[i*3], mesh.vertices[i*3 + 1], mesh.vertices[i*3 + 2] });
+        }
+    }
+
+    // Create the bounding box
+    BoundingBox box = { 0 };
+    box.min = minVertex;
+    box.max = maxVertex;
+
+    return box;
+}
+
+// Compute mesh tangents
+// NOTE: To calculate mesh tangents and binormals we need mesh vertex positions and texture coordinates
+// Implementation base don: https://answers.unity.com/questions/7789/calculating-tangents-vector4.html
+void MeshTangents(Mesh *mesh)
+{
+    if (mesh->tangents == NULL) mesh->tangents = (float *)RL_MALLOC(mesh->vertexCount*4*sizeof(float));
+    else TRACELOG(LOG_WARNING, "MESH: Tangents data already available, re-writting");
+
+    Vector3 *tan1 = (Vector3 *)RL_MALLOC(mesh->vertexCount*sizeof(Vector3));
+    Vector3 *tan2 = (Vector3 *)RL_MALLOC(mesh->vertexCount*sizeof(Vector3));
+
+    for (int i = 0; i < mesh->vertexCount; i += 3)
+    {
+        // Get triangle vertices
+        Vector3 v1 = { mesh->vertices[(i + 0)*3 + 0], mesh->vertices[(i + 0)*3 + 1], mesh->vertices[(i + 0)*3 + 2] };
+        Vector3 v2 = { mesh->vertices[(i + 1)*3 + 0], mesh->vertices[(i + 1)*3 + 1], mesh->vertices[(i + 1)*3 + 2] };
+        Vector3 v3 = { mesh->vertices[(i + 2)*3 + 0], mesh->vertices[(i + 2)*3 + 1], mesh->vertices[(i + 2)*3 + 2] };
+
+        // Get triangle texcoords
+        Vector2 uv1 = { mesh->texcoords[(i + 0)*2 + 0], mesh->texcoords[(i + 0)*2 + 1] };
+        Vector2 uv2 = { mesh->texcoords[(i + 1)*2 + 0], mesh->texcoords[(i + 1)*2 + 1] };
+        Vector2 uv3 = { mesh->texcoords[(i + 2)*2 + 0], mesh->texcoords[(i + 2)*2 + 1] };
+
+        float x1 = v2.x - v1.x;
+        float y1 = v2.y - v1.y;
+        float z1 = v2.z - v1.z;
+        float x2 = v3.x - v1.x;
+        float y2 = v3.y - v1.y;
+        float z2 = v3.z - v1.z;
+
+        float s1 = uv2.x - uv1.x;
+        float t1 = uv2.y - uv1.y;
+        float s2 = uv3.x - uv1.x;
+        float t2 = uv3.y - uv1.y;
+
+        float div = s1*t2 - s2*t1;
+        float r = (div == 0.0f)? 0.0f : 1.0f/div;
+
+        Vector3 sdir = { (t2*x1 - t1*x2)*r, (t2*y1 - t1*y2)*r, (t2*z1 - t1*z2)*r };
+        Vector3 tdir = { (s1*x2 - s2*x1)*r, (s1*y2 - s2*y1)*r, (s1*z2 - s2*z1)*r };
+
+        tan1[i + 0] = sdir;
+        tan1[i + 1] = sdir;
+        tan1[i + 2] = sdir;
+
+        tan2[i + 0] = tdir;
+        tan2[i + 1] = tdir;
+        tan2[i + 2] = tdir;
+    }
+
+    // Compute tangents considering normals
+    for (int i = 0; i < mesh->vertexCount; ++i)
+    {
+        Vector3 normal = { mesh->normals[i*3 + 0], mesh->normals[i*3 + 1], mesh->normals[i*3 + 2] };
+        Vector3 tangent = tan1[i];
+
+        // TODO: Review, not sure if tangent computation is right, just used reference proposed maths...
+    #if defined(COMPUTE_TANGENTS_METHOD_01)
+        Vector3 tmp = Vector3Subtract(tangent, Vector3Scale(normal, Vector3DotProduct(normal, tangent)));
+        tmp = Vector3Normalize(tmp);
+        mesh->tangents[i*4 + 0] = tmp.x;
+        mesh->tangents[i*4 + 1] = tmp.y;
+        mesh->tangents[i*4 + 2] = tmp.z;
+        mesh->tangents[i*4 + 3] = 1.0f;
+    #else
+        Vector3OrthoNormalize(&normal, &tangent);
+        mesh->tangents[i*4 + 0] = tangent.x;
+        mesh->tangents[i*4 + 1] = tangent.y;
+        mesh->tangents[i*4 + 2] = tangent.z;
+        mesh->tangents[i*4 + 3] = (Vector3DotProduct(Vector3CrossProduct(normal, tangent), tan2[i]) < 0.0f)? -1.0f : 1.0f;
+    #endif
+    }
+
+    RL_FREE(tan1);
+    RL_FREE(tan2);
+
+    // Load a new tangent attributes buffer
+    mesh->vboId[SHADER_LOC_VERTEX_TANGENT] = rlLoadVertexBuffer(mesh->tangents, mesh->vertexCount*4*sizeof(float), false);
+
+    TRACELOG(LOG_INFO, "MESH: Tangents data computed for provided mesh");
+}
+
+// Compute mesh binormals (aka bitangent)
+void MeshBinormals(Mesh *mesh)
+{
+    for (int i = 0; i < mesh->vertexCount; i++)
+    {
+        //Vector3 normal = { mesh->normals[i*3 + 0], mesh->normals[i*3 + 1], mesh->normals[i*3 + 2] };
+        //Vector3 tangent = { mesh->tangents[i*4 + 0], mesh->tangents[i*4 + 1], mesh->tangents[i*4 + 2] };
+        //Vector3 binormal = Vector3Scale(Vector3CrossProduct(normal, tangent), mesh->tangents[i*4 + 3]);
+
+        // TODO: Register computed binormal in mesh->binormal?
+    }
+}
+
+// Draw a model (with texture if set)
+void DrawModel(Model model, Vector3 position, float scale, Color tint)
+{
+    Vector3 vScale = { scale, scale, scale };
+    Vector3 rotationAxis = { 0.0f, 1.0f, 0.0f };
+
+    DrawModelEx(model, position, rotationAxis, 0.0f, vScale, tint);
+}
+
+// Draw a model with extended parameters
+void DrawModelEx(Model model, Vector3 position, Vector3 rotationAxis, float rotationAngle, Vector3 scale, Color tint)
+{
+    // Calculate transformation matrix from function parameters
+    // Get transform matrix (rotation -> scale -> translation)
+    Matrix matScale = MatrixScale(scale.x, scale.y, scale.z);
+    Matrix matRotation = MatrixRotate(rotationAxis, rotationAngle*DEG2RAD);
+    Matrix matTranslation = MatrixTranslate(position.x, position.y, position.z);
+
+    Matrix matTransform = MatrixMultiply(MatrixMultiply(matScale, matRotation), matTranslation);
+
+    // Combine model transformation matrix (model.transform) with matrix generated by function parameters (matTransform)
+    model.transform = MatrixMultiply(model.transform, matTransform);
+
+    for (int i = 0; i < model.meshCount; i++)
+    {
+        Color color = model.materials[model.meshMaterial[i]].maps[MATERIAL_MAP_DIFFUSE].color;
+
+        Color colorTint = WHITE;
+        colorTint.r = (unsigned char)((((float)color.r/255.0)*((float)tint.r/255.0))*255.0f);
+        colorTint.g = (unsigned char)((((float)color.g/255.0)*((float)tint.g/255.0))*255.0f);
+        colorTint.b = (unsigned char)((((float)color.b/255.0)*((float)tint.b/255.0))*255.0f);
+        colorTint.a = (unsigned char)((((float)color.a/255.0)*((float)tint.a/255.0))*255.0f);
+
+        model.materials[model.meshMaterial[i]].maps[MATERIAL_MAP_DIFFUSE].color = colorTint;
+        DrawMesh(model.meshes[i], model.materials[model.meshMaterial[i]], model.transform);
+        model.materials[model.meshMaterial[i]].maps[MATERIAL_MAP_DIFFUSE].color = color;
+    }
+}
+
+// Draw a model wires (with texture if set)
+void DrawModelWires(Model model, Vector3 position, float scale, Color tint)
+{
+    rlEnableWireMode();
+
+    DrawModel(model, position, scale, tint);
+
+    rlDisableWireMode();
+}
+
+// Draw a model wires (with texture if set) with extended parameters
+void DrawModelWiresEx(Model model, Vector3 position, Vector3 rotationAxis, float rotationAngle, Vector3 scale, Color tint)
+{
+    rlEnableWireMode();
+
+    DrawModelEx(model, position, rotationAxis, rotationAngle, scale, tint);
+
+    rlDisableWireMode();
+}
+
+// Draw a billboard
+void DrawBillboard(Camera camera, Texture2D texture, Vector3 center, float size, Color tint)
+{
+    Rectangle source = { 0.0f, 0.0f, (float)texture.width, (float)texture.height };
+
+    DrawBillboardRec(camera, texture, source, center, size, tint);
+}
+
+// Draw a billboard (part of a texture defined by a rectangle)
+void DrawBillboardRec(Camera camera, Texture2D texture, Rectangle source, Vector3 center, float size, Color tint)
+{
+    // NOTE: Billboard size will maintain source rectangle aspect ratio, size will represent billboard width
+    Vector2 sizeRatio = { size, size*(float)source.height/source.width };
+
+    Matrix matView = MatrixLookAt(camera.position, camera.target, camera.up);
+
+    Vector3 right = { matView.m0, matView.m4, matView.m8 };
+    //Vector3 up = { matView.m1, matView.m5, matView.m9 };
+
+    // NOTE: Billboard locked on axis-Y
+    Vector3 up = { 0.0f, 1.0f, 0.0f };
+/*
+    a-------b
+    |       |
+    |   *   |
+    |       |
+    d-------c
+*/
+    right = Vector3Scale(right, sizeRatio.x/2);
+    up = Vector3Scale(up, sizeRatio.y/2);
+
+    Vector3 p1 = Vector3Add(right, up);
+    Vector3 p2 = Vector3Subtract(right, up);
+
+    Vector3 a = Vector3Subtract(center, p2);
+    Vector3 b = Vector3Add(center, p1);
+    Vector3 c = Vector3Add(center, p2);
+    Vector3 d = Vector3Subtract(center, p1);
+
+    rlCheckRenderBatchLimit(4);
+
+    rlSetTexture(texture.id);
+
+    rlBegin(RL_QUADS);
+        rlColor4ub(tint.r, tint.g, tint.b, tint.a);
+
+        // Bottom-left corner for texture and quad
+        rlTexCoord2f((float)source.x/texture.width, (float)source.y/texture.height);
+        rlVertex3f(a.x, a.y, a.z);
+
+        // Top-left corner for texture and quad
+        rlTexCoord2f((float)source.x/texture.width, (float)(source.y + source.height)/texture.height);
+        rlVertex3f(d.x, d.y, d.z);
+
+        // Top-right corner for texture and quad
+        rlTexCoord2f((float)(source.x + source.width)/texture.width, (float)(source.y + source.height)/texture.height);
+        rlVertex3f(c.x, c.y, c.z);
+
+        // Bottom-right corner for texture and quad
+        rlTexCoord2f((float)(source.x + source.width)/texture.width, (float)source.y/texture.height);
+        rlVertex3f(b.x, b.y, b.z);
+    rlEnd();
+
+    rlSetTexture(0);
+}
+
+// Draw a bounding box with wires
+void DrawBoundingBox(BoundingBox box, Color color)
+{
+    Vector3 size;
+
+    size.x = fabsf(box.max.x - box.min.x);
+    size.y = fabsf(box.max.y - box.min.y);
+    size.z = fabsf(box.max.z - box.min.z);
+
+    Vector3 center = { box.min.x + size.x/2.0f, box.min.y + size.y/2.0f, box.min.z + size.z/2.0f };
+
+    DrawCubeWires(center, size.x, size.y, size.z, color);
+}
+
+// Detect collision between two spheres
+bool CheckCollisionSpheres(Vector3 center1, float radius1, Vector3 center2, float radius2)
+{
+    bool collision = false;
+
+    // Simple way to check for collision, just checking distance between two points
+    // Unfortunately, sqrtf() is a costly operation, so we avoid it with following solution
+    /*
+    float dx = center1.x - center2.x;      // X distance between centers
+    float dy = center1.y - center2.y;      // Y distance between centers
+    float dz = center1.z - center2.z;      // Z distance between centers
+
+    float distance = sqrtf(dx*dx + dy*dy + dz*dz);  // Distance between centers
+
+    if (distance <= (radius1 + radius2)) collision = true;
+    */
+
+    // Check for distances squared to avoid sqrtf()
+    if (Vector3DotProduct(Vector3Subtract(center2, center1), Vector3Subtract(center2, center1)) <= (radius1 + radius2)*(radius1 + radius2)) collision = true;
+
+    return collision;
+}
+
+// Detect collision between two boxes
+// NOTE: Boxes are defined by two points minimum and maximum
+bool CheckCollisionBoxes(BoundingBox box1, BoundingBox box2)
+{
+    bool collision = true;
+
+    if ((box1.max.x >= box2.min.x) && (box1.min.x <= box2.max.x))
+    {
+        if ((box1.max.y < box2.min.y) || (box1.min.y > box2.max.y)) collision = false;
+        if ((box1.max.z < box2.min.z) || (box1.min.z > box2.max.z)) collision = false;
+    }
+    else collision = false;
+
+    return collision;
+}
+
+// Detect collision between box and sphere
+bool CheckCollisionBoxSphere(BoundingBox box, Vector3 center, float radius)
+{
+    bool collision = false;
+
+    float dmin = 0;
+
+    if (center.x < box.min.x) dmin += powf(center.x - box.min.x, 2);
+    else if (center.x > box.max.x) dmin += powf(center.x - box.max.x, 2);
+
+    if (center.y < box.min.y) dmin += powf(center.y - box.min.y, 2);
+    else if (center.y > box.max.y) dmin += powf(center.y - box.max.y, 2);
+
+    if (center.z < box.min.z) dmin += powf(center.z - box.min.z, 2);
+    else if (center.z > box.max.z) dmin += powf(center.z - box.max.z, 2);
+
+    if (dmin <= (radius*radius)) collision = true;
+
+    return collision;
+}
+
+// Detect collision between ray and sphere
+bool CheckCollisionRaySphere(Ray ray, Vector3 center, float radius)
+{
+    bool collision = false;
+
+    Vector3 raySpherePos = Vector3Subtract(center, ray.position);
+    float distance = Vector3Length(raySpherePos);
+    float vector = Vector3DotProduct(raySpherePos, ray.direction);
+    float d = radius*radius - (distance*distance - vector*vector);
+
+    if (d >= 0.0f) collision = true;
+
+    return collision;
+}
+
+// Detect collision between ray and sphere with extended parameters and collision point detection
+bool CheckCollisionRaySphereEx(Ray ray, Vector3 center, float radius, Vector3 *collisionPoint)
+{
+    bool collision = false;
+
+    Vector3 raySpherePos = Vector3Subtract(center, ray.position);
+    float distance = Vector3Length(raySpherePos);
+    float vector = Vector3DotProduct(raySpherePos, ray.direction);
+    float d = radius*radius - (distance*distance - vector*vector);
+
+    if (d >= 0.0f) collision = true;
+
+    // Check if ray origin is inside the sphere to calculate the correct collision point
+    float collisionDistance = 0;
+
+    if (distance < radius) collisionDistance = vector + sqrtf(d);
+    else collisionDistance = vector - sqrtf(d);
+
+    // Calculate collision point
+    Vector3 cPoint = Vector3Add(ray.position, Vector3Scale(ray.direction, collisionDistance));
+
+    collisionPoint->x = cPoint.x;
+    collisionPoint->y = cPoint.y;
+    collisionPoint->z = cPoint.z;
+
+    return collision;
+}
+
+// Detect collision between ray and bounding box
+bool CheckCollisionRayBox(Ray ray, BoundingBox box)
+{
+    bool collision = false;
+
+    float t[8];
+    t[0] = (box.min.x - ray.position.x)/ray.direction.x;
+    t[1] = (box.max.x - ray.position.x)/ray.direction.x;
+    t[2] = (box.min.y - ray.position.y)/ray.direction.y;
+    t[3] = (box.max.y - ray.position.y)/ray.direction.y;
+    t[4] = (box.min.z - ray.position.z)/ray.direction.z;
+    t[5] = (box.max.z - ray.position.z)/ray.direction.z;
+    t[6] = (float)fmax(fmax(fmin(t[0], t[1]), fmin(t[2], t[3])), fmin(t[4], t[5]));
+    t[7] = (float)fmin(fmin(fmax(t[0], t[1]), fmax(t[2], t[3])), fmax(t[4], t[5]));
+
+    collision = !(t[7] < 0 || t[6] > t[7]);
+
+    return collision;
+}
+// Get collision info between ray and mesh
+RayHitInfo GetCollisionRayMesh(Ray ray, Mesh mesh, Matrix transform)
+{
+    RayHitInfo result = { 0 };
+
+    // Check if mesh vertex data on CPU for testing
+    if (mesh.vertices != NULL)
+    {
+        int triangleCount = mesh.triangleCount;
+
+        // Test against all triangles in mesh
+        for (int i = 0; i < triangleCount; i++)
+        {
+            Vector3 a, b, c;
+            Vector3* vertdata = (Vector3*)mesh.vertices;
+
+            if (mesh.indices)
+            {
+                a = vertdata[mesh.indices[i*3 + 0]];
+                b = vertdata[mesh.indices[i*3 + 1]];
+                c = vertdata[mesh.indices[i*3 + 2]];
+            }
+            else
+            {
+                a = vertdata[i*3 + 0];
+                b = vertdata[i*3 + 1];
+                c = vertdata[i*3 + 2];
+            }
+
+            a = Vector3Transform(a, transform);
+            b = Vector3Transform(b, transform);
+            c = Vector3Transform(c, transform);
+
+            RayHitInfo triHitInfo = GetCollisionRayTriangle(ray, a, b, c);
+
+            if (triHitInfo.hit)
+            {
+                // Save the closest hit triangle
+                if ((!result.hit) || (result.distance > triHitInfo.distance)) result = triHitInfo;
+            }
+        }
+    }
+    return result;
+}
+
+// Get collision info between ray and model
+RayHitInfo GetCollisionRayModel(Ray ray, Model model)
+{
+    RayHitInfo result = { 0 };
+
+    for (int m = 0; m < model.meshCount; m++)
+    {
+        RayHitInfo meshHitInfo = GetCollisionRayMesh(ray, model.meshes[m], model.transform);
+
+        if (meshHitInfo.hit)
+        {
+            // Save the closest hit mesh
+            if ((!result.hit) || (result.distance > meshHitInfo.distance)) result = meshHitInfo;
+        }
+    }
+
+    return result;
+}
+
+// Get collision info between ray and triangle
+// NOTE: Based on https://en.wikipedia.org/wiki/M%C3%B6ller%E2%80%93Trumbore_intersection_algorithm
+RayHitInfo GetCollisionRayTriangle(Ray ray, Vector3 p1, Vector3 p2, Vector3 p3)
+{
+    #define EPSILON 0.000001        // A small number
+
+    Vector3 edge1, edge2;
+    Vector3 p, q, tv;
+    float det, invDet, u, v, t;
+    RayHitInfo result = {0};
+
+    // Find vectors for two edges sharing V1
+    edge1 = Vector3Subtract(p2, p1);
+    edge2 = Vector3Subtract(p3, p1);
+
+    // Begin calculating determinant - also used to calculate u parameter
+    p = Vector3CrossProduct(ray.direction, edge2);
+
+    // If determinant is near zero, ray lies in plane of triangle or ray is parallel to plane of triangle
+    det = Vector3DotProduct(edge1, p);
+
+    // Avoid culling!
+    if ((det > -EPSILON) && (det < EPSILON)) return result;
+
+    invDet = 1.0f/det;
+
+    // Calculate distance from V1 to ray origin
+    tv = Vector3Subtract(ray.position, p1);
+
+    // Calculate u parameter and test bound
+    u = Vector3DotProduct(tv, p)*invDet;
+
+    // The intersection lies outside of the triangle
+    if ((u < 0.0f) || (u > 1.0f)) return result;
+
+    // Prepare to test v parameter
+    q = Vector3CrossProduct(tv, edge1);
+
+    // Calculate V parameter and test bound
+    v = Vector3DotProduct(ray.direction, q)*invDet;
+
+    // The intersection lies outside of the triangle
+    if ((v < 0.0f) || ((u + v) > 1.0f)) return result;
+
+    t = Vector3DotProduct(edge2, q)*invDet;
+
+    if (t > EPSILON)
+    {
+        // Ray hit, get hit point and normal
+        result.hit = true;
+        result.distance = t;
+        result.hit = true;
+        result.normal = Vector3Normalize(Vector3CrossProduct(edge1, edge2));
+        result.position = Vector3Add(ray.position, Vector3Scale(ray.direction, t));
+    }
+
+    return result;
+}
+
+// Get collision info between ray and ground plane (Y-normal plane)
+RayHitInfo GetCollisionRayGround(Ray ray, float groundHeight)
+{
+    #define EPSILON 0.000001        // A small number
+
+    RayHitInfo result = { 0 };
+
+    if (fabsf(ray.direction.y) > EPSILON)
+    {
+        float distance = (ray.position.y - groundHeight)/-ray.direction.y;
+
+        if (distance >= 0.0)
+        {
+            result.hit = true;
+            result.distance = distance;
+            result.normal = (Vector3){ 0.0, 1.0, 0.0 };
+            result.position = Vector3Add(ray.position, Vector3Scale(ray.direction, distance));
+            result.position.y = groundHeight;
+        }
+    }
+
+    return result;
+}
+
+//----------------------------------------------------------------------------------
+// Module specific Functions Definition
+//----------------------------------------------------------------------------------
+
+#if defined(SUPPORT_FILEFORMAT_OBJ)
+// Load OBJ mesh data
+static Model LoadOBJ(const char *fileName)
+{
+    Model model = { 0 };
+
+    tinyobj_attrib_t attrib = { 0 };
+    tinyobj_shape_t *meshes = NULL;
+    unsigned int meshCount = 0;
+
+    tinyobj_material_t *materials = NULL;
+    unsigned int materialCount = 0;
+
+    char *fileData = LoadFileText(fileName);
+
+    if (fileData != NULL)
+    {
+        unsigned int dataSize = (unsigned int)strlen(fileData);
+        char currentDir[1024] = { 0 };
+        strcpy(currentDir, GetWorkingDirectory());
+        const char *workingDir = GetDirectoryPath(fileName);
+        if (CHDIR(workingDir) != 0)
+        {
+            TRACELOG(LOG_WARNING, "MODEL: [%s] Failed to change working directory", workingDir);
+        }
+
+        unsigned int flags = TINYOBJ_FLAG_TRIANGULATE;
+        int ret = tinyobj_parse_obj(&attrib, &meshes, &meshCount, &materials, &materialCount, fileData, dataSize, flags);
+
+        if (ret != TINYOBJ_SUCCESS) TRACELOG(LOG_WARNING, "MODEL: [%s] Failed to load OBJ data", fileName);
+        else TRACELOG(LOG_INFO, "MODEL: [%s] OBJ data loaded successfully: %i meshes / %i materials", fileName, meshCount, materialCount);
+
+        model.meshCount = materialCount;
+
+        // Init model materials array
+        if (materialCount > 0)
+        {
+            model.materialCount = materialCount;
+            model.materials = (Material *)RL_CALLOC(model.materialCount, sizeof(Material));
+            TraceLog(LOG_INFO, "MODEL: model has %i material meshes", materialCount);
+        }
+        else
+        {
+            model.meshCount = 1;
+            TraceLog(LOG_INFO, "MODEL: No materials, putting all meshes in a default material");
+        }
+
+        model.meshes = (Mesh *)RL_CALLOC(model.meshCount, sizeof(Mesh));
+        model.meshMaterial = (int *)RL_CALLOC(model.meshCount, sizeof(int));
+
+        // count the faces for each material
+        int *matFaces = RL_CALLOC(meshCount, sizeof(int));
+
+        for (unsigned int mi = 0; mi < meshCount; mi++)
+        {
+            for (unsigned int fi = 0; fi < meshes[mi].length; fi++)
+            {
+                int idx = attrib.material_ids[meshes[mi].face_offset + fi];
+                if (idx == -1) idx = 0; // for no material face (which could be the whole model)
+                matFaces[idx]++;
+            }
+        }
+
+        //--------------------------------------
+        // create the material meshes
+
+        // running counts / indexes for each material mesh as we are
+        // building them at the same time
+        int *vCount = RL_CALLOC(model.meshCount, sizeof(int));
+        int *vtCount = RL_CALLOC(model.meshCount, sizeof(int));
+        int *vnCount = RL_CALLOC(model.meshCount, sizeof(int));
+        int *faceCount = RL_CALLOC(model.meshCount, sizeof(int));
+
+        // allocate space for each of the material meshes
+        for (int mi = 0; mi < model.meshCount; mi++)
+        {
+            model.meshes[mi].vertexCount = matFaces[mi]*3;
+            model.meshes[mi].triangleCount = matFaces[mi];
+            model.meshes[mi].vertices = (float *)RL_CALLOC(model.meshes[mi].vertexCount*3, sizeof(float));
+            model.meshes[mi].texcoords = (float *)RL_CALLOC(model.meshes[mi].vertexCount*2, sizeof(float));
+            model.meshes[mi].normals = (float *)RL_CALLOC(model.meshes[mi].vertexCount*3, sizeof(float));
+            model.meshMaterial[mi] = mi;
+        }
+
+        // scan through the combined sub meshes and pick out each material mesh
+        for (unsigned int af = 0; af < attrib.num_faces; af++)
+        {
+            int mm = attrib.material_ids[af];   // mesh material for this face
+            if (mm == -1) { mm = 0; }           // no material object..
+
+            // Get indices for the face
+            tinyobj_vertex_index_t idx0 = attrib.faces[3*af + 0];
+            tinyobj_vertex_index_t idx1 = attrib.faces[3*af + 1];
+            tinyobj_vertex_index_t idx2 = attrib.faces[3*af + 2];
+
+            // Fill vertices buffer (float) using vertex index of the face
+            for (int v = 0; v < 3; v++) { model.meshes[mm].vertices[vCount[mm] + v] = attrib.vertices[idx0.v_idx*3 + v]; } vCount[mm] +=3;
+            for (int v = 0; v < 3; v++) { model.meshes[mm].vertices[vCount[mm] + v] = attrib.vertices[idx1.v_idx*3 + v]; } vCount[mm] +=3;
+            for (int v = 0; v < 3; v++) { model.meshes[mm].vertices[vCount[mm] + v] = attrib.vertices[idx2.v_idx*3 + v]; } vCount[mm] +=3;
+
+            if (attrib.num_texcoords > 0)
+            {
+                // Fill texcoords buffer (float) using vertex index of the face
+                // NOTE: Y-coordinate must be flipped upside-down to account for
+                // raylib's upside down textures...
+                model.meshes[mm].texcoords[vtCount[mm] + 0] = attrib.texcoords[idx0.vt_idx*2 + 0];
+                model.meshes[mm].texcoords[vtCount[mm] + 1] = 1.0f - attrib.texcoords[idx0.vt_idx*2 + 1]; vtCount[mm] += 2;
+                model.meshes[mm].texcoords[vtCount[mm] + 0] = attrib.texcoords[idx1.vt_idx*2 + 0];
+                model.meshes[mm].texcoords[vtCount[mm] + 1] = 1.0f - attrib.texcoords[idx1.vt_idx*2 + 1]; vtCount[mm] += 2;
+                model.meshes[mm].texcoords[vtCount[mm] + 0] = attrib.texcoords[idx2.vt_idx*2 + 0];
+                model.meshes[mm].texcoords[vtCount[mm] + 1] = 1.0f - attrib.texcoords[idx2.vt_idx*2 + 1]; vtCount[mm] += 2;
+            }
+
+            if (attrib.num_normals > 0)
+            {
+                // Fill normals buffer (float) using vertex index of the face
+                for (int v = 0; v < 3; v++) { model.meshes[mm].normals[vnCount[mm] + v] = attrib.normals[idx0.vn_idx*3 + v]; } vnCount[mm] +=3;
+                for (int v = 0; v < 3; v++) { model.meshes[mm].normals[vnCount[mm] + v] = attrib.normals[idx1.vn_idx*3 + v]; } vnCount[mm] +=3;
+                for (int v = 0; v < 3; v++) { model.meshes[mm].normals[vnCount[mm] + v] = attrib.normals[idx2.vn_idx*3 + v]; } vnCount[mm] +=3;
+            }
+        }
+
+        // Init model materials
+        for (unsigned int m = 0; m < materialCount; m++)
+        {
+            // Init material to default
+            // NOTE: Uses default shader, which only supports MATERIAL_MAP_DIFFUSE
+            model.materials[m] = LoadMaterialDefault();
+
+            model.materials[m].maps[MATERIAL_MAP_DIFFUSE].texture = rlGetTextureDefault();     // Get default texture, in case no texture is defined
+
+            if (materials[m].diffuse_texname != NULL) model.materials[m].maps[MATERIAL_MAP_DIFFUSE].texture = LoadTexture(materials[m].diffuse_texname);  //char *diffuse_texname; // map_Kd
+            else model.materials[m].maps[MATERIAL_MAP_DIFFUSE].texture = rlGetTextureDefault();
+
+            model.materials[m].maps[MATERIAL_MAP_DIFFUSE].color = (Color){ (unsigned char)(materials[m].diffuse[0]*255.0f), (unsigned char)(materials[m].diffuse[1]*255.0f), (unsigned char)(materials[m].diffuse[2]*255.0f), 255 }; //float diffuse[3];
+            model.materials[m].maps[MATERIAL_MAP_DIFFUSE].value = 0.0f;
+
+            if (materials[m].specular_texname != NULL) model.materials[m].maps[MATERIAL_MAP_SPECULAR].texture = LoadTexture(materials[m].specular_texname);  //char *specular_texname; // map_Ks
+            model.materials[m].maps[MATERIAL_MAP_SPECULAR].color = (Color){ (unsigned char)(materials[m].specular[0]*255.0f), (unsigned char)(materials[m].specular[1]*255.0f), (unsigned char)(materials[m].specular[2]*255.0f), 255 }; //float specular[3];
+            model.materials[m].maps[MATERIAL_MAP_SPECULAR].value = 0.0f;
+
+            if (materials[m].bump_texname != NULL) model.materials[m].maps[MATERIAL_MAP_NORMAL].texture = LoadTexture(materials[m].bump_texname);  //char *bump_texname; // map_bump, bump
+            model.materials[m].maps[MATERIAL_MAP_NORMAL].color = WHITE;
+            model.materials[m].maps[MATERIAL_MAP_NORMAL].value = materials[m].shininess;
+
+            model.materials[m].maps[MATERIAL_MAP_EMISSION].color = (Color){ (unsigned char)(materials[m].emission[0]*255.0f), (unsigned char)(materials[m].emission[1]*255.0f), (unsigned char)(materials[m].emission[2]*255.0f), 255 }; //float emission[3];
+
+            if (materials[m].displacement_texname != NULL) model.materials[m].maps[MATERIAL_MAP_HEIGHT].texture = LoadTexture(materials[m].displacement_texname);  //char *displacement_texname; // disp
+        }
+
+        tinyobj_attrib_free(&attrib);
+        tinyobj_shapes_free(meshes, meshCount);
+        tinyobj_materials_free(materials, materialCount);
+
+        RL_FREE(fileData);
+        RL_FREE(matFaces);
+
+        RL_FREE(vCount);
+        RL_FREE(vtCount);
+        RL_FREE(vnCount);
+        RL_FREE(faceCount);
+
+        if (CHDIR(currentDir) != 0)
+        {
+            TRACELOG(LOG_WARNING, "MODEL: [%s] Failed to change working directory", currentDir);
+        }
+    }
+
+    return model;
+}
+#endif
+
+#if defined(SUPPORT_FILEFORMAT_IQM)
+// Load IQM mesh data
+static Model LoadIQM(const char *fileName)
+{
+    #define IQM_MAGIC     "INTERQUAKEMODEL" // IQM file magic number
+    #define IQM_VERSION          2          // only IQM version 2 supported
+
+    #define BONE_NAME_LENGTH    32          // BoneInfo name string length
+    #define MESH_NAME_LENGTH    32          // Mesh name string length
+    #define MATERIAL_NAME_LENGTH 32         // Material name string length
+
+    unsigned int fileSize = 0;
+    unsigned char *fileData = LoadFileData(fileName, &fileSize);
+    unsigned char *fileDataPtr = fileData;
+
+    // IQM file structs
+    //-----------------------------------------------------------------------------------
+    typedef struct IQMHeader {
+        char magic[16];
+        unsigned int version;
+        unsigned int filesize;
+        unsigned int flags;
+        unsigned int num_text, ofs_text;
+        unsigned int num_meshes, ofs_meshes;
+        unsigned int num_vertexarrays, num_vertexes, ofs_vertexarrays;
+        unsigned int num_triangles, ofs_triangles, ofs_adjacency;
+        unsigned int num_joints, ofs_joints;
+        unsigned int num_poses, ofs_poses;
+        unsigned int num_anims, ofs_anims;
+        unsigned int num_frames, num_framechannels, ofs_frames, ofs_bounds;
+        unsigned int num_comment, ofs_comment;
+        unsigned int num_extensions, ofs_extensions;
+    } IQMHeader;
+
+    typedef struct IQMMesh {
+        unsigned int name;
+        unsigned int material;
+        unsigned int first_vertex, num_vertexes;
+        unsigned int first_triangle, num_triangles;
+    } IQMMesh;
+
+    typedef struct IQMTriangle {
+        unsigned int vertex[3];
+    } IQMTriangle;
+
+    typedef struct IQMJoint {
+        unsigned int name;
+        int parent;
+        float translate[3], rotate[4], scale[3];
+    } IQMJoint;
+
+    typedef struct IQMVertexArray {
+        unsigned int type;
+        unsigned int flags;
+        unsigned int format;
+        unsigned int size;
+        unsigned int offset;
+    } IQMVertexArray;
+
+    // NOTE: Below IQM structures are not used but listed for reference
+    /*
+    typedef struct IQMAdjacency {
+        unsigned int triangle[3];
+    } IQMAdjacency;
+
+    typedef struct IQMPose {
+        int parent;
+        unsigned int mask;
+        float channeloffset[10];
+        float channelscale[10];
+    } IQMPose;
+
+    typedef struct IQMAnim {
+        unsigned int name;
+        unsigned int first_frame, num_frames;
+        float framerate;
+        unsigned int flags;
+    } IQMAnim;
+
+    typedef struct IQMBounds {
+        float bbmin[3], bbmax[3];
+        float xyradius, radius;
+    } IQMBounds;
+    */
+    //-----------------------------------------------------------------------------------
+
+    // IQM vertex data types
+    enum {
+        IQM_POSITION     = 0,
+        IQM_TEXCOORD     = 1,
+        IQM_NORMAL       = 2,
+        IQM_TANGENT      = 3,       // NOTE: Tangents unused by default
+        IQM_BLENDINDEXES = 4,
+        IQM_BLENDWEIGHTS = 5,
+        IQM_COLOR        = 6,       // NOTE: Vertex colors unused by default
+        IQM_CUSTOM       = 0x10     // NOTE: Custom vertex values unused by default
+    };
+
+    Model model = { 0 };
+
+    IQMMesh *imesh = NULL;
+    IQMTriangle *tri = NULL;
+    IQMVertexArray *va = NULL;
+    IQMJoint *ijoint = NULL;
+
+    float *vertex = NULL;
+    float *normal = NULL;
+    float *text = NULL;
+    char *blendi = NULL;
+    unsigned char *blendw = NULL;
+
+    // In case file can not be read, return an empty model
+    if (fileDataPtr == NULL) return model;
+
+    // Read IQM header
+    IQMHeader *iqmHeader = (IQMHeader *)fileDataPtr;
+
+    if (memcmp(iqmHeader->magic, IQM_MAGIC, sizeof(IQM_MAGIC)) != 0)
+    {
+        TRACELOG(LOG_WARNING, "MODEL: [%s] IQM file is not a valid model", fileName);
+        return model;
+    }
+
+    if (iqmHeader->version != IQM_VERSION)
+    {
+        TRACELOG(LOG_WARNING, "MODEL: [%s] IQM file version not supported (%i)", fileName, iqmHeader->version);
+        return model;
+    }
+
+    //fileDataPtr += sizeof(IQMHeader);       // Move file data pointer
+
+    // Meshes data processing
+    imesh = RL_MALLOC(sizeof(IQMMesh)*iqmHeader->num_meshes);
+    //fseek(iqmFile, iqmHeader->ofs_meshes, SEEK_SET);
+    //fread(imesh, sizeof(IQMMesh)*iqmHeader->num_meshes, 1, iqmFile);
+    memcpy(imesh, fileDataPtr + iqmHeader->ofs_meshes, iqmHeader->num_meshes*sizeof(IQMMesh));
+
+    model.meshCount = iqmHeader->num_meshes;
+    model.meshes = RL_CALLOC(model.meshCount, sizeof(Mesh));
+
+    model.materialCount = model.meshCount;
+    model.materials = (Material *)RL_CALLOC(model.materialCount, sizeof(Material));
+    model.meshMaterial = (int *)RL_CALLOC(model.meshCount, sizeof(int));
+
+    char name[MESH_NAME_LENGTH] = { 0 };
+    char material[MATERIAL_NAME_LENGTH] = { 0 };
+
+    for (int i = 0; i < model.meshCount; i++)
+    {
+        //fseek(iqmFile, iqmHeader->ofs_text + imesh[i].name, SEEK_SET);
+        //fread(name, sizeof(char)*MESH_NAME_LENGTH, 1, iqmFile);
+        memcpy(name, fileDataPtr + iqmHeader->ofs_text + imesh[i].name, MESH_NAME_LENGTH*sizeof(char));
+
+        //fseek(iqmFile, iqmHeader->ofs_text + imesh[i].material, SEEK_SET);
+        //fread(material, sizeof(char)*MATERIAL_NAME_LENGTH, 1, iqmFile);
+        memcpy(material, fileDataPtr + iqmHeader->ofs_text + imesh[i].material, MATERIAL_NAME_LENGTH*sizeof(char));
+
+        model.materials[i] = LoadMaterialDefault();
+
+        TRACELOG(LOG_DEBUG, "MODEL: [%s] mesh name (%s), material (%s)", fileName, name, material);
+
+        model.meshes[i].vertexCount = imesh[i].num_vertexes;
+
+        model.meshes[i].vertices = RL_CALLOC(model.meshes[i].vertexCount*3, sizeof(float));       // Default vertex positions
+        model.meshes[i].normals = RL_CALLOC(model.meshes[i].vertexCount*3, sizeof(float));        // Default vertex normals
+        model.meshes[i].texcoords = RL_CALLOC(model.meshes[i].vertexCount*2, sizeof(float));      // Default vertex texcoords
+
+        model.meshes[i].boneIds = RL_CALLOC(model.meshes[i].vertexCount*4, sizeof(float));        // Up-to 4 bones supported!
+        model.meshes[i].boneWeights = RL_CALLOC(model.meshes[i].vertexCount*4, sizeof(float));    // Up-to 4 bones supported!
+
+        model.meshes[i].triangleCount = imesh[i].num_triangles;
+        model.meshes[i].indices = RL_CALLOC(model.meshes[i].triangleCount*3, sizeof(unsigned short));
+
+        // Animated verted data, what we actually process for rendering
+        // NOTE: Animated vertex should be re-uploaded to GPU (if not using GPU skinning)
+        model.meshes[i].animVertices = RL_CALLOC(model.meshes[i].vertexCount*3, sizeof(float));
+        model.meshes[i].animNormals = RL_CALLOC(model.meshes[i].vertexCount*3, sizeof(float));
+    }
+
+    // Triangles data processing
+    tri = RL_MALLOC(iqmHeader->num_triangles*sizeof(IQMTriangle));
+    //fseek(iqmFile, iqmHeader->ofs_triangles, SEEK_SET);
+    //fread(tri, iqmHeader->num_triangles*sizeof(IQMTriangle), 1, iqmFile);
+    memcpy(tri, fileDataPtr + iqmHeader->ofs_triangles, iqmHeader->num_triangles*sizeof(IQMTriangle));
+
+    for (int m = 0; m < model.meshCount; m++)
+    {
+        int tcounter = 0;
+
+        for (unsigned int i = imesh[m].first_triangle; i < (imesh[m].first_triangle + imesh[m].num_triangles); i++)
+        {
+            // IQM triangles indexes are stored in counter-clockwise, but raylib processes the index in linear order,
+            // expecting they point to the counter-clockwise vertex triangle, so we need to reverse triangle indexes
+            // NOTE: raylib renders vertex data in counter-clockwise order (standard convention) by default
+            model.meshes[m].indices[tcounter + 2] = tri[i].vertex[0] - imesh[m].first_vertex;
+            model.meshes[m].indices[tcounter + 1] = tri[i].vertex[1] - imesh[m].first_vertex;
+            model.meshes[m].indices[tcounter] = tri[i].vertex[2] - imesh[m].first_vertex;
+            tcounter += 3;
+        }
+    }
+
+    // Vertex arrays data processing
+    va = RL_MALLOC(iqmHeader->num_vertexarrays*sizeof(IQMVertexArray));
+    //fseek(iqmFile, iqmHeader->ofs_vertexarrays, SEEK_SET);
+    //fread(va, iqmHeader->num_vertexarrays*sizeof(IQMVertexArray), 1, iqmFile);
+    memcpy(va, fileDataPtr + iqmHeader->ofs_vertexarrays, iqmHeader->num_vertexarrays*sizeof(IQMVertexArray));
+
+    for (unsigned int i = 0; i < iqmHeader->num_vertexarrays; i++)
+    {
+        switch (va[i].type)
+        {
+            case IQM_POSITION:
+            {
+                vertex = RL_MALLOC(iqmHeader->num_vertexes*3*sizeof(float));
+                //fseek(iqmFile, va[i].offset, SEEK_SET);
+                //fread(vertex, iqmHeader->num_vertexes*3*sizeof(float), 1, iqmFile);
+                memcpy(vertex, fileDataPtr + va[i].offset, iqmHeader->num_vertexes*3*sizeof(float));
+
+                for (unsigned int m = 0; m < iqmHeader->num_meshes; m++)
+                {
+                    int vCounter = 0;
+                    for (unsigned int i = imesh[m].first_vertex*3; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*3; i++)
+                    {
+                        model.meshes[m].vertices[vCounter] = vertex[i];
+                        model.meshes[m].animVertices[vCounter] = vertex[i];
+                        vCounter++;
+                    }
+                }
+            } break;
+            case IQM_NORMAL:
+            {
+                normal = RL_MALLOC(iqmHeader->num_vertexes*3*sizeof(float));
+                //fseek(iqmFile, va[i].offset, SEEK_SET);
+                //fread(normal, iqmHeader->num_vertexes*3*sizeof(float), 1, iqmFile);
+                memcpy(normal, fileDataPtr + va[i].offset, iqmHeader->num_vertexes*3*sizeof(float));
+
+                for (unsigned int m = 0; m < iqmHeader->num_meshes; m++)
+                {
+                    int vCounter = 0;
+                    for (unsigned int i = imesh[m].first_vertex*3; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*3; i++)
+                    {
+                        model.meshes[m].normals[vCounter] = normal[i];
+                        model.meshes[m].animNormals[vCounter] = normal[i];
+                        vCounter++;
+                    }
+                }
+            } break;
+            case IQM_TEXCOORD:
+            {
+                text = RL_MALLOC(iqmHeader->num_vertexes*2*sizeof(float));
+                //fseek(iqmFile, va[i].offset, SEEK_SET);
+                //fread(text, iqmHeader->num_vertexes*2*sizeof(float), 1, iqmFile);
+                memcpy(text, fileDataPtr + va[i].offset, iqmHeader->num_vertexes*2*sizeof(float));
+
+                for (unsigned int m = 0; m < iqmHeader->num_meshes; m++)
+                {
+                    int vCounter = 0;
+                    for (unsigned int i = imesh[m].first_vertex*2; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*2; i++)
+                    {
+                        model.meshes[m].texcoords[vCounter] = text[i];
+                        vCounter++;
+                    }
+                }
+            } break;
+            case IQM_BLENDINDEXES:
+            {
+                blendi = RL_MALLOC(iqmHeader->num_vertexes*4*sizeof(char));
+                //fseek(iqmFile, va[i].offset, SEEK_SET);
+                //fread(blendi, iqmHeader->num_vertexes*4*sizeof(char), 1, iqmFile);
+                memcpy(blendi, fileDataPtr + va[i].offset, iqmHeader->num_vertexes*4*sizeof(char));
+
+                for (unsigned int m = 0; m < iqmHeader->num_meshes; m++)
+                {
+                    int boneCounter = 0;
+                    for (unsigned int i = imesh[m].first_vertex*4; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*4; i++)
+                    {
+                        model.meshes[m].boneIds[boneCounter] = blendi[i];
+                        boneCounter++;
+                    }
+                }
+            } break;
+            case IQM_BLENDWEIGHTS:
+            {
+                blendw = RL_MALLOC(iqmHeader->num_vertexes*4*sizeof(unsigned char));
+                //fseek(iqmFile, va[i].offset, SEEK_SET);
+                //fread(blendw, iqmHeader->num_vertexes*4*sizeof(unsigned char), 1, iqmFile);
+                memcpy(blendw, fileDataPtr + va[i].offset, iqmHeader->num_vertexes*4*sizeof(unsigned char));
+
+                for (unsigned int m = 0; m < iqmHeader->num_meshes; m++)
+                {
+                    int boneCounter = 0;
+                    for (unsigned int i = imesh[m].first_vertex*4; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*4; i++)
+                    {
+                        model.meshes[m].boneWeights[boneCounter] = blendw[i]/255.0f;
+                        boneCounter++;
+                    }
+                }
+            } break;
+        }
+    }
+
+    // Bones (joints) data processing
+    ijoint = RL_MALLOC(iqmHeader->num_joints*sizeof(IQMJoint));
+    //fseek(iqmFile, iqmHeader->ofs_joints, SEEK_SET);
+    //fread(ijoint, iqmHeader->num_joints*sizeof(IQMJoint), 1, iqmFile);
+    memcpy(ijoint, fileDataPtr + iqmHeader->ofs_joints, iqmHeader->num_joints*sizeof(IQMJoint));
+
+    model.boneCount = iqmHeader->num_joints;
+    model.bones = RL_MALLOC(iqmHeader->num_joints*sizeof(BoneInfo));
+    model.bindPose = RL_MALLOC(iqmHeader->num_joints*sizeof(Transform));
+
+    for (unsigned int i = 0; i < iqmHeader->num_joints; i++)
+    {
+        // Bones
+        model.bones[i].parent = ijoint[i].parent;
+        //fseek(iqmFile, iqmHeader->ofs_text + ijoint[i].name, SEEK_SET);
+        //fread(model.bones[i].name, BONE_NAME_LENGTH*sizeof(char), 1, iqmFile);
+        memcpy(model.bones[i].name, fileDataPtr + iqmHeader->ofs_text + ijoint[i].name, BONE_NAME_LENGTH*sizeof(char));
+
+        // Bind pose (base pose)
+        model.bindPose[i].translation.x = ijoint[i].translate[0];
+        model.bindPose[i].translation.y = ijoint[i].translate[1];
+        model.bindPose[i].translation.z = ijoint[i].translate[2];
+
+        model.bindPose[i].rotation.x = ijoint[i].rotate[0];
+        model.bindPose[i].rotation.y = ijoint[i].rotate[1];
+        model.bindPose[i].rotation.z = ijoint[i].rotate[2];
+        model.bindPose[i].rotation.w = ijoint[i].rotate[3];
+
+        model.bindPose[i].scale.x = ijoint[i].scale[0];
+        model.bindPose[i].scale.y = ijoint[i].scale[1];
+        model.bindPose[i].scale.z = ijoint[i].scale[2];
+    }
+
+    // Build bind pose from parent joints
+    for (int i = 0; i < model.boneCount; i++)
+    {
+        if (model.bones[i].parent >= 0)
+        {
+            model.bindPose[i].rotation = QuaternionMultiply(model.bindPose[model.bones[i].parent].rotation, model.bindPose[i].rotation);
+            model.bindPose[i].translation = Vector3RotateByQuaternion(model.bindPose[i].translation, model.bindPose[model.bones[i].parent].rotation);
+            model.bindPose[i].translation = Vector3Add(model.bindPose[i].translation, model.bindPose[model.bones[i].parent].translation);
+            model.bindPose[i].scale = Vector3Multiply(model.bindPose[i].scale, model.bindPose[model.bones[i].parent].scale);
+        }
+    }
+
+    RL_FREE(fileData);
+
+    RL_FREE(imesh);
+    RL_FREE(tri);
+    RL_FREE(va);
+    RL_FREE(vertex);
+    RL_FREE(normal);
+    RL_FREE(text);
+    RL_FREE(blendi);
+    RL_FREE(blendw);
+    RL_FREE(ijoint);
+
+    return model;
+}
+
+// Load IQM animation data
+static ModelAnimation* LoadIQMModelAnimations(const char* fileName, int* animCount)
+{
+#define IQM_MAGIC       "INTERQUAKEMODEL"   // IQM file magic number
+#define IQM_VERSION     2                   // only IQM version 2 supported
+
+    unsigned int fileSize = 0;
+    unsigned char *fileData = LoadFileData(fileName, &fileSize);
+    unsigned char *fileDataPtr = fileData;
+
+    typedef struct IQMHeader {
+        char magic[16];
+        unsigned int version;
+        unsigned int filesize;
+        unsigned int flags;
+        unsigned int num_text, ofs_text;
+        unsigned int num_meshes, ofs_meshes;
+        unsigned int num_vertexarrays, num_vertexes, ofs_vertexarrays;
+        unsigned int num_triangles, ofs_triangles, ofs_adjacency;
+        unsigned int num_joints, ofs_joints;
+        unsigned int num_poses, ofs_poses;
+        unsigned int num_anims, ofs_anims;
+        unsigned int num_frames, num_framechannels, ofs_frames, ofs_bounds;
+        unsigned int num_comment, ofs_comment;
+        unsigned int num_extensions, ofs_extensions;
+    } IQMHeader;
+
+    typedef struct IQMPose {
+        int parent;
+        unsigned int mask;
+        float channeloffset[10];
+        float channelscale[10];
+    } IQMPose;
+
+    typedef struct IQMAnim {
+        unsigned int name;
+        unsigned int first_frame, num_frames;
+        float framerate;
+        unsigned int flags;
+    } IQMAnim;
+
+    // In case file can not be read, return an empty model
+    if (fileDataPtr == NULL) return NULL;
+
+    // Read IQM header
+    IQMHeader *iqmHeader = (IQMHeader *)fileDataPtr;
+
+    if (memcmp(iqmHeader->magic, IQM_MAGIC, sizeof(IQM_MAGIC)) != 0)
+    {
+        TRACELOG(LOG_WARNING, "MODEL: [%s] IQM file is not a valid model", fileName);
+        return NULL;
+    }
+
+    if (iqmHeader->version != IQM_VERSION)
+    {
+        TRACELOG(LOG_WARNING, "MODEL: [%s] IQM file version not supported (%i)", fileName, iqmHeader->version);
+        return NULL;
+    }
+
+    // Get bones data
+    IQMPose *poses = RL_MALLOC(iqmHeader->num_poses*sizeof(IQMPose));
+    //fseek(iqmFile, iqmHeader->ofs_poses, SEEK_SET);
+    //fread(poses, iqmHeader->num_poses*sizeof(IQMPose), 1, iqmFile);
+    memcpy(poses, fileDataPtr + iqmHeader->ofs_poses, iqmHeader->num_poses*sizeof(IQMPose));
+
+    // Get animations data
+    *animCount = iqmHeader->num_anims;
+    IQMAnim *anim = RL_MALLOC(iqmHeader->num_anims*sizeof(IQMAnim));
+    //fseek(iqmFile, iqmHeader->ofs_anims, SEEK_SET);
+    //fread(anim, iqmHeader->num_anims*sizeof(IQMAnim), 1, iqmFile);
+    memcpy(anim, fileDataPtr + iqmHeader->ofs_anims, iqmHeader->num_anims*sizeof(IQMAnim));
+
+    ModelAnimation *animations = RL_MALLOC(iqmHeader->num_anims*sizeof(ModelAnimation));
+
+    // frameposes
+    unsigned short *framedata = RL_MALLOC(iqmHeader->num_frames*iqmHeader->num_framechannels*sizeof(unsigned short));
+    //fseek(iqmFile, iqmHeader->ofs_frames, SEEK_SET);
+    //fread(framedata, iqmHeader->num_frames*iqmHeader->num_framechannels*sizeof(unsigned short), 1, iqmFile);
+    memcpy(framedata, fileDataPtr + iqmHeader->ofs_frames, iqmHeader->num_frames*iqmHeader->num_framechannels*sizeof(unsigned short));
+
+    for (unsigned int a = 0; a < iqmHeader->num_anims; a++)
+    {
+        animations[a].frameCount = anim[a].num_frames;
+        animations[a].boneCount = iqmHeader->num_poses;
+        animations[a].bones = RL_MALLOC(iqmHeader->num_poses*sizeof(BoneInfo));
+        animations[a].framePoses = RL_MALLOC(anim[a].num_frames*sizeof(Transform *));
+        // animations[a].framerate = anim.framerate;     // TODO: Use framerate?
+
+        for (unsigned int j = 0; j < iqmHeader->num_poses; j++)
+        {
+            strcpy(animations[a].bones[j].name, "ANIMJOINTNAME");
+            animations[a].bones[j].parent = poses[j].parent;
+        }
+
+        for (unsigned int j = 0; j < anim[a].num_frames; j++) animations[a].framePoses[j] = RL_MALLOC(iqmHeader->num_poses*sizeof(Transform));
+
+        int dcounter = anim[a].first_frame*iqmHeader->num_framechannels;
+
+        for (unsigned int frame = 0; frame < anim[a].num_frames; frame++)
+        {
+            for (unsigned int i = 0; i < iqmHeader->num_poses; i++)
+            {
+                animations[a].framePoses[frame][i].translation.x = poses[i].channeloffset[0];
+
+                if (poses[i].mask & 0x01)
+                {
+                    animations[a].framePoses[frame][i].translation.x += framedata[dcounter]*poses[i].channelscale[0];
+                    dcounter++;
+                }
+
+                animations[a].framePoses[frame][i].translation.y = poses[i].channeloffset[1];
+
+                if (poses[i].mask & 0x02)
+                {
+                    animations[a].framePoses[frame][i].translation.y += framedata[dcounter]*poses[i].channelscale[1];
+                    dcounter++;
+                }
+
+                animations[a].framePoses[frame][i].translation.z = poses[i].channeloffset[2];
+
+                if (poses[i].mask & 0x04)
+                {
+                    animations[a].framePoses[frame][i].translation.z += framedata[dcounter]*poses[i].channelscale[2];
+                    dcounter++;
+                }
+
+                animations[a].framePoses[frame][i].rotation.x = poses[i].channeloffset[3];
+
+                if (poses[i].mask & 0x08)
+                {
+                    animations[a].framePoses[frame][i].rotation.x += framedata[dcounter]*poses[i].channelscale[3];
+                    dcounter++;
+                }
+
+                animations[a].framePoses[frame][i].rotation.y = poses[i].channeloffset[4];
+
+                if (poses[i].mask & 0x10)
+                {
+                    animations[a].framePoses[frame][i].rotation.y += framedata[dcounter]*poses[i].channelscale[4];
+                    dcounter++;
+                }
+
+                animations[a].framePoses[frame][i].rotation.z = poses[i].channeloffset[5];
+
+                if (poses[i].mask & 0x20)
+                {
+                    animations[a].framePoses[frame][i].rotation.z += framedata[dcounter]*poses[i].channelscale[5];
+                    dcounter++;
+                }
+
+                animations[a].framePoses[frame][i].rotation.w = poses[i].channeloffset[6];
+
+                if (poses[i].mask & 0x40)
+                {
+                    animations[a].framePoses[frame][i].rotation.w += framedata[dcounter]*poses[i].channelscale[6];
+                    dcounter++;
+                }
+
+                animations[a].framePoses[frame][i].scale.x = poses[i].channeloffset[7];
+
+                if (poses[i].mask & 0x80)
+                {
+                    animations[a].framePoses[frame][i].scale.x += framedata[dcounter]*poses[i].channelscale[7];
+                    dcounter++;
+                }
+
+                animations[a].framePoses[frame][i].scale.y = poses[i].channeloffset[8];
+
+                if (poses[i].mask & 0x100)
+                {
+                    animations[a].framePoses[frame][i].scale.y += framedata[dcounter]*poses[i].channelscale[8];
+                    dcounter++;
+                }
+
+                animations[a].framePoses[frame][i].scale.z = poses[i].channeloffset[9];
+
+                if (poses[i].mask & 0x200)
+                {
+                    animations[a].framePoses[frame][i].scale.z += framedata[dcounter]*poses[i].channelscale[9];
+                    dcounter++;
+                }
+
+                animations[a].framePoses[frame][i].rotation = QuaternionNormalize(animations[a].framePoses[frame][i].rotation);
+            }
+        }
+
+        // Build frameposes
+        for (unsigned int frame = 0; frame < anim[a].num_frames; frame++)
+        {
+            for (int i = 0; i < animations[a].boneCount; i++)
+            {
+                if (animations[a].bones[i].parent >= 0)
+                {
+                    animations[a].framePoses[frame][i].rotation = QuaternionMultiply(animations[a].framePoses[frame][animations[a].bones[i].parent].rotation, animations[a].framePoses[frame][i].rotation);
+                    animations[a].framePoses[frame][i].translation = Vector3RotateByQuaternion(animations[a].framePoses[frame][i].translation, animations[a].framePoses[frame][animations[a].bones[i].parent].rotation);
+                    animations[a].framePoses[frame][i].translation = Vector3Add(animations[a].framePoses[frame][i].translation, animations[a].framePoses[frame][animations[a].bones[i].parent].translation);
+                    animations[a].framePoses[frame][i].scale = Vector3Multiply(animations[a].framePoses[frame][i].scale, animations[a].framePoses[frame][animations[a].bones[i].parent].scale);
+                }
+            }
+        }
+    }
+
+    RL_FREE(fileData);
+
+    RL_FREE(framedata);
+    RL_FREE(poses);
+    RL_FREE(anim);
+
+    return animations;
+}
+
+#endif
+
+#if defined(SUPPORT_FILEFORMAT_GLTF)
+
+static const unsigned char base64Table[] = {
+    0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+    0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+    0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+    0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+    0, 0, 0, 62, 0, 0, 0, 63, 52, 53,
+    54, 55, 56, 57, 58, 59, 60, 61, 0, 0,
+    0, 0, 0, 0, 0, 0, 1, 2, 3, 4,
+    5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
+    15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
+    25, 0, 0, 0, 0, 0, 0, 26, 27, 28,
+    29, 30, 31, 32, 33, 34, 35, 36, 37, 38,
+    39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
+    49, 50, 51
+};
+
+static int GetSizeBase64(char *input)
+{
+    int size = 0;
+
+    for (int i = 0; input[4*i] != 0; i++)
+    {
+        if (input[4*i + 3] == '=')
+        {
+            if (input[4*i + 2] == '=') size += 1;
+            else size += 2;
+        }
+        else size += 3;
+    }
+
+    return size;
+}
+
+static unsigned char *DecodeBase64(char *input, int *size)
+{
+    *size = GetSizeBase64(input);
+
+    unsigned char *buf = (unsigned char *)RL_MALLOC(*size);
+    for (int i = 0; i < *size/3; i++)
+    {
+        unsigned char a = base64Table[(int)input[4*i]];
+        unsigned char b = base64Table[(int)input[4*i + 1]];
+        unsigned char c = base64Table[(int)input[4*i + 2]];
+        unsigned char d = base64Table[(int)input[4*i + 3]];
+
+        buf[3*i] = (a << 2) | (b >> 4);
+        buf[3*i + 1] = (b << 4) | (c >> 2);
+        buf[3*i + 2] = (c << 6) | d;
+    }
+
+    if (*size%3 == 1)
+    {
+        int n = *size/3;
+        unsigned char a = base64Table[(int)input[4*n]];
+        unsigned char b = base64Table[(int)input[4*n + 1]];
+        buf[*size - 1] = (a << 2) | (b >> 4);
+    }
+    else if (*size%3 == 2)
+    {
+        int n = *size/3;
+        unsigned char a = base64Table[(int)input[4*n]];
+        unsigned char b = base64Table[(int)input[4*n + 1]];
+        unsigned char c = base64Table[(int)input[4*n + 2]];
+        buf[*size - 2] = (a << 2) | (b >> 4);
+        buf[*size - 1] = (b << 4) | (c >> 2);
+    }
+    return buf;
+}
+
+// Load texture from cgltf_image
+static Image LoadImageFromCgltfImage(cgltf_image *image, const char *texPath, Color tint)
+{
+    Image rimage = { 0 };
+
+    if (image->uri)
+    {
+        if ((strlen(image->uri) > 5) &&
+            (image->uri[0] == 'd') &&
+            (image->uri[1] == 'a') &&
+            (image->uri[2] == 't') &&
+            (image->uri[3] == 'a') &&
+            (image->uri[4] == ':'))
+        {
+            // Data URI
+            // Format: data:<mediatype>;base64,<data>
+
+            // Find the comma
+            int i = 0;
+            while ((image->uri[i] != ',') && (image->uri[i] != 0)) i++;
+
+            if (image->uri[i] == 0) TRACELOG(LOG_WARNING, "IMAGE: glTF data URI is not a valid image");
+            else
+            {
+                int size = 0;
+                unsigned char *data = DecodeBase64(image->uri + i + 1, &size);
+
+                int width, height;
+                unsigned char *raw = stbi_load_from_memory(data, size, &width, &height, NULL, 4);
+                RL_FREE(data);
+
+                rimage.data = raw;
+                rimage.width = width;
+                rimage.height = height;
+                rimage.format = PIXELFORMAT_UNCOMPRESSED_R8G8B8A8;
+                rimage.mipmaps = 1;
+
+                // TODO: Tint shouldn't be applied here!
+                ImageColorTint(&rimage, tint);
+            }
+        }
+        else
+        {
+            rimage = LoadImage(TextFormat("%s/%s", texPath, image->uri));
+
+            // TODO: Tint shouldn't be applied here!
+            ImageColorTint(&rimage, tint);
+        }
+    }
+    else if (image->buffer_view)
+    {
+        unsigned char *data = RL_MALLOC(image->buffer_view->size);
+        int n = (int)image->buffer_view->offset;
+        int stride = (int)image->buffer_view->stride ? (int)image->buffer_view->stride : 1;
+
+        for (unsigned int i = 0; i < image->buffer_view->size; i++)
+        {
+            data[i] = ((unsigned char *)image->buffer_view->buffer->data)[n];
+            n += stride;
+        }
+
+        int width, height;
+        unsigned char *raw = stbi_load_from_memory(data, (int)image->buffer_view->size, &width, &height, NULL, 4);
+        RL_FREE(data);
+
+        rimage.data = raw;
+        rimage.width = width;
+        rimage.height = height;
+        rimage.format = PIXELFORMAT_UNCOMPRESSED_R8G8B8A8;
+        rimage.mipmaps = 1;
+
+        // TODO: Tint shouldn't be applied here!
+        ImageColorTint(&rimage, tint);
+    }
+    else rimage = GenImageColor(1, 1, tint);
+
+    return rimage;
+}
+
+
+static bool GLTFReadValue(cgltf_accessor* acc, unsigned int index, void *variable, unsigned int elements, unsigned int size)
+{
+    if (acc->count == 2)
+    {
+        if (index > 1) return false;
+
+        memcpy(variable, index == 0 ? acc->min : acc->max, elements*size);
+        return true;
+    }
+
+    unsigned int stride = size*elements;
+    memset(variable, 0, stride);
+
+    if (acc->buffer_view == NULL || acc->buffer_view->buffer == NULL || acc->buffer_view->buffer->data == NULL) return false;
+
+    void* readPosition = ((char *)acc->buffer_view->buffer->data) + (index*stride) + acc->buffer_view->offset + acc->offset;
+    memcpy(variable, readPosition, stride);
+    return true;
+}
+
+// LoadGLTF loads in model data from given filename, supporting both .gltf and .glb
+static Model LoadGLTF(const char *fileName)
+{
+    /***********************************************************************************
+
+        Function implemented by Wilhem Barbier(@wbrbr), with modifications by Tyler Bezera(@gamerfiend) and Hristo Stamenov(@object71)
+
+        Features:
+          - Supports .gltf and .glb files
+          - Supports embedded (base64) or external textures
+          - Loads all raylib supported material textures, values and colors
+          - Supports multiple mesh per model and multiple primitives per model
+
+        Some restrictions (not exhaustive):
+          - Triangle-only meshes
+          - Not supported node hierarchies or transforms
+          - Only supports unsigned short indices (no byte/unsigned int)
+          - Only supports float for texture coordinates (no byte/unsigned short)
+
+    *************************************************************************************/
+
+    Model model = { 0 };
+
+    // glTF file loading
+    unsigned int dataSize = 0;
+    unsigned char *fileData = LoadFileData(fileName, &dataSize);
+
+    if (fileData == NULL) return model;
+
+    // glTF data loading
+    cgltf_options options = { 0 };
+    cgltf_data *data = NULL;
+    cgltf_result result = cgltf_parse(&options, fileData, dataSize, &data);
+
+    if (result == cgltf_result_success)
+    {
+        TRACELOG(LOG_INFO, "MODEL: [%s] glTF meshes (%s) count: %i", fileName, (data->file_type == 2)? "glb" : "gltf", data->meshes_count);
+        TRACELOG(LOG_INFO, "MODEL: [%s] glTF materials (%s) count: %i", fileName, (data->file_type == 2)? "glb" : "gltf", data->materials_count);
+
+        // Read data buffers
+        result = cgltf_load_buffers(&options, data, fileName);
+        if (result != cgltf_result_success) TRACELOG(LOG_INFO, "MODEL: [%s] Failed to load mesh/material buffers", fileName);
+
+        int primitivesCount = 0;
+
+        for (unsigned int i = 0; i < data->meshes_count; i++)
+            primitivesCount += (int)data->meshes[i].primitives_count;
+
+        // Process glTF data and map to model
+        model.meshCount = primitivesCount;
+        model.meshes = RL_CALLOC(model.meshCount, sizeof(Mesh));
+        model.materialCount = (int)data->materials_count + 1;
+        model.materials = RL_MALLOC(model.materialCount*sizeof(Material));
+        model.meshMaterial = RL_MALLOC(model.meshCount*sizeof(int));
+        model.boneCount = (int)data->nodes_count;
+        model.bones = RL_CALLOC(model.boneCount, sizeof(BoneInfo));
+        model.bindPose = RL_CALLOC(model.boneCount, sizeof(Transform));
+
+        InitGLTFBones(&model, data);
+        LoadGLTFMaterial(&model, fileName, data);
+
+        int primitiveIndex = 0;
+
+        for (unsigned int i = 0; i < data->meshes_count; i++)
+        {
+            for (unsigned int p = 0; p < data->meshes[i].primitives_count; p++)
+            {
+                for (unsigned int j = 0; j < data->meshes[i].primitives[p].attributes_count; j++)
+                {
+                    if (data->meshes[i].primitives[p].attributes[j].type == cgltf_attribute_type_position)
+                    {
+                        cgltf_accessor *acc = data->meshes[i].primitives[p].attributes[j].data;
+                        model.meshes[primitiveIndex].vertexCount = (int)acc->count;
+                        int bufferSize = model.meshes[primitiveIndex].vertexCount*3*sizeof(float);
+                        model.meshes[primitiveIndex].vertices = RL_MALLOC(bufferSize);
+                        model.meshes[primitiveIndex].animVertices = RL_MALLOC(bufferSize);
+
+                        if (acc->component_type == cgltf_component_type_r_32f)
+                        {
+                            for (int a = 0; a < acc->count; a++)
+                            {
+                                GLTFReadValue(acc, a, model.meshes[primitiveIndex].vertices + (a*3), 3, sizeof(float));
+                            }
+                        }
+                        else if (acc->component_type == cgltf_component_type_r_32u)
+                        {
+                            int readValue[3];
+                            for (int a = 0; a < acc->count; a++)
+                            {
+                                GLTFReadValue(acc, a, readValue, 3, sizeof(int));
+                                model.meshes[primitiveIndex].vertices[(a*3) + 0] = (float)readValue[0];
+                                model.meshes[primitiveIndex].vertices[(a*3) + 1] = (float)readValue[1];
+                                model.meshes[primitiveIndex].vertices[(a*3) + 2] = (float)readValue[2];
+                            }
+                        }
+                        else
+                        {
+                            // TODO: Support normalized unsigned byte/unsigned short vertices
+                            TRACELOG(LOG_WARNING, "MODEL: [%s] glTF vertices must be float or int", fileName);
+                        }
+
+                        memcpy(model.meshes[primitiveIndex].animVertices, model.meshes[primitiveIndex].vertices, bufferSize);
+                    }
+                    else if (data->meshes[i].primitives[p].attributes[j].type == cgltf_attribute_type_normal)
+                    {
+                        cgltf_accessor *acc = data->meshes[i].primitives[p].attributes[j].data;
+
+                        int bufferSize = (int)(acc->count*3*sizeof(float));
+                        model.meshes[primitiveIndex].normals = RL_MALLOC(bufferSize);
+                        model.meshes[primitiveIndex].animNormals = RL_MALLOC(bufferSize);
+
+                        if (acc->component_type == cgltf_component_type_r_32f)
+                        {
+                            for (int a = 0; a < acc->count; a++)
+                            {
+                                GLTFReadValue(acc, a, model.meshes[primitiveIndex].normals + (a*3), 3, sizeof(float));
+                            }
+                        }
+                        else if (acc->component_type == cgltf_component_type_r_32u)
+                        {
+                            int readValue[3];
+                            for (int a = 0; a < acc->count; a++)
+                            {
+                                GLTFReadValue(acc, a, readValue, 3, sizeof(int));
+                                model.meshes[primitiveIndex].normals[(a*3) + 0] = (float)readValue[0];
+                                model.meshes[primitiveIndex].normals[(a*3) + 1] = (float)readValue[1];
+                                model.meshes[primitiveIndex].normals[(a*3) + 2] = (float)readValue[2];
+                            }
+                        }
+                        else
+                        {
+                            // TODO: Support normalized unsigned byte/unsigned short normals
+                            TRACELOG(LOG_WARNING, "MODEL: [%s] glTF normals must be float or int", fileName);
+                        }
+
+                        memcpy(model.meshes[primitiveIndex].animNormals, model.meshes[primitiveIndex].normals, bufferSize);
+                    }
+                    else if (data->meshes[i].primitives[p].attributes[j].type == cgltf_attribute_type_texcoord)
+                    {
+                        cgltf_accessor *acc = data->meshes[i].primitives[p].attributes[j].data;
+
+                        if (acc->component_type == cgltf_component_type_r_32f)
+                        {
+                            model.meshes[primitiveIndex].texcoords = RL_MALLOC(acc->count*2*sizeof(float));
+
+                            for (int a = 0; a < acc->count; a++)
+                            {
+                                GLTFReadValue(acc, a, model.meshes[primitiveIndex].texcoords + (a*2), 2, sizeof(float));
+                            }
+                        }
+                        else
+                        {
+                            // TODO: Support normalized unsigned byte/unsigned short texture coordinates
+                            TRACELOG(LOG_WARNING, "MODEL: [%s] glTF texture coordinates must be float", fileName);
+                        }
+                    }
+                    else if (data->meshes[i].primitives[p].attributes[j].type == cgltf_attribute_type_joints)
+                    {
+                        cgltf_accessor *acc = data->meshes[i].primitives[p].attributes[j].data;
+                        LoadGLTFBoneAttribute(&model, acc, data, primitiveIndex);
+                    }
+                    else if (data->meshes[i].primitives[p].attributes[j].type == cgltf_attribute_type_weights)
+                    {
+                        cgltf_accessor *acc = data->meshes[i].primitives[p].attributes[j].data;
+
+                        model.meshes[primitiveIndex].boneWeights = RL_MALLOC(acc->count*4*sizeof(float));
+
+                        if (acc->component_type == cgltf_component_type_r_32f)
+                        {
+                            for (int a = 0; a < acc->count; a++)
+                            {
+                                GLTFReadValue(acc, a, model.meshes[primitiveIndex].boneWeights + (a*4), 4, sizeof(float));
+                            }
+                        }
+                        else if (acc->component_type == cgltf_component_type_r_32u)
+                        {
+                            unsigned int readValue[4];
+                            for (int a = 0; a < acc->count; a++)
+                            {
+                                GLTFReadValue(acc, a, readValue, 4, sizeof(unsigned int));
+                                model.meshes[primitiveIndex].normals[(a*4) + 0] = (float)readValue[0];
+                                model.meshes[primitiveIndex].normals[(a*4) + 1] = (float)readValue[1];
+                                model.meshes[primitiveIndex].normals[(a*4) + 2] = (float)readValue[2];
+                                model.meshes[primitiveIndex].normals[(a*4) + 3] = (float)readValue[3];
+                            }
+                        }
+                        else
+                        {
+                            // TODO: Support normalized unsigned byte/unsigned short weights
+                            TRACELOG(LOG_WARNING, "MODEL: [%s] glTF normals must be float or int", fileName);
+                        }
+                    }
+                }
+
+                cgltf_accessor *acc = data->meshes[i].primitives[p].indices;
+                LoadGLTFModelIndices(&model, acc, primitiveIndex);
+
+                if (data->meshes[i].primitives[p].material)
+                {
+                    // Compute the offset
+                    model.meshMaterial[primitiveIndex] = (int)(data->meshes[i].primitives[p].material - data->materials);
+                }
+                else
+                {
+                    model.meshMaterial[primitiveIndex] = model.materialCount - 1;
+                }
+
+                BindGLTFPrimitiveToBones(&model, data, primitiveIndex);
+
+                primitiveIndex++;
+            }
+
+        }
+
+        cgltf_free(data);
+    }
+    else TRACELOG(LOG_WARNING, "MODEL: [%s] Failed to load glTF data", fileName);
+
+    RL_FREE(fileData);
+
+    return model;
+}
+
+static void InitGLTFBones(Model* model, const cgltf_data* data)
+{
+    for (unsigned int j = 0; j < data->nodes_count; j++)
+    {
+        strcpy(model->bones[j].name, data->nodes[j].name == 0 ? "ANIMJOINT" : data->nodes[j].name);
+        model->bones[j].parent = (data->nodes[j].parent != NULL) ? (int)(data->nodes[j].parent - data->nodes) : -1;
+    }
+
+    for (unsigned int i = 0; i < data->nodes_count; i++)
+    {
+        if (data->nodes[i].has_translation) memcpy(&model->bindPose[i].translation, data->nodes[i].translation, 3*sizeof(float));
+        else model->bindPose[i].translation = Vector3Zero();
+
+        if (data->nodes[i].has_rotation) memcpy(&model->bindPose[i].rotation, data->nodes[i].rotation, 4*sizeof(float));
+        else model->bindPose[i].rotation = QuaternionIdentity();
+
+        model->bindPose[i].rotation = QuaternionNormalize(model->bindPose[i].rotation);
+
+        if (data->nodes[i].has_scale) memcpy(&model->bindPose[i].scale, data->nodes[i].scale, 3*sizeof(float));
+        else model->bindPose[i].scale = Vector3One();
+    }
+
+    {
+        bool* completedBones = RL_CALLOC(model->boneCount, sizeof(bool));
+        int numberCompletedBones = 0;
+
+        while (numberCompletedBones < model->boneCount) {
+            for (int i = 0; i < model->boneCount; i++)
+            {
+                if (completedBones[i]) continue;
+
+                if (model->bones[i].parent < 0) {
+                    completedBones[i] = true;
+                    numberCompletedBones++;
+                    continue;
+                }
+
+                if (!completedBones[model->bones[i].parent]) continue;
+
+                Transform* currentTransform = &model->bindPose[i];
+                BoneInfo* currentBone = &model->bones[i];
+                int root = currentBone->parent;
+                if (root >= model->boneCount)
+                    root = 0;
+                Transform* parentTransform = &model->bindPose[root];
+
+                currentTransform->rotation = QuaternionMultiply(parentTransform->rotation, currentTransform->rotation);
+                currentTransform->translation = Vector3RotateByQuaternion(currentTransform->translation, parentTransform->rotation);
+                currentTransform->translation = Vector3Add(currentTransform->translation, parentTransform->translation);
+                currentTransform->scale = Vector3Multiply(currentTransform->scale, parentTransform->scale);
+                completedBones[i] = true;
+                numberCompletedBones++;
+            }
+        }
+
+        RL_FREE(completedBones);
+    }
+}
+
+static void LoadGLTFMaterial(Model* model, const char* fileName, const cgltf_data* data)
+{
+    for (int i = 0; i < model->materialCount - 1; i++)
+    {
+        model->materials[i] = LoadMaterialDefault();
+        Color tint = (Color){ 255, 255, 255, 255 };
+        const char *texPath = GetDirectoryPath(fileName);
+
+        // Ensure material follows raylib support for PBR (metallic/roughness flow)
+        if (data->materials[i].has_pbr_metallic_roughness)
+        {
+            tint.r = (unsigned char)(data->materials[i].pbr_metallic_roughness.base_color_factor[0]*255);
+            tint.g = (unsigned char)(data->materials[i].pbr_metallic_roughness.base_color_factor[1]*255);
+            tint.b = (unsigned char)(data->materials[i].pbr_metallic_roughness.base_color_factor[2]*255);
+            tint.a = (unsigned char)(data->materials[i].pbr_metallic_roughness.base_color_factor[3]*255);
+
+            model->materials[i].maps[MATERIAL_MAP_ALBEDO].color = tint;
+
+            if (data->materials[i].pbr_metallic_roughness.base_color_texture.texture)
+            {
+                Image albedo = LoadImageFromCgltfImage(data->materials[i].pbr_metallic_roughness.base_color_texture.texture->image, texPath, tint);
+                model->materials[i].maps[MATERIAL_MAP_ALBEDO].texture = LoadTextureFromImage(albedo);
+                UnloadImage(albedo);
+            }
+
+            tint = WHITE;   // Set tint to white after it's been used by Albedo
+
+            if (data->materials[i].pbr_metallic_roughness.metallic_roughness_texture.texture)
+            {
+                Image metallicRoughness = LoadImageFromCgltfImage(data->materials[i].pbr_metallic_roughness.metallic_roughness_texture.texture->image, texPath, tint);
+                model->materials[i].maps[MATERIAL_MAP_ROUGHNESS].texture = LoadTextureFromImage(metallicRoughness);
+
+                float roughness = data->materials[i].pbr_metallic_roughness.roughness_factor;
+                model->materials[i].maps[MATERIAL_MAP_ROUGHNESS].value = roughness;
+
+                float metallic = data->materials[i].pbr_metallic_roughness.metallic_factor;
+                model->materials[i].maps[MATERIAL_MAP_METALNESS].value = metallic;
+
+                UnloadImage(metallicRoughness);
+            }
+
+            if (data->materials[i].normal_texture.texture)
+            {
+                Image normalImage = LoadImageFromCgltfImage(data->materials[i].normal_texture.texture->image, texPath, tint);
+                model->materials[i].maps[MATERIAL_MAP_NORMAL].texture = LoadTextureFromImage(normalImage);
+                UnloadImage(normalImage);
+            }
+
+            if (data->materials[i].occlusion_texture.texture)
+            {
+                Image occulsionImage = LoadImageFromCgltfImage(data->materials[i].occlusion_texture.texture->image, texPath, tint);
+                model->materials[i].maps[MATERIAL_MAP_OCCLUSION].texture = LoadTextureFromImage(occulsionImage);
+                UnloadImage(occulsionImage);
+            }
+
+            if (data->materials[i].emissive_texture.texture)
+            {
+                Image emissiveImage = LoadImageFromCgltfImage(data->materials[i].emissive_texture.texture->image, texPath, tint);
+                model->materials[i].maps[MATERIAL_MAP_EMISSION].texture = LoadTextureFromImage(emissiveImage);
+                tint.r = (unsigned char)(data->materials[i].emissive_factor[0]*255);
+                tint.g = (unsigned char)(data->materials[i].emissive_factor[1]*255);
+                tint.b = (unsigned char)(data->materials[i].emissive_factor[2]*255);
+                model->materials[i].maps[MATERIAL_MAP_EMISSION].color = tint;
+                UnloadImage(emissiveImage);
+            }
+        }
+    }
+
+    model->materials[model->materialCount - 1] = LoadMaterialDefault();
+}
+
+static void LoadGLTFBoneAttribute(Model* model, cgltf_accessor* jointsAccessor, const cgltf_data* data, int primitiveIndex)
+{
+    if (jointsAccessor->component_type == cgltf_component_type_r_16u)
+    {
+        model->meshes[primitiveIndex].boneIds = RL_MALLOC(sizeof(int)*jointsAccessor->count*4);
+        short* bones = RL_MALLOC(sizeof(short)*jointsAccessor->count*4);
+
+        for (int a = 0; a < jointsAccessor->count; a++)
+        {
+            GLTFReadValue(jointsAccessor, a, bones + (a*4), 4, sizeof(short));
+        }
+
+        for (unsigned int a = 0; a < jointsAccessor->count*4; a++)
+        {
+            cgltf_node* skinJoint = data->skins->joints[bones[a]];
+
+            for (unsigned int k = 0; k < data->nodes_count; k++)
+            {
+                if (&(data->nodes[k]) == skinJoint)
+                {
+                    model->meshes[primitiveIndex].boneIds[a] = k;
+                    break;
+                }
+            }
+        }
+        RL_FREE(bones);
+    }
+    else if (jointsAccessor->component_type == cgltf_component_type_r_8u)
+    {
+        model->meshes[primitiveIndex].boneIds = RL_MALLOC(sizeof(int)*jointsAccessor->count*4);
+        unsigned char* bones = RL_MALLOC(sizeof(unsigned char)*jointsAccessor->count*4);
+
+        for (int a = 0; a < jointsAccessor->count; a++)
+        {
+            GLTFReadValue(jointsAccessor, a, bones + (a*4), 4, sizeof(unsigned char));
+        }
+
+        for (unsigned int a = 0; a < jointsAccessor->count*4; a++)
+        {
+            cgltf_node* skinJoint = data->skins->joints[bones[a]];
+
+            for (unsigned int k = 0; k < data->nodes_count; k++)
+            {
+                if (&(data->nodes[k]) == skinJoint)
+                {
+                    model->meshes[primitiveIndex].boneIds[a] = k;
+                    break;
+                }
+            }
+        }
+        RL_FREE(bones);
+    }
+    else
+    {
+        // TODO: Support other size of bone index?
+        TRACELOG(LOG_WARNING, "MODEL: glTF bones in unexpected format");
+    }
+}
+
+static void BindGLTFPrimitiveToBones(Model* model, const cgltf_data* data, int primitiveIndex)
+{
+    if (model->meshes[primitiveIndex].boneIds == NULL && data->nodes_count > 0)
+    {
+        for (int nodeId = 0; nodeId < data->nodes_count; nodeId++)
+        {
+            if (data->nodes[nodeId].mesh == &(data->meshes[primitiveIndex]))
+            {
+                model->meshes[primitiveIndex].boneIds = RL_CALLOC(4*model->meshes[primitiveIndex].vertexCount, sizeof(int));
+                model->meshes[primitiveIndex].boneWeights = RL_CALLOC(4*model->meshes[primitiveIndex].vertexCount, sizeof(float));
+
+                for (int b = 0; b < 4*model->meshes[primitiveIndex].vertexCount; b++)
+                {
+                    if (b%4 == 0)
+                    {
+                        model->meshes[primitiveIndex].boneIds[b] = nodeId;
+                        model->meshes[primitiveIndex].boneWeights[b] = 1.0f;
+                    }
+                    else
+                    {
+                        model->meshes[primitiveIndex].boneIds[b] = 0;
+                        model->meshes[primitiveIndex].boneWeights[b] = 0.0f;
+                    }
+
+                }
+
+                Vector3 boundVertex = { 0 };
+                Vector3 boundNormal = { 0 };
+
+                Vector3 outTranslation = { 0 };
+                Quaternion outRotation = { 0 };
+                Vector3 outScale = { 0 };
+
+                int vCounter = 0;
+                int boneCounter = 0;
+                int boneId = 0;
+
+                for (int i = 0; i < model->meshes[primitiveIndex].vertexCount; i++)
+                {
+                    boneId = model->meshes[primitiveIndex].boneIds[boneCounter];
+                    outTranslation = model->bindPose[boneId].translation;
+                    outRotation = model->bindPose[boneId].rotation;
+                    outScale = model->bindPose[boneId].scale;
+
+                    // Vertices processing
+                    boundVertex = (Vector3){ model->meshes[primitiveIndex].vertices[vCounter], model->meshes[primitiveIndex].vertices[vCounter + 1], model->meshes[primitiveIndex].vertices[vCounter + 2] };
+                    boundVertex = Vector3Multiply(boundVertex, outScale);
+                    boundVertex = Vector3RotateByQuaternion(boundVertex, outRotation);
+                    boundVertex = Vector3Add(boundVertex, outTranslation);
+                    model->meshes[primitiveIndex].vertices[vCounter] = boundVertex.x;
+                    model->meshes[primitiveIndex].vertices[vCounter + 1] = boundVertex.y;
+                    model->meshes[primitiveIndex].vertices[vCounter + 2] = boundVertex.z;
+
+                    // Normals processing
+                    if (model->meshes[primitiveIndex].normals != NULL)
+                    {
+                        boundNormal = (Vector3){ model->meshes[primitiveIndex].normals[vCounter], model->meshes[primitiveIndex].normals[vCounter + 1], model->meshes[primitiveIndex].normals[vCounter + 2] };
+                        boundNormal = Vector3RotateByQuaternion(boundNormal, outRotation);
+                        model->meshes[primitiveIndex].normals[vCounter] = boundNormal.x;
+                        model->meshes[primitiveIndex].normals[vCounter + 1] = boundNormal.y;
+                        model->meshes[primitiveIndex].normals[vCounter + 2] = boundNormal.z;
+                    }
+
+                    vCounter += 3;
+                    boneCounter += 4;
+                }
+            }
+        }
+    }
+}
+
+static void LoadGLTFModelIndices(Model* model, cgltf_accessor* indexAccessor, int primitiveIndex)
+{
+    if (indexAccessor)
+    {
+        if (indexAccessor->component_type == cgltf_component_type_r_16u || indexAccessor->component_type == cgltf_component_type_r_16)
+        {
+            model->meshes[primitiveIndex].triangleCount = (int)indexAccessor->count/3;
+            model->meshes[primitiveIndex].indices = RL_MALLOC(model->meshes[primitiveIndex].triangleCount*3*sizeof(unsigned short));
+
+            unsigned short readValue = 0;
+            for (int a = 0; a < indexAccessor->count; a++)
+            {
+                GLTFReadValue(indexAccessor, a, &readValue, 1, sizeof(short));
+                model->meshes[primitiveIndex].indices[a] = readValue;
+            }
+        }
+        else if (indexAccessor->component_type == cgltf_component_type_r_8u || indexAccessor->component_type == cgltf_component_type_r_8)
+        {
+            model->meshes[primitiveIndex].triangleCount = (int)indexAccessor->count/3;
+            model->meshes[primitiveIndex].indices = RL_MALLOC(model->meshes[primitiveIndex].triangleCount*3*sizeof(unsigned short));
+
+            unsigned char readValue = 0;
+            for (int a = 0; a < indexAccessor->count; a++)
+            {
+                GLTFReadValue(indexAccessor, a, &readValue, 1, sizeof(char));
+                model->meshes[primitiveIndex].indices[a] = (unsigned short)readValue;
+            }
+        }
+        else if (indexAccessor->component_type == cgltf_component_type_r_32u)
+        {
+            model->meshes[primitiveIndex].triangleCount = (int)indexAccessor->count/3;
+            model->meshes[primitiveIndex].indices = RL_MALLOC(model->meshes[primitiveIndex].triangleCount*3*sizeof(unsigned short));
+
+            unsigned int readValue;
+            for (int a = 0; a < indexAccessor->count; a++)
+            {
+                GLTFReadValue(indexAccessor, a, &readValue, 1, sizeof(unsigned int));
+                model->meshes[primitiveIndex].indices[a] = (unsigned short)readValue;
+            }
+        }
+    }
+    else
+    {
+        // Unindexed mesh
+        model->meshes[primitiveIndex].triangleCount = model->meshes[primitiveIndex].vertexCount/3;
+    }
+}
+
+// LoadGLTF loads in animation data from given filename
+static ModelAnimation *LoadGLTFModelAnimations(const char *fileName, int *animCount)
+{
+    /***********************************************************************************
+
+        Function implemented by Hristo Stamenov (@object71)
+
+        Features:
+          - Supports .gltf and .glb files
+
+        Some restrictions (not exhaustive):
+          - ...
+
+    *************************************************************************************/
+
+    // glTF file loading
+    unsigned int dataSize = 0;
+    unsigned char *fileData = LoadFileData(fileName, &dataSize);
+
+    ModelAnimation *animations = NULL;
+
+    if (fileData == NULL) return animations;
+
+    // glTF data loading
+    cgltf_options options = { 0 };
+    cgltf_data *data = NULL;
+    cgltf_result result = cgltf_parse(&options, fileData, dataSize, &data);
+
+    if (result == cgltf_result_success)
+    {
+        TRACELOG(LOG_INFO, "MODEL: [%s] glTF animations (%s) count: %i", fileName, (data->file_type == 2)? "glb" :
+        "gltf", data->animations_count);
+
+        result = cgltf_load_buffers(&options, data, fileName);
+        if (result != cgltf_result_success) TRACELOG(LOG_WARNING, "MODEL: [%s] unable to load glTF animations data", fileName);
+        animations = RL_MALLOC(data->animations_count*sizeof(ModelAnimation));
+        *animCount = (int)data->animations_count;
+
+        for (unsigned int a = 0; a < data->animations_count; a++)
+        {
+            // gltf animation consists of the following structures:
+            // - nodes - bones
+            // - channels - single transformation type on a single bone
+            //     - node - bone
+            //     - transformation type (path) - translation, rotation, scale
+            //     - sampler - animation samples
+            //         - input - points in time this transformation happens
+            //         - output - the transformation amount at the given input points in time
+            //         - interpolation - the type of interpolation to use between the frames
+
+            cgltf_animation *animation = data->animations + a;
+
+            ModelAnimation *output = animations + a;
+
+            // 30 frames sampled per second
+            const float timeStep = (1.0f/30.0f);
+            float animationDuration = 0.0f;
+
+            // Getting the max animation time to consider for animation duration
+            for (unsigned int i = 0; i < animation->channels_count; i++)
+            {
+                cgltf_animation_channel* channel = animation->channels + i;
+                int frameCounts = (int)channel->sampler->input->count;
+                float lastFrameTime = 0.0f;
+
+                if (GLTFReadValue(channel->sampler->input, frameCounts - 1, &lastFrameTime, 1, sizeof(float)))
+                {
+                    animationDuration = fmaxf(lastFrameTime, animationDuration);
+                }
+            }
+
+            output->frameCount = (int)(animationDuration / timeStep);
+            output->boneCount = (int)data->nodes_count;
+            output->bones = RL_MALLOC(output->boneCount*sizeof(BoneInfo));
+            output->framePoses = RL_MALLOC(output->frameCount*sizeof(Transform *));
+            // output->framerate = // TODO: Use framerate instead of const timestep
+
+            // Name and parent bones
+            for (unsigned int j = 0; j < data->nodes_count; j++)
+            {
+                strcpy(output->bones[j].name, data->nodes[j].name == 0 ? "ANIMJOINT" : data->nodes[j].name);
+                output->bones[j].parent = (data->nodes[j].parent != NULL) ? (int)(data->nodes[j].parent - data->nodes) : -1;
+            }
+
+            // Allocate data for frames
+            // Initiate with zero bone translations
+            for (int frame = 0; frame < output->frameCount; frame++)
+            {
+                output->framePoses[frame] = RL_MALLOC(output->frameCount*data->nodes_count*sizeof(Transform));
+
+                for (unsigned int i = 0; i < data->nodes_count; i++)
+                {
+                    output->framePoses[frame][i].translation = Vector3Zero();
+                    output->framePoses[frame][i].rotation = QuaternionIdentity();
+                    output->framePoses[frame][i].rotation = QuaternionNormalize(output->framePoses[frame][i].rotation);
+                    output->framePoses[frame][i].scale = Vector3One();
+                }
+            }
+
+            // for each single transformation type on single bone
+            for (unsigned int channelId = 0; channelId < animation->channels_count; channelId++)
+            {
+                cgltf_animation_channel* channel = animation->channels + channelId;
+                cgltf_animation_sampler* sampler = channel->sampler;
+
+                int boneId = (int)(channel->target_node - data->nodes);
+
+                for (int frame = 0; frame < output->frameCount; frame++)
+                {
+                    bool shouldSkipFurtherTransformation = true;
+                    int outputMin = 0;
+                    int outputMax = 0;
+                    float frameTime = frame*timeStep;
+                    float lerpPercent = 0.0f;
+
+                    // For this transformation:
+                    // getting between which input values the current frame time position
+                    // and also what is the percent to use in the linear interpolation later
+                    for (unsigned int j = 0; j < sampler->input->count; j++)
+                    {
+                        float inputFrameTime;
+                        if (GLTFReadValue(sampler->input, j, &inputFrameTime, 1, sizeof(float)))
+                        {
+                            if (frameTime < inputFrameTime)
+                            {
+                                shouldSkipFurtherTransformation = false;
+                                outputMin = (j == 0) ? 0 : j - 1;
+                                outputMax = j;
+
+                                float previousInputTime = 0.0f;
+                                if (GLTFReadValue(sampler->input, outputMin, &previousInputTime, 1, sizeof(float)))
+                                {
+                                    if ((inputFrameTime - previousInputTime) != 0)
+                                    {
+                                        lerpPercent = (frameTime - previousInputTime)/(inputFrameTime - previousInputTime);
+                                    }
+                                }
+
+                                break;
+                            }
+                        }
+                        else break;
+                    }
+
+                    // If the current transformation has no information for the current frame time point
+                    if (shouldSkipFurtherTransformation) continue;
+
+                    if (channel->target_path == cgltf_animation_path_type_translation)
+                    {
+                        Vector3 translationStart;
+                        Vector3 translationEnd;
+
+                        bool success = GLTFReadValue(sampler->output, outputMin, &translationStart, 3, sizeof(float));
+                        success = GLTFReadValue(sampler->output, outputMax, &translationEnd, 3, sizeof(float)) || success;
+
+                        if (success) output->framePoses[frame][boneId].translation = Vector3Lerp(translationStart, translationEnd, lerpPercent);
+                    }
+                    if (channel->target_path == cgltf_animation_path_type_rotation)
+                    {
+                        Quaternion rotationStart;
+                        Quaternion rotationEnd;
+
+                        bool success = GLTFReadValue(sampler->output, outputMin, &rotationStart, 4, sizeof(float));
+                        success = GLTFReadValue(sampler->output, outputMax, &rotationEnd, 4, sizeof(float)) || success;
+
+                        if (success)
+                        {
+                            output->framePoses[frame][boneId].rotation = QuaternionLerp(rotationStart, rotationEnd, lerpPercent);
+                            output->framePoses[frame][boneId].rotation = QuaternionNormalize(output->framePoses[frame][boneId].rotation);
+                        }
+                    }
+                    if (channel->target_path == cgltf_animation_path_type_scale)
+                    {
+                        Vector3 scaleStart;
+                        Vector3 scaleEnd;
+
+                        bool success = GLTFReadValue(sampler->output, outputMin, &scaleStart, 3, sizeof(float));
+                        success = GLTFReadValue(sampler->output, outputMax, &scaleEnd, 3, sizeof(float)) || success;
+
+                        if (success) output->framePoses[frame][boneId].scale = Vector3Lerp(scaleStart, scaleEnd, lerpPercent);
+                    }
+                }
+            }
+
+            // Build frameposes
+            for (int frame = 0; frame < output->frameCount; frame++)
+            {
+                bool *completedBones = RL_CALLOC(output->boneCount, sizeof(bool));
+                int numberCompletedBones = 0;
+
+                while (numberCompletedBones < output->boneCount)
+                {
+                    for (int i = 0; i < output->boneCount; i++)
+                    {
+                        if (completedBones[i]) continue;
+
+                        if (output->bones[i].parent < 0)
+                        {
+                            completedBones[i] = true;
+                            numberCompletedBones++;
+                            continue;
+                        }
+
+                        if (!completedBones[output->bones[i].parent]) continue;
+
+                        output->framePoses[frame][i].rotation = QuaternionMultiply(output->framePoses[frame][output->bones[i].parent].rotation, output->framePoses[frame][i].rotation);
+                        output->framePoses[frame][i].translation = Vector3RotateByQuaternion(output->framePoses[frame][i].translation, output->framePoses[frame][output->bones[i].parent].rotation);
+                        output->framePoses[frame][i].translation = Vector3Add(output->framePoses[frame][i].translation, output->framePoses[frame][output->bones[i].parent].translation);
+                        output->framePoses[frame][i].scale = Vector3Multiply(output->framePoses[frame][i].scale, output->framePoses[frame][output->bones[i].parent].scale);
+                        completedBones[i] = true;
+                        numberCompletedBones++;
+                    }
+                }
+
+                RL_FREE(completedBones);
+            }
+
+        }
+
+        cgltf_free(data);
+    }
+    else TRACELOG(LOG_WARNING, ": [%s] Failed to load glTF data", fileName);
+
+    RL_FREE(fileData);
+
+    return animations;
+}
+
+#endif