char eff_id[256];
sprintf(eff_id, "src_image%u", (unsigned)inputs.size());
- effects.push_back(input);
inputs.push_back(input);
- output_color_space.insert(std::make_pair(input, input->get_color_space()));
- output_gamma_curve.insert(std::make_pair(input, input->get_gamma_curve()));
- effect_ids.insert(std::make_pair(input, eff_id));
- incoming_links.insert(std::make_pair(input, std::vector<Effect *>()));
+
+ Node *node = new Node;
+ node->effect = input;
+ node->effect_id = eff_id;
+ node->output_color_space = input->get_color_space();
+ node->output_gamma_curve = input->get_gamma_curve();
+
+ nodes.push_back(node);
+ node_map[input] = node;
+
return input;
}
void EffectChain::add_effect_raw(Effect *effect, const std::vector<Effect *> &inputs)
{
char effect_id[256];
- sprintf(effect_id, "eff%u", (unsigned)effects.size());
+ sprintf(effect_id, "eff%u", (unsigned)nodes.size());
+
+ Node *node = new Node;
+ node->effect = effect;
+ node->effect_id = effect_id;
- effects.push_back(effect);
- effect_ids.insert(std::make_pair(effect, effect_id));
assert(inputs.size() == effect->num_inputs());
+ assert(inputs.size() >= 1);
for (unsigned i = 0; i < inputs.size(); ++i) {
- assert(std::find(effects.begin(), effects.end(), inputs[i]) != effects.end());
- outgoing_links[inputs[i]].push_back(effect);
+ assert(node_map.count(inputs[i]) != 0);
+ node_map[inputs[i]]->outgoing_links.push_back(node);
+ node->incoming_links.push_back(node_map[inputs[i]]);
+ if (i == 0) {
+ node->output_gamma_curve = node_map[inputs[i]]->output_gamma_curve;
+ node->output_color_space = node_map[inputs[i]]->output_color_space;
+ } else {
+ assert(node->output_gamma_curve == node_map[inputs[i]]->output_gamma_curve);
+ assert(node->output_color_space == node_map[inputs[i]]->output_color_space);
+ }
}
- incoming_links.insert(std::make_pair(effect, inputs));
- output_gamma_curve[effect] = output_gamma_curve[last_added_effect()];
- output_color_space[effect] = output_color_space[last_added_effect()];
+
+ nodes.push_back(node);
+ node_map[effect] = node;
}
-void EffectChain::find_all_nonlinear_inputs(Effect *effect,
- std::vector<Input *> *nonlinear_inputs,
- std::vector<Effect *> *intermediates)
+void EffectChain::find_all_nonlinear_inputs(EffectChain::Node *node,
+ std::vector<EffectChain::Node *> *nonlinear_inputs,
+ std::vector<EffectChain::Node *> *intermediates)
{
- assert(output_gamma_curve.count(effect) != 0);
- if (output_gamma_curve[effect] == GAMMA_LINEAR) {
+ if (node->output_gamma_curve == GAMMA_LINEAR) {
return;
}
- if (effect->num_inputs() == 0) {
- nonlinear_inputs->push_back(static_cast<Input *>(effect));
+ if (node->effect->num_inputs() == 0) {
+ nonlinear_inputs->push_back(node);
} else {
- intermediates->push_back(effect);
-
- assert(incoming_links.count(effect) == 1);
- std::vector<Effect *> deps = incoming_links[effect];
- assert(effect->num_inputs() == deps.size());
- for (unsigned i = 0; i < deps.size(); ++i) {
- find_all_nonlinear_inputs(deps[i], nonlinear_inputs, intermediates);
+ intermediates->push_back(node);
+ assert(node->effect->num_inputs() == node->incoming_links.size());
+ for (unsigned i = 0; i < node->incoming_links.size(); ++i) {
+ find_all_nonlinear_inputs(node->incoming_links[i], nonlinear_inputs, intermediates);
}
}
}
-Effect *EffectChain::normalize_to_linear_gamma(Effect *input)
+EffectChain::Node *EffectChain::normalize_to_linear_gamma(EffectChain::Node *input)
{
// Find out if all the inputs can be set to deliver sRGB inputs.
// If so, we can just ask them to do that instead of inserting a
//
// TODO: Setting this flag for one source might confuse a different
// part of the pipeline using the same source.
- std::vector<Input *> nonlinear_inputs;
- std::vector<Effect *> intermediates;
+ std::vector<Node *> nonlinear_inputs;
+ std::vector<Node *> intermediates;
find_all_nonlinear_inputs(input, &nonlinear_inputs, &intermediates);
bool all_ok = true;
for (unsigned i = 0; i < nonlinear_inputs.size(); ++i) {
- all_ok &= nonlinear_inputs[i]->can_output_linear_gamma();
+ Input *input = static_cast<Input *>(nonlinear_inputs[i]->effect);
+ all_ok &= input->can_output_linear_gamma();
}
if (all_ok) {
for (unsigned i = 0; i < nonlinear_inputs.size(); ++i) {
- bool ok = nonlinear_inputs[i]->set_int("output_linear_gamma", 1);
+ bool ok = nonlinear_inputs[i]->effect->set_int("output_linear_gamma", 1);
assert(ok);
- output_gamma_curve[nonlinear_inputs[i]] = GAMMA_LINEAR;
+ nonlinear_inputs[i]->output_gamma_curve = GAMMA_LINEAR;
}
for (unsigned i = 0; i < intermediates.size(); ++i) {
- output_gamma_curve[intermediates[i]] = GAMMA_LINEAR;
+ intermediates[i]->output_gamma_curve = GAMMA_LINEAR;
}
return input;
}
// OK, that didn't work. Insert a conversion effect.
GammaExpansionEffect *gamma_conversion = new GammaExpansionEffect();
- gamma_conversion->set_int("source_curve", output_gamma_curve[input]);
+ gamma_conversion->set_int("source_curve", input->output_gamma_curve);
std::vector<Effect *> inputs;
- inputs.push_back(input);
+ inputs.push_back(input->effect);
gamma_conversion->add_self_to_effect_chain(this, inputs);
- output_gamma_curve[gamma_conversion] = GAMMA_LINEAR;
- return gamma_conversion;
+
+ assert(node_map.count(gamma_conversion) != 0);
+ Node *node = node_map[gamma_conversion];
+ node->output_gamma_curve = GAMMA_LINEAR;
+ return node;
}
-Effect *EffectChain::normalize_to_srgb(Effect *input)
+EffectChain::Node *EffectChain::normalize_to_srgb(EffectChain::Node *input)
{
- assert(output_gamma_curve.count(input) != 0);
- assert(output_color_space.count(input) != 0);
- assert(output_gamma_curve[input] == GAMMA_LINEAR);
+ assert(input->output_gamma_curve == GAMMA_LINEAR);
ColorSpaceConversionEffect *colorspace_conversion = new ColorSpaceConversionEffect();
- colorspace_conversion->set_int("source_space", output_color_space[input]);
+ colorspace_conversion->set_int("source_space", input->output_color_space);
colorspace_conversion->set_int("destination_space", COLORSPACE_sRGB);
std::vector<Effect *> inputs;
- inputs.push_back(input);
+ inputs.push_back(input->effect);
colorspace_conversion->add_self_to_effect_chain(this, inputs);
- output_color_space[colorspace_conversion] = COLORSPACE_sRGB;
- return colorspace_conversion;
+
+ assert(node_map.count(colorspace_conversion) != 0);
+ Node *node = node_map[colorspace_conversion];
+ node->output_color_space = COLORSPACE_sRGB;
+ return node;
}
Effect *EffectChain::add_effect(Effect *effect, const std::vector<Effect *> &inputs)
std::vector<Effect *> normalized_inputs = inputs;
for (unsigned i = 0; i < normalized_inputs.size(); ++i) {
- assert(output_gamma_curve.count(normalized_inputs[i]) != 0);
- if (effect->needs_linear_light() && output_gamma_curve[normalized_inputs[i]] != GAMMA_LINEAR) {
- normalized_inputs[i] = normalize_to_linear_gamma(normalized_inputs[i]);
+ assert(node_map.count(normalized_inputs[i]) != 0);
+ Node *input = node_map[normalized_inputs[i]];
+ if (effect->needs_linear_light() && input->output_gamma_curve != GAMMA_LINEAR) {
+ input = normalize_to_linear_gamma(input);
}
- assert(output_color_space.count(normalized_inputs[i]) != 0);
- if (effect->needs_srgb_primaries() && output_color_space[normalized_inputs[i]] != COLORSPACE_sRGB) {
- normalized_inputs[i] = normalize_to_srgb(normalized_inputs[i]);
+ if (effect->needs_srgb_primaries() && input->output_color_space != COLORSPACE_sRGB) {
+ input = normalize_to_srgb(input);
}
+ normalized_inputs[i] = input->effect;
}
effect->add_self_to_effect_chain(this, normalized_inputs);
return output;
}
-EffectChain::Phase *EffectChain::compile_glsl_program(const std::vector<Effect *> &inputs, const std::vector<Effect *> &effects)
+EffectChain::Phase *EffectChain::compile_glsl_program(
+ const std::vector<EffectChain::Node *> &inputs,
+ const std::vector<EffectChain::Node *> &effects)
{
assert(!effects.empty());
// Deduplicate the inputs.
- std::vector<Effect *> true_inputs = inputs;
+ std::vector<Node *> true_inputs = inputs;
std::sort(true_inputs.begin(), true_inputs.end());
true_inputs.erase(std::unique(true_inputs.begin(), true_inputs.end()), true_inputs.end());
// Create functions for all the texture inputs that we need.
for (unsigned i = 0; i < true_inputs.size(); ++i) {
- Effect *effect = true_inputs[i];
- assert(effect_ids.count(effect) != 0);
- std::string effect_id = effect_ids[effect];
+ Node *input = true_inputs[i];
- frag_shader += std::string("uniform sampler2D tex_") + effect_id + ";\n";
- frag_shader += std::string("vec4 ") + effect_id + "(vec2 tc) {\n";
- frag_shader += "\treturn texture2D(tex_" + effect_id + ", tc);\n";
+ frag_shader += std::string("uniform sampler2D tex_") + input->effect_id + ";\n";
+ frag_shader += std::string("vec4 ") + input->effect_id + "(vec2 tc) {\n";
+ frag_shader += "\treturn texture2D(tex_" + input->effect_id + ", tc);\n";
frag_shader += "}\n";
frag_shader += "\n";
}
- std::string last_effect_id;
for (unsigned i = 0; i < effects.size(); ++i) {
- Effect *effect = effects[i];
- assert(effect != NULL);
- assert(effect_ids.count(effect) != 0);
- std::string effect_id = effect_ids[effect];
- last_effect_id = effect_id;
-
- if (incoming_links[effect].size() == 1) {
- frag_shader += std::string("#define INPUT ") + effect_ids[incoming_links[effect][0]] + "\n";
+ Node *node = effects[i];
+
+ if (node->incoming_links.size() == 1) {
+ frag_shader += std::string("#define INPUT ") + node->incoming_links[0]->effect_id + "\n";
} else {
- for (unsigned j = 0; j < incoming_links[effect].size(); ++j) {
+ for (unsigned j = 0; j < node->incoming_links.size(); ++j) {
char buf[256];
- sprintf(buf, "#define INPUT%d %s\n", j + 1, effect_ids[incoming_links[effect][j]].c_str());
+ sprintf(buf, "#define INPUT%d %s\n", j + 1, node->incoming_links[j]->effect_id.c_str());
frag_shader += buf;
}
}
frag_shader += "\n";
- frag_shader += std::string("#define FUNCNAME ") + effect_id + "\n";
- frag_shader += replace_prefix(effect->output_convenience_uniforms(), effect_id);
- frag_shader += replace_prefix(effect->output_fragment_shader(), effect_id);
+ frag_shader += std::string("#define FUNCNAME ") + node->effect_id + "\n";
+ frag_shader += replace_prefix(node->effect->output_convenience_uniforms(), node->effect_id);
+ frag_shader += replace_prefix(node->effect->output_fragment_shader(), node->effect_id);
frag_shader += "#undef PREFIX\n";
frag_shader += "#undef FUNCNAME\n";
- if (incoming_links[effect].size() == 1) {
+ if (node->incoming_links.size() == 1) {
frag_shader += "#undef INPUT\n";
} else {
- for (unsigned j = 0; j < incoming_links[effect].size(); ++j) {
+ for (unsigned j = 0; j < node->incoming_links.size(); ++j) {
char buf[256];
sprintf(buf, "#undef INPUT%d\n", j + 1);
frag_shader += buf;
}
frag_shader += "\n";
- input_needs_mipmaps |= effect->needs_mipmaps();
+ input_needs_mipmaps |= node->effect->needs_mipmaps();
}
for (unsigned i = 0; i < effects.size(); ++i) {
- Effect *effect = effects[i];
- if (effect->num_inputs() == 0) {
- effect->set_int("needs_mipmaps", input_needs_mipmaps);
+ Node *node = effects[i];
+ if (node->effect->num_inputs() == 0) {
+ node->effect->set_int("needs_mipmaps", input_needs_mipmaps);
}
}
- assert(!last_effect_id.empty());
- frag_shader += std::string("#define INPUT ") + last_effect_id + "\n";
+ frag_shader += std::string("#define INPUT ") + effects.back()->effect_id + "\n";
frag_shader.append(read_file("footer.frag"));
printf("%s\n", frag_shader.c_str());
//
// We follow a quite simple depth-first search from the output, although
// without any explicit recursion.
-void EffectChain::construct_glsl_programs(Effect *output)
+void EffectChain::construct_glsl_programs(EffectChain::Node *output)
{
// Which effects have already been completed in this phase?
// We need to keep track of it, as an effect with multiple outputs
// could otherwise be calculate multiple times.
- std::set<Effect *> completed_effects;
+ std::set<Node *> completed_effects;
// Effects in the current phase, as well as inputs (outputs from other phases
// that we depend on). Note that since we start iterating from the end,
// the effect list will be in the reverse order.
- std::vector<Effect *> this_phase_inputs;
- std::vector<Effect *> this_phase_effects;
+ std::vector<Node *> this_phase_inputs;
+ std::vector<Node *> this_phase_effects;
// Effects that we have yet to calculate, but that we know should
// be in the current phase.
- std::stack<Effect *> effects_todo_this_phase;
+ std::stack<Node *> effects_todo_this_phase;
// Effects that we have yet to calculate, but that come from other phases.
// We delay these until we have this phase done in its entirety,
// at which point we pick any of them and start a new phase from that.
- std::stack<Effect *> effects_todo_other_phases;
+ std::stack<Node *> effects_todo_other_phases;
effects_todo_this_phase.push(output);
for ( ;; ) { // Termination condition within loop.
if (!effects_todo_this_phase.empty()) {
// OK, we have more to do this phase.
- Effect *effect = effects_todo_this_phase.top();
+ Node *node = effects_todo_this_phase.top();
effects_todo_this_phase.pop();
// This should currently only happen for effects that are phase outputs,
// and we throw those out separately below.
- assert(completed_effects.count(effect) == 0);
+ assert(completed_effects.count(node) == 0);
- this_phase_effects.push_back(effect);
- completed_effects.insert(effect);
+ this_phase_effects.push_back(node);
+ completed_effects.insert(node);
// Find all the dependencies of this effect, and add them to the stack.
- assert(incoming_links.count(effect) == 1);
- std::vector<Effect *> deps = incoming_links[effect];
- assert(effect->num_inputs() == deps.size());
+ std::vector<Node *> deps = node->incoming_links;
+ assert(node->effect->num_inputs() == deps.size());
for (unsigned i = 0; i < deps.size(); ++i) {
bool start_new_phase = false;
// FIXME: If we sample directly from a texture, we won't need this.
- if (effect->needs_texture_bounce()) {
+ if (node->effect->needs_texture_bounce()) {
start_new_phase = true;
}
- assert(outgoing_links.count(deps[i]) == 1);
- if (outgoing_links[deps[i]].size() > 1 && deps[i]->num_inputs() > 0) {
+ if (deps[i]->outgoing_links.size() > 1 && deps[i]->effect->num_inputs() > 0) {
// More than one effect uses this as the input,
// and it is not a texture itself.
// The easiest thing to do (and probably also the safest
start_new_phase = true;
}
- if (deps[i]->changes_output_size()) {
+ if (deps[i]->effect->changes_output_size()) {
start_new_phase = true;
}
if (!this_phase_effects.empty()) {
reverse(this_phase_effects.begin(), this_phase_effects.end());
phases.push_back(compile_glsl_program(this_phase_inputs, this_phase_effects));
- output_effects_to_phase.insert(std::make_pair(this_phase_effects.back(), phases.back()));
+ this_phase_effects.back()->phase = phases.back();
this_phase_inputs.clear();
this_phase_effects.clear();
}
break;
}
- Effect *effect = effects_todo_other_phases.top();
+ Node *node = effects_todo_other_phases.top();
effects_todo_other_phases.pop();
- if (completed_effects.count(effect) == 0) {
+ if (completed_effects.count(node) == 0) {
// Start a new phase, calculating from this effect.
- effects_todo_this_phase.push(effect);
+ effects_todo_this_phase.push(node);
}
}
void EffectChain::find_output_size(EffectChain::Phase *phase)
{
- Effect *output_effect = phase->effects.back();
+ Node *output_node = phase->effects.back();
// If the last effect explicitly sets an output size,
// use that.
- if (output_effect->changes_output_size()) {
- output_effect->get_output_size(&phase->output_width, &phase->output_height);
+ if (output_node->effect->changes_output_size()) {
+ output_node->effect->get_output_size(&phase->output_width, &phase->output_height);
return;
}
if (!phase->inputs.empty()) {
unsigned best_width = 0, best_height = 0;
for (unsigned i = 0; i < phase->inputs.size(); ++i) {
- Effect *input = phase->inputs[i];
- assert(output_effects_to_phase.count(input) != 0);
- const Phase *input_phase = output_effects_to_phase[input];
- assert(input_phase->output_width != 0);
- assert(input_phase->output_height != 0);
- if (input_phase->output_width * input_phase->output_height > best_width * best_height) {
- best_width = input_phase->output_width;
- best_height = input_phase->output_height;
+ Node *input = phase->inputs[i];
+ assert(input->phase->output_width != 0);
+ assert(input->phase->output_height != 0);
+ if (input->phase->output_width * input->phase->output_height > best_width * best_height) {
+ best_width = input->phase->output_width;
+ best_height = input->phase->output_height;
}
}
assert(best_width != 0);
// Find the output effect. This is, simply, one that has no outgoing links.
// If there are multiple ones, the graph is malformed (we do not support
// multiple outputs right now).
- std::vector<Effect *> output_effects;
- for (unsigned i = 0; i < effects.size(); ++i) {
- Effect *effect = effects[i];
- if (outgoing_links.count(effect) == 0 || outgoing_links[effect].size() == 0) {
- output_effects.push_back(effect);
+ std::vector<Node *> output_nodes;
+ for (unsigned i = 0; i < nodes.size(); ++i) {
+ Node *node = nodes[i];
+ if (node->outgoing_links.empty()) {
+ output_nodes.push_back(node);
}
}
- assert(output_effects.size() == 1);
- Effect *output_effect = output_effects[0];
+ assert(output_nodes.size() == 1);
+ Node *output_node = output_nodes[0];
// Add normalizers to get the output format right.
- assert(output_gamma_curve.count(output_effect) != 0);
- assert(output_color_space.count(output_effect) != 0);
- ColorSpace current_color_space = output_color_space[output_effect];
- if (current_color_space != output_format.color_space) {
+ if (output_node->output_color_space != output_format.color_space) {
ColorSpaceConversionEffect *colorspace_conversion = new ColorSpaceConversionEffect();
- colorspace_conversion->set_int("source_space", current_color_space);
+ colorspace_conversion->set_int("source_space", output_node->output_color_space);
colorspace_conversion->set_int("destination_space", output_format.color_space);
std::vector<Effect *> inputs;
- inputs.push_back(output_effect);
+ inputs.push_back(output_node->effect);
colorspace_conversion->add_self_to_effect_chain(this, inputs);
- output_color_space[colorspace_conversion] = output_format.color_space;
- output_effect = colorspace_conversion;
+
+ assert(node_map.count(colorspace_conversion) != 0);
+ output_node = node_map[colorspace_conversion];
+ output_node->output_color_space = output_format.color_space;
}
- GammaCurve current_gamma_curve = output_gamma_curve[output_effect];
- if (current_gamma_curve != output_format.gamma_curve) {
- if (current_gamma_curve != GAMMA_LINEAR) {
- output_effect = normalize_to_linear_gamma(output_effect);
- current_gamma_curve = GAMMA_LINEAR;
+ if (output_node->output_gamma_curve != output_format.gamma_curve) {
+ if (output_node->output_gamma_curve != GAMMA_LINEAR) {
+ output_node = normalize_to_linear_gamma(output_node);
}
GammaCompressionEffect *gamma_conversion = new GammaCompressionEffect();
gamma_conversion->set_int("destination_curve", output_format.gamma_curve);
std::vector<Effect *> inputs;
- inputs.push_back(output_effect);
+ inputs.push_back(output_node->effect);
gamma_conversion->add_self_to_effect_chain(this, inputs);
- output_gamma_curve[gamma_conversion] = output_format.gamma_curve;
- output_effect = gamma_conversion;
+
+ assert(node_map.count(gamma_conversion) != 0);
+ output_node = node_map[gamma_conversion];
+ output_node->output_gamma_curve = output_format.gamma_curve;
}
// Construct all needed GLSL programs, starting at the output.
- construct_glsl_programs(output_effect);
+ construct_glsl_programs(output_node);
// If we have more than one phase, we need intermediate render-to-texture.
// Construct an FBO, and then as many textures as we need.
for (unsigned i = 0; i < phases.size() - 1; ++i) {
find_output_size(phases[i]);
- Effect *output_effect = phases[i]->effects.back();
- GLuint temp_texture;
- glGenTextures(1, &temp_texture);
+ Node *output_node = phases[i]->effects.back();
+ glGenTextures(1, &output_node->output_texture);
check_error();
- glBindTexture(GL_TEXTURE_2D, temp_texture);
+ glBindTexture(GL_TEXTURE_2D, output_node->output_texture);
check_error();
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
check_error();
check_error();
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA16F_ARB, phases[i]->output_width, phases[i]->output_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);
check_error();
- effect_output_textures.insert(std::make_pair(output_effect, temp_texture));
- effect_output_texture_sizes.insert(std::make_pair(output_effect, std::make_pair(phases[i]->output_width, phases[i]->output_height)));
+
+ output_node->output_texture_width = phases[i]->output_width;
+ output_node->output_texture_height = phases[i]->output_height;
}
}
check_error();
}
- std::set<Effect *> generated_mipmaps;
+ std::set<Node *> generated_mipmaps;
for (unsigned phase = 0; phase < phases.size(); ++phase) {
// See if the requested output size has changed. If so, we need to recreate
if (phase != phases.size() - 1) {
find_output_size(phases[phase]);
- Effect *output_effect = phases[phase]->effects.back();
- assert(effect_output_texture_sizes.count(output_effect) != 0);
- std::pair<GLuint, GLuint> old_size = effect_output_texture_sizes[output_effect];
+ Node *output_node = phases[phase]->effects.back();
- if (old_size.first != phases[phase]->output_width ||
- old_size.second != phases[phase]->output_height) {
+ if (output_node->output_texture_width != phases[phase]->output_width ||
+ output_node->output_texture_height != phases[phase]->output_height) {
glActiveTexture(GL_TEXTURE0);
check_error();
- assert(effect_output_textures.count(output_effect) != 0);
- glBindTexture(GL_TEXTURE_2D, effect_output_textures[output_effect]);
+ glBindTexture(GL_TEXTURE_2D, output_node->output_texture);
check_error();
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA16F_ARB, phases[phase]->output_width, phases[phase]->output_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);
check_error();
- effect_output_texture_sizes[output_effect] = std::make_pair(phases[phase]->output_width, phases[phase]->output_height);
glBindTexture(GL_TEXTURE_2D, 0);
check_error();
+
+ output_node->output_texture_width = phases[phase]->output_width;
+ output_node->output_texture_height = phases[phase]->output_height;
}
}
// Set up RTT inputs for this phase.
for (unsigned sampler = 0; sampler < phases[phase]->inputs.size(); ++sampler) {
glActiveTexture(GL_TEXTURE0 + sampler);
- Effect *input = phases[phase]->inputs[sampler];
- assert(effect_output_textures.count(input) != 0);
- glBindTexture(GL_TEXTURE_2D, effect_output_textures[input]);
+ Node *input = phases[phase]->inputs[sampler];
+ glBindTexture(GL_TEXTURE_2D, input->output_texture);
check_error();
if (phases[phase]->input_needs_mipmaps) {
if (generated_mipmaps.count(input) == 0) {
check_error();
}
- assert(effect_ids.count(input));
- std::string texture_name = std::string("tex_") + effect_ids[input];
+ std::string texture_name = std::string("tex_") + input->effect_id;
glUniform1i(glGetUniformLocation(phases[phase]->glsl_program_num, texture_name.c_str()), sampler);
check_error();
}
check_error();
glViewport(0, 0, width, height);
} else {
- Effect *output_effect = phases[phase]->effects.back();
- assert(effect_output_textures.count(output_effect) != 0);
+ Node *output_node = phases[phase]->effects.back();
glFramebufferTexture2D(
GL_FRAMEBUFFER,
GL_COLOR_ATTACHMENT0,
GL_TEXTURE_2D,
- effect_output_textures[output_effect],
+ output_node->output_texture,
0);
check_error();
glViewport(0, 0, phases[phase]->output_width, phases[phase]->output_height);
// Give the required parameters to all the effects.
unsigned sampler_num = phases[phase]->inputs.size();
for (unsigned i = 0; i < phases[phase]->effects.size(); ++i) {
- Effect *effect = phases[phase]->effects[i];
- effect->set_gl_state(phases[phase]->glsl_program_num, effect_ids[effect], &sampler_num);
+ Node *node = phases[phase]->effects[i];
+ node->effect->set_gl_state(phases[phase]->glsl_program_num, node->effect_id, &sampler_num);
check_error();
}
check_error();
for (unsigned i = 0; i < phases[phase]->effects.size(); ++i) {
- Effect *effect = phases[phase]->effects[i];
- effect->clear_gl_state();
+ Node *node = phases[phase]->effects[i];
+ node->effect->clear_gl_state();
}
}
}