]> git.sesse.net Git - nageru/blobdiff - resampler.cpp
Add a resampler module, as start of sound support.
[nageru] / resampler.cpp
diff --git a/resampler.cpp b/resampler.cpp
new file mode 100644 (file)
index 0000000..5731465
--- /dev/null
@@ -0,0 +1,141 @@
+// Parts of the code is adapted from Adriaensen's project Zita-ajbridge,
+// although it has been heavily reworked for this use case. Original copyright follows:
+//
+//  Copyright (C) 2012-2015 Fons Adriaensen <fons@linuxaudio.org>
+//    
+//  This program is free software; you can redistribute it and/or modify
+//  it under the terms of the GNU General Public License as published by
+//  the Free Software Foundation; either version 3 of the License, or
+//  (at your option) any later version.
+//
+//  This program is distributed in the hope that it will be useful,
+//  but WITHOUT ANY WARRANTY; without even the implied warranty of
+//  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+//  GNU General Public License for more details.
+//
+//  You should have received a copy of the GNU General Public License
+//  along with this program.  If not, see <http://www.gnu.org/licenses/>.
+
+#include "resampler.h"
+
+#include <stdio.h>
+#include <math.h>
+#include <zita-resampler/vresampler.h>
+
+Resampler::Resampler(unsigned freq_in, unsigned freq_out, unsigned num_channels)
+       : freq_in(freq_in), freq_out(freq_out), num_channels(num_channels),
+         ratio(double(freq_out) / double(freq_in))
+{
+       vresampler.setup(ratio, num_channels, /*hlen=*/32);
+
+       // Prime the resampler so there's no more delay.
+       vresampler.inp_count = vresampler.inpsize() / 2 - 1;
+        vresampler.out_count = 1048576;
+        vresampler.process ();
+}
+
+void Resampler::add_input_samples(double pts, const float *samples, ssize_t num_samples)
+{
+       if (first_input) {
+               // Synthesize a fake length.
+               last_input_len = double(num_samples) / freq_in;
+               first_input = false;
+       } else {
+               last_input_len = pts - last_input_pts;
+       }
+
+       last_input_pts = pts;
+
+       k_a0 = k_a1;
+       k_a1 += num_samples;
+
+       for (ssize_t i = 0; i < num_samples * num_channels; ++i) {
+               buffer.push_back(samples[i]);
+       }
+}
+
+void Resampler::get_output_samples(double pts, float *samples, ssize_t num_samples)
+{
+       double last_output_len;
+       if (first_output) {
+               // Synthesize a fake length.
+               last_output_len = double(num_samples) / freq_out;
+       } else {
+               last_output_len = pts - last_output_pts;
+       }
+       last_output_pts = pts;
+
+       // Using the time point since just before the last call to add_input_samples() as a base,
+       // estimate actual delay based on activity since then, measured in number of input samples:
+       double actual_delay = 0.0;
+       actual_delay += (k_a1 - k_a0) * last_output_len / last_input_len;    // Inserted samples since k_a0, rescaled for the different time periods.
+       actual_delay += k_a0 - total_consumed_samples;                       // Samples inserted before k_a0 but not consumed yet.
+       actual_delay += vresampler.inpdist();                                // Delay in the resampler itself.
+       double err = actual_delay - expected_delay;
+       if (first_output && err < 0.0) {
+               // Before the very first block, insert artificial delay based on our initial estimate,
+               // so that we don't need a long period to stabilize at the beginning.
+               int delay_samples_to_add = lrintf(-err);
+               for (ssize_t i = 0; i < delay_samples_to_add * num_channels; ++i) {
+                       buffer.push_front(0.0f);
+               }
+               total_consumed_samples -= delay_samples_to_add;  // Equivalent to increasing k_a0 and k_a1.
+               err += delay_samples_to_add;
+               first_output = false;
+       }
+
+       // Compute loop filter coefficients for the two filters. We need to compute them
+       // every time, since they depend on the number of samples the user asked for.
+       //
+       // The loop bandwidth starts at 1.0 Hz, then goes down to 0.05 Hz after four seconds.
+       double loop_bandwidth_hz = (k_a0 < 4 * freq_in) ? 1.0 : 0.05;
+
+       // Set first filter much wider than the first one (20x as wide).
+       double w = (2.0 * M_PI) * 20.0 * loop_bandwidth_hz * num_samples / freq_out;
+       double w0 = 1.0 - exp(-w);
+
+       // Set second filter.
+       w = (2.0 * M_PI) * loop_bandwidth_hz * ratio / freq_out;
+       double w1 = w * 1.6;
+       double w2 = w * num_samples / 1.6;
+
+       // Filter <err> through the loop filter to find the correction ratio.
+       z1 += w0 * (w1 * err - z1);
+       z2 += w0 * (z1 - z2);
+       z3 += w2 * z2;
+       double rcorr = 1.0 - z2 - z3;
+       if (rcorr > 1.05) rcorr = 1.05;
+       if (rcorr < 0.95) rcorr = 0.95;
+       vresampler.set_rratio(rcorr);
+
+       // Finally actually resample, consuming exactly <num_samples> output samples.
+       vresampler.out_data = samples;
+       vresampler.out_count = num_samples;
+       while (vresampler.out_count > 0) {
+               if (buffer.empty()) {
+                       // This should never happen unless delay is set way too low,
+                       // or we're dropping a lot of data.
+                       fprintf(stderr, "PANIC: Out of input samples to resample, still need %d output samples!\n",
+                               int(vresampler.out_count));
+                       break;
+               }
+
+               float inbuf[1024];
+               size_t num_input_samples = sizeof(inbuf) / (sizeof(float) * num_channels);
+               if (num_input_samples * num_channels > buffer.size()) {
+                       num_input_samples = buffer.size() / num_channels;
+               }
+               for (size_t i = 0; i < num_input_samples * num_channels; ++i) {
+                       inbuf[i] = buffer[i];
+               }
+
+               vresampler.inp_count = num_input_samples;
+               vresampler.inp_data = inbuf;
+
+               vresampler.process();
+
+               size_t consumed_samples = num_input_samples - vresampler.inp_count;
+               total_consumed_samples += consumed_samples;
+               buffer.erase(buffer.begin(), buffer.begin() + consumed_samples * num_channels);
+       }
+}