]> git.sesse.net Git - pistorm/blobdiff - raylib_pi4_test/physac.h
[MEGA-WIP] Raylib-based RTG output
[pistorm] / raylib_pi4_test / physac.h
diff --git a/raylib_pi4_test/physac.h b/raylib_pi4_test/physac.h
new file mode 100644 (file)
index 0000000..676a969
--- /dev/null
@@ -0,0 +1,1988 @@
+/**********************************************************************************************
+*
+*   Physac v1.1 - 2D Physics library for videogames
+*
+*   DESCRIPTION:
+*
+*   Physac is a small 2D physics engine written in pure C. The engine uses a fixed time-step thread loop
+*   to simluate physics. A physics step contains the following phases: get collision information,
+*   apply dynamics, collision solving and position correction. It uses a very simple struct for physic
+*   bodies with a position vector to be used in any 3D rendering API.
+*
+*   CONFIGURATION:
+*
+*   #define PHYSAC_IMPLEMENTATION
+*       Generates the implementation of the library into the included file.
+*       If not defined, the library is in header only mode and can be included in other headers
+*       or source files without problems. But only ONE file should hold the implementation.
+*
+*   #define PHYSAC_STATIC (defined by default)
+*       The generated implementation will stay private inside implementation file and all
+*       internal symbols and functions will only be visible inside that file.
+*
+*   #define PHYSAC_DEBUG
+*       Show debug traces log messages about physic bodies creation/destruction, physic system errors,
+*       some calculations results and NULL reference exceptions
+*
+*   #define PHYSAC_DEFINE_VECTOR2_TYPE
+*       Forces library to define struct Vector2 data type (float x; float y)
+*
+*   #define PHYSAC_AVOID_TIMMING_SYSTEM
+*       Disables internal timming system, used by UpdatePhysics() to launch timmed physic steps,
+*       it allows just running UpdatePhysics() automatically on a separate thread at a desired time step.
+*       In case physics steps update needs to be controlled by user with a custom timming mechanism,
+*       just define this flag and the internal timming mechanism will be avoided, in that case,
+*       timming libraries are neither required by the module.
+*
+*   #define PHYSAC_MALLOC()
+*   #define PHYSAC_CALLOC()
+*   #define PHYSAC_FREE()
+*       You can define your own malloc/free implementation replacing stdlib.h malloc()/free() functions.
+*       Otherwise it will include stdlib.h and use the C standard library malloc()/free() function.
+*
+*   COMPILATION:
+*
+*   Use the following code to compile with GCC:
+*       gcc -o $(NAME_PART).exe $(FILE_NAME) -s -static -lraylib -lopengl32 -lgdi32 -lwinmm -std=c99
+*
+*   VERSIONS HISTORY:
+*       1.1 (20-Jan-2021) @raysan5: Library general revision 
+*               Removed threading system (up to the user)
+*               Support MSVC C++ compilation using CLITERAL()
+*               Review DEBUG mechanism for TRACELOG() and all TRACELOG() messages
+*               Review internal variables/functions naming for consistency
+*               Allow option to avoid internal timming system, to allow app manage the steps
+*       1.0 (12-Jun-2017) First release of the library
+*
+*
+*   LICENSE: zlib/libpng
+*
+*   Copyright (c) 2016-2021 Victor Fisac (@victorfisac) and Ramon Santamaria (@raysan5)
+*
+*   This software is provided "as-is", without any express or implied warranty. In no event
+*   will the authors be held liable for any damages arising from the use of this software.
+*
+*   Permission is granted to anyone to use this software for any purpose, including commercial
+*   applications, and to alter it and redistribute it freely, subject to the following restrictions:
+*
+*     1. The origin of this software must not be misrepresented; you must not claim that you
+*     wrote the original software. If you use this software in a product, an acknowledgment
+*     in the product documentation would be appreciated but is not required.
+*
+*     2. Altered source versions must be plainly marked as such, and must not be misrepresented
+*     as being the original software.
+*
+*     3. This notice may not be removed or altered from any source distribution.
+*
+**********************************************************************************************/
+
+#if !defined(PHYSAC_H)
+#define PHYSAC_H
+
+#if defined(PHYSAC_STATIC)
+    #define PHYSACDEF static            // Functions just visible to module including this file
+#else
+    #if defined(__cplusplus)
+        #define PHYSACDEF extern "C"    // Functions visible from other files (no name mangling of functions in C++)
+    #else
+        #define PHYSACDEF extern        // Functions visible from other files
+    #endif
+#endif
+
+// Allow custom memory allocators
+#ifndef PHYSAC_MALLOC
+    #define PHYSAC_MALLOC(size)         malloc(size)
+#endif
+#ifndef PHYSAC_CALLOC
+    #define PHYSAC_CALLOC(size, n)      calloc(size, n)
+#endif
+#ifndef PHYSAC_FREE
+    #define PHYSAC_FREE(ptr)            free(ptr)
+#endif
+
+//----------------------------------------------------------------------------------
+// Defines and Macros
+//----------------------------------------------------------------------------------
+#define PHYSAC_MAX_BODIES               64          // Maximum number of physic bodies supported
+#define PHYSAC_MAX_MANIFOLDS            4096        // Maximum number of physic bodies interactions (64x64)
+#define PHYSAC_MAX_VERTICES             24          // Maximum number of vertex for polygons shapes
+#define PHYSAC_DEFAULT_CIRCLE_VERTICES  24          // Default number of vertices for circle shapes
+
+#define PHYSAC_COLLISION_ITERATIONS     100
+#define PHYSAC_PENETRATION_ALLOWANCE    0.05f
+#define PHYSAC_PENETRATION_CORRECTION   0.4f
+
+#define PHYSAC_PI                       3.14159265358979323846f
+#define PHYSAC_DEG2RAD                  (PHYSAC_PI/180.0f)
+
+//----------------------------------------------------------------------------------
+// Data Types Structure Definition
+//----------------------------------------------------------------------------------
+#if defined(__STDC__) && __STDC_VERSION__ >= 199901L
+    #include <stdbool.h>
+#endif
+
+typedef enum PhysicsShapeType { PHYSICS_CIRCLE = 0, PHYSICS_POLYGON } PhysicsShapeType;
+
+// Previously defined to be used in PhysicsShape struct as circular dependencies
+typedef struct PhysicsBodyData *PhysicsBody;
+
+#if defined(PHYSAC_DEFINE_VECTOR2_TYPE)
+// Vector2 type
+typedef struct Vector2 {
+    float x;
+    float y;
+} Vector2;
+#endif
+
+// Matrix2x2 type (used for polygon shape rotation matrix)
+typedef struct Matrix2x2 {
+    float m00;
+    float m01;
+    float m10;
+    float m11;
+} Matrix2x2;
+
+typedef struct PhysicsVertexData {
+    unsigned int vertexCount;                   // Vertex count (positions and normals)
+    Vector2 positions[PHYSAC_MAX_VERTICES];     // Vertex positions vectors
+    Vector2 normals[PHYSAC_MAX_VERTICES];       // Vertex normals vectors
+} PhysicsVertexData;
+
+typedef struct PhysicsShape {
+    PhysicsShapeType type;                      // Shape type (circle or polygon)
+    PhysicsBody body;                           // Shape physics body data pointer
+    PhysicsVertexData vertexData;               // Shape vertices data (used for polygon shapes)
+    float radius;                               // Shape radius (used for circle shapes)
+    Matrix2x2 transform;                        // Vertices transform matrix 2x2
+} PhysicsShape;
+
+typedef struct PhysicsBodyData {
+    unsigned int id;                            // Unique identifier
+    bool enabled;                               // Enabled dynamics state (collisions are calculated anyway)
+    Vector2 position;                           // Physics body shape pivot
+    Vector2 velocity;                           // Current linear velocity applied to position
+    Vector2 force;                              // Current linear force (reset to 0 every step)
+    float angularVelocity;                      // Current angular velocity applied to orient
+    float torque;                               // Current angular force (reset to 0 every step)
+    float orient;                               // Rotation in radians
+    float inertia;                              // Moment of inertia
+    float inverseInertia;                       // Inverse value of inertia
+    float mass;                                 // Physics body mass
+    float inverseMass;                          // Inverse value of mass
+    float staticFriction;                       // Friction when the body has not movement (0 to 1)
+    float dynamicFriction;                      // Friction when the body has movement (0 to 1)
+    float restitution;                          // Restitution coefficient of the body (0 to 1)
+    bool useGravity;                            // Apply gravity force to dynamics
+    bool isGrounded;                            // Physics grounded on other body state
+    bool freezeOrient;                          // Physics rotation constraint
+    PhysicsShape shape;                         // Physics body shape information (type, radius, vertices, transform)
+} PhysicsBodyData;
+
+typedef struct PhysicsManifoldData {
+    unsigned int id;                            // Unique identifier
+    PhysicsBody bodyA;                          // Manifold first physics body reference
+    PhysicsBody bodyB;                          // Manifold second physics body reference
+    float penetration;                          // Depth of penetration from collision
+    Vector2 normal;                             // Normal direction vector from 'a' to 'b'
+    Vector2 contacts[2];                        // Points of contact during collision
+    unsigned int contactsCount;                 // Current collision number of contacts
+    float restitution;                          // Mixed restitution during collision
+    float dynamicFriction;                      // Mixed dynamic friction during collision
+    float staticFriction;                       // Mixed static friction during collision
+} PhysicsManifoldData, *PhysicsManifold;
+
+#if defined(__cplusplus)
+extern "C" {                                    // Prevents name mangling of functions
+#endif
+
+//----------------------------------------------------------------------------------
+// Module Functions Declaration
+//----------------------------------------------------------------------------------
+// Physics system management
+PHYSACDEF void InitPhysics(void);                                                                           // Initializes physics system
+PHYSACDEF void UpdatePhysics(void);                                                                         // Update physics system
+PHYSACDEF void ResetPhysics(void);                                                                          // Reset physics system (global variables)
+PHYSACDEF void ClosePhysics(void);                                                                          // Close physics system and unload used memory
+PHYSACDEF void SetPhysicsTimeStep(double delta);                                                            // Sets physics fixed time step in milliseconds. 1.666666 by default
+PHYSACDEF void SetPhysicsGravity(float x, float y);                                                         // Sets physics global gravity force
+
+// Physic body creation/destroy
+PHYSACDEF PhysicsBody CreatePhysicsBodyCircle(Vector2 pos, float radius, float density);                    // Creates a new circle physics body with generic parameters
+PHYSACDEF PhysicsBody CreatePhysicsBodyRectangle(Vector2 pos, float width, float height, float density);    // Creates a new rectangle physics body with generic parameters
+PHYSACDEF PhysicsBody CreatePhysicsBodyPolygon(Vector2 pos, float radius, int sides, float density);        // Creates a new polygon physics body with generic parameters
+PHYSACDEF void DestroyPhysicsBody(PhysicsBody body);                                                        // Destroy a physics body
+
+// Physic body forces
+PHYSACDEF void PhysicsAddForce(PhysicsBody body, Vector2 force);                                            // Adds a force to a physics body
+PHYSACDEF void PhysicsAddTorque(PhysicsBody body, float amount);                                            // Adds an angular force to a physics body
+PHYSACDEF void PhysicsShatter(PhysicsBody body, Vector2 position, float force);                             // Shatters a polygon shape physics body to little physics bodies with explosion force
+PHYSACDEF void SetPhysicsBodyRotation(PhysicsBody body, float radians);                                     // Sets physics body shape transform based on radians parameter
+
+// Query physics info
+PHYSACDEF PhysicsBody GetPhysicsBody(int index);                                                            // Returns a physics body of the bodies pool at a specific index
+PHYSACDEF int GetPhysicsBodiesCount(void);                                                                  // Returns the current amount of created physics bodies
+PHYSACDEF int GetPhysicsShapeType(int index);                                                               // Returns the physics body shape type (PHYSICS_CIRCLE or PHYSICS_POLYGON)
+PHYSACDEF int GetPhysicsShapeVerticesCount(int index);                                                      // Returns the amount of vertices of a physics body shape
+PHYSACDEF Vector2 GetPhysicsShapeVertex(PhysicsBody body, int vertex);                                      // Returns transformed position of a body shape (body position + vertex transformed position)
+
+#if defined(__cplusplus)
+}
+#endif
+
+#endif // PHYSAC_H
+
+/***********************************************************************************
+*
+*   PHYSAC IMPLEMENTATION
+*
+************************************************************************************/
+
+#if defined(PHYSAC_IMPLEMENTATION)
+
+// Support TRACELOG macros
+#if defined(PHYSAC_DEBUG)
+    #include <stdio.h>              // Required for: printf()
+    #define TRACELOG(...) printf(__VA_ARGS__)
+#else
+    #define TRACELOG(...) (void)0;
+#endif
+
+#include <stdlib.h>                 // Required for: malloc(), calloc(), free()
+#include <math.h>                   // Required for: cosf(), sinf(), fabs(), sqrtf()
+
+#if !defined(PHYSAC_AVOID_TIMMING_SYSTEM)
+    // Time management functionality
+    #include <time.h>                   // Required for: time(), clock_gettime()
+    #if defined(_WIN32)
+        // Functions required to query time on Windows
+        int __stdcall QueryPerformanceCounter(unsigned long long int *lpPerformanceCount);
+        int __stdcall QueryPerformanceFrequency(unsigned long long int *lpFrequency);
+    #endif
+    #if defined(__linux__) || defined(__FreeBSD__)
+        #if _POSIX_C_SOURCE < 199309L
+            #undef _POSIX_C_SOURCE
+            #define _POSIX_C_SOURCE 199309L // Required for CLOCK_MONOTONIC if compiled with c99 without gnu ext.
+        #endif
+        #include <sys/time.h>           // Required for: timespec
+    #endif
+    #if defined(__APPLE__)              // macOS also defines __MACH__
+        #include <mach/mach_time.h>     // Required for: mach_absolute_time()
+    #endif
+#endif
+
+// NOTE: MSVC C++ compiler does not support compound literals (C99 feature)
+// Plain structures in C++ (without constructors) can be initialized from { } initializers.
+#if defined(__cplusplus)
+    #define CLITERAL(type)      type
+#else
+    #define CLITERAL(type)      (type)
+#endif
+
+//----------------------------------------------------------------------------------
+// Defines and Macros
+//----------------------------------------------------------------------------------
+#define PHYSAC_MIN(a,b)         (((a)<(b))?(a):(b))
+#define PHYSAC_MAX(a,b)         (((a)>(b))?(a):(b))
+#define PHYSAC_FLT_MAX          3.402823466e+38f
+#define PHYSAC_EPSILON          0.000001f
+#define PHYSAC_K                1.0f/3.0f
+#define PHYSAC_VECTOR_ZERO      CLITERAL(Vector2){ 0.0f, 0.0f }
+
+//----------------------------------------------------------------------------------
+// Global Variables Definition
+//----------------------------------------------------------------------------------
+static double deltaTime = 1.0/60.0/10.0 * 1000;             // Delta time in milliseconds used for physics steps
+
+#if !defined(PHYSAC_AVOID_TIMMING_SYSTEM)
+// Time measure variables
+static double baseClockTicks = 0.0;                         // Offset clock ticks for MONOTONIC clock
+static unsigned long long int frequency = 0;                // Hi-res clock frequency
+static double startTime = 0.0;                              // Start time in milliseconds
+static double currentTime = 0.0;                            // Current time in milliseconds
+#endif
+
+// Physics system configuration
+static PhysicsBody bodies[PHYSAC_MAX_BODIES];               // Physics bodies pointers array
+static unsigned int physicsBodiesCount = 0;                 // Physics world current bodies counter
+static PhysicsManifold contacts[PHYSAC_MAX_MANIFOLDS];      // Physics bodies pointers array
+static unsigned int physicsManifoldsCount = 0;              // Physics world current manifolds counter
+
+static Vector2 gravityForce = { 0.0f, 9.81f };              // Physics world gravity force
+
+// Utilities variables
+static unsigned int usedMemory = 0;                         // Total allocated dynamic memory
+
+//----------------------------------------------------------------------------------
+// Module Internal Functions Declaration
+//----------------------------------------------------------------------------------
+#if !defined(PHYSAC_AVOID_TIMMING_SYSTEM)
+// Timming measure functions
+static void InitTimer(void);                                                                                // Initializes hi-resolution MONOTONIC timer
+static unsigned long long int GetClockTicks(void);                                                          // Get hi-res MONOTONIC time measure in mseconds
+static double GetCurrentTime(void);                                                                         // Get current time measure in milliseconds
+#endif
+
+static void UpdatePhysicsStep(void);                                                                        // Update physics step (dynamics, collisions and position corrections)
+
+static int FindAvailableBodyIndex();                                                                        // Finds a valid index for a new physics body initialization
+static int FindAvailableManifoldIndex();                                                                    // Finds a valid index for a new manifold initialization
+static PhysicsVertexData CreateDefaultPolygon(float radius, int sides);                                     // Creates a random polygon shape with max vertex distance from polygon pivot
+static PhysicsVertexData CreateRectanglePolygon(Vector2 pos, Vector2 size);                                 // Creates a rectangle polygon shape based on a min and max positions
+
+static void InitializePhysicsManifolds(PhysicsManifold manifold);                                           // Initializes physics manifolds to solve collisions
+static PhysicsManifold CreatePhysicsManifold(PhysicsBody a, PhysicsBody b);                                 // Creates a new physics manifold to solve collision
+static void DestroyPhysicsManifold(PhysicsManifold manifold);                                               // Unitializes and destroys a physics manifold
+
+static void SolvePhysicsManifold(PhysicsManifold manifold);                                                 // Solves a created physics manifold between two physics bodies
+static void SolveCircleToCircle(PhysicsManifold manifold);                                                  // Solves collision between two circle shape physics bodies
+static void SolveCircleToPolygon(PhysicsManifold manifold);                                                 // Solves collision between a circle to a polygon shape physics bodies
+static void SolvePolygonToCircle(PhysicsManifold manifold);                                                 // Solves collision between a polygon to a circle shape physics bodies
+static void SolvePolygonToPolygon(PhysicsManifold manifold);                                                // Solves collision between two polygons shape physics bodies
+static void IntegratePhysicsForces(PhysicsBody body);                                                       // Integrates physics forces into velocity
+static void IntegratePhysicsVelocity(PhysicsBody body);                                                     // Integrates physics velocity into position and forces
+static void IntegratePhysicsImpulses(PhysicsManifold manifold);                                             // Integrates physics collisions impulses to solve collisions
+static void CorrectPhysicsPositions(PhysicsManifold manifold);                                              // Corrects physics bodies positions based on manifolds collision information
+static void FindIncidentFace(Vector2 *v0, Vector2 *v1, PhysicsShape ref, PhysicsShape inc, int index);      // Finds two polygon shapes incident face
+static float FindAxisLeastPenetration(int *faceIndex, PhysicsShape shapeA, PhysicsShape shapeB);            // Finds polygon shapes axis least penetration
+
+// Math required functions
+static Vector2 MathVector2Product(Vector2 vector, float value);                                             // Returns the product of a vector and a value
+static float MathVector2CrossProduct(Vector2 v1, Vector2 v2);                                               // Returns the cross product of two vectors
+static float MathVector2SqrLen(Vector2 vector);                                                             // Returns the len square root of a vector
+static float MathVector2DotProduct(Vector2 v1, Vector2 v2);                                                 // Returns the dot product of two vectors
+static inline float MathVector2SqrDistance(Vector2 v1, Vector2 v2);                                         // Returns the square root of distance between two vectors
+static void MathVector2Normalize(Vector2 *vector);                                                          // Returns the normalized values of a vector
+static Vector2 MathVector2Add(Vector2 v1, Vector2 v2);                                                      // Returns the sum of two given vectors
+static Vector2 MathVector2Subtract(Vector2 v1, Vector2 v2);                                                 // Returns the subtract of two given vectors
+static Matrix2x2 MathMatFromRadians(float radians);                                                         // Returns a matrix 2x2 from a given radians value
+static inline Matrix2x2 MathMatTranspose(Matrix2x2 matrix);                                                 // Returns the transpose of a given matrix 2x2
+static inline Vector2 MathMatVector2Product(Matrix2x2 matrix, Vector2 vector);                              // Returns product between matrix 2x2 and vector
+static int MathVector2Clip(Vector2 normal, Vector2 *faceA, Vector2 *faceB, float clip);                     // Returns clipping value based on a normal and two faces
+static Vector2 MathTriangleBarycenter(Vector2 v1, Vector2 v2, Vector2 v3);                                  // Returns the barycenter of a triangle given by 3 points
+
+//----------------------------------------------------------------------------------
+// Module Functions Definition
+//----------------------------------------------------------------------------------
+
+// Initializes physics values, pointers and creates physics loop thread
+PHYSACDEF void InitPhysics(void)
+{
+#if !defined(PHYSAC_AVOID_TIMMING_SYSTEM)
+    // Initialize high resolution timer
+    InitTimer();
+#endif
+
+    TRACELOG("[PHYSAC] Physics module initialized successfully\n");
+}
+
+// Sets physics global gravity force
+PHYSACDEF void SetPhysicsGravity(float x, float y)
+{
+    gravityForce.x = x;
+    gravityForce.y = y;
+}
+
+// Creates a new circle physics body with generic parameters
+PHYSACDEF PhysicsBody CreatePhysicsBodyCircle(Vector2 pos, float radius, float density)
+{
+    PhysicsBody body = CreatePhysicsBodyPolygon(pos, radius, PHYSAC_DEFAULT_CIRCLE_VERTICES, density);
+    return body;
+}
+
+// Creates a new rectangle physics body with generic parameters
+PHYSACDEF PhysicsBody CreatePhysicsBodyRectangle(Vector2 pos, float width, float height, float density)
+{
+    // NOTE: Make sure body data is initialized to 0
+    PhysicsBody body = (PhysicsBody)PHYSAC_CALLOC(sizeof(PhysicsBodyData), 1);
+    usedMemory += sizeof(PhysicsBodyData);
+
+    int id = FindAvailableBodyIndex();
+    if (id != -1)
+    {
+        // Initialize new body with generic values
+        body->id = id;
+        body->enabled = true;
+        body->position = pos;
+        body->shape.type = PHYSICS_POLYGON;
+        body->shape.body = body;
+        body->shape.transform = MathMatFromRadians(0.0f);
+        body->shape.vertexData = CreateRectanglePolygon(pos, CLITERAL(Vector2){ width, height });
+
+        // Calculate centroid and moment of inertia
+        Vector2 center = { 0.0f, 0.0f };
+        float area = 0.0f;
+        float inertia = 0.0f;
+
+        for (unsigned int i = 0; i < body->shape.vertexData.vertexCount; i++)
+        {
+            // Triangle vertices, third vertex implied as (0, 0)
+            Vector2 p1 = body->shape.vertexData.positions[i];
+            unsigned int nextIndex = (((i + 1) < body->shape.vertexData.vertexCount) ? (i + 1) : 0);
+            Vector2 p2 = body->shape.vertexData.positions[nextIndex];
+
+            float D = MathVector2CrossProduct(p1, p2);
+            float triangleArea = D/2;
+
+            area += triangleArea;
+
+            // Use area to weight the centroid average, not just vertex position
+            center.x += triangleArea*PHYSAC_K*(p1.x + p2.x);
+            center.y += triangleArea*PHYSAC_K*(p1.y + p2.y);
+
+            float intx2 = p1.x*p1.x + p2.x*p1.x + p2.x*p2.x;
+            float inty2 = p1.y*p1.y + p2.y*p1.y + p2.y*p2.y;
+            inertia += (0.25f*PHYSAC_K*D)*(intx2 + inty2);
+        }
+
+        center.x *= 1.0f/area;
+        center.y *= 1.0f/area;
+
+        // Translate vertices to centroid (make the centroid (0, 0) for the polygon in model space)
+        // Note: this is not really necessary
+        for (unsigned int i = 0; i < body->shape.vertexData.vertexCount; i++)
+        {
+            body->shape.vertexData.positions[i].x -= center.x;
+            body->shape.vertexData.positions[i].y -= center.y;
+        }
+
+        body->mass = density*area;
+        body->inverseMass = ((body->mass != 0.0f) ? 1.0f/body->mass : 0.0f);
+        body->inertia = density*inertia;
+        body->inverseInertia = ((body->inertia != 0.0f) ? 1.0f/body->inertia : 0.0f);
+        body->staticFriction = 0.4f;
+        body->dynamicFriction = 0.2f;
+        body->restitution = 0.0f;
+        body->useGravity = true;
+        body->isGrounded = false;
+        body->freezeOrient = false;
+
+        // Add new body to bodies pointers array and update bodies count
+        bodies[physicsBodiesCount] = body;
+        physicsBodiesCount++;
+
+        TRACELOG("[PHYSAC] Physic body created successfully (id: %i)\n", body->id);
+    }
+    else TRACELOG("[PHYSAC] Physic body could not be created, PHYSAC_MAX_BODIES reached\n");
+
+    return body;
+}
+
+// Creates a new polygon physics body with generic parameters
+PHYSACDEF PhysicsBody CreatePhysicsBodyPolygon(Vector2 pos, float radius, int sides, float density)
+{
+    PhysicsBody body = (PhysicsBody)PHYSAC_MALLOC(sizeof(PhysicsBodyData));
+    usedMemory += sizeof(PhysicsBodyData);
+
+    int id = FindAvailableBodyIndex();
+    if (id != -1)
+    {
+        // Initialize new body with generic values
+        body->id = id;
+        body->enabled = true;
+        body->position = pos;
+        body->velocity = PHYSAC_VECTOR_ZERO;
+        body->force = PHYSAC_VECTOR_ZERO;
+        body->angularVelocity = 0.0f;
+        body->torque = 0.0f;
+        body->orient = 0.0f;
+        body->shape.type = PHYSICS_POLYGON;
+        body->shape.body = body;
+        body->shape.transform = MathMatFromRadians(0.0f);
+        body->shape.vertexData = CreateDefaultPolygon(radius, sides);
+
+        // Calculate centroid and moment of inertia
+        Vector2 center = { 0.0f, 0.0f };
+        float area = 0.0f;
+        float inertia = 0.0f;
+
+        for (unsigned int i = 0; i < body->shape.vertexData.vertexCount; i++)
+        {
+            // Triangle vertices, third vertex implied as (0, 0)
+            Vector2 position1 = body->shape.vertexData.positions[i];
+            unsigned int nextIndex = (((i + 1) < body->shape.vertexData.vertexCount) ? (i + 1) : 0);
+            Vector2 position2 = body->shape.vertexData.positions[nextIndex];
+
+            float cross = MathVector2CrossProduct(position1, position2);
+            float triangleArea = cross/2;
+
+            area += triangleArea;
+
+            // Use area to weight the centroid average, not just vertex position
+            center.x += triangleArea*PHYSAC_K*(position1.x + position2.x);
+            center.y += triangleArea*PHYSAC_K*(position1.y + position2.y);
+
+            float intx2 = position1.x*position1.x + position2.x*position1.x + position2.x*position2.x;
+            float inty2 = position1.y*position1.y + position2.y*position1.y + position2.y*position2.y;
+            inertia += (0.25f*PHYSAC_K*cross)*(intx2 + inty2);
+        }
+
+        center.x *= 1.0f/area;
+        center.y *= 1.0f/area;
+
+        // Translate vertices to centroid (make the centroid (0, 0) for the polygon in model space)
+        // Note: this is not really necessary
+        for (unsigned int i = 0; i < body->shape.vertexData.vertexCount; i++)
+        {
+            body->shape.vertexData.positions[i].x -= center.x;
+            body->shape.vertexData.positions[i].y -= center.y;
+        }
+
+        body->mass = density*area;
+        body->inverseMass = ((body->mass != 0.0f) ? 1.0f/body->mass : 0.0f);
+        body->inertia = density*inertia;
+        body->inverseInertia = ((body->inertia != 0.0f) ? 1.0f/body->inertia : 0.0f);
+        body->staticFriction = 0.4f;
+        body->dynamicFriction = 0.2f;
+        body->restitution = 0.0f;
+        body->useGravity = true;
+        body->isGrounded = false;
+        body->freezeOrient = false;
+
+        // Add new body to bodies pointers array and update bodies count
+        bodies[physicsBodiesCount] = body;
+        physicsBodiesCount++;
+
+        TRACELOG("[PHYSAC] Physic body created successfully (id: %i)\n", body->id);
+    }
+    else TRACELOG("[PHYSAC] Physics body could not be created, PHYSAC_MAX_BODIES reached\n");
+
+    return body;
+}
+
+// Adds a force to a physics body
+PHYSACDEF void PhysicsAddForce(PhysicsBody body, Vector2 force)
+{
+    if (body != NULL) body->force = MathVector2Add(body->force, force);
+}
+
+// Adds an angular force to a physics body
+PHYSACDEF void PhysicsAddTorque(PhysicsBody body, float amount)
+{
+    if (body != NULL) body->torque += amount;
+}
+
+// Shatters a polygon shape physics body to little physics bodies with explosion force
+PHYSACDEF void PhysicsShatter(PhysicsBody body, Vector2 position, float force)
+{
+    if (body != NULL)
+    {
+        if (body->shape.type == PHYSICS_POLYGON)
+        {
+            PhysicsVertexData vertexData = body->shape.vertexData;
+            bool collision = false;
+
+            for (unsigned int i = 0; i < vertexData.vertexCount; i++)
+            {
+                Vector2 positionA = body->position;
+                Vector2 positionB = MathMatVector2Product(body->shape.transform, MathVector2Add(body->position, vertexData.positions[i]));
+                unsigned int nextIndex = (((i + 1) < vertexData.vertexCount) ? (i + 1) : 0);
+                Vector2 positionC = MathMatVector2Product(body->shape.transform, MathVector2Add(body->position, vertexData.positions[nextIndex]));
+
+                // Check collision between each triangle
+                float alpha = ((positionB.y - positionC.y)*(position.x - positionC.x) + (positionC.x - positionB.x)*(position.y - positionC.y))/
+                              ((positionB.y - positionC.y)*(positionA.x - positionC.x) + (positionC.x - positionB.x)*(positionA.y - positionC.y));
+
+                float beta = ((positionC.y - positionA.y)*(position.x - positionC.x) + (positionA.x - positionC.x)*(position.y - positionC.y))/
+                             ((positionB.y - positionC.y)*(positionA.x - positionC.x) + (positionC.x - positionB.x)*(positionA.y - positionC.y));
+
+                float gamma = 1.0f - alpha - beta;
+
+                if ((alpha > 0.0f) && (beta > 0.0f) & (gamma > 0.0f))
+                {
+                    collision = true;
+                    break;
+                }
+            }
+
+            if (collision)
+            {
+                int count = vertexData.vertexCount;
+                Vector2 bodyPos = body->position;
+                Vector2 *vertices = (Vector2 *)PHYSAC_MALLOC(sizeof(Vector2)*count);
+                Matrix2x2 trans = body->shape.transform;
+                for (int i = 0; i < count; i++) vertices[i] = vertexData.positions[i];
+
+                // Destroy shattered physics body
+                DestroyPhysicsBody(body);
+
+                for (int i = 0; i < count; i++)
+                {
+                    int nextIndex = (((i + 1) < count) ? (i + 1) : 0);
+                    Vector2 center = MathTriangleBarycenter(vertices[i], vertices[nextIndex], PHYSAC_VECTOR_ZERO);
+                    center = MathVector2Add(bodyPos, center);
+                    Vector2 offset = MathVector2Subtract(center, bodyPos);
+
+                    PhysicsBody body = CreatePhysicsBodyPolygon(center, 10, 3, 10);     // Create polygon physics body with relevant values
+
+                    PhysicsVertexData vertexData = { 0 };
+                    vertexData.vertexCount = 3;
+
+                    vertexData.positions[0] = MathVector2Subtract(vertices[i], offset);
+                    vertexData.positions[1] = MathVector2Subtract(vertices[nextIndex], offset);
+                    vertexData.positions[2] = MathVector2Subtract(position, center);
+
+                    // Separate vertices to avoid unnecessary physics collisions
+                    vertexData.positions[0].x *= 0.95f;
+                    vertexData.positions[0].y *= 0.95f;
+                    vertexData.positions[1].x *= 0.95f;
+                    vertexData.positions[1].y *= 0.95f;
+                    vertexData.positions[2].x *= 0.95f;
+                    vertexData.positions[2].y *= 0.95f;
+
+                    // Calculate polygon faces normals
+                    for (unsigned int j = 0; j < vertexData.vertexCount; j++)
+                    {
+                        unsigned int nextVertex = (((j + 1) < vertexData.vertexCount) ? (j + 1) : 0);
+                        Vector2 face = MathVector2Subtract(vertexData.positions[nextVertex], vertexData.positions[j]);
+
+                        vertexData.normals[j] = CLITERAL(Vector2){ face.y, -face.x };
+                        MathVector2Normalize(&vertexData.normals[j]);
+                    }
+
+                    // Apply computed vertex data to new physics body shape
+                    body->shape.vertexData = vertexData;
+                    body->shape.transform = trans;
+
+                    // Calculate centroid and moment of inertia
+                    center = PHYSAC_VECTOR_ZERO;
+                    float area = 0.0f;
+                    float inertia = 0.0f;
+
+                    for (unsigned int j = 0; j < body->shape.vertexData.vertexCount; j++)
+                    {
+                        // Triangle vertices, third vertex implied as (0, 0)
+                        Vector2 p1 = body->shape.vertexData.positions[j];
+                        unsigned int nextVertex = (((j + 1) < body->shape.vertexData.vertexCount) ? (j + 1) : 0);
+                        Vector2 p2 = body->shape.vertexData.positions[nextVertex];
+
+                        float D = MathVector2CrossProduct(p1, p2);
+                        float triangleArea = D/2;
+
+                        area += triangleArea;
+
+                        // Use area to weight the centroid average, not just vertex position
+                        center.x += triangleArea*PHYSAC_K*(p1.x + p2.x);
+                        center.y += triangleArea*PHYSAC_K*(p1.y + p2.y);
+
+                        float intx2 = p1.x*p1.x + p2.x*p1.x + p2.x*p2.x;
+                        float inty2 = p1.y*p1.y + p2.y*p1.y + p2.y*p2.y;
+                        inertia += (0.25f*PHYSAC_K*D)*(intx2 + inty2);
+                    }
+
+                    center.x *= 1.0f/area;
+                    center.y *= 1.0f/area;
+
+                    body->mass = area;
+                    body->inverseMass = ((body->mass != 0.0f) ? 1.0f/body->mass : 0.0f);
+                    body->inertia = inertia;
+                    body->inverseInertia = ((body->inertia != 0.0f) ? 1.0f/body->inertia : 0.0f);
+
+                    // Calculate explosion force direction
+                    Vector2 pointA = body->position;
+                    Vector2 pointB = MathVector2Subtract(vertexData.positions[1], vertexData.positions[0]);
+                    pointB.x /= 2.0f;
+                    pointB.y /= 2.0f;
+                    Vector2 forceDirection = MathVector2Subtract(MathVector2Add(pointA, MathVector2Add(vertexData.positions[0], pointB)), body->position);
+                    MathVector2Normalize(&forceDirection);
+                    forceDirection.x *= force;
+                    forceDirection.y *= force;
+
+                    // Apply force to new physics body
+                    PhysicsAddForce(body, forceDirection);
+                }
+
+                PHYSAC_FREE(vertices);
+            }
+        }
+    }
+    else TRACELOG("[PHYSAC] WARNING: PhysicsShatter: NULL physic body\n");
+}
+
+// Returns the current amount of created physics bodies
+PHYSACDEF int GetPhysicsBodiesCount(void)
+{
+    return physicsBodiesCount;
+}
+
+// Returns a physics body of the bodies pool at a specific index
+PHYSACDEF PhysicsBody GetPhysicsBody(int index)
+{
+    PhysicsBody body = NULL;
+
+    if (index < (int)physicsBodiesCount)
+    {
+        body = bodies[index];
+
+        if (body == NULL) TRACELOG("[PHYSAC] WARNING: GetPhysicsBody: NULL physic body\n");
+    }
+    else TRACELOG("[PHYSAC] WARNING: Physic body index is out of bounds\n");
+
+    return body;
+}
+
+// Returns the physics body shape type (PHYSICS_CIRCLE or PHYSICS_POLYGON)
+PHYSACDEF int GetPhysicsShapeType(int index)
+{
+    int result = -1;
+
+    if (index < (int)physicsBodiesCount)
+    {
+        PhysicsBody body = bodies[index];
+
+        if (body != NULL) result = body->shape.type;
+        else TRACELOG("[PHYSAC] WARNING: GetPhysicsShapeType: NULL physic body\n");
+    }
+    else TRACELOG("[PHYSAC] WARNING: Physic body index is out of bounds\n");
+
+    return result;
+}
+
+// Returns the amount of vertices of a physics body shape
+PHYSACDEF int GetPhysicsShapeVerticesCount(int index)
+{
+    int result = 0;
+
+    if (index < (int)physicsBodiesCount)
+    {
+        PhysicsBody body = bodies[index];
+
+        if (body != NULL)
+        {
+            switch (body->shape.type)
+            {
+                case PHYSICS_CIRCLE: result = PHYSAC_DEFAULT_CIRCLE_VERTICES; break;
+                case PHYSICS_POLYGON: result = body->shape.vertexData.vertexCount; break;
+                default: break;
+            }
+        }
+        else TRACELOG("[PHYSAC] WARNING: GetPhysicsShapeVerticesCount: NULL physic body\n");
+    }
+    else TRACELOG("[PHYSAC] WARNING: Physic body index is out of bounds\n");
+
+    return result;
+}
+
+// Returns transformed position of a body shape (body position + vertex transformed position)
+PHYSACDEF Vector2 GetPhysicsShapeVertex(PhysicsBody body, int vertex)
+{
+    Vector2 position = { 0.0f, 0.0f };
+
+    if (body != NULL)
+    {
+        switch (body->shape.type)
+        {
+            case PHYSICS_CIRCLE:
+            {
+                position.x = body->position.x + cosf(360.0f/PHYSAC_DEFAULT_CIRCLE_VERTICES*vertex*PHYSAC_DEG2RAD)*body->shape.radius;
+                position.y = body->position.y + sinf(360.0f/PHYSAC_DEFAULT_CIRCLE_VERTICES*vertex*PHYSAC_DEG2RAD)*body->shape.radius;
+            } break;
+            case PHYSICS_POLYGON:
+            {
+                PhysicsVertexData vertexData = body->shape.vertexData;
+                position = MathVector2Add(body->position, MathMatVector2Product(body->shape.transform, vertexData.positions[vertex]));
+            } break;
+            default: break;
+        }
+    }
+    else TRACELOG("[PHYSAC] WARNING: GetPhysicsShapeVertex: NULL physic body\n");
+
+    return position;
+}
+
+// Sets physics body shape transform based on radians parameter
+PHYSACDEF void SetPhysicsBodyRotation(PhysicsBody body, float radians)
+{
+    if (body != NULL)
+    {
+        body->orient = radians;
+
+        if (body->shape.type == PHYSICS_POLYGON) body->shape.transform = MathMatFromRadians(radians);
+    }
+}
+
+// Unitializes and destroys a physics body
+PHYSACDEF void DestroyPhysicsBody(PhysicsBody body)
+{
+    if (body != NULL)
+    {
+        int id = body->id;
+        int index = -1;
+
+        for (unsigned int i = 0; i < physicsBodiesCount; i++)
+        {
+            if (bodies[i]->id == id)
+            {
+                index = i;
+                break;
+            }
+        }
+
+        if (index == -1)
+        {
+            TRACELOG("[PHYSAC] WARNING: Requested body (id: %i) can not be found\n", id);
+            return;     // Prevent access to index -1
+        }
+
+        // Free body allocated memory
+        PHYSAC_FREE(body);
+        usedMemory -= sizeof(PhysicsBodyData);
+        bodies[index] = NULL;
+
+        // Reorder physics bodies pointers array and its catched index
+        for (unsigned int i = index; i < physicsBodiesCount; i++)
+        {
+            if ((i + 1) < physicsBodiesCount) bodies[i] = bodies[i + 1];
+        }
+
+        // Update physics bodies count
+        physicsBodiesCount--;
+
+        TRACELOG("[PHYSAC] Physic body destroyed successfully (id: %i)\n", id);
+    }
+    else TRACELOG("[PHYSAC] WARNING: DestroyPhysicsBody: NULL physic body\n");
+}
+
+// Destroys created physics bodies and manifolds and resets global values
+PHYSACDEF void ResetPhysics(void)
+{
+    if (physicsBodiesCount > 0)
+    {
+        // Unitialize physics bodies dynamic memory allocations
+        for (int i = physicsBodiesCount - 1; i >= 0; i--)
+        {
+            PhysicsBody body = bodies[i];
+
+            if (body != NULL)
+            {
+                PHYSAC_FREE(body);
+                bodies[i] = NULL;
+                usedMemory -= sizeof(PhysicsBodyData);
+            }
+        }
+
+        physicsBodiesCount = 0;
+    }
+
+    if (physicsManifoldsCount > 0)
+    {
+        // Unitialize physics manifolds dynamic memory allocations
+        for (int i = physicsManifoldsCount - 1; i >= 0; i--)
+        {
+            PhysicsManifold manifold = contacts[i];
+
+            if (manifold != NULL)
+            {
+                PHYSAC_FREE(manifold);
+                contacts[i] = NULL;
+                usedMemory -= sizeof(PhysicsManifoldData);
+            }
+        }
+
+        physicsManifoldsCount = 0;
+    }
+
+    TRACELOG("[PHYSAC] Physics module reseted successfully\n");
+}
+
+// Unitializes physics pointers and exits physics loop thread
+PHYSACDEF void ClosePhysics(void)
+{
+    // Unitialize physics manifolds dynamic memory allocations
+    if (physicsManifoldsCount > 0)
+    {
+        for (unsigned int i = physicsManifoldsCount - 1; i >= 0; i--)
+            DestroyPhysicsManifold(contacts[i]);
+    }
+    
+    // Unitialize physics bodies dynamic memory allocations
+    if (physicsBodiesCount > 0)
+    {
+        for (unsigned int i = physicsBodiesCount - 1; i >= 0; i--)
+            DestroyPhysicsBody(bodies[i]);
+    }
+
+    // Trace log info
+    if ((physicsBodiesCount > 0) || (usedMemory != 0)) 
+    {
+        TRACELOG("[PHYSAC] WARNING: Physics module closed with unallocated bodies (BODIES: %i, MEMORY: %i bytes)\n", physicsBodiesCount, usedMemory);
+    }
+    else if ((physicsManifoldsCount > 0) || (usedMemory != 0)) 
+    {
+        TRACELOG("[PHYSAC] WARNING: Pysics module closed with unallocated manifolds (MANIFOLDS: %i, MEMORY: %i bytes)\n", physicsManifoldsCount, usedMemory);
+    }
+    else TRACELOG("[PHYSAC] Physics module closed successfully\n");
+}
+
+//----------------------------------------------------------------------------------
+// Module Internal Functions Definition
+//----------------------------------------------------------------------------------
+// Finds a valid index for a new physics body initialization
+static int FindAvailableBodyIndex()
+{
+    int index = -1;
+    for (int i = 0; i < PHYSAC_MAX_BODIES; i++)
+    {
+        int currentId = i;
+
+        // Check if current id already exist in other physics body
+        for (unsigned int k = 0; k < physicsBodiesCount; k++)
+        {
+            if (bodies[k]->id == currentId)
+            {
+                currentId++;
+                break;
+            }
+        }
+
+        // If it is not used, use it as new physics body id
+        if (currentId == (int)i)
+        {
+            index = (int)i;
+            break;
+        }
+    }
+
+    return index;
+}
+
+// Creates a default polygon shape with max vertex distance from polygon pivot
+static PhysicsVertexData CreateDefaultPolygon(float radius, int sides)
+{
+    PhysicsVertexData data = { 0 };
+    data.vertexCount = sides;
+
+    // Calculate polygon vertices positions
+    for (unsigned int i = 0; i < data.vertexCount; i++)
+    {
+        data.positions[i].x = (float)cosf(360.0f/sides*i*PHYSAC_DEG2RAD)*radius;
+        data.positions[i].y = (float)sinf(360.0f/sides*i*PHYSAC_DEG2RAD)*radius;
+    }
+
+    // Calculate polygon faces normals
+    for (int i = 0; i < (int)data.vertexCount; i++)
+    {
+        int nextIndex = (((i + 1) < sides) ? (i + 1) : 0);
+        Vector2 face = MathVector2Subtract(data.positions[nextIndex], data.positions[i]);
+
+        data.normals[i] = CLITERAL(Vector2){ face.y, -face.x };
+        MathVector2Normalize(&data.normals[i]);
+    }
+
+    return data;
+}
+
+// Creates a rectangle polygon shape based on a min and max positions
+static PhysicsVertexData CreateRectanglePolygon(Vector2 pos, Vector2 size)
+{
+    PhysicsVertexData data = { 0 };
+    data.vertexCount = 4;
+
+    // Calculate polygon vertices positions
+    data.positions[0] = CLITERAL(Vector2){ pos.x + size.x/2, pos.y - size.y/2 };
+    data.positions[1] = CLITERAL(Vector2){ pos.x + size.x/2, pos.y + size.y/2 };
+    data.positions[2] = CLITERAL(Vector2){ pos.x - size.x/2, pos.y + size.y/2 };
+    data.positions[3] = CLITERAL(Vector2){ pos.x - size.x/2, pos.y - size.y/2 };
+
+    // Calculate polygon faces normals
+    for (unsigned int i = 0; i < data.vertexCount; i++)
+    {
+        int nextIndex = (((i + 1) < data.vertexCount) ? (i + 1) : 0);
+        Vector2 face = MathVector2Subtract(data.positions[nextIndex], data.positions[i]);
+
+        data.normals[i] = CLITERAL(Vector2){ face.y, -face.x };
+        MathVector2Normalize(&data.normals[i]);
+    }
+
+    return data;
+}
+
+// Update physics step (dynamics, collisions and position corrections)
+void UpdatePhysicsStep(void)
+{
+    // Clear previous generated collisions information
+    for (int i = (int)physicsManifoldsCount - 1; i >= 0; i--)
+    {
+        PhysicsManifold manifold = contacts[i];
+        if (manifold != NULL) DestroyPhysicsManifold(manifold);
+    }
+
+    // Reset physics bodies grounded state
+    for (unsigned int i = 0; i < physicsBodiesCount; i++)
+    {
+        PhysicsBody body = bodies[i];
+        body->isGrounded = false;
+    }
+    // Generate new collision information
+    for (unsigned int i = 0; i < physicsBodiesCount; i++)
+    {
+        PhysicsBody bodyA = bodies[i];
+
+        if (bodyA != NULL)
+        {
+            for (unsigned int j = i + 1; j < physicsBodiesCount; j++)
+            {
+                PhysicsBody bodyB = bodies[j];
+
+                if (bodyB != NULL)
+                {
+                    if ((bodyA->inverseMass == 0) && (bodyB->inverseMass == 0)) continue;
+
+                    PhysicsManifold manifold = CreatePhysicsManifold(bodyA, bodyB);
+                    SolvePhysicsManifold(manifold);
+
+                    if (manifold->contactsCount > 0)
+                    {
+                        // Create a new manifold with same information as previously solved manifold and add it to the manifolds pool last slot
+                        PhysicsManifold manifold = CreatePhysicsManifold(bodyA, bodyB);
+                        manifold->penetration = manifold->penetration;
+                        manifold->normal = manifold->normal;
+                        manifold->contacts[0] = manifold->contacts[0];
+                        manifold->contacts[1] = manifold->contacts[1];
+                        manifold->contactsCount = manifold->contactsCount;
+                        manifold->restitution = manifold->restitution;
+                        manifold->dynamicFriction = manifold->dynamicFriction;
+                        manifold->staticFriction = manifold->staticFriction;
+                    }
+                }
+            }
+        }
+    }
+
+    // Integrate forces to physics bodies
+    for (unsigned int i = 0; i < physicsBodiesCount; i++)
+    {
+        PhysicsBody body = bodies[i];
+        if (body != NULL) IntegratePhysicsForces(body);
+    }
+
+    // Initialize physics manifolds to solve collisions
+    for (unsigned int i = 0; i < physicsManifoldsCount; i++)
+    {
+        PhysicsManifold manifold = contacts[i];
+        if (manifold != NULL) InitializePhysicsManifolds(manifold);
+    }
+
+    // Integrate physics collisions impulses to solve collisions
+    for (unsigned int i = 0; i < PHYSAC_COLLISION_ITERATIONS; i++)
+    {
+        for (unsigned int j = 0; j < physicsManifoldsCount; j++)
+        {
+            PhysicsManifold manifold = contacts[i];
+            if (manifold != NULL) IntegratePhysicsImpulses(manifold);
+        }
+    }
+
+    // Integrate velocity to physics bodies
+    for (unsigned int i = 0; i < physicsBodiesCount; i++)
+    {
+        PhysicsBody body = bodies[i];
+        if (body != NULL) IntegratePhysicsVelocity(body);
+    }
+
+    // Correct physics bodies positions based on manifolds collision information
+    for (unsigned int i = 0; i < physicsManifoldsCount; i++)
+    {
+        PhysicsManifold manifold = contacts[i];
+        if (manifold != NULL) CorrectPhysicsPositions(manifold);
+    }
+
+    // Clear physics bodies forces
+    for (unsigned int i = 0; i < physicsBodiesCount; i++)
+    {
+        PhysicsBody body = bodies[i];
+        if (body != NULL)
+        {
+            body->force = PHYSAC_VECTOR_ZERO;
+            body->torque = 0.0f;
+        }
+    }
+}
+
+// Update physics system
+// Physics steps are launched at a fixed time step if enabled
+PHYSACDEF void UpdatePhysics(void)
+{
+#if !defined(PHYSAC_AVOID_TIMMING_SYSTEM)
+    static double deltaTimeAccumulator = 0.0;
+
+    // Calculate current time (ms)
+    currentTime = GetCurrentTime();
+
+    // Calculate current delta time (ms)
+    const double delta = currentTime - startTime;
+
+    // Store the time elapsed since the last frame began
+    deltaTimeAccumulator += delta;
+
+    // Fixed time stepping loop
+    while (deltaTimeAccumulator >= deltaTime)
+    {
+        UpdatePhysicsStep();
+        deltaTimeAccumulator -= deltaTime;
+    }
+
+    // Record the starting of this frame
+    startTime = currentTime;
+#else
+    UpdatePhysicsStep();
+#endif
+}
+
+PHYSACDEF void SetPhysicsTimeStep(double delta)
+{
+    deltaTime = delta;
+}
+
+// Finds a valid index for a new manifold initialization
+static int FindAvailableManifoldIndex()
+{
+    int index = -1;
+    for (int i = 0; i < PHYSAC_MAX_MANIFOLDS; i++)
+    {
+        int currentId = i;
+
+        // Check if current id already exist in other physics body
+        for (unsigned int k = 0; k < physicsManifoldsCount; k++)
+        {
+            if (contacts[k]->id == currentId)
+            {
+                currentId++;
+                break;
+            }
+        }
+
+        // If it is not used, use it as new physics body id
+        if (currentId == i)
+        {
+            index = i;
+            break;
+        }
+    }
+
+    return index;
+}
+
+// Creates a new physics manifold to solve collision
+static PhysicsManifold CreatePhysicsManifold(PhysicsBody a, PhysicsBody b)
+{
+    PhysicsManifold manifold = (PhysicsManifold)PHYSAC_MALLOC(sizeof(PhysicsManifoldData));
+    usedMemory += sizeof(PhysicsManifoldData);
+
+    int id = FindAvailableManifoldIndex();
+    if (id != -1)
+    {
+        // Initialize new manifold with generic values
+        manifold->id = id;
+        manifold->bodyA = a;
+        manifold->bodyB = b;
+        manifold->penetration = 0;
+        manifold->normal = PHYSAC_VECTOR_ZERO;
+        manifold->contacts[0] = PHYSAC_VECTOR_ZERO;
+        manifold->contacts[1] = PHYSAC_VECTOR_ZERO;
+        manifold->contactsCount = 0;
+        manifold->restitution = 0.0f;
+        manifold->dynamicFriction = 0.0f;
+        manifold->staticFriction = 0.0f;
+
+        // Add new body to bodies pointers array and update bodies count
+        contacts[physicsManifoldsCount] = manifold;
+        physicsManifoldsCount++;
+    }
+    else TRACELOG("[PHYSAC] Physic manifold could not be created, PHYSAC_MAX_MANIFOLDS reached\n");
+
+    return manifold;
+}
+
+// Unitializes and destroys a physics manifold
+static void DestroyPhysicsManifold(PhysicsManifold manifold)
+{
+    if (manifold != NULL)
+    {
+        int id = manifold->id;
+        int index = -1;
+
+        for (unsigned int i = 0; i < physicsManifoldsCount; i++)
+        {
+            if (contacts[i]->id == id)
+            {
+                index = i;
+                break;
+            }
+        }
+
+        if (index == -1) return;     // Prevent access to index -1
+
+        // Free manifold allocated memory
+        PHYSAC_FREE(manifold);
+        usedMemory -= sizeof(PhysicsManifoldData);
+        contacts[index] = NULL;
+
+        // Reorder physics manifolds pointers array and its catched index
+        for (unsigned int i = index; i < physicsManifoldsCount; i++)
+        {
+            if ((i + 1) < physicsManifoldsCount) contacts[i] = contacts[i + 1];
+        }
+
+        // Update physics manifolds count
+        physicsManifoldsCount--;
+    }
+    else TRACELOG("[PHYSAC] WARNING: DestroyPhysicsManifold: NULL physic manifold\n");
+}
+
+// Solves a created physics manifold between two physics bodies
+static void SolvePhysicsManifold(PhysicsManifold manifold)
+{
+    switch (manifold->bodyA->shape.type)
+    {
+        case PHYSICS_CIRCLE:
+        {
+            switch (manifold->bodyB->shape.type)
+            {
+                case PHYSICS_CIRCLE: SolveCircleToCircle(manifold); break;
+                case PHYSICS_POLYGON: SolveCircleToPolygon(manifold); break;
+                default: break;
+            }
+        } break;
+        case PHYSICS_POLYGON:
+        {
+            switch (manifold->bodyB->shape.type)
+            {
+                case PHYSICS_CIRCLE: SolvePolygonToCircle(manifold); break;
+                case PHYSICS_POLYGON: SolvePolygonToPolygon(manifold); break;
+                default: break;
+            }
+        } break;
+        default: break;
+    }
+
+    // Update physics body grounded state if normal direction is down and grounded state is not set yet in previous manifolds
+    if (!manifold->bodyB->isGrounded) manifold->bodyB->isGrounded = (manifold->normal.y < 0);
+}
+
+// Solves collision between two circle shape physics bodies
+static void SolveCircleToCircle(PhysicsManifold manifold)
+{
+    PhysicsBody bodyA = manifold->bodyA;
+    PhysicsBody bodyB = manifold->bodyB;
+
+    if ((bodyA == NULL) || (bodyB == NULL)) return;
+
+    // Calculate translational vector, which is normal
+    Vector2 normal = MathVector2Subtract(bodyB->position, bodyA->position);
+
+    float distSqr = MathVector2SqrLen(normal);
+    float radius = bodyA->shape.radius + bodyB->shape.radius;
+
+    // Check if circles are not in contact
+    if (distSqr >= radius*radius)
+    {
+        manifold->contactsCount = 0;
+        return;
+    }
+
+    float distance = sqrtf(distSqr);
+    manifold->contactsCount = 1;
+
+    if (distance == 0.0f)
+    {
+        manifold->penetration = bodyA->shape.radius;
+        manifold->normal = CLITERAL(Vector2){ 1.0f, 0.0f };
+        manifold->contacts[0] = bodyA->position;
+    }
+    else
+    {
+        manifold->penetration = radius - distance;
+        manifold->normal = CLITERAL(Vector2){ normal.x/distance, normal.y/distance }; // Faster than using MathVector2Normalize() due to sqrt is already performed
+        manifold->contacts[0] = CLITERAL(Vector2){ manifold->normal.x*bodyA->shape.radius + bodyA->position.x, manifold->normal.y*bodyA->shape.radius + bodyA->position.y };
+    }
+
+    // Update physics body grounded state if normal direction is down
+    if (!bodyA->isGrounded) bodyA->isGrounded = (manifold->normal.y < 0);
+}
+
+// Solves collision between a circle to a polygon shape physics bodies
+static void SolveCircleToPolygon(PhysicsManifold manifold)
+{
+    PhysicsBody bodyA = manifold->bodyA;
+    PhysicsBody bodyB = manifold->bodyB;
+
+    if ((bodyA == NULL) || (bodyB == NULL)) return;
+
+    manifold->contactsCount = 0;
+
+    // Transform circle center to polygon transform space
+    Vector2 center = bodyA->position;
+    center = MathMatVector2Product(MathMatTranspose(bodyB->shape.transform), MathVector2Subtract(center, bodyB->position));
+
+    // Find edge with minimum penetration
+    // It is the same concept as using support points in SolvePolygonToPolygon
+    float separation = -PHYSAC_FLT_MAX;
+    int faceNormal = 0;
+    PhysicsVertexData vertexData = bodyB->shape.vertexData;
+
+    for (unsigned int i = 0; i < vertexData.vertexCount; i++)
+    {
+        float currentSeparation = MathVector2DotProduct(vertexData.normals[i], MathVector2Subtract(center, vertexData.positions[i]));
+
+        if (currentSeparation > bodyA->shape.radius) return;
+
+        if (currentSeparation > separation)
+        {
+            separation = currentSeparation;
+            faceNormal = i;
+        }
+    }
+
+    // Grab face's vertices
+    Vector2 v1 = vertexData.positions[faceNormal];
+    int nextIndex = (((faceNormal + 1) < (int)vertexData.vertexCount) ? (faceNormal + 1) : 0);
+    Vector2 v2 = vertexData.positions[nextIndex];
+
+    // Check to see if center is within polygon
+    if (separation < PHYSAC_EPSILON)
+    {
+        manifold->contactsCount = 1;
+        Vector2 normal = MathMatVector2Product(bodyB->shape.transform, vertexData.normals[faceNormal]);
+        manifold->normal = CLITERAL(Vector2){ -normal.x, -normal.y };
+        manifold->contacts[0] = CLITERAL(Vector2){ manifold->normal.x*bodyA->shape.radius + bodyA->position.x, manifold->normal.y*bodyA->shape.radius + bodyA->position.y };
+        manifold->penetration = bodyA->shape.radius;
+        return;
+    }
+
+    // Determine which voronoi region of the edge center of circle lies within
+    float dot1 = MathVector2DotProduct(MathVector2Subtract(center, v1), MathVector2Subtract(v2, v1));
+    float dot2 = MathVector2DotProduct(MathVector2Subtract(center, v2), MathVector2Subtract(v1, v2));
+    manifold->penetration = bodyA->shape.radius - separation;
+
+    if (dot1 <= 0.0f) // Closest to v1
+    {
+        if (MathVector2SqrDistance(center, v1) > bodyA->shape.radius*bodyA->shape.radius) return;
+
+        manifold->contactsCount = 1;
+        Vector2 normal = MathVector2Subtract(v1, center);
+        normal = MathMatVector2Product(bodyB->shape.transform, normal);
+        MathVector2Normalize(&normal);
+        manifold->normal = normal;
+        v1 = MathMatVector2Product(bodyB->shape.transform, v1);
+        v1 = MathVector2Add(v1, bodyB->position);
+        manifold->contacts[0] = v1;
+    }
+    else if (dot2 <= 0.0f) // Closest to v2
+    {
+        if (MathVector2SqrDistance(center, v2) > bodyA->shape.radius*bodyA->shape.radius) return;
+
+        manifold->contactsCount = 1;
+        Vector2 normal = MathVector2Subtract(v2, center);
+        v2 = MathMatVector2Product(bodyB->shape.transform, v2);
+        v2 = MathVector2Add(v2, bodyB->position);
+        manifold->contacts[0] = v2;
+        normal = MathMatVector2Product(bodyB->shape.transform, normal);
+        MathVector2Normalize(&normal);
+        manifold->normal = normal;
+    }
+    else // Closest to face
+    {
+        Vector2 normal = vertexData.normals[faceNormal];
+
+        if (MathVector2DotProduct(MathVector2Subtract(center, v1), normal) > bodyA->shape.radius) return;
+
+        normal = MathMatVector2Product(bodyB->shape.transform, normal);
+        manifold->normal = CLITERAL(Vector2){ -normal.x, -normal.y };
+        manifold->contacts[0] = CLITERAL(Vector2){ manifold->normal.x*bodyA->shape.radius + bodyA->position.x, manifold->normal.y*bodyA->shape.radius + bodyA->position.y };
+        manifold->contactsCount = 1;
+    }
+}
+
+// Solves collision between a polygon to a circle shape physics bodies
+static void SolvePolygonToCircle(PhysicsManifold manifold)
+{
+    PhysicsBody bodyA = manifold->bodyA;
+    PhysicsBody bodyB = manifold->bodyB;
+
+    if ((bodyA == NULL) || (bodyB == NULL)) return;
+
+    manifold->bodyA = bodyB;
+    manifold->bodyB = bodyA;
+    SolveCircleToPolygon(manifold);
+
+    manifold->normal.x *= -1.0f;
+    manifold->normal.y *= -1.0f;
+}
+
+// Solves collision between two polygons shape physics bodies
+static void SolvePolygonToPolygon(PhysicsManifold manifold)
+{
+    if ((manifold->bodyA == NULL) || (manifold->bodyB == NULL)) return;
+
+    PhysicsShape bodyA = manifold->bodyA->shape;
+    PhysicsShape bodyB = manifold->bodyB->shape;
+    manifold->contactsCount = 0;
+
+    // Check for separating axis with A shape's face planes
+    int faceA = 0;
+    float penetrationA = FindAxisLeastPenetration(&faceA, bodyA, bodyB);
+    if (penetrationA >= 0.0f) return;
+
+    // Check for separating axis with B shape's face planes
+    int faceB = 0;
+    float penetrationB = FindAxisLeastPenetration(&faceB, bodyB, bodyA);
+    if (penetrationB >= 0.0f) return;
+
+    int referenceIndex = 0;
+    bool flip = false;  // Always point from A shape to B shape
+
+    PhysicsShape refPoly; // Reference
+    PhysicsShape incPoly; // Incident
+
+    // Determine which shape contains reference face
+    // Checking bias range for penetration
+    if (penetrationA >= (penetrationB*0.95f + penetrationA*0.01f))
+    {
+        refPoly = bodyA;
+        incPoly = bodyB;
+        referenceIndex = faceA;
+    }
+    else
+    {
+        refPoly = bodyB;
+        incPoly = bodyA;
+        referenceIndex = faceB;
+        flip = true;
+    }
+
+    // World space incident face
+    Vector2 incidentFace[2];
+    FindIncidentFace(&incidentFace[0], &incidentFace[1], refPoly, incPoly, referenceIndex);
+
+    // Setup reference face vertices
+    PhysicsVertexData refData = refPoly.vertexData;
+    Vector2 v1 = refData.positions[referenceIndex];
+    referenceIndex = (((referenceIndex + 1) < (int)refData.vertexCount) ? (referenceIndex + 1) : 0);
+    Vector2 v2 = refData.positions[referenceIndex];
+
+    // Transform vertices to world space
+    v1 = MathMatVector2Product(refPoly.transform, v1);
+    v1 = MathVector2Add(v1, refPoly.body->position);
+    v2 = MathMatVector2Product(refPoly.transform, v2);
+    v2 = MathVector2Add(v2, refPoly.body->position);
+
+    // Calculate reference face side normal in world space
+    Vector2 sidePlaneNormal = MathVector2Subtract(v2, v1);
+    MathVector2Normalize(&sidePlaneNormal);
+
+    // Orthogonalize
+    Vector2 refFaceNormal = { sidePlaneNormal.y, -sidePlaneNormal.x };
+    float refC = MathVector2DotProduct(refFaceNormal, v1);
+    float negSide = MathVector2DotProduct(sidePlaneNormal, v1)*-1;
+    float posSide = MathVector2DotProduct(sidePlaneNormal, v2);
+
+    // MathVector2Clip incident face to reference face side planes (due to floating point error, possible to not have required points
+    if (MathVector2Clip(CLITERAL(Vector2){ -sidePlaneNormal.x, -sidePlaneNormal.y }, &incidentFace[0], &incidentFace[1], negSide) < 2) return;
+    if (MathVector2Clip(sidePlaneNormal, &incidentFace[0], &incidentFace[1], posSide) < 2) return;
+
+    // Flip normal if required
+    manifold->normal = (flip ? CLITERAL(Vector2){ -refFaceNormal.x, -refFaceNormal.y } : refFaceNormal);
+
+    // Keep points behind reference face
+    int currentPoint = 0; // MathVector2Clipped points behind reference face
+    float separation = MathVector2DotProduct(refFaceNormal, incidentFace[0]) - refC;
+    if (separation <= 0.0f)
+    {
+        manifold->contacts[currentPoint] = incidentFace[0];
+        manifold->penetration = -separation;
+        currentPoint++;
+    }
+    else manifold->penetration = 0.0f;
+
+    separation = MathVector2DotProduct(refFaceNormal, incidentFace[1]) - refC;
+
+    if (separation <= 0.0f)
+    {
+        manifold->contacts[currentPoint] = incidentFace[1];
+        manifold->penetration += -separation;
+        currentPoint++;
+
+        // Calculate total penetration average
+        manifold->penetration /= currentPoint;
+    }
+
+    manifold->contactsCount = currentPoint;
+}
+
+// Integrates physics forces into velocity
+static void IntegratePhysicsForces(PhysicsBody body)
+{
+    if ((body == NULL) || (body->inverseMass == 0.0f) || !body->enabled) return;
+
+    body->velocity.x += (float)((body->force.x*body->inverseMass)*(deltaTime/2.0));
+    body->velocity.y += (float)((body->force.y*body->inverseMass)*(deltaTime/2.0));
+
+    if (body->useGravity)
+    {
+        body->velocity.x += (float)(gravityForce.x*(deltaTime/1000/2.0));
+        body->velocity.y += (float)(gravityForce.y*(deltaTime/1000/2.0));
+    }
+
+    if (!body->freezeOrient) body->angularVelocity += (float)(body->torque*body->inverseInertia*(deltaTime/2.0));
+}
+
+// Initializes physics manifolds to solve collisions
+static void InitializePhysicsManifolds(PhysicsManifold manifold)
+{
+    PhysicsBody bodyA = manifold->bodyA;
+    PhysicsBody bodyB = manifold->bodyB;
+
+    if ((bodyA == NULL) || (bodyB == NULL)) return;
+
+    // Calculate average restitution, static and dynamic friction
+    manifold->restitution = sqrtf(bodyA->restitution*bodyB->restitution);
+    manifold->staticFriction = sqrtf(bodyA->staticFriction*bodyB->staticFriction);
+    manifold->dynamicFriction = sqrtf(bodyA->dynamicFriction*bodyB->dynamicFriction);
+
+    for (unsigned int i = 0; i < manifold->contactsCount; i++)
+    {
+        // Caculate radius from center of mass to contact
+        Vector2 radiusA = MathVector2Subtract(manifold->contacts[i], bodyA->position);
+        Vector2 radiusB = MathVector2Subtract(manifold->contacts[i], bodyB->position);
+
+        Vector2 crossA = MathVector2Product(radiusA, bodyA->angularVelocity);
+        Vector2 crossB = MathVector2Product(radiusB, bodyB->angularVelocity);
+
+        Vector2 radiusV = { 0.0f, 0.0f };
+        radiusV.x = bodyB->velocity.x + crossB.x - bodyA->velocity.x - crossA.x;
+        radiusV.y = bodyB->velocity.y + crossB.y - bodyA->velocity.y - crossA.y;
+
+        // Determine if we should perform a resting collision or not;
+        // The idea is if the only thing moving this object is gravity, then the collision should be performed without any restitution
+        if (MathVector2SqrLen(radiusV) < (MathVector2SqrLen(CLITERAL(Vector2){ (float)(gravityForce.x*deltaTime/1000), (float)(gravityForce.y*deltaTime/1000) }) + PHYSAC_EPSILON)) manifold->restitution = 0;
+    }
+}
+
+// Integrates physics collisions impulses to solve collisions
+static void IntegratePhysicsImpulses(PhysicsManifold manifold)
+{
+    PhysicsBody bodyA = manifold->bodyA;
+    PhysicsBody bodyB = manifold->bodyB;
+
+    if ((bodyA == NULL) || (bodyB == NULL)) return;
+
+    // Early out and positional correct if both objects have infinite mass
+    if (fabs(bodyA->inverseMass + bodyB->inverseMass) <= PHYSAC_EPSILON)
+    {
+        bodyA->velocity = PHYSAC_VECTOR_ZERO;
+        bodyB->velocity = PHYSAC_VECTOR_ZERO;
+        return;
+    }
+
+    for (unsigned int i = 0; i < manifold->contactsCount; i++)
+    {
+        // Calculate radius from center of mass to contact
+        Vector2 radiusA = MathVector2Subtract(manifold->contacts[i], bodyA->position);
+        Vector2 radiusB = MathVector2Subtract(manifold->contacts[i], bodyB->position);
+
+        // Calculate relative velocity
+        Vector2 radiusV = { 0.0f, 0.0f };
+        radiusV.x = bodyB->velocity.x + MathVector2Product(radiusB, bodyB->angularVelocity).x - bodyA->velocity.x - MathVector2Product(radiusA, bodyA->angularVelocity).x;
+        radiusV.y = bodyB->velocity.y + MathVector2Product(radiusB, bodyB->angularVelocity).y - bodyA->velocity.y - MathVector2Product(radiusA, bodyA->angularVelocity).y;
+
+        // Relative velocity along the normal
+        float contactVelocity = MathVector2DotProduct(radiusV, manifold->normal);
+
+        // Do not resolve if velocities are separating
+        if (contactVelocity > 0.0f) return;
+
+        float raCrossN = MathVector2CrossProduct(radiusA, manifold->normal);
+        float rbCrossN = MathVector2CrossProduct(radiusB, manifold->normal);
+
+        float inverseMassSum = bodyA->inverseMass + bodyB->inverseMass + (raCrossN*raCrossN)*bodyA->inverseInertia + (rbCrossN*rbCrossN)*bodyB->inverseInertia;
+
+        // Calculate impulse scalar value
+        float impulse = -(1.0f + manifold->restitution)*contactVelocity;
+        impulse /= inverseMassSum;
+        impulse /= (float)manifold->contactsCount;
+
+        // Apply impulse to each physics body
+        Vector2 impulseV = { manifold->normal.x*impulse, manifold->normal.y*impulse };
+
+        if (bodyA->enabled)
+        {
+            bodyA->velocity.x += bodyA->inverseMass*(-impulseV.x);
+            bodyA->velocity.y += bodyA->inverseMass*(-impulseV.y);
+            if (!bodyA->freezeOrient) bodyA->angularVelocity += bodyA->inverseInertia*MathVector2CrossProduct(radiusA, CLITERAL(Vector2){ -impulseV.x, -impulseV.y });
+        }
+
+        if (bodyB->enabled)
+        {
+            bodyB->velocity.x += bodyB->inverseMass*(impulseV.x);
+            bodyB->velocity.y += bodyB->inverseMass*(impulseV.y);
+            if (!bodyB->freezeOrient) bodyB->angularVelocity += bodyB->inverseInertia*MathVector2CrossProduct(radiusB, impulseV);
+        }
+
+        // Apply friction impulse to each physics body
+        radiusV.x = bodyB->velocity.x + MathVector2Product(radiusB, bodyB->angularVelocity).x - bodyA->velocity.x - MathVector2Product(radiusA, bodyA->angularVelocity).x;
+        radiusV.y = bodyB->velocity.y + MathVector2Product(radiusB, bodyB->angularVelocity).y - bodyA->velocity.y - MathVector2Product(radiusA, bodyA->angularVelocity).y;
+
+        Vector2 tangent = { radiusV.x - (manifold->normal.x*MathVector2DotProduct(radiusV, manifold->normal)), radiusV.y - (manifold->normal.y*MathVector2DotProduct(radiusV, manifold->normal)) };
+        MathVector2Normalize(&tangent);
+
+        // Calculate impulse tangent magnitude
+        float impulseTangent = -MathVector2DotProduct(radiusV, tangent);
+        impulseTangent /= inverseMassSum;
+        impulseTangent /= (float)manifold->contactsCount;
+
+        float absImpulseTangent = (float)fabs(impulseTangent);
+
+        // Don't apply tiny friction impulses
+        if (absImpulseTangent <= PHYSAC_EPSILON) return;
+
+        // Apply coulumb's law
+        Vector2 tangentImpulse = { 0.0f, 0.0f };
+        if (absImpulseTangent < impulse*manifold->staticFriction) tangentImpulse = CLITERAL(Vector2){ tangent.x*impulseTangent, tangent.y*impulseTangent };
+        else tangentImpulse = CLITERAL(Vector2){ tangent.x*-impulse*manifold->dynamicFriction, tangent.y*-impulse*manifold->dynamicFriction };
+
+        // Apply friction impulse
+        if (bodyA->enabled)
+        {
+            bodyA->velocity.x += bodyA->inverseMass*(-tangentImpulse.x);
+            bodyA->velocity.y += bodyA->inverseMass*(-tangentImpulse.y);
+
+            if (!bodyA->freezeOrient) bodyA->angularVelocity += bodyA->inverseInertia*MathVector2CrossProduct(radiusA, CLITERAL(Vector2){ -tangentImpulse.x, -tangentImpulse.y });
+        }
+
+        if (bodyB->enabled)
+        {
+            bodyB->velocity.x += bodyB->inverseMass*(tangentImpulse.x);
+            bodyB->velocity.y += bodyB->inverseMass*(tangentImpulse.y);
+
+            if (!bodyB->freezeOrient) bodyB->angularVelocity += bodyB->inverseInertia*MathVector2CrossProduct(radiusB, tangentImpulse);
+        }
+    }
+}
+
+// Integrates physics velocity into position and forces
+static void IntegratePhysicsVelocity(PhysicsBody body)
+{
+    if ((body == NULL) ||!body->enabled) return;
+
+    body->position.x += (float)(body->velocity.x*deltaTime);
+    body->position.y += (float)(body->velocity.y*deltaTime);
+
+    if (!body->freezeOrient) body->orient += (float)(body->angularVelocity*deltaTime);
+    body->shape.transform = MathMatFromRadians(body->orient);
+
+    IntegratePhysicsForces(body);
+}
+
+// Corrects physics bodies positions based on manifolds collision information
+static void CorrectPhysicsPositions(PhysicsManifold manifold)
+{
+    PhysicsBody bodyA = manifold->bodyA;
+    PhysicsBody bodyB = manifold->bodyB;
+
+    if ((bodyA == NULL) || (bodyB == NULL)) return;
+
+    Vector2 correction = { 0.0f, 0.0f };
+    correction.x = (PHYSAC_MAX(manifold->penetration - PHYSAC_PENETRATION_ALLOWANCE, 0.0f)/(bodyA->inverseMass + bodyB->inverseMass))*manifold->normal.x*PHYSAC_PENETRATION_CORRECTION;
+    correction.y = (PHYSAC_MAX(manifold->penetration - PHYSAC_PENETRATION_ALLOWANCE, 0.0f)/(bodyA->inverseMass + bodyB->inverseMass))*manifold->normal.y*PHYSAC_PENETRATION_CORRECTION;
+
+    if (bodyA->enabled)
+    {
+        bodyA->position.x -= correction.x*bodyA->inverseMass;
+        bodyA->position.y -= correction.y*bodyA->inverseMass;
+    }
+
+    if (bodyB->enabled)
+    {
+        bodyB->position.x += correction.x*bodyB->inverseMass;
+        bodyB->position.y += correction.y*bodyB->inverseMass;
+    }
+}
+
+// Returns the extreme point along a direction within a polygon
+static Vector2 GetSupport(PhysicsShape shape, Vector2 dir)
+{
+    float bestProjection = -PHYSAC_FLT_MAX;
+    Vector2 bestVertex = { 0.0f, 0.0f };
+    PhysicsVertexData data = shape.vertexData;
+
+    for (unsigned int i = 0; i < data.vertexCount; i++)
+    {
+        Vector2 vertex = data.positions[i];
+        float projection = MathVector2DotProduct(vertex, dir);
+
+        if (projection > bestProjection)
+        {
+            bestVertex = vertex;
+            bestProjection = projection;
+        }
+    }
+
+    return bestVertex;
+}
+
+// Finds polygon shapes axis least penetration
+static float FindAxisLeastPenetration(int *faceIndex, PhysicsShape shapeA, PhysicsShape shapeB)
+{
+    float bestDistance = -PHYSAC_FLT_MAX;
+    int bestIndex = 0;
+
+    PhysicsVertexData dataA = shapeA.vertexData;
+    //PhysicsVertexData dataB = shapeB.vertexData;
+
+    for (unsigned int i = 0; i < dataA.vertexCount; i++)
+    {
+        // Retrieve a face normal from A shape
+        Vector2 normal = dataA.normals[i];
+        Vector2 transNormal = MathMatVector2Product(shapeA.transform, normal);
+
+        // Transform face normal into B shape's model space
+        Matrix2x2 buT = MathMatTranspose(shapeB.transform);
+        normal = MathMatVector2Product(buT, transNormal);
+
+        // Retrieve support point from B shape along -n
+        Vector2 support = GetSupport(shapeB, CLITERAL(Vector2){ -normal.x, -normal.y });
+
+        // Retrieve vertex on face from A shape, transform into B shape's model space
+        Vector2 vertex = dataA.positions[i];
+        vertex = MathMatVector2Product(shapeA.transform, vertex);
+        vertex = MathVector2Add(vertex, shapeA.body->position);
+        vertex = MathVector2Subtract(vertex, shapeB.body->position);
+        vertex = MathMatVector2Product(buT, vertex);
+
+        // Compute penetration distance in B shape's model space
+        float distance = MathVector2DotProduct(normal, MathVector2Subtract(support, vertex));
+
+        // Store greatest distance
+        if (distance > bestDistance)
+        {
+            bestDistance = distance;
+            bestIndex = i;
+        }
+    }
+
+    *faceIndex = bestIndex;
+    return bestDistance;
+}
+
+// Finds two polygon shapes incident face
+static void FindIncidentFace(Vector2 *v0, Vector2 *v1, PhysicsShape ref, PhysicsShape inc, int index)
+{
+    PhysicsVertexData refData = ref.vertexData;
+    PhysicsVertexData incData = inc.vertexData;
+
+    Vector2 referenceNormal = refData.normals[index];
+
+    // Calculate normal in incident's frame of reference
+    referenceNormal = MathMatVector2Product(ref.transform, referenceNormal); // To world space
+    referenceNormal = MathMatVector2Product(MathMatTranspose(inc.transform), referenceNormal); // To incident's model space
+
+    // Find most anti-normal face on polygon
+    int incidentFace = 0;
+    float minDot = PHYSAC_FLT_MAX;
+
+    for (unsigned int i = 0; i < incData.vertexCount; i++)
+    {
+        float dot = MathVector2DotProduct(referenceNormal, incData.normals[i]);
+
+        if (dot < minDot)
+        {
+            minDot = dot;
+            incidentFace = i;
+        }
+    }
+
+    // Assign face vertices for incident face
+    *v0 = MathMatVector2Product(inc.transform, incData.positions[incidentFace]);
+    *v0 = MathVector2Add(*v0, inc.body->position);
+    incidentFace = (((incidentFace + 1) < (int)incData.vertexCount) ? (incidentFace + 1) : 0);
+    *v1 = MathMatVector2Product(inc.transform, incData.positions[incidentFace]);
+    *v1 = MathVector2Add(*v1, inc.body->position);
+}
+
+// Returns clipping value based on a normal and two faces
+static int MathVector2Clip(Vector2 normal, Vector2 *faceA, Vector2 *faceB, float clip)
+{
+    int sp = 0;
+    Vector2 out[2] = { *faceA, *faceB };
+
+    // Retrieve distances from each endpoint to the line
+    float distanceA = MathVector2DotProduct(normal, *faceA) - clip;
+    float distanceB = MathVector2DotProduct(normal, *faceB) - clip;
+
+    // If negative (behind plane)
+    if (distanceA <= 0.0f) out[sp++] = *faceA;
+    if (distanceB <= 0.0f) out[sp++] = *faceB;
+
+    // If the points are on different sides of the plane
+    if ((distanceA*distanceB) < 0.0f)
+    {
+        // Push intersection point
+        float alpha = distanceA/(distanceA - distanceB);
+        out[sp] = *faceA;
+        Vector2 delta = MathVector2Subtract(*faceB, *faceA);
+        delta.x *= alpha;
+        delta.y *= alpha;
+        out[sp] = MathVector2Add(out[sp], delta);
+        sp++;
+    }
+
+    // Assign the new converted values
+    *faceA = out[0];
+    *faceB = out[1];
+
+    return sp;
+}
+
+// Returns the barycenter of a triangle given by 3 points
+static Vector2 MathTriangleBarycenter(Vector2 v1, Vector2 v2, Vector2 v3)
+{
+    Vector2 result = { 0.0f, 0.0f };
+
+    result.x = (v1.x + v2.x + v3.x)/3;
+    result.y = (v1.y + v2.y + v3.y)/3;
+
+    return result;
+}
+
+#if !defined(PHYSAC_AVOID_TIMMING_SYSTEM)
+// Initializes hi-resolution MONOTONIC timer
+static void InitTimer(void)
+{
+#if defined(_WIN32)
+    QueryPerformanceFrequency((unsigned long long int *) &frequency);
+#endif
+
+#if defined(__EMSCRIPTEN__) || defined(__linux__)
+    struct timespec now;
+    if (clock_gettime(CLOCK_MONOTONIC, &now) == 0) frequency = 1000000000;
+#endif
+
+#if defined(__APPLE__)
+    mach_timebase_info_data_t timebase;
+    mach_timebase_info(&timebase);
+    frequency = (timebase.denom*1e9)/timebase.numer;
+#endif
+
+    baseClockTicks = (double)GetClockTicks();      // Get MONOTONIC clock time offset
+    startTime = GetCurrentTime();                  // Get current time in milliseconds
+}
+
+// Get hi-res MONOTONIC time measure in clock ticks
+static unsigned long long int GetClockTicks(void)
+{
+    unsigned long long int value = 0;
+
+#if defined(_WIN32)
+    QueryPerformanceCounter((unsigned long long int *) &value);
+#endif
+
+#if defined(__linux__)
+    struct timespec now;
+    clock_gettime(CLOCK_MONOTONIC, &now);
+    value = (unsigned long long int)now.tv_sec*(unsigned long long int)1000000000 + (unsigned long long int)now.tv_nsec;
+#endif
+
+#if defined(__APPLE__)
+    value = mach_absolute_time();
+#endif
+
+    return value;
+}
+
+// Get current time in milliseconds
+static double GetCurrentTime(void)
+{
+    return (double)(GetClockTicks() - baseClockTicks)/frequency*1000;
+}
+#endif // !PHYSAC_AVOID_TIMMING_SYSTEM
+
+
+// Returns the cross product of a vector and a value
+static inline Vector2 MathVector2Product(Vector2 vector, float value)
+{
+    Vector2 result = { -value*vector.y, value*vector.x };
+    return result;
+}
+
+// Returns the cross product of two vectors
+static inline float MathVector2CrossProduct(Vector2 v1, Vector2 v2)
+{
+    return (v1.x*v2.y - v1.y*v2.x);
+}
+
+// Returns the len square root of a vector
+static inline float MathVector2SqrLen(Vector2 vector)
+{
+    return (vector.x*vector.x + vector.y*vector.y);
+}
+
+// Returns the dot product of two vectors
+static inline float MathVector2DotProduct(Vector2 v1, Vector2 v2)
+{
+    return (v1.x*v2.x + v1.y*v2.y);
+}
+
+// Returns the square root of distance between two vectors
+static inline float MathVector2SqrDistance(Vector2 v1, Vector2 v2)
+{
+    Vector2 dir = MathVector2Subtract(v1, v2);
+    return MathVector2DotProduct(dir, dir);
+}
+
+// Returns the normalized values of a vector
+static void MathVector2Normalize(Vector2 *vector)
+{
+    float length, ilength;
+
+    Vector2 aux = *vector;
+    length = sqrtf(aux.x*aux.x + aux.y*aux.y);
+
+    if (length == 0) length = 1.0f;
+
+    ilength = 1.0f/length;
+
+    vector->x *= ilength;
+    vector->y *= ilength;
+}
+
+// Returns the sum of two given vectors
+static inline Vector2 MathVector2Add(Vector2 v1, Vector2 v2)
+{
+    Vector2 result = { v1.x + v2.x, v1.y + v2.y };
+    return result;
+}
+
+// Returns the subtract of two given vectors
+static inline Vector2 MathVector2Subtract(Vector2 v1, Vector2 v2)
+{
+    Vector2 result = { v1.x - v2.x, v1.y - v2.y };
+    return result;
+}
+
+// Creates a matrix 2x2 from a given radians value
+static Matrix2x2 MathMatFromRadians(float radians)
+{
+    float cos = cosf(radians);
+    float sin = sinf(radians);
+
+    Matrix2x2 result = { cos, -sin, sin, cos };
+    return result;
+}
+
+// Returns the transpose of a given matrix 2x2
+static inline Matrix2x2 MathMatTranspose(Matrix2x2 matrix)
+{
+    Matrix2x2 result = { matrix.m00, matrix.m10, matrix.m01, matrix.m11 };
+    return result;
+}
+
+// Multiplies a vector by a matrix 2x2
+static inline Vector2 MathMatVector2Product(Matrix2x2 matrix, Vector2 vector)
+{
+    Vector2 result = { matrix.m00*vector.x + matrix.m01*vector.y, matrix.m10*vector.x + matrix.m11*vector.y };
+    return result;
+}
+
+#endif  // PHYSAC_IMPLEMENTATION