]> git.sesse.net Git - stockfish/blobdiff - src/nnue/nnue_feature_transformer.h
Merge remote-tracking branch 'upstream/master'
[stockfish] / src / nnue / nnue_feature_transformer.h
index 2af80f0779250763036e7513383d79718d91fc46..fa180678d89cd333bba382b83f463c64fe9d4958 100644 (file)
@@ -1,6 +1,6 @@
 /*
   Stockfish, a UCI chess playing engine derived from Glaurung 2.1
-  Copyright (C) 2004-2023 The Stockfish developers (see AUTHORS file)
+  Copyright (C) 2004-2024 The Stockfish developers (see AUTHORS file)
 
   Stockfish is free software: you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
@@ -55,15 +55,14 @@ using psqt_vec_t = __m256i;
     #define vec_store(a, b) _mm512_store_si512(a, b)
     #define vec_add_16(a, b) _mm512_add_epi16(a, b)
     #define vec_sub_16(a, b) _mm512_sub_epi16(a, b)
-    #define vec_mul_16(a, b) _mm512_mullo_epi16(a, b)
+    #define vec_mulhi_16(a, b) _mm512_mulhi_epi16(a, b)
     #define vec_zero() _mm512_setzero_epi32()
     #define vec_set_16(a) _mm512_set1_epi16(a)
     #define vec_max_16(a, b) _mm512_max_epi16(a, b)
     #define vec_min_16(a, b) _mm512_min_epi16(a, b)
-inline vec_t vec_msb_pack_16(vec_t a, vec_t b) {
-    vec_t compacted = _mm512_packs_epi16(_mm512_srli_epi16(a, 7), _mm512_srli_epi16(b, 7));
-    return _mm512_permutexvar_epi64(_mm512_setr_epi64(0, 2, 4, 6, 1, 3, 5, 7), compacted);
-}
+    #define vec_slli_16(a, b) _mm512_slli_epi16(a, b)
+    // Inverse permuted at load time
+    #define vec_packus_16(a, b) _mm512_packus_epi16(a, b)
     #define vec_load_psqt(a) _mm256_load_si256(a)
     #define vec_store_psqt(a, b) _mm256_store_si256(a, b)
     #define vec_add_psqt_32(a, b) _mm256_add_epi32(a, b)
@@ -79,15 +78,14 @@ using psqt_vec_t = __m256i;
     #define vec_store(a, b) _mm256_store_si256(a, b)
     #define vec_add_16(a, b) _mm256_add_epi16(a, b)
     #define vec_sub_16(a, b) _mm256_sub_epi16(a, b)
-    #define vec_mul_16(a, b) _mm256_mullo_epi16(a, b)
+    #define vec_mulhi_16(a, b) _mm256_mulhi_epi16(a, b)
     #define vec_zero() _mm256_setzero_si256()
     #define vec_set_16(a) _mm256_set1_epi16(a)
     #define vec_max_16(a, b) _mm256_max_epi16(a, b)
     #define vec_min_16(a, b) _mm256_min_epi16(a, b)
-inline vec_t vec_msb_pack_16(vec_t a, vec_t b) {
-    vec_t compacted = _mm256_packs_epi16(_mm256_srli_epi16(a, 7), _mm256_srli_epi16(b, 7));
-    return _mm256_permute4x64_epi64(compacted, 0b11011000);
-}
+    #define vec_slli_16(a, b) _mm256_slli_epi16(a, b)
+    // Inverse permuted at load time
+    #define vec_packus_16(a, b) _mm256_packus_epi16(a, b)
     #define vec_load_psqt(a) _mm256_load_si256(a)
     #define vec_store_psqt(a, b) _mm256_store_si256(a, b)
     #define vec_add_psqt_32(a, b) _mm256_add_epi32(a, b)
@@ -103,12 +101,13 @@ using psqt_vec_t = __m128i;
     #define vec_store(a, b) *(a) = (b)
     #define vec_add_16(a, b) _mm_add_epi16(a, b)
     #define vec_sub_16(a, b) _mm_sub_epi16(a, b)
-    #define vec_mul_16(a, b) _mm_mullo_epi16(a, b)
+    #define vec_mulhi_16(a, b) _mm_mulhi_epi16(a, b)
     #define vec_zero() _mm_setzero_si128()
     #define vec_set_16(a) _mm_set1_epi16(a)
     #define vec_max_16(a, b) _mm_max_epi16(a, b)
     #define vec_min_16(a, b) _mm_min_epi16(a, b)
-    #define vec_msb_pack_16(a, b) _mm_packs_epi16(_mm_srli_epi16(a, 7), _mm_srli_epi16(b, 7))
+    #define vec_slli_16(a, b) _mm_slli_epi16(a, b)
+    #define vec_packus_16(a, b) _mm_packus_epi16(a, b)
     #define vec_load_psqt(a) (*(a))
     #define vec_store_psqt(a, b) *(a) = (b)
     #define vec_add_psqt_32(a, b) _mm_add_epi32(a, b)
@@ -124,18 +123,14 @@ using psqt_vec_t = int32x4_t;
     #define vec_store(a, b) *(a) = (b)
     #define vec_add_16(a, b) vaddq_s16(a, b)
     #define vec_sub_16(a, b) vsubq_s16(a, b)
-    #define vec_mul_16(a, b) vmulq_s16(a, b)
+    #define vec_mulhi_16(a, b) vqdmulhq_s16(a, b)
     #define vec_zero() \
         vec_t { 0 }
     #define vec_set_16(a) vdupq_n_s16(a)
     #define vec_max_16(a, b) vmaxq_s16(a, b)
     #define vec_min_16(a, b) vminq_s16(a, b)
-inline vec_t vec_msb_pack_16(vec_t a, vec_t b) {
-    const int8x8_t  shifta    = vshrn_n_s16(a, 7);
-    const int8x8_t  shiftb    = vshrn_n_s16(b, 7);
-    const int8x16_t compacted = vcombine_s8(shifta, shiftb);
-    return *reinterpret_cast<const vec_t*>(&compacted);
-}
+    #define vec_slli_16(a, b) vshlq_s16(a, vec_set_16(b))
+    #define vec_packus_16(a, b) reinterpret_cast<vec_t>(vcombine_u8(vqmovun_s16(a), vqmovun_s16(b)))
     #define vec_load_psqt(a) (*(a))
     #define vec_store_psqt(a, b) *(a) = (b)
     #define vec_add_psqt_32(a, b) vaddq_s32(a, b)
@@ -186,11 +181,6 @@ static constexpr int BestRegisterCount() {
 
     return 1;
 }
-
-static constexpr int NumRegs =
-  BestRegisterCount<vec_t, WeightType, TransformedFeatureDimensions, NumRegistersSIMD>();
-static constexpr int NumPsqtRegs =
-  BestRegisterCount<psqt_vec_t, PSQTWeightType, PSQTBuckets, NumRegistersSIMD>();
     #if defined(__GNUC__)
         #pragma GCC diagnostic pop
     #endif
@@ -198,13 +188,20 @@ static constexpr int NumPsqtRegs =
 
 
 // Input feature converter
+template<IndexType                                 TransformedFeatureDimensions,
+         Accumulator<TransformedFeatureDimensions> StateInfo::*accPtr>
 class FeatureTransformer {
 
-   private:
     // Number of output dimensions for one side
     static constexpr IndexType HalfDimensions = TransformedFeatureDimensions;
 
+   private:
 #ifdef VECTOR
+    static constexpr int NumRegs =
+      BestRegisterCount<vec_t, WeightType, TransformedFeatureDimensions, NumRegistersSIMD>();
+    static constexpr int NumPsqtRegs =
+      BestRegisterCount<psqt_vec_t, PSQTWeightType, PSQTBuckets, NumRegistersSIMD>();
+
     static constexpr IndexType TileHeight     = NumRegs * sizeof(vec_t) / 2;
     static constexpr IndexType PsqtTileHeight = NumPsqtRegs * sizeof(psqt_vec_t) / 4;
     static_assert(HalfDimensions % TileHeight == 0, "TileHeight must divide HalfDimensions");
@@ -227,6 +224,73 @@ class FeatureTransformer {
         return FeatureSet::HashValue ^ (OutputDimensions * 2);
     }
 
+    static constexpr void order_packs([[maybe_unused]] uint64_t* v) {
+#if defined(USE_AVX512)  // _mm512_packs_epi16 ordering
+        uint64_t tmp0 = v[2], tmp1 = v[3];
+        v[2] = v[8], v[3] = v[9];
+        v[8] = v[4], v[9] = v[5];
+        v[4] = tmp0, v[5] = tmp1;
+        tmp0 = v[6], tmp1 = v[7];
+        v[6] = v[10], v[7] = v[11];
+        v[10] = v[12], v[11] = v[13];
+        v[12] = tmp0, v[13] = tmp1;
+#elif defined(USE_AVX2)  // _mm256_packs_epi16 ordering
+        std::swap(v[2], v[4]);
+        std::swap(v[3], v[5]);
+#endif
+    }
+
+    static constexpr void inverse_order_packs([[maybe_unused]] uint64_t* v) {
+#if defined(USE_AVX512)  // Inverse _mm512_packs_epi16 ordering
+        uint64_t tmp0 = v[2], tmp1 = v[3];
+        v[2] = v[4], v[3] = v[5];
+        v[4] = v[8], v[5] = v[9];
+        v[8] = tmp0, v[9] = tmp1;
+        tmp0 = v[6], tmp1 = v[7];
+        v[6] = v[12], v[7] = v[13];
+        v[12] = v[10], v[13] = v[11];
+        v[10] = tmp0, v[11] = tmp1;
+#elif defined(USE_AVX2)  // Inverse _mm256_packs_epi16 ordering
+        std::swap(v[2], v[4]);
+        std::swap(v[3], v[5]);
+#endif
+    }
+
+    void permute_weights([[maybe_unused]] void (*order_fn)(uint64_t*)) const {
+#if defined(USE_AVX2)
+    #if defined(USE_AVX512)
+        constexpr IndexType di = 16;
+    #else
+        constexpr IndexType di = 8;
+    #endif
+        uint64_t* b = reinterpret_cast<uint64_t*>(const_cast<BiasType*>(&biases[0]));
+        for (IndexType i = 0; i < HalfDimensions * sizeof(BiasType) / sizeof(uint64_t); i += di)
+            order_fn(&b[i]);
+
+        for (IndexType j = 0; j < InputDimensions; ++j)
+        {
+            uint64_t* w =
+              reinterpret_cast<uint64_t*>(const_cast<WeightType*>(&weights[j * HalfDimensions]));
+            for (IndexType i = 0; i < HalfDimensions * sizeof(WeightType) / sizeof(uint64_t);
+                 i += di)
+                order_fn(&w[i]);
+        }
+#endif
+    }
+
+    inline void scale_weights(bool read) const {
+        for (IndexType j = 0; j < InputDimensions; ++j)
+        {
+            WeightType* w = const_cast<WeightType*>(&weights[j * HalfDimensions]);
+            for (IndexType i = 0; i < HalfDimensions; ++i)
+                w[i] = read ? w[i] * 2 : w[i] / 2;
+        }
+
+        BiasType* b = const_cast<BiasType*>(biases);
+        for (IndexType i = 0; i < HalfDimensions; ++i)
+            b[i] = read ? b[i] * 2 : b[i] / 2;
+    }
+
     // Read network parameters
     bool read_parameters(std::istream& stream) {
 
@@ -234,32 +298,41 @@ class FeatureTransformer {
         read_leb_128<WeightType>(stream, weights, HalfDimensions * InputDimensions);
         read_leb_128<PSQTWeightType>(stream, psqtWeights, PSQTBuckets * InputDimensions);
 
+        permute_weights(inverse_order_packs);
+        scale_weights(true);
         return !stream.fail();
     }
 
     // Write network parameters
     bool write_parameters(std::ostream& stream) const {
 
+        permute_weights(order_packs);
+        scale_weights(false);
+
         write_leb_128<BiasType>(stream, biases, HalfDimensions);
         write_leb_128<WeightType>(stream, weights, HalfDimensions * InputDimensions);
         write_leb_128<PSQTWeightType>(stream, psqtWeights, PSQTBuckets * InputDimensions);
 
+        permute_weights(inverse_order_packs);
+        scale_weights(true);
         return !stream.fail();
     }
 
     // Convert input features
-    std::int32_t transform(const Position& pos, OutputType* output, int bucket) const {
-        update_accumulator<WHITE>(pos);
-        update_accumulator<BLACK>(pos);
+    std::int32_t transform(const Position&                           pos,
+                           AccumulatorCaches::Cache<HalfDimensions>* cache,
+                           OutputType*                               output,
+                           int                                       bucket) const {
+        update_accumulator<WHITE>(pos, cache);
+        update_accumulator<BLACK>(pos, cache);
 
         const Color perspectives[2]  = {pos.side_to_move(), ~pos.side_to_move()};
-        const auto& accumulation     = pos.state()->accumulator.accumulation;
-        const auto& psqtAccumulation = pos.state()->accumulator.psqtAccumulation;
-
-        const auto psqt =
+        const auto& psqtAccumulation = (pos.state()->*accPtr).psqtAccumulation;
+        const auto  psqt =
           (psqtAccumulation[perspectives[0]][bucket] - psqtAccumulation[perspectives[1]][bucket])
           / 2;
 
+        const auto& accumulation = (pos.state()->*accPtr).accumulation;
 
         for (IndexType p = 0; p < 2; ++p)
         {
@@ -271,25 +344,87 @@ class FeatureTransformer {
             static_assert((HalfDimensions / 2) % OutputChunkSize == 0);
             constexpr IndexType NumOutputChunks = HalfDimensions / 2 / OutputChunkSize;
 
-            vec_t Zero = vec_zero();
-            vec_t One  = vec_set_16(127);
+            const vec_t Zero = vec_zero();
+            const vec_t One  = vec_set_16(127 * 2);
 
             const vec_t* in0 = reinterpret_cast<const vec_t*>(&(accumulation[perspectives[p]][0]));
             const vec_t* in1 =
               reinterpret_cast<const vec_t*>(&(accumulation[perspectives[p]][HalfDimensions / 2]));
             vec_t* out = reinterpret_cast<vec_t*>(output + offset);
 
-            for (IndexType j = 0; j < NumOutputChunks; j += 1)
+            // Per the NNUE architecture, here we want to multiply pairs of
+            // clipped elements and divide the product by 128. To do this,
+            // we can naively perform min/max operation to clip each of the
+            // four int16 vectors, mullo pairs together, then pack them into
+            // one int8 vector. However, there exists a faster way.
+
+            // The idea here is to use the implicit clipping from packus to
+            // save us two vec_max_16 instructions. This clipping works due
+            // to the fact that any int16 integer below zero will be zeroed
+            // on packus.
+
+            // Consider the case where the second element is negative.
+            // If we do standard clipping, that element will be zero, which
+            // means our pairwise product is zero. If we perform packus and
+            // remove the lower-side clip for the second element, then our
+            // product before packus will be negative, and is zeroed on pack.
+            // The two operation produce equivalent results, but the second
+            // one (using packus) saves one max operation per pair.
+
+            // But here we run into a problem: mullo does not preserve the
+            // sign of the multiplication. We can get around this by doing
+            // mulhi, which keeps the sign. But that requires an additional
+            // tweak.
+
+            // mulhi cuts off the last 16 bits of the resulting product,
+            // which is the same as performing a rightward shift of 16 bits.
+            // We can use this to our advantage. Recall that we want to
+            // divide the final product by 128, which is equivalent to a
+            // 7-bit right shift. Intuitively, if we shift the clipped
+            // value left by 9, and perform mulhi, which shifts the product
+            // right by 16 bits, then we will net a right shift of 7 bits.
+            // However, this won't work as intended. Since we clip the
+            // values to have a maximum value of 127, shifting it by 9 bits
+            // might occupy the signed bit, resulting in some positive
+            // values being interpreted as negative after the shift.
+
+            // There is a way, however, to get around this limitation. When
+            // loading the network, scale accumulator weights and biases by
+            // 2. To get the same pairwise multiplication result as before,
+            // we need to divide the product by 128 * 2 * 2 = 512, which
+            // amounts to a right shift of 9 bits. So now we only have to
+            // shift left by 7 bits, perform mulhi (shifts right by 16 bits)
+            // and net a 9 bit right shift. Since we scaled everything by
+            // two, the values are clipped at 127 * 2 = 254, which occupies
+            // 8 bits. Shifting it by 7 bits left will no longer occupy the
+            // signed bit, so we are safe.
+
+            // Note that on NEON processors, we shift left by 6 instead
+            // because the instruction "vqdmulhq_s16" also doubles the
+            // return value after the multiplication, adding an extra shift
+            // to the left by 1, so we compensate by shifting less before
+            // the multiplication.
+
+            constexpr int shift =
+    #if defined(USE_SSE2)
+              7;
+    #else
+              6;
+    #endif
+
+            for (IndexType j = 0; j < NumOutputChunks; ++j)
             {
-                const vec_t sum0a = vec_max_16(vec_min_16(in0[j * 2 + 0], One), Zero);
-                const vec_t sum0b = vec_max_16(vec_min_16(in0[j * 2 + 1], One), Zero);
-                const vec_t sum1a = vec_max_16(vec_min_16(in1[j * 2 + 0], One), Zero);
-                const vec_t sum1b = vec_max_16(vec_min_16(in1[j * 2 + 1], One), Zero);
+                const vec_t sum0a =
+                  vec_slli_16(vec_max_16(vec_min_16(in0[j * 2 + 0], One), Zero), shift);
+                const vec_t sum0b =
+                  vec_slli_16(vec_max_16(vec_min_16(in0[j * 2 + 1], One), Zero), shift);
+                const vec_t sum1a = vec_min_16(in1[j * 2 + 0], One);
+                const vec_t sum1b = vec_min_16(in1[j * 2 + 1], One);
 
-                const vec_t pa = vec_mul_16(sum0a, sum1a);
-                const vec_t pb = vec_mul_16(sum0b, sum1b);
+                const vec_t pa = vec_mulhi_16(sum0a, sum1a);
+                const vec_t pb = vec_mulhi_16(sum0b, sum1b);
 
-                out[j] = vec_msb_pack_16(pa, pb);
+                out[j] = vec_packus_16(pa, pb);
             }
 
 #else
@@ -299,9 +434,9 @@ class FeatureTransformer {
                 BiasType sum0 = accumulation[static_cast<int>(perspectives[p])][j + 0];
                 BiasType sum1 =
                   accumulation[static_cast<int>(perspectives[p])][j + HalfDimensions / 2];
-                sum0               = std::clamp<BiasType>(sum0, 0, 127);
-                sum1               = std::clamp<BiasType>(sum1, 0, 127);
-                output[offset + j] = static_cast<OutputType>(unsigned(sum0 * sum1) / 128);
+                sum0               = std::clamp<BiasType>(sum0, 0, 127 * 2);
+                sum1               = std::clamp<BiasType>(sum1, 0, 127 * 2);
+                output[offset + j] = static_cast<OutputType>(unsigned(sum0 * sum1) / 512);
             }
 
 #endif
@@ -310,296 +445,300 @@ class FeatureTransformer {
         return psqt;
     }  // end of function transform()
 
-    void hint_common_access(const Position& pos) const {
-        hint_common_access_for_perspective<WHITE>(pos);
-        hint_common_access_for_perspective<BLACK>(pos);
+    void hint_common_access(const Position&                           pos,
+                            AccumulatorCaches::Cache<HalfDimensions>* cache) const {
+        hint_common_access_for_perspective<WHITE>(pos, cache);
+        hint_common_access_for_perspective<BLACK>(pos, cache);
     }
 
    private:
     template<Color Perspective>
-    [[nodiscard]] std::pair<StateInfo*, StateInfo*>
-    try_find_computed_accumulator(const Position& pos) const {
+    StateInfo* try_find_computed_accumulator(const Position& pos) const {
         // Look for a usable accumulator of an earlier position. We keep track
         // of the estimated gain in terms of features to be added/subtracted.
-        StateInfo *st = pos.state(), *next = nullptr;
+        StateInfo* st   = pos.state();
         int        gain = FeatureSet::refresh_cost(pos);
-        while (st->previous && !st->accumulator.computed[Perspective])
+        while (st->previous && !(st->*accPtr).computed[Perspective])
         {
             // This governs when a full feature refresh is needed and how many
             // updates are better than just one full refresh.
             if (FeatureSet::requires_refresh(st, Perspective)
                 || (gain -= FeatureSet::update_cost(st) + 1) < 0)
                 break;
-            next = st;
-            st   = st->previous;
+            st = st->previous;
         }
-        return {st, next};
+        return st;
     }
 
-    // NOTE: The parameter states_to_update is an array of position states, ending with nullptr.
-    //       All states must be sequential, that is states_to_update[i] must either be reachable
-    //       by repeatedly applying ->previous from states_to_update[i+1] or
-    //       states_to_update[i] == nullptr.
-    //       computed_st must be reachable by repeatedly applying ->previous on
-    //       states_to_update[0], if not nullptr.
-    template<Color Perspective, size_t N>
-    void update_accumulator_incremental(const Position& pos,
-                                        StateInfo*      computed_st,
-                                        StateInfo*      states_to_update[N]) const {
-        static_assert(N > 0);
-        assert(states_to_update[N - 1] == nullptr);
+    // It computes the accumulator of the next position, or updates the
+    // current position's accumulator if CurrentOnly is true.
+    template<Color Perspective, bool CurrentOnly>
+    void update_accumulator_incremental(const Position& pos, StateInfo* computed) const {
+        assert((computed->*accPtr).computed[Perspective]);
+        assert(computed->next != nullptr);
 
 #ifdef VECTOR
         // Gcc-10.2 unnecessarily spills AVX2 registers if this array
-        // is defined in the VECTOR code below, once in each branch
+        // is defined in the VECTOR code below, once in each branch.
         vec_t      acc[NumRegs];
         psqt_vec_t psqt[NumPsqtRegs];
 #endif
 
-        if (states_to_update[0] == nullptr)
-            return;
-
-        // Update incrementally going back through states_to_update.
-
-        // Gather all features to be updated.
         const Square ksq = pos.square<KING>(Perspective);
 
         // The size must be enough to contain the largest possible update.
         // That might depend on the feature set and generally relies on the
-        // feature set's update cost calculation to be correct and never
-        // allow updates with more added/removed features than MaxActiveDimensions.
-        FeatureSet::IndexList removed[N - 1], added[N - 1];
-
-        {
-            int i =
-              N
-              - 2;  // last potential state to update. Skip last element because it must be nullptr.
-            while (states_to_update[i] == nullptr)
-                --i;
-
-            StateInfo* st2 = states_to_update[i];
-
-            for (; i >= 0; --i)
-            {
-                states_to_update[i]->accumulator.computed[Perspective] = true;
-
-                const StateInfo* end_state = i == 0 ? computed_st : states_to_update[i - 1];
-
-                for (; st2 != end_state; st2 = st2->previous)
-                    FeatureSet::append_changed_indices<Perspective>(ksq, st2->dirtyPiece,
-                                                                    removed[i], added[i]);
-            }
-        }
+        // feature set's update cost calculation to be correct and never allow
+        // updates with more added/removed features than MaxActiveDimensions.
+        FeatureSet::IndexList removed, added;
+
+        if constexpr (CurrentOnly)
+            for (StateInfo* st = pos.state(); st != computed; st = st->previous)
+                FeatureSet::append_changed_indices<Perspective>(ksq, st->dirtyPiece, removed,
+                                                                added);
+        else
+            FeatureSet::append_changed_indices<Perspective>(ksq, computed->next->dirtyPiece,
+                                                            removed, added);
 
-        StateInfo* st = computed_st;
+        StateInfo* next = CurrentOnly ? pos.state() : computed->next;
+        assert(!(next->*accPtr).computed[Perspective]);
 
-        // Now update the accumulators listed in states_to_update[], where the last element is a sentinel.
 #ifdef VECTOR
-
-        if (states_to_update[1] == nullptr && (removed[0].size() == 1 || removed[0].size() == 2)
-            && added[0].size() == 1)
+        if ((removed.size() == 1 || removed.size() == 2) && added.size() == 1)
         {
-            assert(states_to_update[0]);
-
             auto accIn =
-              reinterpret_cast<const vec_t*>(&st->accumulator.accumulation[Perspective][0]);
-            auto accOut = reinterpret_cast<vec_t*>(
-              &states_to_update[0]->accumulator.accumulation[Perspective][0]);
+              reinterpret_cast<const vec_t*>(&(computed->*accPtr).accumulation[Perspective][0]);
+            auto accOut = reinterpret_cast<vec_t*>(&(next->*accPtr).accumulation[Perspective][0]);
 
-            const IndexType offsetR0 = HalfDimensions * removed[0][0];
+            const IndexType offsetR0 = HalfDimensions * removed[0];
             auto            columnR0 = reinterpret_cast<const vec_t*>(&weights[offsetR0]);
-            const IndexType offsetA  = HalfDimensions * added[0][0];
+            const IndexType offsetA  = HalfDimensions * added[0];
             auto            columnA  = reinterpret_cast<const vec_t*>(&weights[offsetA]);
 
-            if (removed[0].size() == 1)
+            if (removed.size() == 1)
             {
-                for (IndexType k = 0; k < HalfDimensions * sizeof(std::int16_t) / sizeof(vec_t);
-                     ++k)
-                    accOut[k] = vec_add_16(vec_sub_16(accIn[k], columnR0[k]), columnA[k]);
+                for (IndexType i = 0; i < HalfDimensions * sizeof(WeightType) / sizeof(vec_t); ++i)
+                    accOut[i] = vec_add_16(vec_sub_16(accIn[i], columnR0[i]), columnA[i]);
             }
             else
             {
-                const IndexType offsetR1 = HalfDimensions * removed[0][1];
+                const IndexType offsetR1 = HalfDimensions * removed[1];
                 auto            columnR1 = reinterpret_cast<const vec_t*>(&weights[offsetR1]);
 
-                for (IndexType k = 0; k < HalfDimensions * sizeof(std::int16_t) / sizeof(vec_t);
-                     ++k)
-                    accOut[k] = vec_sub_16(vec_add_16(accIn[k], columnA[k]),
-                                           vec_add_16(columnR0[k], columnR1[k]));
+                for (IndexType i = 0; i < HalfDimensions * sizeof(WeightType) / sizeof(vec_t); ++i)
+                    accOut[i] = vec_sub_16(vec_add_16(accIn[i], columnA[i]),
+                                           vec_add_16(columnR0[i], columnR1[i]));
             }
 
             auto accPsqtIn = reinterpret_cast<const psqt_vec_t*>(
-              &st->accumulator.psqtAccumulation[Perspective][0]);
-            auto accPsqtOut = reinterpret_cast<psqt_vec_t*>(
-              &states_to_update[0]->accumulator.psqtAccumulation[Perspective][0]);
+              &(computed->*accPtr).psqtAccumulation[Perspective][0]);
+            auto accPsqtOut =
+              reinterpret_cast<psqt_vec_t*>(&(next->*accPtr).psqtAccumulation[Perspective][0]);
 
-            const IndexType offsetPsqtR0 = PSQTBuckets * removed[0][0];
+            const IndexType offsetPsqtR0 = PSQTBuckets * removed[0];
             auto columnPsqtR0 = reinterpret_cast<const psqt_vec_t*>(&psqtWeights[offsetPsqtR0]);
-            const IndexType offsetPsqtA = PSQTBuckets * added[0][0];
+            const IndexType offsetPsqtA = PSQTBuckets * added[0];
             auto columnPsqtA = reinterpret_cast<const psqt_vec_t*>(&psqtWeights[offsetPsqtA]);
 
-            if (removed[0].size() == 1)
+            if (removed.size() == 1)
             {
-                for (std::size_t k = 0; k < PSQTBuckets * sizeof(std::int32_t) / sizeof(psqt_vec_t);
-                     ++k)
-                    accPsqtOut[k] = vec_add_psqt_32(vec_sub_psqt_32(accPsqtIn[k], columnPsqtR0[k]),
-                                                    columnPsqtA[k]);
+                for (std::size_t i = 0;
+                     i < PSQTBuckets * sizeof(PSQTWeightType) / sizeof(psqt_vec_t); ++i)
+                    accPsqtOut[i] = vec_add_psqt_32(vec_sub_psqt_32(accPsqtIn[i], columnPsqtR0[i]),
+                                                    columnPsqtA[i]);
             }
             else
             {
-                const IndexType offsetPsqtR1 = PSQTBuckets * removed[0][1];
+                const IndexType offsetPsqtR1 = PSQTBuckets * removed[1];
                 auto columnPsqtR1 = reinterpret_cast<const psqt_vec_t*>(&psqtWeights[offsetPsqtR1]);
 
-                for (std::size_t k = 0; k < PSQTBuckets * sizeof(std::int32_t) / sizeof(psqt_vec_t);
-                     ++k)
-                    accPsqtOut[k] =
-                      vec_sub_psqt_32(vec_add_psqt_32(accPsqtIn[k], columnPsqtA[k]),
-                                      vec_add_psqt_32(columnPsqtR0[k], columnPsqtR1[k]));
+                for (std::size_t i = 0;
+                     i < PSQTBuckets * sizeof(PSQTWeightType) / sizeof(psqt_vec_t); ++i)
+                    accPsqtOut[i] =
+                      vec_sub_psqt_32(vec_add_psqt_32(accPsqtIn[i], columnPsqtA[i]),
+                                      vec_add_psqt_32(columnPsqtR0[i], columnPsqtR1[i]));
             }
         }
         else
         {
-            for (IndexType j = 0; j < HalfDimensions / TileHeight; ++j)
+            for (IndexType i = 0; i < HalfDimensions / TileHeight; ++i)
             {
                 // Load accumulator
                 auto accTileIn = reinterpret_cast<const vec_t*>(
-                  &st->accumulator.accumulation[Perspective][j * TileHeight]);
-                for (IndexType k = 0; k < NumRegs; ++k)
-                    acc[k] = vec_load(&accTileIn[k]);
+                  &(computed->*accPtr).accumulation[Perspective][i * TileHeight]);
+                for (IndexType j = 0; j < NumRegs; ++j)
+                    acc[j] = vec_load(&accTileIn[j]);
+
+                // Difference calculation for the deactivated features
+                for (const auto index : removed)
+                {
+                    const IndexType offset = HalfDimensions * index + i * TileHeight;
+                    auto            column = reinterpret_cast<const vec_t*>(&weights[offset]);
+                    for (IndexType j = 0; j < NumRegs; ++j)
+                        acc[j] = vec_sub_16(acc[j], column[j]);
+                }
 
-                for (IndexType i = 0; states_to_update[i]; ++i)
+                // Difference calculation for the activated features
+                for (const auto index : added)
                 {
-                    // Difference calculation for the deactivated features
-                    for (const auto index : removed[i])
-                    {
-                        const IndexType offset = HalfDimensions * index + j * TileHeight;
-                        auto            column = reinterpret_cast<const vec_t*>(&weights[offset]);
-                        for (IndexType k = 0; k < NumRegs; ++k)
-                            acc[k] = vec_sub_16(acc[k], column[k]);
-                    }
-
-                    // Difference calculation for the activated features
-                    for (const auto index : added[i])
-                    {
-                        const IndexType offset = HalfDimensions * index + j * TileHeight;
-                        auto            column = reinterpret_cast<const vec_t*>(&weights[offset]);
-                        for (IndexType k = 0; k < NumRegs; ++k)
-                            acc[k] = vec_add_16(acc[k], column[k]);
-                    }
-
-                    // Store accumulator
-                    auto accTileOut = reinterpret_cast<vec_t*>(
-                      &states_to_update[i]->accumulator.accumulation[Perspective][j * TileHeight]);
-                    for (IndexType k = 0; k < NumRegs; ++k)
-                        vec_store(&accTileOut[k], acc[k]);
+                    const IndexType offset = HalfDimensions * index + i * TileHeight;
+                    auto            column = reinterpret_cast<const vec_t*>(&weights[offset]);
+                    for (IndexType j = 0; j < NumRegs; ++j)
+                        acc[j] = vec_add_16(acc[j], column[j]);
                 }
+
+                // Store accumulator
+                auto accTileOut = reinterpret_cast<vec_t*>(
+                  &(next->*accPtr).accumulation[Perspective][i * TileHeight]);
+                for (IndexType j = 0; j < NumRegs; ++j)
+                    vec_store(&accTileOut[j], acc[j]);
             }
 
-            for (IndexType j = 0; j < PSQTBuckets / PsqtTileHeight; ++j)
+            for (IndexType i = 0; i < PSQTBuckets / PsqtTileHeight; ++i)
             {
                 // Load accumulator
                 auto accTilePsqtIn = reinterpret_cast<const psqt_vec_t*>(
-                  &st->accumulator.psqtAccumulation[Perspective][j * PsqtTileHeight]);
-                for (std::size_t k = 0; k < NumPsqtRegs; ++k)
-                    psqt[k] = vec_load_psqt(&accTilePsqtIn[k]);
+                  &(computed->*accPtr).psqtAccumulation[Perspective][i * PsqtTileHeight]);
+                for (std::size_t j = 0; j < NumPsqtRegs; ++j)
+                    psqt[j] = vec_load_psqt(&accTilePsqtIn[j]);
 
-                for (IndexType i = 0; states_to_update[i]; ++i)
+                // Difference calculation for the deactivated features
+                for (const auto index : removed)
                 {
-                    // Difference calculation for the deactivated features
-                    for (const auto index : removed[i])
-                    {
-                        const IndexType offset = PSQTBuckets * index + j * PsqtTileHeight;
-                        auto columnPsqt = reinterpret_cast<const psqt_vec_t*>(&psqtWeights[offset]);
-                        for (std::size_t k = 0; k < NumPsqtRegs; ++k)
-                            psqt[k] = vec_sub_psqt_32(psqt[k], columnPsqt[k]);
-                    }
-
-                    // Difference calculation for the activated features
-                    for (const auto index : added[i])
-                    {
-                        const IndexType offset = PSQTBuckets * index + j * PsqtTileHeight;
-                        auto columnPsqt = reinterpret_cast<const psqt_vec_t*>(&psqtWeights[offset]);
-                        for (std::size_t k = 0; k < NumPsqtRegs; ++k)
-                            psqt[k] = vec_add_psqt_32(psqt[k], columnPsqt[k]);
-                    }
-
-                    // Store accumulator
-                    auto accTilePsqtOut = reinterpret_cast<psqt_vec_t*>(
-                      &states_to_update[i]
-                         ->accumulator.psqtAccumulation[Perspective][j * PsqtTileHeight]);
-                    for (std::size_t k = 0; k < NumPsqtRegs; ++k)
-                        vec_store_psqt(&accTilePsqtOut[k], psqt[k]);
+                    const IndexType offset = PSQTBuckets * index + i * PsqtTileHeight;
+                    auto columnPsqt = reinterpret_cast<const psqt_vec_t*>(&psqtWeights[offset]);
+                    for (std::size_t j = 0; j < NumPsqtRegs; ++j)
+                        psqt[j] = vec_sub_psqt_32(psqt[j], columnPsqt[j]);
                 }
+
+                // Difference calculation for the activated features
+                for (const auto index : added)
+                {
+                    const IndexType offset = PSQTBuckets * index + i * PsqtTileHeight;
+                    auto columnPsqt = reinterpret_cast<const psqt_vec_t*>(&psqtWeights[offset]);
+                    for (std::size_t j = 0; j < NumPsqtRegs; ++j)
+                        psqt[j] = vec_add_psqt_32(psqt[j], columnPsqt[j]);
+                }
+
+                // Store accumulator
+                auto accTilePsqtOut = reinterpret_cast<psqt_vec_t*>(
+                  &(next->*accPtr).psqtAccumulation[Perspective][i * PsqtTileHeight]);
+                for (std::size_t j = 0; j < NumPsqtRegs; ++j)
+                    vec_store_psqt(&accTilePsqtOut[j], psqt[j]);
             }
         }
 #else
-        for (IndexType i = 0; states_to_update[i]; ++i)
+        std::memcpy((next->*accPtr).accumulation[Perspective],
+                    (computed->*accPtr).accumulation[Perspective],
+                    HalfDimensions * sizeof(BiasType));
+        std::memcpy((next->*accPtr).psqtAccumulation[Perspective],
+                    (computed->*accPtr).psqtAccumulation[Perspective],
+                    PSQTBuckets * sizeof(PSQTWeightType));
+
+        // Difference calculation for the deactivated features
+        for (const auto index : removed)
         {
-            std::memcpy(states_to_update[i]->accumulator.accumulation[Perspective],
-                        st->accumulator.accumulation[Perspective],
-                        HalfDimensions * sizeof(BiasType));
+            const IndexType offset = HalfDimensions * index;
+            for (IndexType i = 0; i < HalfDimensions; ++i)
+                (next->*accPtr).accumulation[Perspective][i] -= weights[offset + i];
 
-            for (std::size_t k = 0; k < PSQTBuckets; ++k)
-                states_to_update[i]->accumulator.psqtAccumulation[Perspective][k] =
-                  st->accumulator.psqtAccumulation[Perspective][k];
+            for (std::size_t i = 0; i < PSQTBuckets; ++i)
+                (next->*accPtr).psqtAccumulation[Perspective][i] -=
+                  psqtWeights[index * PSQTBuckets + i];
+        }
 
-            st = states_to_update[i];
+        // Difference calculation for the activated features
+        for (const auto index : added)
+        {
+            const IndexType offset = HalfDimensions * index;
+            for (IndexType i = 0; i < HalfDimensions; ++i)
+                (next->*accPtr).accumulation[Perspective][i] += weights[offset + i];
 
-            // Difference calculation for the deactivated features
-            for (const auto index : removed[i])
-            {
-                const IndexType offset = HalfDimensions * index;
+            for (std::size_t i = 0; i < PSQTBuckets; ++i)
+                (next->*accPtr).psqtAccumulation[Perspective][i] +=
+                  psqtWeights[index * PSQTBuckets + i];
+        }
+#endif
 
-                for (IndexType j = 0; j < HalfDimensions; ++j)
-                    st->accumulator.accumulation[Perspective][j] -= weights[offset + j];
+        (next->*accPtr).computed[Perspective] = true;
 
-                for (std::size_t k = 0; k < PSQTBuckets; ++k)
-                    st->accumulator.psqtAccumulation[Perspective][k] -=
-                      psqtWeights[index * PSQTBuckets + k];
-            }
+        if (!CurrentOnly && next != pos.state())
+            update_accumulator_incremental<Perspective, false>(pos, next);
+    }
 
-            // Difference calculation for the activated features
-            for (const auto index : added[i])
-            {
-                const IndexType offset = HalfDimensions * index;
+    template<Color Perspective>
+    void update_accumulator_refresh_cache(const Position&                           pos,
+                                          AccumulatorCaches::Cache<HalfDimensions>* cache) const {
+        assert(cache != nullptr);
 
-                for (IndexType j = 0; j < HalfDimensions; ++j)
-                    st->accumulator.accumulation[Perspective][j] += weights[offset + j];
+        Square                ksq   = pos.square<KING>(Perspective);
+        auto&                 entry = (*cache)[ksq][Perspective];
+        FeatureSet::IndexList removed, added;
 
-                for (std::size_t k = 0; k < PSQTBuckets; ++k)
-                    st->accumulator.psqtAccumulation[Perspective][k] +=
-                      psqtWeights[index * PSQTBuckets + k];
+        for (Color c : {WHITE, BLACK})
+        {
+            for (PieceType pt = PAWN; pt <= KING; ++pt)
+            {
+                const Piece    piece    = make_piece(c, pt);
+                const Bitboard oldBB    = entry.byColorBB[c] & entry.byTypeBB[pt];
+                const Bitboard newBB    = pos.pieces(c, pt);
+                Bitboard       toRemove = oldBB & ~newBB;
+                Bitboard       toAdd    = newBB & ~oldBB;
+
+                while (toRemove)
+                {
+                    Square sq = pop_lsb(toRemove);
+                    removed.push_back(FeatureSet::make_index<Perspective>(sq, piece, ksq));
+                }
+                while (toAdd)
+                {
+                    Square sq = pop_lsb(toAdd);
+                    added.push_back(FeatureSet::make_index<Perspective>(sq, piece, ksq));
+                }
             }
         }
-#endif
-    }
 
-    template<Color Perspective>
-    void update_accumulator_refresh(const Position& pos) const {
+        auto& accumulator                 = pos.state()->*accPtr;
+        accumulator.computed[Perspective] = true;
+
 #ifdef VECTOR
-        // Gcc-10.2 unnecessarily spills AVX2 registers if this array
-        // is defined in the VECTOR code below, once in each branch
         vec_t      acc[NumRegs];
         psqt_vec_t psqt[NumPsqtRegs];
-#endif
-
-        // Refresh the accumulator
-        // Could be extracted to a separate function because it's done in 2 places,
-        // but it's unclear if compilers would correctly handle register allocation.
-        auto& accumulator                 = pos.state()->accumulator;
-        accumulator.computed[Perspective] = true;
-        FeatureSet::IndexList active;
-        FeatureSet::append_active_indices<Perspective>(pos, active);
 
-#ifdef VECTOR
         for (IndexType j = 0; j < HalfDimensions / TileHeight; ++j)
         {
-            auto biasesTile = reinterpret_cast<const vec_t*>(&biases[j * TileHeight]);
+            auto accTile =
+              reinterpret_cast<vec_t*>(&accumulator.accumulation[Perspective][j * TileHeight]);
+            auto entryTile = reinterpret_cast<vec_t*>(&entry.accumulation[j * TileHeight]);
+
             for (IndexType k = 0; k < NumRegs; ++k)
-                acc[k] = biasesTile[k];
+                acc[k] = entryTile[k];
+
+            int i = 0;
+            for (; i < int(std::min(removed.size(), added.size())); ++i)
+            {
+                IndexType       indexR  = removed[i];
+                const IndexType offsetR = HalfDimensions * indexR + j * TileHeight;
+                auto            columnR = reinterpret_cast<const vec_t*>(&weights[offsetR]);
+                IndexType       indexA  = added[i];
+                const IndexType offsetA = HalfDimensions * indexA + j * TileHeight;
+                auto            columnA = reinterpret_cast<const vec_t*>(&weights[offsetA]);
+
+                for (unsigned k = 0; k < NumRegs; ++k)
+                    acc[k] = vec_add_16(acc[k], vec_sub_16(columnA[k], columnR[k]));
+            }
+            for (; i < int(removed.size()); ++i)
+            {
+                IndexType       index  = removed[i];
+                const IndexType offset = HalfDimensions * index + j * TileHeight;
+                auto            column = reinterpret_cast<const vec_t*>(&weights[offset]);
 
-            for (const auto index : active)
+                for (unsigned k = 0; k < NumRegs; ++k)
+                    acc[k] = vec_sub_16(acc[k], column[k]);
+            }
+            for (; i < int(added.size()); ++i)
             {
+                IndexType       index  = added[i];
                 const IndexType offset = HalfDimensions * index + j * TileHeight;
                 auto            column = reinterpret_cast<const vec_t*>(&weights[offset]);
 
@@ -607,19 +746,34 @@ class FeatureTransformer {
                     acc[k] = vec_add_16(acc[k], column[k]);
             }
 
-            auto accTile =
-              reinterpret_cast<vec_t*>(&accumulator.accumulation[Perspective][j * TileHeight]);
-            for (unsigned k = 0; k < NumRegs; k++)
+            for (IndexType k = 0; k < NumRegs; k++)
+                vec_store(&entryTile[k], acc[k]);
+            for (IndexType k = 0; k < NumRegs; k++)
                 vec_store(&accTile[k], acc[k]);
         }
 
         for (IndexType j = 0; j < PSQTBuckets / PsqtTileHeight; ++j)
         {
+            auto accTilePsqt = reinterpret_cast<psqt_vec_t*>(
+              &accumulator.psqtAccumulation[Perspective][j * PsqtTileHeight]);
+            auto entryTilePsqt =
+              reinterpret_cast<psqt_vec_t*>(&entry.psqtAccumulation[j * PsqtTileHeight]);
+
             for (std::size_t k = 0; k < NumPsqtRegs; ++k)
-                psqt[k] = vec_zero_psqt();
+                psqt[k] = entryTilePsqt[k];
 
-            for (const auto index : active)
+            for (int i = 0; i < int(removed.size()); ++i)
+            {
+                IndexType       index  = removed[i];
+                const IndexType offset = PSQTBuckets * index + j * PsqtTileHeight;
+                auto columnPsqt        = reinterpret_cast<const psqt_vec_t*>(&psqtWeights[offset]);
+
+                for (std::size_t k = 0; k < NumPsqtRegs; ++k)
+                    psqt[k] = vec_sub_psqt_32(psqt[k], columnPsqt[k]);
+            }
+            for (int i = 0; i < int(added.size()); ++i)
             {
+                IndexType       index  = added[i];
                 const IndexType offset = PSQTBuckets * index + j * PsqtTileHeight;
                 auto columnPsqt        = reinterpret_cast<const psqt_vec_t*>(&psqtWeights[offset]);
 
@@ -627,35 +781,53 @@ class FeatureTransformer {
                     psqt[k] = vec_add_psqt_32(psqt[k], columnPsqt[k]);
             }
 
-            auto accTilePsqt = reinterpret_cast<psqt_vec_t*>(
-              &accumulator.psqtAccumulation[Perspective][j * PsqtTileHeight]);
+            for (std::size_t k = 0; k < NumPsqtRegs; ++k)
+                vec_store_psqt(&entryTilePsqt[k], psqt[k]);
             for (std::size_t k = 0; k < NumPsqtRegs; ++k)
                 vec_store_psqt(&accTilePsqt[k], psqt[k]);
         }
 
 #else
-        std::memcpy(accumulator.accumulation[Perspective], biases,
-                    HalfDimensions * sizeof(BiasType));
 
-        for (std::size_t k = 0; k < PSQTBuckets; ++k)
-            accumulator.psqtAccumulation[Perspective][k] = 0;
-
-        for (const auto index : active)
+        for (const auto index : removed)
         {
             const IndexType offset = HalfDimensions * index;
+            for (IndexType j = 0; j < HalfDimensions; ++j)
+                entry.accumulation[j] -= weights[offset + j];
 
+            for (std::size_t k = 0; k < PSQTBuckets; ++k)
+                entry.psqtAccumulation[k] -= psqtWeights[index * PSQTBuckets + k];
+        }
+        for (const auto index : added)
+        {
+            const IndexType offset = HalfDimensions * index;
             for (IndexType j = 0; j < HalfDimensions; ++j)
-                accumulator.accumulation[Perspective][j] += weights[offset + j];
+                entry.accumulation[j] += weights[offset + j];
 
             for (std::size_t k = 0; k < PSQTBuckets; ++k)
-                accumulator.psqtAccumulation[Perspective][k] +=
-                  psqtWeights[index * PSQTBuckets + k];
+                entry.psqtAccumulation[k] += psqtWeights[index * PSQTBuckets + k];
         }
+
+        // The accumulator of the refresh entry has been updated.
+        // Now copy its content to the actual accumulator we were refreshing.
+
+        std::memcpy(accumulator.accumulation[Perspective], entry.accumulation,
+                    sizeof(BiasType) * HalfDimensions);
+
+        std::memcpy(accumulator.psqtAccumulation[Perspective], entry.psqtAccumulation,
+                    sizeof(int32_t) * PSQTBuckets);
 #endif
+
+        for (Color c : {WHITE, BLACK})
+            entry.byColorBB[c] = pos.pieces(c);
+
+        for (PieceType pt = PAWN; pt <= KING; ++pt)
+            entry.byTypeBB[pt] = pos.pieces(pt);
     }
 
     template<Color Perspective>
-    void hint_common_access_for_perspective(const Position& pos) const {
+    void hint_common_access_for_perspective(const Position&                           pos,
+                                            AccumulatorCaches::Cache<HalfDimensions>* cache) const {
 
         // Works like update_accumulator, but performs less work.
         // Updates ONLY the accumulator for pos.
@@ -663,49 +835,34 @@ class FeatureTransformer {
         // Look for a usable accumulator of an earlier position. We keep track
         // of the estimated gain in terms of features to be added/subtracted.
         // Fast early exit.
-        if (pos.state()->accumulator.computed[Perspective])
+        if ((pos.state()->*accPtr).computed[Perspective])
             return;
 
-        auto [oldest_st, _] = try_find_computed_accumulator<Perspective>(pos);
+        StateInfo* oldest = try_find_computed_accumulator<Perspective>(pos);
 
-        if (oldest_st->accumulator.computed[Perspective])
-        {
-            // Only update current position accumulator to minimize work.
-            StateInfo* states_to_update[2] = {pos.state(), nullptr};
-            update_accumulator_incremental<Perspective, 2>(pos, oldest_st, states_to_update);
-        }
+        if ((oldest->*accPtr).computed[Perspective] && oldest != pos.state())
+            update_accumulator_incremental<Perspective, true>(pos, oldest);
         else
-        {
-            update_accumulator_refresh<Perspective>(pos);
-        }
+            update_accumulator_refresh_cache<Perspective>(pos, cache);
     }
 
     template<Color Perspective>
-    void update_accumulator(const Position& pos) const {
+    void update_accumulator(const Position&                           pos,
+                            AccumulatorCaches::Cache<HalfDimensions>* cache) const {
 
-        auto [oldest_st, next] = try_find_computed_accumulator<Perspective>(pos);
+        StateInfo* oldest = try_find_computed_accumulator<Perspective>(pos);
 
-        if (oldest_st->accumulator.computed[Perspective])
-        {
-            if (next == nullptr)
-                return;
-
-            // Now update the accumulators listed in states_to_update[], where the last element is a sentinel.
-            // Currently we update 2 accumulators.
-            //     1. for the current position
-            //     2. the next accumulator after the computed one
-            // The heuristic may change in the future.
-            StateInfo* states_to_update[3] = {next, next == pos.state() ? nullptr : pos.state(),
-                                              nullptr};
-
-            update_accumulator_incremental<Perspective, 3>(pos, oldest_st, states_to_update);
-        }
+        if ((oldest->*accPtr).computed[Perspective] && oldest != pos.state())
+            // Start from the oldest computed accumulator, update all the
+            // accumulators up to the current position.
+            update_accumulator_incremental<Perspective, false>(pos, oldest);
         else
-        {
-            update_accumulator_refresh<Perspective>(pos);
-        }
+            update_accumulator_refresh_cache<Perspective>(pos, cache);
     }
 
+    template<IndexType Size>
+    friend struct AccumulatorCaches::Cache;
+
     alignas(CacheLineSize) BiasType biases[HalfDimensions];
     alignas(CacheLineSize) WeightType weights[HalfDimensions * InputDimensions];
     alignas(CacheLineSize) PSQTWeightType psqtWeights[InputDimensions * PSQTBuckets];