Get it from the position instead.
A good semplification of function calling and a speedup too.
No functional change also with faked split.
Signed-off-by: Marco Costalba <mcostalba@gmail.com>
// Function prototypes
template<bool HasPopCnt>
// Function prototypes
template<bool HasPopCnt>
- Value do_evaluate(const Position& pos, EvalInfo& ei, int threadID);
+ Value do_evaluate(const Position& pos, EvalInfo& ei);
template<Color Us, bool HasPopCnt>
void init_attack_tables(const Position& pos, EvalInfo& ei);
template<Color Us, bool HasPopCnt>
void init_attack_tables(const Position& pos, EvalInfo& ei);
/// evaluate() is the main evaluation function. It always computes two
/// values, an endgame score and a middle game score, and interpolates
/// between them based on the remaining material.
/// evaluate() is the main evaluation function. It always computes two
/// values, an endgame score and a middle game score, and interpolates
/// between them based on the remaining material.
-Value evaluate(const Position& pos, EvalInfo& ei, int threadID) {
+Value evaluate(const Position& pos, EvalInfo& ei) {
- return CpuHasPOPCNT ? do_evaluate<true>(pos, ei, threadID)
- : do_evaluate<false>(pos, ei, threadID);
+ return CpuHasPOPCNT ? do_evaluate<true>(pos, ei)
+ : do_evaluate<false>(pos, ei);
}
namespace {
template<bool HasPopCnt>
}
namespace {
template<bool HasPopCnt>
-Value do_evaluate(const Position& pos, EvalInfo& ei, int threadID) {
+Value do_evaluate(const Position& pos, EvalInfo& ei) {
ScaleFactor factor[2];
assert(pos.is_ok());
ScaleFactor factor[2];
assert(pos.is_ok());
- assert(threadID >= 0 && threadID < MAX_THREADS);
+ assert(pos.thread() >= 0 && pos.thread() < MAX_THREADS);
assert(!pos.is_check());
memset(&ei, 0, sizeof(EvalInfo));
assert(!pos.is_check());
memset(&ei, 0, sizeof(EvalInfo));
ei.value = pos.value();
// Probe the material hash table
ei.value = pos.value();
// Probe the material hash table
- ei.mi = MaterialTable[threadID]->get_material_info(pos);
+ ei.mi = MaterialTable[pos.thread()]->get_material_info(pos);
ei.value += ei.mi->material_value();
// If we have a specialized evaluation function for the current material
ei.value += ei.mi->material_value();
// If we have a specialized evaluation function for the current material
factor[BLACK] = ei.mi->scale_factor(pos, BLACK);
// Probe the pawn hash table
factor[BLACK] = ei.mi->scale_factor(pos, BLACK);
// Probe the pawn hash table
- ei.pi = PawnTable[threadID]->get_pawn_info(pos);
+ ei.pi = PawnTable[pos.thread()]->get_pawn_info(pos);
ei.value += apply_weight(ei.pi->pawns_value(), Weights[PawnStructure]);
// Initialize attack bitboards with pawns evaluation
ei.value += apply_weight(ei.pi->pawns_value(), Weights[PawnStructure]);
// Initialize attack bitboards with pawns evaluation
-extern Value evaluate(const Position& pos, EvalInfo& ei, int threadID);
+extern Value evaluate(const Position& pos, EvalInfo& ei);
extern void init_eval(int threads);
extern void quit_eval();
extern void read_weights(Color sideToMove);
extern void init_eval(int threads);
extern void quit_eval();
extern void read_weights(Color sideToMove);
template <bool Fake>
void split(const Position& pos, SearchStack* ss, Value* alpha, const Value beta, Value* bestValue,
template <bool Fake>
void split(const Position& pos, SearchStack* ss, Value* alpha, const Value beta, Value* bestValue,
- Depth depth, bool mateThreat, int* moveCount, MovePicker* mp, int master, bool pvNode);
+ Depth depth, bool mateThreat, int* moveCount, MovePicker* mp, bool pvNode);
private:
friend void poll();
private:
friend void poll();
Value root_search(Position& pos, SearchStack* ss, RootMoveList& rml, Value* alphaPtr, Value* betaPtr);
template <NodeType PvNode>
Value root_search(Position& pos, SearchStack* ss, RootMoveList& rml, Value* alphaPtr, Value* betaPtr);
template <NodeType PvNode>
- Value search(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth, int threadID);
+ Value search(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth);
template <NodeType PvNode>
template <NodeType PvNode>
- Value qsearch(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth, int threadID);
+ Value qsearch(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth);
template <NodeType PvNode>
void sp_search(SplitPoint* sp, int threadID);
template <NodeType PvNode>
void sp_search(SplitPoint* sp, int threadID);
// Step 5. Evaluate the position statically
// At root we do this only to get reference value for child nodes
if (!isCheck)
// Step 5. Evaluate the position statically
// At root we do this only to get reference value for child nodes
if (!isCheck)
- ss->eval = evaluate(pos, ei, 0);
+ ss->eval = evaluate(pos, ei);
// Step 6. Razoring (omitted at root)
// Step 7. Static null move pruning (omitted at root)
// Step 6. Razoring (omitted at root)
// Step 7. Static null move pruning (omitted at root)
alpha = -VALUE_INFINITE;
// Full depth PV search, done on first move or after a fail high
alpha = -VALUE_INFINITE;
// Full depth PV search, done on first move or after a fail high
- value = -search<PV>(pos, ss+1, -beta, -alpha, newDepth, 0);
+ value = -search<PV>(pos, ss+1, -beta, -alpha, newDepth);
if (ss->reduction)
{
// Reduced depth non-pv search using alpha as upperbound
if (ss->reduction)
{
// Reduced depth non-pv search using alpha as upperbound
- value = -search<NonPV>(pos, ss+1, -(alpha+1), -alpha, newDepth-ss->reduction, 0);
+ value = -search<NonPV>(pos, ss+1, -(alpha+1), -alpha, newDepth-ss->reduction);
doFullDepthSearch = (value > alpha);
}
}
doFullDepthSearch = (value > alpha);
}
}
{
// Full depth non-pv search using alpha as upperbound
ss->reduction = Depth(0);
{
// Full depth non-pv search using alpha as upperbound
ss->reduction = Depth(0);
- value = -search<NonPV>(pos, ss+1, -(alpha+1), -alpha, newDepth, 0);
+ value = -search<NonPV>(pos, ss+1, -(alpha+1), -alpha, newDepth);
// If we are above alpha then research at same depth but as PV
// to get a correct score or eventually a fail high above beta.
if (value > alpha)
// If we are above alpha then research at same depth but as PV
// to get a correct score or eventually a fail high above beta.
if (value > alpha)
- value = -search<PV>(pos, ss+1, -beta, -alpha, newDepth, 0);
+ value = -search<PV>(pos, ss+1, -beta, -alpha, newDepth);
// search<>() is the main search function for both PV and non-PV nodes
template <NodeType PvNode>
// search<>() is the main search function for both PV and non-PV nodes
template <NodeType PvNode>
- Value search(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth, int threadID) {
+ Value search(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth) {
assert(alpha >= -VALUE_INFINITE && alpha <= VALUE_INFINITE);
assert(beta > alpha && beta <= VALUE_INFINITE);
assert(PvNode || alpha == beta - 1);
assert(pos.ply() > 0 && pos.ply() < PLY_MAX);
assert(alpha >= -VALUE_INFINITE && alpha <= VALUE_INFINITE);
assert(beta > alpha && beta <= VALUE_INFINITE);
assert(PvNode || alpha == beta - 1);
assert(pos.ply() > 0 && pos.ply() < PLY_MAX);
- assert(threadID >= 0 && threadID < TM.active_threads());
+ assert(pos.thread() >= 0 && pos.thread() < TM.active_threads());
Move movesSearched[256];
EvalInfo ei;
Move movesSearched[256];
EvalInfo ei;
bool isCheck, singleEvasion, moveIsCheck, captureOrPromotion, dangerous;
bool mateThreat = false;
int moveCount = 0;
bool isCheck, singleEvasion, moveIsCheck, captureOrPromotion, dangerous;
bool mateThreat = false;
int moveCount = 0;
+ int threadID = pos.thread();
int ply = pos.ply();
refinedValue = bestValue = value = -VALUE_INFINITE;
oldAlpha = alpha;
int ply = pos.ply();
refinedValue = bestValue = value = -VALUE_INFINITE;
oldAlpha = alpha;
ei.kingDanger[pos.side_to_move()] = tte->king_danger();
}
else
ei.kingDanger[pos.side_to_move()] = tte->king_danger();
}
else
- ss->eval = evaluate(pos, ei, threadID);
+ ss->eval = evaluate(pos, ei);
refinedValue = refine_eval(tte, ss->eval, ply); // Enhance accuracy with TT value if possible
update_gains(pos, (ss-1)->currentMove, (ss-1)->eval, ss->eval);
refinedValue = refine_eval(tte, ss->eval, ply); // Enhance accuracy with TT value if possible
update_gains(pos, (ss-1)->currentMove, (ss-1)->eval, ss->eval);
&& !pos.has_pawn_on_7th(pos.side_to_move()))
{
Value rbeta = beta - razor_margin(depth);
&& !pos.has_pawn_on_7th(pos.side_to_move()))
{
Value rbeta = beta - razor_margin(depth);
- Value v = qsearch<NonPV>(pos, ss, rbeta-1, rbeta, Depth(0), threadID);
+ Value v = qsearch<NonPV>(pos, ss, rbeta-1, rbeta, Depth(0));
if (v < rbeta)
// Logically we should return (v + razor_margin(depth)), but
// surprisingly this did slightly weaker in tests.
if (v < rbeta)
// Logically we should return (v + razor_margin(depth)), but
// surprisingly this did slightly weaker in tests.
R++;
pos.do_null_move(st);
R++;
pos.do_null_move(st);
(ss+1)->skipNullMove = true;
(ss+1)->skipNullMove = true;
- nullValue = depth-R*OnePly < OnePly ? -qsearch<NonPV>(pos, ss+1, -beta, -alpha, Depth(0), threadID)
- : - search<NonPV>(pos, ss+1, -beta, -alpha, depth-R*OnePly, threadID);
-
+ nullValue = depth-R*OnePly < OnePly ? -qsearch<NonPV>(pos, ss+1, -beta, -alpha, Depth(0))
+ : - search<NonPV>(pos, ss+1, -beta, -alpha, depth-R*OnePly);
(ss+1)->skipNullMove = false;
(ss+1)->skipNullMove = false;
pos.undo_null_move();
if (nullValue >= beta)
pos.undo_null_move();
if (nullValue >= beta)
return nullValue;
ss->skipNullMove = true;
return nullValue;
ss->skipNullMove = true;
- Value v = search<NonPV>(pos, ss, alpha, beta, depth-5*OnePly, threadID);
+ Value v = search<NonPV>(pos, ss, alpha, beta, depth-5*OnePly);
ss->skipNullMove = false;
ss->skipNullMove = false;
Depth d = (PvNode ? depth - 2 * OnePly : depth / 2);
ss->skipNullMove = true;
Depth d = (PvNode ? depth - 2 * OnePly : depth / 2);
ss->skipNullMove = true;
- search<PvNode>(pos, ss, alpha, beta, d, threadID);
+ search<PvNode>(pos, ss, alpha, beta, d);
ss->skipNullMove = false;
ttMove = ss->pv[ply];
ss->skipNullMove = false;
ttMove = ss->pv[ply];
Value b = ttValue - SingularExtensionMargin;
ss->excludedMove = move;
ss->skipNullMove = true;
Value b = ttValue - SingularExtensionMargin;
ss->excludedMove = move;
ss->skipNullMove = true;
- Value v = search<NonPV>(pos, ss, b - 1, b, depth / 2, threadID);
+ Value v = search<NonPV>(pos, ss, b - 1, b, depth / 2);
ss->skipNullMove = false;
ss->excludedMove = MOVE_NONE;
ss->skipNullMove = false;
ss->excludedMove = MOVE_NONE;
// Step extra. pv search (only in PV nodes)
// The first move in list is the expected PV
if (PvNode && moveCount == 1)
// Step extra. pv search (only in PV nodes)
// The first move in list is the expected PV
if (PvNode && moveCount == 1)
- value = newDepth < OnePly ? -qsearch<PV>(pos, ss+1, -beta, -alpha, Depth(0), threadID)
- : - search<PV>(pos, ss+1, -beta, -alpha, newDepth, threadID);
+ value = newDepth < OnePly ? -qsearch<PV>(pos, ss+1, -beta, -alpha, Depth(0))
+ : - search<PV>(pos, ss+1, -beta, -alpha, newDepth);
else
{
// Step 14. Reduced depth search
else
{
// Step 14. Reduced depth search
if (ss->reduction)
{
Depth d = newDepth - ss->reduction;
if (ss->reduction)
{
Depth d = newDepth - ss->reduction;
- value = d < OnePly ? -qsearch<NonPV>(pos, ss+1, -(alpha+1), -alpha, Depth(0), threadID)
- : - search<NonPV>(pos, ss+1, -(alpha+1), -alpha, d, threadID);
+ value = d < OnePly ? -qsearch<NonPV>(pos, ss+1, -(alpha+1), -alpha, Depth(0))
+ : - search<NonPV>(pos, ss+1, -(alpha+1), -alpha, d);
doFullDepthSearch = (value > alpha);
}
doFullDepthSearch = (value > alpha);
}
assert(newDepth - OnePly >= OnePly);
ss->reduction = OnePly;
assert(newDepth - OnePly >= OnePly);
ss->reduction = OnePly;
- value = -search<NonPV>(pos, ss+1, -(alpha+1), -alpha, newDepth-ss->reduction, threadID);
+ value = -search<NonPV>(pos, ss+1, -(alpha+1), -alpha, newDepth-ss->reduction);
doFullDepthSearch = (value > alpha);
}
ss->reduction = Depth(0); // Restore original reduction
doFullDepthSearch = (value > alpha);
}
ss->reduction = Depth(0); // Restore original reduction
// Step 15. Full depth search
if (doFullDepthSearch)
{
// Step 15. Full depth search
if (doFullDepthSearch)
{
- value = newDepth < OnePly ? -qsearch<NonPV>(pos, ss+1, -(alpha+1), -alpha, Depth(0), threadID)
- : - search<NonPV>(pos, ss+1, -(alpha+1), -alpha, newDepth, threadID);
+ value = newDepth < OnePly ? -qsearch<NonPV>(pos, ss+1, -(alpha+1), -alpha, Depth(0))
+ : - search<NonPV>(pos, ss+1, -(alpha+1), -alpha, newDepth);
// Step extra. pv search (only in PV nodes)
// Search only for possible new PV nodes, if instead value >= beta then
// parent node fails low with value <= alpha and tries another move.
if (PvNode && value > alpha && value < beta)
// Step extra. pv search (only in PV nodes)
// Search only for possible new PV nodes, if instead value >= beta then
// parent node fails low with value <= alpha and tries another move.
if (PvNode && value > alpha && value < beta)
- value = newDepth < OnePly ? -qsearch<PV>(pos, ss+1, -beta, -alpha, Depth(0), threadID)
- : - search<PV>(pos, ss+1, -beta, -alpha, newDepth, threadID);
+ value = newDepth < OnePly ? -qsearch<PV>(pos, ss+1, -beta, -alpha, Depth(0))
+ : - search<PV>(pos, ss+1, -beta, -alpha, newDepth);
&& !TM.thread_should_stop(threadID)
&& Iteration <= 99)
TM.split<FakeSplit>(pos, ss, &alpha, beta, &bestValue, depth,
&& !TM.thread_should_stop(threadID)
&& Iteration <= 99)
TM.split<FakeSplit>(pos, ss, &alpha, beta, &bestValue, depth,
- mateThreat, &moveCount, &mp, threadID, PvNode);
+ mateThreat, &moveCount, &mp, PvNode);
}
// Step 19. Check for mate and stalemate
}
// Step 19. Check for mate and stalemate
// less than OnePly).
template <NodeType PvNode>
// less than OnePly).
template <NodeType PvNode>
- Value qsearch(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth, int threadID) {
+ Value qsearch(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth) {
assert(alpha >= -VALUE_INFINITE && alpha <= VALUE_INFINITE);
assert(beta >= -VALUE_INFINITE && beta <= VALUE_INFINITE);
assert(PvNode || alpha == beta - 1);
assert(depth <= 0);
assert(pos.ply() > 0 && pos.ply() < PLY_MAX);
assert(alpha >= -VALUE_INFINITE && alpha <= VALUE_INFINITE);
assert(beta >= -VALUE_INFINITE && beta <= VALUE_INFINITE);
assert(PvNode || alpha == beta - 1);
assert(depth <= 0);
assert(pos.ply() > 0 && pos.ply() < PLY_MAX);
- assert(threadID >= 0 && threadID < TM.active_threads());
+ assert(pos.thread() >= 0 && pos.thread() < TM.active_threads());
EvalInfo ei;
StateInfo st;
EvalInfo ei;
StateInfo st;
int ply = pos.ply();
Value oldAlpha = alpha;
int ply = pos.ply();
Value oldAlpha = alpha;
- TM.incrementNodeCounter(threadID);
+ TM.incrementNodeCounter(pos.thread());
ss->init(ply);
// Check for an instant draw or maximum ply reached
ss->init(ply);
// Check for an instant draw or maximum ply reached
ei.kingDanger[pos.side_to_move()] = tte->king_danger();
}
else
ei.kingDanger[pos.side_to_move()] = tte->king_danger();
}
else
- staticValue = evaluate(pos, ei, threadID);
+ staticValue = evaluate(pos, ei);
// Make and search the move
pos.do_move(move, st, ci, moveIsCheck);
// Make and search the move
pos.do_move(move, st, ci, moveIsCheck);
- value = -qsearch<PvNode>(pos, ss+1, -beta, -alpha, depth-OnePly, threadID);
+ value = -qsearch<PvNode>(pos, ss+1, -beta, -alpha, depth-OnePly);
pos.undo_move(move);
assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
pos.undo_move(move);
assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
{
Value localAlpha = sp->alpha;
Depth d = newDepth - ss->reduction;
{
Value localAlpha = sp->alpha;
Depth d = newDepth - ss->reduction;
- value = d < OnePly ? -qsearch<NonPV>(pos, ss+1, -(localAlpha+1), -localAlpha, Depth(0), threadID)
- : - search<NonPV>(pos, ss+1, -(localAlpha+1), -localAlpha, d, threadID);
+ value = d < OnePly ? -qsearch<NonPV>(pos, ss+1, -(localAlpha+1), -localAlpha, Depth(0))
+ : - search<NonPV>(pos, ss+1, -(localAlpha+1), -localAlpha, d);
doFullDepthSearch = (value > localAlpha);
}
doFullDepthSearch = (value > localAlpha);
}
ss->reduction = OnePly;
Value localAlpha = sp->alpha;
ss->reduction = OnePly;
Value localAlpha = sp->alpha;
- value = -search<NonPV>(pos, ss+1, -(localAlpha+1), -localAlpha, newDepth-ss->reduction, threadID);
+ value = -search<NonPV>(pos, ss+1, -(localAlpha+1), -localAlpha, newDepth-ss->reduction);
doFullDepthSearch = (value > localAlpha);
}
ss->reduction = Depth(0); // Restore original reduction
doFullDepthSearch = (value > localAlpha);
}
ss->reduction = Depth(0); // Restore original reduction
if (doFullDepthSearch)
{
Value localAlpha = sp->alpha;
if (doFullDepthSearch)
{
Value localAlpha = sp->alpha;
- value = newDepth < OnePly ? -qsearch<NonPV>(pos, ss+1, -(localAlpha+1), -localAlpha, Depth(0), threadID)
- : - search<NonPV>(pos, ss+1, -(localAlpha+1), -localAlpha, newDepth, threadID);
+ value = newDepth < OnePly ? -qsearch<NonPV>(pos, ss+1, -(localAlpha+1), -localAlpha, Depth(0))
+ : - search<NonPV>(pos, ss+1, -(localAlpha+1), -localAlpha, newDepth);
// Step extra. pv search (only in PV nodes)
// Search only for possible new PV nodes, if instead value >= beta then
// parent node fails low with value <= alpha and tries another move.
if (PvNode && value > localAlpha && value < sp->beta)
// Step extra. pv search (only in PV nodes)
// Search only for possible new PV nodes, if instead value >= beta then
// parent node fails low with value <= alpha and tries another move.
if (PvNode && value > localAlpha && value < sp->beta)
- value = newDepth < OnePly ? -qsearch<PV>(pos, ss+1, -sp->beta, -sp->alpha, Depth(0), threadID)
- : - search<PV>(pos, ss+1, -sp->beta, -sp->alpha, newDepth, threadID);
+ value = newDepth < OnePly ? -qsearch<PV>(pos, ss+1, -sp->beta, -sp->alpha, Depth(0))
+ : - search<PV>(pos, ss+1, -sp->beta, -sp->alpha, newDepth);
template <bool Fake>
void ThreadsManager::split(const Position& p, SearchStack* ss, Value* alpha, const Value beta,
Value* bestValue, Depth depth, bool mateThreat, int* moveCount,
template <bool Fake>
void ThreadsManager::split(const Position& p, SearchStack* ss, Value* alpha, const Value beta,
Value* bestValue, Depth depth, bool mateThreat, int* moveCount,
- MovePicker* mp, int master, bool pvNode) {
+ MovePicker* mp, bool pvNode) {
assert(p.is_ok());
assert(*bestValue >= -VALUE_INFINITE);
assert(*bestValue <= *alpha);
assert(*alpha < beta);
assert(beta <= VALUE_INFINITE);
assert(depth > Depth(0));
assert(p.is_ok());
assert(*bestValue >= -VALUE_INFINITE);
assert(*bestValue <= *alpha);
assert(*alpha < beta);
assert(beta <= VALUE_INFINITE);
assert(depth > Depth(0));
- assert(master >= 0 && master < ActiveThreads);
+ assert(p.thread() >= 0 && p.thread() < ActiveThreads);
assert(ActiveThreads > 1);
assert(ActiveThreads > 1);
+ int master = p.thread();
+
lock_grab(&MPLock);
// If no other thread is available to help us, or if we have too many
lock_grab(&MPLock);
// If no other thread is available to help us, or if we have too many
init_ss_array(ss, PLY_MAX_PLUS_2);
pos.do_move(cur->move, st);
moves[count].move = cur->move;
init_ss_array(ss, PLY_MAX_PLUS_2);
pos.do_move(cur->move, st);
moves[count].move = cur->move;
- moves[count].score = -qsearch<PV>(pos, ss+1, -VALUE_INFINITE, VALUE_INFINITE, Depth(0), 0);
+ moves[count].score = -qsearch<PV>(pos, ss+1, -VALUE_INFINITE, VALUE_INFINITE, Depth(0));
moves[count].pv[0] = cur->move;
moves[count].pv[1] = MOVE_NONE;
pos.undo_move(cur->move);
moves[count].pv[0] = cur->move;
moves[count].pv[1] = MOVE_NONE;
pos.undo_move(cur->move);
EvalInfo ei;
cout << "Incremental mg: " << mg_value(RootPosition.value())
<< "\nIncremental eg: " << eg_value(RootPosition.value())
EvalInfo ei;
cout << "Incremental mg: " << mg_value(RootPosition.value())
<< "\nIncremental eg: " << eg_value(RootPosition.value())
- << "\nFull eval: " << evaluate(RootPosition, ei, 0) << endl;
+ << "\nFull eval: " << evaluate(RootPosition, ei) << endl;
}
else if (token == "key")
cout << "key: " << hex << RootPosition.get_key()
}
else if (token == "key")
cout << "key: " << hex << RootPosition.get_key()